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RESUMEN

En este trabajo se presentan los detalles del desarrollo y aplicacién de un algoritmo general
que permite la resolucién de una gran cantidad de problemas de vibraciones libres de placas
rectangulares que presentan diversos efectos que complican el modelo matemdtico, tales como
anisotropia y ortotropia en el material de la placa, espesor variable, bordes eldsticamente
restringidos contra rotacién y translacién, etc. Este algoritmo estd basado en la aplicacién
del método de Rayleigh-Ritz con expresiones polinémicas como funciones aproximantes, para
generar una ecuacién de frecuencias de fécil tratamiento tanto analitico como numérico.
El mismo presenta la particularidad de permitir el uso de diferentes expresiones analiticas
para definir ciertos parametros caracteristicos adimensionales, tales como, los coeficientes de
frecuencia, los coeficientes de rigidez rotacional y translacional y los coeficientes de rigidez a
la flexién. Los valores numéricos obtenidos tienen una buena precisién desde el punto de vista
ingenieril, y el algoritmo puede ser ficilmente implementado en una computadora personal. El
soft-ware asi obtenido, constituye una herramienta adecuada para trabajos de disefio, dado que
una gran cantidad de problemas sobre placas vibrantes con efectos complicantes, pueden ser
resueltos con un trabajo computacional relativamente simple.

SUMMARY

The Rayleigh-Ritz method is used to generate results for a great number of flexural
vibration problems for rectangular plate with several complicating effects. The general
algorithm developed allows the inclusion of analysis of anisotropic and orthotropic materials,
variable thickness, elastically restrained edges, etc. Also distinct expressions of adimensional
parameters can be considered. The values obtained are accurate from an engineering viewpoint
and the entire algorithm can be implemented in a personal computer. The software constitutes
a useful tool in design work since a great amount of vibrating plate problems which involve
several complicating effects can be solved, without an important amount of computational work.
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INTRODUCCION

El anilisis dindmico de placas rectangulares es un problema que ha sido tratado
con extensién por una gran cantidad de investigadores en todo el mundo. A su vez,
es abrumadora la cantidad de informacién que al respecto se ha difundido. Por ello
en este trabajo tan s6lo una limitada seleccién de articulos se incluye en la lista de
referencias.

Los métodos variacionales ocupan un lugar destacado como herramienta para la
resolucién del problema mencionado. En particular, el método de Rayleigh-Ritz se
caracteriza por permitir la obtencién de las expresiones analiticas de los términos
de la ecuacién de frecuencias. Esta posibilidad de manejo de expresiones analiticas
constituye una formidable ventaja para analizar la variacién de ciertas variables y/o
pardmetros. Una caracteristica del método, que a veces constituye una desventaja,
es que deben proponerse adecuadamente las funciones aproximantes. Al respecto
se han utilizado diversos tipos de funciones, tales como: polinomios ortogonales,
funciones exponenciales y funciones circulares'=~%. En los dltimos afios se han utilizado
funciones aproximantes que contienen pardmetros indeterminados, para resolver una.
enorme cantidad de problemas® ~'*. Probablemente el més simple de todos estos
procedimientos, es aquél que se genera mediante la aplicacién del método de Rayleigh-
Ritz con el uso de polinomios para construir las funciones aproximantes. Las referenciag
[15] a [20] constituyen algunos ejemplos del uso de esta metodologia, y los mismos tienen.
una caracteristica en comun, que es la de conducir a la generacién de algoritmos de facil
manejo tanto desde el punto de vista analitico como del numérico. Esta caracteristica
esencial permite que puedan ser tenidos en cuenta diversos efectos complicantes, tales
como: anisotropia y ortotropia en el material, espesor variable, bordes eldsticamente
restringidos, etc. Ademads, dichos algoritmos proporcionan resultados con buena
precisién desde el punto de vista practico. El algoritmo presentado en este trabajo
tiene una caracteristica adicional que es la de permitir el uso de diferentes expresiones
analiticas para diversos pardmetros caracteristicos. Es comun, que los coeficientes
de frecuencias y otros parametros caracteristicos, correspondientes a los problemas
de placas mencionados, se presenten en forma adimensional con distintas expresiones
analiticas. Asi, por ejemplo, cuando se analiza el comportamiento dindmico de
placas rectangulares isotrépicas de espesor variable, se utilizan comtnmente una de
las siguientes expresiones para los coeficientes de frecuencias:

(1 1
Q = _ph )wa2 Q = _ph wb?

D@ D)
donde a y b indican las longitudes de los lados de la placa, p la densidad del material,
R(1) el espesor de la placa, D la rigidez a la flexién y w la frecuencia circular.

Lo mismo ocurre con otros parametros, como los coeficientes de rigidez rotacional
que pueden ser definidos; por ‘ejemplo, de la siguiente manera:

r2a

Rl == D(z} s

D(l) i RQ —
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donde D y D@ indican rigidez a la flexién referida al borde 1 y 2 respectivamente
(ver Figura 1). Pero dichos coeficientes también pueden ser definidos como:

’f‘lb . 7‘2b
IOk Ry = DA’

en este caso se usa b en lugar de «, tanto en R; como en R, v la rigidez a la flexién en
R, esté referida al borde 1, es decir se usa DU en lugar de D3,

Ry =

{4)

&

fut
o
[: T}

) -

%3] -b
Figura 1. Dimensiones originales de la placa (@ = a/2, b = b/2)

Es evidente que resulta imposible o al menos dificultosa, una comparacién de
valores de coeficientes de frecuencia entre dos trabajos donde no hay coincidencia en
las expresiones adoptadas para ciertos pardmetros caracteristicos como los indicados.

