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RESUMEN 

En este trabajo se presentan los detalles del desarrollo y aplicación de un algoritmo general 
que permite la resolución de una gran cantidad de problemas de vibraciones libres de placas 
rectangulares que presentan diversos efectos que complican el modelo matemático, tales como 
anisotropía y ortotropía en el material de la placa, espesor variable, bordes elásticamente 
restringidos contra rotación y translación, etc. Este algoritmo está basado en la aplicación 
del método de Rayleigh-Ritz con expresiones polinómicas como funciones aproximantes, para 
generar una ecuación de frecuencias de fácil tratamiento tanto analítico como numérico. 
El mismo presenta la particularidad de permitir el uso de diferentes expresiones analíticas 
para definir ciertos parámetros característicos adimensionales, tales como, los coeficientes de 
frecuencia, los coeficientes de rigidez rotacional y translacional y los coeficientes de rigidez a 
la flexión. Los valores numéricos obtenidos tienen una buena precisión desde el punto de vista 
ingenieril, y el algoritmo puede ser fácilmente implementado en una computadora personal. El 
soft-ware así obtenido, constituye una herramienta adecuada para trabajos de diseño, dado que 
una gran cantidad de problemas sobre placas vibrantes con efectos complicantes, pueden ser 
resueltos con un trabajo computacional relativamente simple. 

SUMMARY 

The Rayleigh-Ritz method is used to generate results for a great number of flexura1 
vibration problems for rectangular plate with severa1 complicating effects. The general 
algorithm developed allows the inclusion of analysis of anisotropic and orthotropic materials, 
variable thickness, elastically restrained edges, etc. Also distinct expressions of adimensional 
parameters can be considered. The values obtained are accurate from an engineering viewpoint 
and the entire algorithm can be irnplemented in a personal computer. The software constitutes 
a useful tool in design work since a great amount of vibrating plate problems which involve 
severa1 complicating effects can be solved, without an important amount of computational work. 
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El análisis dinámico de placas rectangulares es un problema que ha sido tratado 
con extensión por una gran cantidad de investigadores en todo el mundo. A su vez, 
es abrumadora la cantidad de información que al respecto se ha difundido. Por ello 
en este trabajo tan sólo una limitada selección de artículos se incluye en l;a lista de 
referencias. 

Los métodos variacionales ocupan un lugar destacado como herramienta para la 
resolución del problema mencionado. En particular, el método de Rayleigh-Ritz se 
caracteriza por permitir la obtención de las expresiones analíticas de los términos 
de la ecuación de frecuencias. Esta posibilidad de manejo de expresiones analíticas 
constituye una formidable ventaja para analizar la variación de ciertas variables y/o 
parámetros. Una característica del método, que a veces constituye una desventaja, 
es que deben proponerse adecuadamente las funciones aproximantes. Al respecto 
se han utilizado diversos tipos de funciones, tales como: polinomios ortogonales, 
funciones exponenciales y funciones circ~laresl--~. En los últimos años se han utilizado 
funciones aproximantes que contienen parámetros indeterminados, para resolver una 
enorme cantidad de problemasg--14. Probablemente el más simple de todos estos 
procedimientos, es aquél que se genera mediante la aplicación del método de Rayleigh- 
Ritz con el uso de polinomios para construir las funciones aproximantes. Las referencias 
[15] a [20] constituyen algunos ejemplos del uso de esta metodología, y los mismos tienen 
una característica en común, que es la de conducir a la generación de algoritmos de fácil 
manejo tanto desde el punto de vista analítico como del numérico. Esta característica 
esencial permite que puedan ser tenidos en cuenta diversos efectos complicantes, tales 
como: anisotropía y ortotropía en el material, espesor variable, bordes elásticamente 
restringidos, etc. Además, dichos algoritmos proporcionan resultados con buena 
precisión desde el punto de vista práctico. El algoritmo presentado en este trabajo 
tiene una característica adicional que es la de permitir el uso de diferentes expresiones 
analíticas para diversos parámetros característicos. Es común, que los coeficientes 
de frecuencias y otros parámetros característicos, correspondientes a los problemas 
de placas mencionados, se presenten en forma adimensional con distintas expresiones 
analíticas. Así, por ejemplo, cuando se analiza el comportamiento dinámico de 
placas rectangulares isotrópicas de espesor variable, se utilizan comúnmente una de 
las siguientes expresiones para los coeficientes de frecuencias: 

donde a y b indican las longitudes de los lados de la placa, p la densidad del material, 
h( l )  el espesor de la placa, ~ ( l )  la rigidez a la flexión y w la frecuencia circular. 