El algoritmo aqui presentado posibilita, mediante una seleccién de parametros,
generar distintas expresiones analiticas para los coeficientes ;, R;, v T;, entre otros.
Es decir, que permite usar diferentes expresiones para varios pardmetros caracteristicos,
posibilitando una automatica comparacién de valores de frecuencias.

Un algoritmo, con estas caracteristicas, constituye una eficiente herramienta, para
la determinacién de valores de coeficientes de frecuencia, para una gran cantidad
de problemas distintos, y resulta por ende, de importancia en trabajos de disefio
preliminar.

APLICACION DEL METODO DE RAYLEIGH-RITZ

El método de Rayleigh-Ritz requiere la minimizacién del siguiente funcional:

IIW] = Umax — Tmax (1)

siendo: Umax = Upmax + Urmax + Ugmax
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Upmax: valor méximo de la energia de deformacién de la placa.

Urmax: valor maximo de la energfa almacenada en los vinculos rotacionales de los
bordes de la placa.

U max: valor maximo de la energia almacenada en los vinculos translacionales de los
bordes de la placa.

Tmax: valor méximo de la energia cinética de la placa.

Vamos a considerar un funcional general que represente al maximo valor de la energia
de deformacién de una amplia variedad de placas rectangulares. Sea entonces:

1
Upmax = 2 //R {Dl(Wm)z + Dy(Wyy)? + 2DsWos Wy,

+4D4(Way)? + 4D5Wog Way + 4DsWay W,y | ddy (2)

donde W = W(z,y) representa la deflexién de la placa y los subindices indican
derivacién de W respecto a la variable que se usa como subindice. Tal como se destaca
en la Figura 1, el dominio de integracién estd dado por:

- a - b

R = __5_X—b)b>_:_’b:—’

@@ x b, a= o b=
donde a y b denotan los lados de la placa, en la direccién de los ejes =z e y
respectivamente. En el funcional (2), los coeficientes D;, (1 = 1,2,...,86), representan

las rigideces a la flexidn, las rigideces torsionales y las rigideces adicionales de la placa.
La maxima energia que corresponde a los vinculos rotacionales, que actian a lo
largo de los bordes de la placa, viene dada por:

1

5 b
Urmax = 3 {TI/E[Wz(_Ea y)Pdy + 7"2/3[Ww(a, y)Pdy +

a

+ g / " Wy (e, ~B)ds + T / [Wy(x,é)mx} (3)

-z -a
donde 7;, (2 =1,2,3,4) denotan los coeficientes de vinculo rotacional.
Por otra parte, la maxima energia que corresponde a los vinculos translacionales
viene dada por:

Upmax = %{tl /_Z[W(—E,y)]zdy + to /_Z[W(E, y))*dy +
+ t3 f_[W(m,—B)]zdx + ty _a;[W(x,B)Pdm} (4)

donde t;, (i = 1,2,3,4) denotan los coeficientes de vinculo translacional. Finalmente,
el valor maximo de energia cinética de la placa viene dado por:

w2
Tmax = %= [ [ hey)W (e ) dedy %)
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donde p denota la densidad del material de la placa y h(z,y) indica la funcién que da
el espesor de la placa.

A efectos de facilitar los desarrollos analiticos, es conveniente introducir el cambio
de variables T = 2/@ 7 = y/b, que modifica el dominio de integracién y lo transforma
en un cuadrado de longitud de lado igual a uno. No obstante, de aqui en mas, para
simplificar la notacién, se vuelven a usar las letras z e y en lugar de T y de 7.

ADOPCION DE LA FUNCION APROXIMANTE

Vamos a adoptar como funcién aproximante a la siguiente expresién construida con
expresiones polindémicas:

W(z,y) = AiXi(x)Y1(y) + A2 Xa(z)Ya(y) (6)

donde es:

Xl(a:) = Z aixm Yl(y) = Z a' i (7)

=1
5 5

Xo(z) = Y bx™ Yaly) = > by™ (8)
i=1 i=1

021:&}1:1, 7?,1:0, n2:1, ?’L3:2, ?’1,4:3, n5:4, blzb}l:l,
mlzl,mQ:Q,m3:3,m4:4,m5:5 (9)

Los coeficientes a;, b;, a}, y b} se obtienen de los sistemas de ecuaciones lineales
que resultan al reemplazar (6) en las condiciones de contorno correspondientes®®. La
expresién (6) se caracteriza por ser de muy facil manejo analitico, permitiendo obtener
con facilidad las expresiones de los términos que componen la ecuacién de frecuencias.

ECUACION DE FRECUENCIAS

El reemplazo de la funcién aproximante W (z,y) en el funcional (1) conduce a la
siguiente ecuacién de balance energético:

DML+

1
( DV T, + 2 b)D§}>I + 4 E)Dfll)l4 +

=1} l ol
@Jo| l

b
a?

8| o

+ 4(= )D(UI + 4 2>Dg1>16 + ri(s) I + ra(=g)ls + (10)

QI

-+ 7"3(52—)[9 + ’1“4( )110 + tlb I + th Iio + tsa Itg + tqa i — ph( )wz abI15 =0
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Los términos I; en (10}, estdn dados por:

3 4
L= CiPXyPYy, i=1,2,4 L=Y" B,PX;PY;, i=356
i=1 j=1
3 3
L= CRXis;RYie;, i=7,8910 L=3Y CiTXi10,TYi10,;,=11,12,13,14

=1 =1

3
L = Z C;CX;CY;

=1

donde es: Cl = A%, 02 = A%, 03 = 2A1A2, Bl = A%, Bz = A%, B3 = AlAz, B4 = B3

En el apéndice se incluyen las expresiones analiticas de los términos PX;;, PY;;,
RX;;, RY;;, TX;;, TY:;, CX; y CY;. Operando algebraicamente en (10), se construye
facilmente la expresiéon del coeficiente de frecuencias € deseado, y dado que los términos
I; son funciones de los pardmetros Ay y As, al aplicar la condicién necesaria de existencia
de un minimo respecto a dichos pardmetros, resulta el siguiente sistema de ecuaciones
lineales

A(Ey — Q%Ey) + Ag(E3—Q%Ey) =0

) , (11)
AI(E?, - E4) + A2(E5 - Q Es) =0

Los términos indicados con E;, (i = 1,2,3,4,5,6) en (11), representan las
expresiones que involucran a los términos PXy;, PY;;, RXy;, RY;;, T Xy, TY;;, CX;
y CY;. El determinante del sistema de ecuaciones (11) debe ser nulo, para que exista,
una solucién no trivial. De alli resulta la ecuacién bicuadratica

AQ* + BQ? + C =0 (12)

La ecuacién (12) posee dos raices. La de menor valor absoluto corresponde al
coeficiente de frecuencia fundamental y la restante al coeficiente de frecuencia de un
modo superior de vibracién.

FUNCION QUE DA LA VARIACION DE ESPESOR

Vamos a considerar que el espesor de la placa varia en forma. lineal en la direccién
de los ejes coordenados, segin la funcién:

h = h(z,y) = K f(z)g(y) (13)

flz) = 05(ciz+c1+2), gly) = 05(coy+c2+2) (14)
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donde: ¢1 y ¢ son constantes, h(1) es el valor que toma A en el punto (=1, —1) del borde
1 de la placa, tal como se indica en la Figura 2. El valor () = h(W(1 + ¢1)(1 + ¢3) es
el que toma h, en el punto (1,1) del borde 2 de la placa.

(4)
\ (2)

E] 1 /h

u) -1 0 1 x @

{1}

G

Figura 2. Dimensiones de la placa luego del cambio de variables z = z/a, y = y/ b

GENERACION DE COEFICIENTES DE FRECUENCIA

Cuando se analiza el comportamiento dindmico de placas rectangulares, es comuin
que los valores de frecuencia se den en términos de coeficientes adimensionales, de
manera de dar mayor generalidad a los resultados numéricos, ya que entonces, los
mismos resultan independientes, entre otros parametros, de las dimensiones de los
lados de la placa, del valor de densidad del material, del espesor, etc. Los coeficientes
de frecuencia mas usados en la literatura técnico cientifica son los descriptos a
continuacion.

Placas isotrépicas de espesor variable
Los coeficientes de frecuencia comunmente usados son:

ph(l) 2 ph(l) 9

_D(l) wa —) w

Q = Da

donde h) y DU representan los valores de h y D, referidos al borde 1 de la placa.
Dado que h varfa de acuerdo a la funcién (13), resulta:

E(h1)3

— — DD f()3g(y)? W = T
D D(x,y) D f(CE) g(y) donde es D 12(1 __ 'uz)
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Placas ortétropas de espesor variable

Los coeficientes de frecuencia comiunmente usados son:

oy oy
sz IIxy

donde es Hé?l,,) = iy D;g) + ZDzé,). La rigidez a la flexién esta dada por:
E (h(l))B
Du(z,y) = DP f(z)%g(y)’,  donde es: D) = 20 — )
Por otra parte, la rigidez a la torsién viene dada por:

. E(R(H3
Duy(evs) = Doy, DY = 2

Placas anisétropas de espesor uniforme

En este caso los coeficientes de frecuencia maés usados son:

ph 2 ph o
O = ./ —wa Q = 4/ —wb
V D11 V D11

donde Di; representa la rigidez a la flexién de la placa anisétropa.
A efectos de generar los distintos coeficientes de frecuencia descriptos, vamos a

introducir un coeficiente general, dado por:

. ph(l) 5
Mediante la adecuada eleccién de { y D*, se generan como casos particulares, los
coeficientes antes definidos.

GENERACIC)N DE COEFICIENTES DE RIGIDEZ
EN VINCULOS QUE ACTUAN EN LOS BORDES

Es comiin, que los coeficientes de rigidez de los vinculos eldsticos en bordes se
expresen en forma adimensional. Por ejemplo, los coeficientes de rigidez rotacional y
translacional, para placas isotrépicas de espesor constante, comuinmente usados en la
literatura técnico cientifica estan dados por's:

3

— i_3 — —
RIZM, T, = _EG’_, Ry = @, Tz:tz_a
D D D
rob 18 b B (19
Ry == T3 = = Ry = =, Ty = 2
3 D’ 3 Da 4 D} 4 D
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En las expresiones (16), R; y T; indican los coeficientes de rigidez rotacional y
translacional respectivamente, correspondientes al borde 7. Pero también se usan otras
expresiones para todos estos coeficientes; algunos autores los expresan en términos del
lado opuesto. Asi, por ejemplo, en referencia [21], los mismos coeficientes se definen
mediante las siguientes expresiones:

r1b t1b3 r9b tzb?’

R =X T =2 R =2 T, =2—

1= ! D’ D’ 2 D (17)
734 t3a3 40 t4a3

s =7 b D’ D’ D

En este trabajo se usan @ y b en todas las expresiones, pero el uso de a y b como
ocurre en (17), no afecta la posibilidad de una comparacién directa de valores, ya que
simplemente debe tenerse en cuenta la presencia del factor numérico que surge de las
relaciones @ = 5 y b= %.