Lo mismo ocurre con otros parámetros, como los coeficientes de rigidez rotacional 
que pueden ser definidos; por 'ejemplo, de la siguiente manera: 



donde ~ ( l )  y D ( ~ )  indican rigidez a la flexión referida al borde 1 y 2 respectivamente 
(ver Figura 1). Pero dichos coeficientes también pueden ser definidos como: 

en este caso se usa b en lugar de a ,  tanto en Rl como en R2, y la rigidez a la flexión en 
R2 está referida al borde 1, es decir se usa D(') en lugar de ~ ( ~ 1 .  

Figura 1. Dimensiones originales de la placa ( E  = a/2, b = b/2) 

Es evidente que resulta imposible o al menos dificultosa, una comparación de 
valores de coeficientes de frecuencia entre dos trabajos donde no hay coincidencia en 
las expresiones adoptadas para ciertos parámetros característicos como los indicados. 

El algoritmo aquí presentado posibilita, mediante una selección de parámetros, 
generar distintas expresiones analíticas para los coeficientes ni, Ri, y Ti, entre otros. 
Es decir, que permite usar diferentes expresiones para varios parámetros característicos, 
posibilitando una automática comparación de valores de frecuencias. 

Un algoritmo, con estas características, constituye una eficiente herramienta, para 
la determinación de valores de coeficientes de frecuencia, para una gran cantidad 
de problemas distintos, y resulta por ende, de importancia en trabajos de diseño 
preliminar. 

El método de Rayleigh-Ritz requiere la minimización del siguiente funcional: 
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Up,rnax: valor máximo de la energía de deformación de la placa. 
valor máximo de la energía almacenada en los vínculos rotaciona~les de los 

bordes de la placa. 
Ut,rnax: valor máximo de la energía almacenada en los vínculos translacionales de los 
bordes de la placa. 
Tmm: valor máximo de la energía cinética de la placa. 
Vamos a considerar un funcional general que represente al máximo valor de la energía 
de deformación de una amplia variedad de placas rectangulares. Sea entonces: 

donde W = W(x, y) representa la deflexión de la placa y los subíndices indican 
derivación de W respecto a la variable que se usa como subíndice. Tal como se destaca 
en la Figura 1, el dominio de integración está dado por: 

donde a y b denotan los lados de la placa, en la dirección de los ejes x e y 
respectivamente. En el funcional (2), los coeficientes Di, (i = 1 , 2 , .  . . , 6 ) ,  representan 
las rigideces a la flexión, las rigideces torsionales y las rigideces adicionales de la placa. 

La máxima energía que corresponde a los vínculos rotacionales, que actúan a lo 
largo de los bordes de la placa, viene dada por: 

donde ri, (i = 1,2,3,4) denotan los coeficientes de vínculo rotacional. 
Por otra parte, la máxima energía que corresponde a los vínculos translacionales 

viene dada por: 

donde t i ,  (i = 1,2,3,4) denotan los coeficientes de vínculo translacional. Fiinalmente, 
el valor máximo de energía cinética de la placa viene dado por: 
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donde p denota la densidad del material de la placa y h(x, y) indica la función que da 
el espesor de la placa. 

A efectos de facilitar los desarrollos analíticos, es conveniente introducir el cambio 
de variables 5 = x l á  = y/$, que modifica el dominio de integración y lo transforma 
en un cuadrado de longitud de lado igual a uno. No obstante, de aquí en más, para 
simplificar la notación, se vuelven a usar las letras x e y en lugar de Z y de y. 

Vamos a adoptar como función aproximante a la siguiente expresión construída con 
expresiones polinómicas: 

W(x, Y) = AlXl(x)Yl(~)  + A ~ X ~ ( X ) Y ~ ( Y )  (6) 

donde es: 

Los coeficientes ai, bi, a:, y bi se obtienen de los sistemas de ecuaciones lineales 
que resultan al reemplazar (6) en las condiciones de contorno correspondientes15. La 
expresión (6) se caracteriza por ser de muy fácil manejo analítico, permitiendo obtener 
con facilidad las expresiones de los términos que componen la ecuación de frecuencias. 

El reemplazo de la función aproximante W(x, y) en el funcional (1) conduce a la 
siguiente ecuación de balance energético: 
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Los términos Ii en (lo), están dados por: 

donde es: Cl = AS, C2 = A;, C3 = 2A1A2, B1 = A:, B2 = A;, B3 = A1A2, B4 = B3. 
En el apéndice se incluyen las expresiones analíticas de los términos PXij,  PXj, 

RXij, RKj, TXij, TKj ,  CXj  y CY,. Operando algebraicamente en (lo), se construye 
fácilmente la expresión del coeficiente de frecuencias R deseado, y dado que los términos 
Ii son funciones de los parámetros Al y A2, al aplicar la condición necesaria de existencia 
de un mínimo respecto a dichos parámetros, resulta el siguiente sistema de ecuaciones 
lineales 

Los términos indicados con Ei, (i = 1,2,3,4,5,6)  en (ll), representan las 
expresiones que involucran a los términos PXij,  PXj, RXij, RXj,  TXij, TKj ,  CXj  
y CY,. El determinante del sistema de ecuaciones (11) debe ser nulo, para que exista 
una solución no trivial. De allí resulta la ecuación bicuadrática 

La ecuación (12) posee dos raíces. La de menor valor absoluto corresponde al 
coeficiente de frecuencia fundamental y la restante al coeficiente de frecuencia de un 
modo superior de vibración. 

Vamos a considerar que el espesor de la placa varía en forma lineal en la dirección 
de los ejes coordenados, según la función: 



donde: cl y c2 son constantes, h(') es el valor que toma h en el punto (-1, -1) del borde 
1 de la placa, tal como se indica en la Figura 2. El valor h(2) = h(')(l + ci)( l  + c2) es 
el que toma h, en el punto (1,l) del borde 2 de la placa. 

Figura 2. Dimensiones de la placa luego del cambio de variables x = xlü, y = y/b 

Cuando se analiza el comportamiento dinámico de placas rectangulares, es común. 
que los valores de frecuencia se den en términos de coeficientes adimensionales, de 
manera de dar mayor generalidad a los resultados numéricos, ya que entonces, los 
mismos resultan independientes, entre otros parámetros, de las dimensiones de los 
lados de la placa, del valor de densidad del material, del espesor, etc. Los coeficientes 
de frecuencia más usados en la literatura técnico científica son los descriptos a. 
continuación. 

Placas isotrópicas de espesor variable 

Los coeficientes de frecuencia comúnmente usados son: 

donde h(') y D(') representan los valores de h y D ,  referidos al borde 1 de la placa.. 
Dado que h varía de acuerdo a la función (13), resulta: 

donde es D(') = 
~ ( h ( l ) ) ~  

12(1 - ,u2) 



190 R.O. GROSSI 

Placas ortótropas de espesor variable 

Los coeficientes de frecuencia comúnmente usados son: 

(1) (1) donde es H&) = p, . D, + 2Dx, . La rigidez a la flexión está dada por: 

donde es: D(') = 
E, (h(1))3 

Dx(x, Y)  = DL1)f ( X ) ~ L ~ ( Y ) ~ ,  
12(1 - P~P,)  

Por otra parte, la rigidez a la torsión viene dada por: 

Placas anisótropas de espesor uniforme 

En este caso los coeficientes de frecuencia más usados son: 

donde Dll representa la rigidez a la flexión de la placa anisótropa. 
A efectos de generar los distintos coeficientes de frecuencia descriptos, vamos a 

introducir un coeficiente general, dado por: 

Mediante la adecuada elección de 1 y D*, se generan como casos particulares, los 
coeficientes antes definidos. 