‘Para el caso de placas isétropas de espesor variable los coeficientes cominmente
usados son:

- ria . tla?’ . 724 _ t253

Rl_m’ Tl_m’ Rz_m’ TQ”W
rsb t3b b t4D° (18)

— 37 _ B = 40 — 4

Bs = 7oy Ts = payp B4 = pap Tt = pop

donde es: D@ = DM £(1)3¢(1)3
A su vez, para placas ortétropas de espesor variable comunmente se usan los
coeficientes:

_ na . tla?’ . rod B t263

B o T o T e B pE
el 17 v 1B (19)

By =—4y Ts = gy Ra= —p T =

Dy Dy Dy Dy

donde es D2 = DY £(1)3g(1)%, DP = DSV £(1)3(1)3

Finalmente, para el caso de placas anisétropas de espesor uniforme, se suelen usar:

r1a tla3 roQ t263

! Dy ! Dy’ ° Dy’ P D11
o 155 b B (20)

Re = 22 p, = 80 p 42 p = A0

8 T Dy P Dy’ Dy’ * Doy

En (20), los pardmetros D;; y Daa, representan las rigideces a la flexién de la placa.
anisétropa.

En las expresiones dadas en (18) y (19) los coeficientes Ry, T, R4 y Ty tienen el
coeficiente de rigidez a la flexién referido al borde 2 es decir D® | pero también es posible
referirlo al borde 1, o sea usar D). Ademés, puede usarse b en lugar de @, como se
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indicé en las expresiones (17). Todas estas posibilidades conducen a una gran variedad
de opciones para definir a los coeficientes de rigidez mencionados; por ello, resulta de
gran importancia el uso de un algoritmo que permita generar automaéaticamente las
distintas expresiones posibles. Para lograr esto, es suficiente con introducir ciertos
pardmetros en la expresién de la ecuacién de balance energético (10).

Sea entonces:

M P Db pW D D

1 2 3 4 5 6
Ditvp s I +2 I3 + dpg (S VI, + dps (22T + dpe( 8o+
Pl i+ ol ) o + 2ps( 5 Ms + dpa( )T+ 4ps ()5 + 4pe(py ) e

M D DD

Dy 1 )
i P el
+ Ry ( Do prln + Ra( o )psls + Ra( Tv pelot

D(l) D(l)
+ Ry(=2-)profio + Ty (52— )punfi+
D D+ .
M 50
+ To( - )p1ztiz + Ta(=2-)p1slis+
D D
(1) ph(l)

D
+ Ty( D2* )p14l14 —

I
> w2l4§1;15— =0 (21)

En la ecuacién (21) los pardmetros: p; (i = 1,2, ...,14), | y D*, permiten la seleccién
de diferentes expresiones para los coeficientes de rigidez rotacional y translacional y el
coeficiente de frecuencia.

DETERMINACION DE LOS VALORES DE LOS PARAMETROS
PARA LA GENERACION DE DISTINTOS CASOS

Vamos a determinar los valores que deben tomar los pardametros p;, D* y [ en
la ecuacién de balance energético (21), a efectos de generar distintos problemas sobre
placas vibrantes.

Supongamos que se desean generar valores del coeficiente de frecuencia fundamental

Q= %wcﬁ y que los coeficientes de rigidez R; y T5, (¢ = 1, 2, 3,4) estén definidos de

- I3 ta a 283 b tsb"
la sigulente manera: Ry = ;?1(‘1"—), Ty = 36y Ry = %, Ty = —5’?—1), R3 = 5’23, T3 = 5367:
< +3
Ry = BT%’ Ty = }%‘%)—. Entonces, en la expresién (21), los pardmetros p;, D* y I deben
tomar los siguientes valores:

pr=1, pa=rl*, ps=rl® pa=rl® ps=rl, ps =1, pr =1, ps =1, ps = rl*, pyo = rl*,

pi1=1, przo=1, ps=7rl* pra=rl*, I=a, rl= a/b, D* = D®

donde 7! indica la relacién de lados de la placa.
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Supongamos ahora que se desean generar valores del coeficiente de frecuencia

1
fundamental Q = l;‘<1)wa y que los coeficientes de rigidez R; y 13, (i = 1,2,3,4)
estan definidos asi: _ .
_ na _ tj@° _ _ to@® __ r3b _ tsb _ 7'45
Rl - DO Tl - pay R2 - D(z)a T2 - D(2)7 R3 - pay TB - DOy Ry = ey

Ty = D(2) Entonces, en la expresién (21), los pardmetros p;, D* y [ deben tomar los
siguientes valores:

p1 =1, pa=rl*, ps=rl%, pa=rl%, ps =7l ps =rl®, pr=1, ps = C, po =rl*, pro = ri*C,
P11 :1, P12 = C, P13 = 7‘14, P14 = ?‘Z4C, = a, rl = C&/b, C = f(l)gg(l):i, D* B D(l)

Finalmente, supongamos que se desean generar valores del coeficiente de frecuencia
fundamental: Q = ,/ph((l)wb2 v que los coeficientes de rigidez R; y T3, (1 = 1,2,3,4)

estin ahora deﬁnidos am

r3b t3b _ b
Ry : (1)7 Iy = D(l)’ Ry = (2)5 Iy = (2)7 Ry = D(1)> I3 = 53'(1_)7 Ry = f)%ﬂ?
T, = D(2) Entonces, en la expresién (21), los pardmetros p;, D* y | deben tomar los

siguientes valores:

pr=rl*, p2 =1, ps = rl*, pa=rl®, ps = rl*, ps =rl, pr =rl*, ps = r1*C, po ~ 1, p1o = C,
pu =rl*, po=rl'C, p1s =1, pra = C, [ =b, rl=bja, C = f(1)°g(1)°, D" = H)

De esta misma forma se generan todos los otros casos. Al almacenar en el programa
de computadora correspondiente, los distintos conjuntos de valores de los pardametros
p;, D* y 1, es posible una inmediata seleccién de los distintos pardmetros caracteristicos
a usar. Ademds, mediante la adopcidén de valores numéricos para los coeficientes de
rigidez rotacional y translacional se genera el tipo de condiciones de contorno que
afectan a la placa que se desea estudiar.