Es común, que los coeficientes de rigidez de los vínculos elásticos en bordes se 
expresen en forma adimensional. Por ejemplo, los coeficientes de rigidez rot.aciona1 y 
translacional, para placas isotrópicas de espesor constante, comúnmente usados en la 
literatura técnico científica están dados por16: 
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En las expresiones (16), Ri y Ti indican los coeficientes de rigidez rotacional y. 
translacional respectivamente, correspondientes al borde i. Pero también se usan otras' 
expresiones para todos estos coeficientes; algunos autores los expresan en términos del 
lado opuesto. Así, por ejemplo, en referencia [21], los mismos coeficientes se definen. 
mediante las siguientes expresiones: 

En este trabajo se usan ü y b en todas las expresiones, pero el uso de a y b como1 
ocurre en (17), no afecta la posibilidad de una comparación directa de valores, ya que 
simplemente debe tenerse en cuenta la presencia del factor numérico que surge de las 

b relaciones ü = y b = 2 .  
Para el caso de placas isótropas de espesor variable los coeficientes comúnmente 

usados son: 

donde es: D ( ~ )  = D(') f ( 1 ) ~ g ( 1 ) ~  
A su vez, para placas ortótropas de espesor variable comúnmente se usan los 

coeficientes: 

donde es D?) = Df)  f (l)3g(i)3, D?) = DP) f (l)3g(l)3 
Finalmente, para el caso de placas anisótropas de espesor uniforme, se suelen usar: 

En (20), los parámetros Dll y 0 2 2 ,  representan las rigideces a la flexión de la placa, 
anisótropa. 

En las expresiones dadas en (18) y (19) los coeficientes R2, T2, Rq y T4 tienen el. 
coeficiente de rigidez a la flexión referido al borde 2 es decir ~ ( ~ 1 ,  pero también es posible 
referirlo al borde 1, o sea usar ~ ( ' 1 .  Además, puede usarse b en lugar de ü, como se 
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indicó en las expresiones (17) .  Todas estas posibilidades conducen a una gran variedad 
de opciones para definir a los coeficientes de rigidez mencionados; por ello, resulta de 
gran importancia el uso de un algoritmo que permita generar automáticarnente las 
distintas expresiones posibles. Para lograr esto, es suficiente con introducir ciertos 
parámetros en la expresión de la ecuación de balance energético (10) .  

Sea entonces: 

En la ecuación (21)  los parámetros: pi ( i  = 1 ,2 ,  . . . , 14 ) ,  1 y D* , permiten la selección 
de diferentes expresiones para los coeficientes de rigidez rotacional y translacional y el 
coeficiente de frecuencia. 

Vamos a determinar los valores que deben tomar los parámetros pi, D* y 1 en 
la ecuación de balance energético (21)' a efectos de generar distintos problenias sobre 
placas vibrantes. 

Supongamos que se desean generar valores del coeficiente de frecuencia fundamental 

R = @ua2 y que los coeficientes de rigidez Ri y Ti, (i  = 1 , 2 , 3 , 4 )  están definidos de 

la siguiente manera: Rz = '11" Ti = R2 = T2 = e, R3 = 
~ ( 1 )  ' ~ ( 1 )  ' ~ ( 1 )  ' 00) 

- 
t b3 R4 = %, T4 = h. Entonces, en la expresión ( 21 ) ,  los parámetros pi, D* y 1 deben 

tomar los siguientes valores: 

donde rl indica la relación de lados de la placa. 



Supongamos ahora que se desean generar valores del coeficiente de frecuencia, 

fundamental R = y que los coeficientes de rigidez Ri y Ti, (i = 1,2,3,4)  

están definidos así: ' 
R - T , R - M ,  T - t2a3 ~~b t b3 

1 l - n ( i )  2 - ~ ( 2 )  2 - - , R 3 = , T 3 = L , R 4 = * ,  
- 

D(2) D(1) D(1) D(2) 

t b3 T4 = h. Entonces, en la expresión (21), los parámetros pi, D* y 1 deben tomar los 
siguientes valores: 

Finalmente, supongamos que se desean generar valores del coeficiente de frecuencia 

fundamental: R = y que los coeficientes de rigidez Ri y Ti, (i = 1,2,3,4) 

están ahora definidos así: 
1 b3 r b  R - L & T - & , R  - 1 7 1 - 00) 2 - " , T - ? ~ - , R ~ = & T ~ = L , R , = & ,  - ~ ( 2 )  2 - ~ ( 2 )  ~ ( 1 )  ' ~ ( 1 )  

t b3 T4 = h. Entonces, en la expresión (21), los parámetros pi, D* y 1 deben tomar los 
siguientes valores: 

De esta misma forma se generan todos los otros casos. Al almacenar en el programa, 
de computadora correspondiente, los distintos conjuntos de valores de los parámetros 
pi, D* y 1, es posible una inmediata selección de los distintos parámetros característicos 
a usar. Además, mediante la adopción de valores numéricos para los coeficientes de 
rigidez rotacional y translacional se genera el tipo de condiciones de contorno que 
afectan a la placa que se desea estudiar. 