RESULTADOS NUMERICOS

En las Tablas I a VI se presentan valores del coeficiente de frecuencia fundamental
Qoo para distintos casos de placas vibrantes. Al respecto, se compararon valores con
los trabajos indicados en las referencias [15] a [20]. Todos los casos generados por el
presente algoritmo, estdn caracterizados por una superior o a lo sumo idéntica precisién
de los valores numéricos. Esto es debido a que todos los resultados de este trabajo,
fueron obtenidos con el uso de dos términos, mientras que en la mayoria de los trabajos
citados, se usé un solo término en la funcién aproximante. Por otra parte, el método
de Rayleigh-Ritz genera cotas superiores respecto a los valores exactos, y dado que los
valores presentados en este articulo, son en general, més bajos que los reportados en
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los trabajos citados, es 16gico suponer que los valores aqui obtenidos son mas exactos.
Ademas, las tablas mencionadas contienen informacién numérica adicional con respecto
a la proporcionada en las referencias citadas. Por otra parte, en la Tabla VII se
presentan valores del coeficiente de frecuencia fundamental para placas con apoyos
clasicos.

Los valores numéricos que proporciona el algoritmo desarrollado, se obtienen en
forma inmediata mediante la séleccién del conjunto de valores de los parametros p;,
D* y I (que permite la generacién del coeficiente de frecuencia y de los coeficientes
de rigidez deseados), la adopcién del tipo de material, del espesor de la placa y las
condiciones de contorno que corresponden.

Cabe destacar, que la generacién de las condiciones de contorno para los cuatro
bordes de la placa, se logra con suma facilidad. Asi, por ejemplo, la generacién de
las condiciones de contorno que corresponden al caso indicado en la Tabla I, se logra
simplemente dando los siguientes valores a los coeficientes de rigidez: R; = o0, R4 = 00,
Ry =0600, T; =00 (i =1,2,3,4) y Ry variando entre oo y 0. En el programa de
computadora es suficiente con usar 10'C en lugar de oo.

PLACAS DE ESPESOR UNIFORME

Placas Anisétropas
Para analizar este caso se adoptaron los siguientes pardametros usados en referencia
[15]:
Dy, = Du1, D2 = Dqg, D3 = D13, Dy = Degs, Ds = Dis, Dg = Do
Dia/D1y = 0.3245569 Dgy/D1y = 0.2130195 Dig/D1p = 0.5120546

Dyg/D11; = 0.1694905 Dgs/Dyy = 0.3387559

La Tabla I proporciona valores del coeficiente de frecuencia fundamental Qgg =
\/ph/ D11 woob?, correspondiente a una placa rectangular anisotrépica cuyos bordes 1 y
4 estdn rigidamente empotrados, el borde 3 estd rigidamente empotrado o simplemente
apoyado y el borde 2 estd eldsticamente restringido contra rotacién. Los valores aqui
obtenidos coinciden con los proporcionados en referencia [15].

Placas Ortétropas

La Tabla II proporciona valores del coeficiente de frecuencia fundamental

h
Qoo = 4/ }?xywooazy

correspondiente a una placa rectangular ortétropa cuyos bordes 1y 3 estén rigidamente
empotrados, el borde 4 esta libre, y el borde 2 esta eldsticamente restringido contra
rotacién. Valores del coeficiente de frecuencia indicado, se obtienen de (12), adoptando:
Dl = Dw; D2 = Dy, Dg = p,me, D4 = Dmy, D5 = 0, D(‘, = 0, D* = sz, donde es
Hyy = pyDz +2Dgy, | = a.

Los resultados aqui obtenidos, son en general, mas bajos que los presentados en
referencia [18].
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R3 =00 R3 =0
rl=b/a rl=b/a
R, 0.5 1.0 2.0 0.5 1.0 2.0
00 13.47 27.44 92.90 11.34 26.87 93.30
100 13.43 27.24 92.04 11.29 26.65 92.43
10 13.25 25.99 86.19 11.00 25.24 86.51
1 13.06 23.54 72.61 10.58 22.29 72.64
0 13.04 22.67 66.86 10.48 21.17 66.69

Tabla I. Valores del coeficiente de frecuencia fundamental Qg9 = +/ph/D11 woob?
correspondiente a una placa rectangular anisotrépica cuyos bordes 1 y 4
estan rigidamente empotrados, (R; = R4 = 00), el borde 3 estd rigidamente
empotrado o simplemente apoyado y el borde 2 estd elasticamente restringido
contra rotacién. Ry = rea/Dyy, Ty = 00, (1 =1,2,3,4)

Dy/Hyy = 0.5 Dy/Hyy = 0.5 Dy/Hay =2 Dy/Hyy =05
rl=a/b rl=a/b

Ry 0.5 1.0 2.0 0.5 1.0 2.0

00 16.61 18.77 27.00 31.97 32.72 36.54
100 16.45 18.62 26.84 31.67 32.42 36.24
10 15.41 17.61 25.91 29.55 30.32 34.27