En las Tablas 1 a VI se presentan valores del coeficiente de frecuencia fundamental 
OO0 para distintos casos de placas vibrantes. Al respecto, se compararon valores con 
los trabajos indicados en las referencias [15] a [20]. Todos los casos generados por el 
presente algoritmo, están caracterizados por una superior o a lo sumo idéntica precisión 
de los valores numéricos. Esto es debido a que todos los resultados de este trabajo, 
fueron obtenidos con el uso de dos términos, mientras que en la mayoría de los trabajos 
citados, se usó un solo término en la función aproximante. Por otra parte, el método' 
de Rayleigh-Ritz genera cotas superiores respecto a los valores exactos, y dado que los 
valores presentados en este artículo, son en general, más bajos que los reportados en. 
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los trabajos citados, es lógico suponer que los valores aquí obtenidos son más exactos. 
Además, las tablas mencionadas contienen información numérica adicional con respecto 
a la proporcionada en las referencias citadas. Por otra parte, en la Tabla VI1 se 
presentan valores del coeficiente de frecuencia fundamental para placas con apoyos 
clásicos. 

Los valores numéricos que proporciona el algoritmo desarrollado, se obtienen en 
forma inmediata mediante la selección del conjunto de valores de los parám.etros pi, 
D* y 1 (que permite la generación del coeficiente de frecuencia y de los coeficientes 
de rigidez deseados), la adopción del tipo de material, del espesor de la placa y las 
condiciones de contorno que corresponden. 

Cabe destacar, que la generación de las condiciones de contorno para 1c1s cuatro 
bordes de la placa, se logra con suma facilidad. Así, por ejemplo, la generación de 
las condiciones de contorno que corresponden al caso indicado en la Tabla 1, se logra 
simplemente dando los siguientes valores a los coeficientes de rigidez: Rl = oo, R4 = m ,  
R3 = O ó oo, Ti = m (i = 1,2,3,4) y R2 variando entre oo y O. En el programa de 
computadora es suficiente con usar 10" en lugar de m. 

PLACAS DE ESPESOR UNIFORME 

Placas Anisótropas 

Para analizar este caso se adoptaron los siguientes parámetros usados en referencia 
[15]: 

D i  = Dii ,  0 2  = 0 2 2 ,  0 3  = 0 1 2 ,  0 4  = D66, 0 5  = D16, D6 = 0 2 6  

D12/D11 = 0.3245569 D22/D11 = 0.2130195 D16/Dll = 0.5120546 

La Tabla 1 proporciona valores del coeficiente de frecuencia fundamental Roo = Jm- woob2, correspondiente a una placa rectangular anisotrópica cuyos bordes 1 y 
4 están rígidamente empotrados, el borde 3 está rígidamente empotrado o simplemente 
apoyado y el borde 2 está elásticamente restringido contra rotación. Los valores aquí 
obtenidos coinciden con los proporcionados en referencia 1151. 

Placas Ortótropas 

La Tabla 11 proporciona valores del coeficiente de frecuencia fundamental 

correspondiente a una placa rectangular ortótropa cuyos bordes 1 y 3 están rígidamente 
empotrados, el borde 4 está libre, y el borde 2 está elásticamente restringido contra 
rotación. Valores del coeficiente de frecuencia indicado, se obtienen de (12), adoptando: 
Di = D,, D2 = Dy, D3 = pyDz, D4 = Dxy, D5 = 0, D6 = 0, D* = Hxy, donde es 
Hzy = p,D, + 2DXy, 1 = a. 

Los resultados aquí obtenidos, son en general, más bajos que los presentados en 
referencia [18]. 