1 12.96 15.46 24.29 24.43 25.35 29.91

0 11.91 14.60 23.77 22.16 23.18 28.14

Tabla II. Valores del coeficiente de frecuencia fundamental Qg = 1/ﬁp@—wooaz

correspondiente a una placa rectangular ortétropa cuyos bordes 1 y 3 estdn
rigidamente empotrados, el borde 4 estd libre, y borde 2 esta eldsticamente
restringido contra rotacién. Ry = Rz = oo, Ry = Ty = 0, p, = 0.2,
Ry = T‘QE/D;E, T; = o0, (Z = 1,2,3)

Placas Isétropas

El material isotrépico se genera mediante la adopcién de los siguientes valores de
pardmetros D;: Dy = D, Dy = D, D3 = uD, Dy = £D(1 — p), D5 =0, Dg = 0.
La Tabla III proporciona valores del coeficiente de frecuencia fundamental

Qoo = 4/ph/D wooa?,
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correspondiente a una placa rectangular isétropa cuyos bordes 1 y 3 estan rigidamente
empotrados, el borde 4 estd libre, y el borde 2 esta eldsticamente restringido contra
rotacién. Los valores numéricos aqui obtenidos son, en general, mds bajos que los
reportados en referencia [20].

rl=a/b
R, 0.5 1.0 2.0
0o 22.85 24.20 31.32
100 22.63 23.98 31.12
10 21.14 22.53 29.86
1 17.56 19.20 27.34
0 15.99 17.79 26.41

Tabla III. Valores del coeficiente de frecuencia fundamental 9y = 1/%w00a2

correspondiente a una placa rectangular isétropa cuyos bordes 1 y 3
estdn rigidamente empotrados, el borde 4 estd libre, y el borde 2 estd
eldsticamente restringido contra rotacién. Ry = R3 = oo, Ry = Ty = 0,
R2 = 7”25/1), H = 03, Ti = o0, ('L = 1,2,3)

PLACAS DE ESPESOR VARIABLE

Placas Ortétropas

Este caso se genera adoptando: Dy = Dy, Dy = Dy, D3 = puDy, Dy = Dyy, D5 =0,
Dg=0
D* = H{), donde HY) = D +2D{)

Si se adopta [ = b y los correspondientes valores de p; se generan valores del
coeficiente
ph(l)
Qoo = —(17600052

La Tabla IV proporciona valores de este coeficiente correspondiente a una placa
rectangular ortétropa de espesor variable, cuyos bordes 1, 3 y 4 estan rigidamente
empotrados y el borde 2 estd elasticamente restringido contra rotacién. Los valores
aqui obtenidos son, en general, mas bajos que los proporcionados en referencia [17].
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D,/Hy, =05 Dy/Hg, =0.5
c1 =-02, ¢ =0.2 c1 =02, cg=0.2
rl=b/a rl="b/a

Ry 0.5 1.0 2.0 0.5 1.0 2.0
o0 18.40 28.11 73.73 22.46 34.30 89.87
100 18.36 27.98 73.22 22.45 34.20 89.47
10 18.16 27.18 69.72 22.36 33.51 86.11
1 17.84 25.58 61.18 22.36 31.92 74.93
0 17.75 25.01 57.44 22.36 31.27 69.03

Tabla IV. Valores del coeficiente de frecuencia fundamental Qg9 = ,/%((ll))woob2

correspondiente a una placa rectangular ortétropa de espesor variable,
cuyos bordes 1, 3 y 4 estédn rigidamente empotrados y el borde 2 estd
eldsticamente restringido contra rotacién. Ry = Rz = Ry = oo, Ry =

rya@/ DV, py = 0.3, Ty = o0, (i = 1,2,3,4)

Placas Isétropas

La Tabla V proporciona valores del coeficiente de frecuencia fundamental g9 =

(1) . .
%wooaz, correspondiente a una placa rectangular isétropa cuyos bordes 1, 2 y 3

estdn rigidamente empotrados, mientras que el borde 4 esta libre. Los valores aqui
obtenidos son més bajos que los reportados en referencia [19].
. . 1
Por otra parte, la Tabla VI contiene valores del coeficiente g9 = %woocﬁ
correspondiente a una placa cuadrada isotrépica de espesor variable, caracterizada por

los siguientes parametros:

po_ mb o bbb
1 = D(1)7 1 = D(l), 2 = D(l), 2 = D(l)’
3@ _ t3a® _r4a _ t4a _
R3 = m, Tg = m, R4 = my T4 - ma rl—a/b (22)

Las expresiones (22) constituyen el caso particular en que los coeficientes Ry, T1,
Ry y Ty, estan definidos en términos de b, en lugar de @, y los coeficientes Rs y T»
contienen a D Teferido al borde 1, es decir D). Una situacién ansloga ocurre con los
coeficientes Ry, 73, Ry v 14.
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rl=afb
e 05 1.0 2.0
04 18.23 19.40 25.36
0.2 20.54 21.78 28.25
0.0 22.85 24.20 31.32
0.2 95.11 26.62 34.50
0.4 27.36 29.05 37.78

Tabla V. Valores del coeficiente de frecuencia fundamental Qg = 4/ %wooaz

correspondiente a una placa rectangular isétropa cuyos bordes 1, 2 y 3
estan rigidamente empotrados, mientras que el borde 4 estd libre. R; =
R2=R3=OO, R4:T4:0,/,L=0.3, 0220, Tz‘:OO, (i=1,2,3)

¢ =0, c0=0 : c1 =02, ¢co=0

Rl Rz:O R‘;’—R4:O R4:0 RZZO }23:1{{420 R4=O
(222,3,4) Rzle RZZRQ,:RI (222,3,4) RQ :Rl RQZR:;:RI

00 23.67 28.95 31.86 26.17 32.00 35.18
100 23.53 28.54 31.37 26.01 31.40 34.48
10 22.59 26.02 28.27 24.93 28.13 30.47
1 20.54 21.38 22.12 22.66 23.27 23.93
l
Tabla VI. Valores del coeficiente de frecuencia fundamental Qg = ";‘;11 ) wopa?
correspondiente a una placa isotrépica cuadrada de espesor variable. Ry =
g%f} 5 RZ = %; R3 = g%?)3 R4 = %) rl = G'/b = 15 T’L = 00,
(1=1,2,3,4)

PLACAS CON CONDICIONES DE APOYO CLASICOS

En la Tabla VII se muestran valores del coeficiente de frecuencia fundamental
para placas rectangulares de espesor constante, con distintos tipos de material, y con
condiciones de apoyo cldsicos. Para el caso de anisotropia se usaron los pardmetros
Dl = Dll, DQ = ng, Dg = Dlz, D4 = Dgg, D5 = Dm, DG = DQG, con los mismos
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valores que los usados en la Tabla I. Para el caso de ortotropia se usaron:

D,/H,, = 0.5,

Dy/Hy, = 0.5,

Hy = 0.3

Se incluyen ademads, valores para el caso de isotropia, tomados de referencia [2].
Tal como puede observarse, la concordancia de valores es muy buena.

Borde 1 2 3 4 rl=a/b 0.5 1.00 2.00
SA SA SA SA 1) 12.34 1974  (19.739)  49.37
(I0) 10.02  17.10 40.10

(II) 1138  16.18 32.36

SA SA RE RE 1) 1372 2895  (28.950)  95.44
(ID) 1112 23.18 70.91

(III) 11.63 18.95 49.97

SA SA RE SA ) 12.98 23.67 (23.646) 69.39
(I1) 10.59  19.81 53.44

(I1I) 11.68  17.69 40.15

SA SA RE L (1) 1061 1292  (12.687)  22.92
(I0) 820  11.29 20.93

(1) 1052  12.40 18.94

SA SA SA L (1) 10.38 1179 (11.684)  16.22
(ID) 783  9.95 15.81

(I10) 10.37  11.72 15.99

RE RE RE RE (1) 24.64 3599  (35.992)  98.59
(ID) 1843  28.14 73.72

(I) 2322 27.44 53.88

RE RE RE SA (1) 2423 31.86  (31.820)  73.58
(I1) 1810  25.38 57.03

(I)  23.32  26.87 45.37

RE RE RE L (0 22.85 24.20 (24.020) 31.32
(II) 16.56 18.61 26.53

(111) 22.69 23.48 27.21

Tabla VII. Valores del coeficiente de frecuencia fundamental de una placa rectangular
de espesor constante con distintas condiciones de apoyo en los bordes.
(I): Valores de 209 = 4/ ph/D wooa? correspondiente a una placa isétropa.

(1 =0.3)

(II): Valores de Qoo = +/ph/Hy, wooa® correspondiente a una placa
ortétropa (Dy/Hyy = Dy /Hyy = 0.5, ptyy = 0.3)
(II1): Valores de €260 = +/ph/Di; wooa® correspondiente a una placa
(Los coeficientes D; son iguales a los de la Tabla I). Los
valores que figuran entre paréntesis corresponden a referencia [2]

anisétropa.
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CONCLUSIONES

El algoritmo presentado permite generar valores, con buena precisién, del
coeficiente de frecuencia fundamental, correspondiente a una gran variedad de placas
rectangulares. Ademds, permite generar distintas expresiones analiticas para varios
pardmetros caracteristicos, posibilitando una automética comparacién de valores del
coeficiente de frecuencia entre trabajos donde se han usado distintas expresiones
analiticas para dichos parametros.

Un caso que permite demostrar la versatilidad del algoritmo aqui desarrollado, es
el que surge cuando se adoptan los valores de los pardmetros p;, D* v I, que permiten
generar valores del coeficiente de frecuencia:

| ph k »
Qo0 = % woob?,  cuando los coeficientes de rigidez estdn dados por:

= -3 T 73
r1b tlb r9b tab
B D’ 1 o D’ ? D’
rs@ t3a> r4a a3
Bs = & T p = I Do Ti=b/e

Estos coeficientes (excepto por el uso de a y ben lugardeay b), son los utilizados
por Warburton y Edney en el trabajo indicado en referencia [21]. Con el uso del
algoritmo aqui presentado se puede realizar una comparacién directa de valores del
coeficiente de frecuencia mencionado.

El desarrollo de un algoritmo con estas caracteristicas permite una rapida y eficiente
determinacién de valores de coeficiente de frecuencia, para una gran cantidad de
problemas distintos, y resulta por ende de importancia en trabajos de diseno preliminar.
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APENDICE

Definicién de las variables y pardmetros que intervienen en la ecuacién (10)

Las expresiones analiticas de los términos PX;;, PY;;, RX;;, RY;;, TX;;, TY;;,
CX; y CY; estan dadas por:

Pxa = [ s o -y 3 el s Dy “1) ypnaesy

k=114,7=3 —4
nij:ni%—nj—i-k
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donde es:
1 3c 3¢ 2 3
dy = —§(2+C1)3, dy = 231(2+01)a d3 = —3-(2+a), di = 2—§
b;bjdim;(m; -1
PX12—/ f Xél 2d Z Z k'm )4 ( m; )(1_(_1)m” 4),
k=11,7=2 M —
mi; =m; +m; +k
azb dknz n; -1 NG5 —
P - [ )i = 3 s =y s,
k=1i=3 j=2 M
nmg; = ’I’Li+m]'—{—k}

ia;d "
PX21—/ flz 3Xﬂgc-—ZZOLaJ’“ (—1)m9)

k=14,j=1 Tij

PX22—/ f(z 3X2dx_zzbbdk

k=11%,7=1 Mg

(-1)™)

4 5
a;b;d —
PX23 - / f(q‘)3X1X2d$ = Z Z —J_]f(l _ (_1) z;)
- . nm;4
k=14,5=1 J
4 5 5 aia;dgn;(n; — 1) \
k=1i=1 j:3 nij —
bibjdym(m; — 1 o
Pst—/ P X Xlds = 305 3 ik (i =1y (_yymay

klzlj2

PXs3 = / f 3)(1)( dr = Z Z Z alb dkmj m]2 )(1 _ (__1)nmij—2)

k=1i= 1]2 UL

PX34 = / f 3X Xodx = Z ZZ bi aJdknj 2 )(1 _ (_1)mm‘j—2),

E=1i=1j=3 mngg —

mng; = m; +nj + k

ia;jdgn; o
PXy4 —/ f(z 3X'2dx— Z Z 305 QR nJ — (1) 2)

k= ll,] 2 Nij

PX42_/ F(2)3X2dz = Z Z b;b; dkmzmj (1 (C1)mi?)

k— 1z,j 1
abjdgn;m; B
PXy = / f 3X1)(2 ZZZ k 2] (_1) Mij 2)
k=1i= 2] 1 My

PX5 = / f a")3X de:]g = Z ZZ ala]dknz(nz - ) (1 _ (_1),”],_3)

k=1 1=3 j=2
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PXia= [\ ey xxtas = 32 30 5 MOBTR IS yymi
k= 11—2] 1 -3

B 1 azb dknz nz_ ) nm;;—3

PXss= [ f@)X kZlZg]Zl (1= (1)

! a n;mi
PXg5y = /_1 f(x)gXng Z ZZ Zb dini J m7 1)(1 _ (_1)nmij—3)

k122]2 nmi; — 3

1 4 5
PXoi= [ f(@)'XaX{ds = ZZZ S0hT (1 — (-2
- —li—1i—p i

1 4 5
PXer= [ sl xaxtn = 3553 Ty (i

klzlgl Mij

PXegz = / f 3X1X2dx = Z ZZ azb dkm] (_1)nmij-1)

k=11i= 1] 1nm”—1

k=1i=1 j=2 mn” —1
RXy = X{2(—1), RX1z = X3’ (~1), RX13 = X{(~1)X5(-1)

RX31 = X{(1), RX92 = X52(1), RXa3 = X (1)X5(1)
5

RX5 = /_11 X%dm = ”2_1 #(l — (_1)ni+nj+-1)
1 s bb.

X3z = /—1 X3do = iJZ_—_:l mlmj—Jﬁ(l — (—1)mitmstly
! | 5 b

RX33 = /—1 X1 Xpdz = ) ni+zT;+1(1 _(—1)mrmit)

ij=1
RX4 = RX31, RX4 = RX3y, RXy3=RXs3

TX1 = X{(-1), TX1a = X2(-1), TX13 = X1(—-1)Xa(=1)

TX21=X12(]_), TX22 = Xzz(l), TX23 = Xl(l)Xz(].)

TXBIZRX31, .TX32 RX32, TX33 — RX33

TXy =RX3, TXg = RX3y, TX43 = RX33

1 5 o
CXll = / xXlzdw = &(1 _ (_l)ni+nj+2)
-1 :1nz—+—n1+2

z’]
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2+Cl

1 C
CX, = / f(x)X2dz = ( JRX3 + 710)(11
-1
! 2 - bib;
CXop = Xidxr = -7
22 /_ zXjdz ijzzlmi+mj+2

(1 _ (__1)mi+mj+2)

CXe = /11 f@)X3de = (F= )R + %CXzz
1 5 asb; .
CXs33 = /-1 z X1 Xodzx = iJZ::I m(l _ (_1)m+m]+2)
| 24¢

1 C
CXs = / fl2) X1 Xodz = ( )RX33 + 710)(33
-1

Los términos que dependen de la variable y, se obtienen directamente mediante el
reemplazo de los coeficientes (definidos en (7) y (8)) a; y bi, por los coeficientes a} y
b, respectivamente en las expresiones que corresponden, de acuerdo a la tabla que se
indica a continuacién.

PYi1y — PXs1 PYiy — PXao PY3 — PXos PYy — PXi PYs — PXpo
PYs3 — PXy3 PYsy —» PXs PYsy — PXzs PYss — PXsy PYs — PXgs
PYy — PXy PYy — PXyp PYys — PXys PYsy — PXer PYss — PXee
PY;3 — PXe3 PYsy — PXeqs PYsy — PXsy PYss — PXsy PYes — PXss
PY64 — PX54 RY11 — RX31 R)/n — RX32 RY13 b RX33 .RY21 b RX31
RY5, — RX33 RY; — RXs3 RYsy — RXy1 RYs, — RXyp RYzs — RXy3
RYy — RXsy RY;s — RXy RYss — RXps TYy — RX3 TYiz — RXso
TY13 — RX33 TYvZ]_ — RX31 TYVQQ — RX32 TY723 — RX33 T)fgl — TX11
TY32 — TX12 TY33 o TX13 TY41 — TXQ]_ TY42 — TX22 TY43 — TX23
CYl — CX1 Cyvg — CX2 CY3 hand CX3
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