Tabla 1. Valores del coeficiente de frecuencia fundamental Roo = Jm woob2 
correspondiente a una placa rectangular anisotrópica cuyos bordes 1 y 4 
están rígidamente empotrados, (Rl = Rq = cm), el borde 3 está rígidamente 
empotrado o simplemente apoyado y el borde 2 está elásticamente restringido 
contra rotación. R2 = r2Ü/Dl1, Ti = m, (i = 1,2,3,4) 

Tabla 11. Valores del coeficiente de frecuencia fundamental Roa = 1 ~ u o o a 2  H,,, 
1 

correspondiente a una placa rectangular ortótropa cuyos bordes 1 y 3 están 
rígidamente empotrados, el borde 4 está libre, y borde 2 está elásticamente 
restringido contra rotación. Ri = R3 = m, Rg = T4 = O, py = 0.2, 
R2 = rzü/Dx, Ti = cm, (i = 1,2,3) 

Placas Isótropas 

El material isotrópico se genera mediante la adopción de los siguientes valores de 
1 parámetros Di: Di = D, D2 = D ,  D3 = p D ,  Dq = ~ j D ( 1 -  p), D5 = 0, D6 = 0. 

La Tabla 111 proporciona valores del coeficiente de frecuencia fundamental 
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correspondiente a una placa rectangular isótropa cuyos bordes 1 y 3 están rígidamente 
empotrados, el borde 4 está libre, y el borde 2 está elásticamente restringido contra 
rotación. Los valores numéricos aquí obtenidos son, en general, más bajos que los 
reportados en referencia [20]. 

Tabla 111. Valores del coeficiente de frecuencia fundamental Roa = &q,0a2 
correspondiente a una placa rectangular isótropa cuyos bordes 1. y 3 
están rígidamente empotrados, el borde 4 está libre, y el borde 1! está 
elásticamente restringido contra rotación. R1 = Rs = m, R4 = T4 = 0, 
R2 = rzÜlD, ,LL = 0.3, Ti = m, (i = 1,2,3) 

PLACAS DE ESPESOR VARIABLE 

Placas Ortótropas 

Este caso se genera adoptando: Di = D,, D2 = D,, D3 = pD,, D4 = D,,, D5 = 0, 
D6 = 0 

(1) D* = H,, , donde H!? = p , ~ Z )  + ZD$ 
Si se adopta 1 = b y los correspondientes valores de pi se generan valores del 

coeficiente 

La Tabla IV proporciona valores de este coeficiente correspondiente a una placa 
rectangular ortótropa de espesor variable, cuyos bordes 1, 3 y 4 están rígidamente 
empotrados y el borde 2 está elásticamente restringido contra rotación. Los valores 
aquí obtenidos son, en general, más bajos que los proporcionados en referencia [17]. 
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Tabla IV. Valores del coeficiente de frecuencia fundamental 0 0 0  = 

correspondiente a una placa rectangular ortótropa de espesor variable, 
cuyos bordes 1, 3 y 4 están rígidamente empotrados y el borde 2 está 
elásticamente restringido contra rotación. Ri = Rg = R4 = m,  R2 = 

~ Z Ü / D ( ~ ) ,  py =0.3, Ti = m ,  (i = 1,2,3,4) 

Placas Isótropas 

La Tabla V proporciona valores del coeficiente de frecuencia fundamental Roo = 

G w o o a 2 ,  correspondiente a una placa rectangular isótropa cuyos bordes 1, 2 y 3 
están rígidamente empotrados, mientras que el borde 4 está libre. Los valores aquí 
obtenidos son más bajos que los reportados en referencia [19]. 

Por otra parte, la Tabla VI contiene valores del coeficiente Roo = G w o o a 2  
correspondiente a una placa cuadrada isotrópica de espesor variable, caracterizada por 
los siguientes parámetros: 

Las expresiones (22) constituyen el caso particular en que los coeficientes Rl, Ti, 
R2 y T2, están definidos en términos de b, en lugar de ü, y los coeficientes R2 y T2 
contienen a D referido al borde 1, es decir D('). Una situación análoga ocurre con los 
coeficientes R3, T3, R4 y T4. 
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rl = a lb  

CI 0.5 1.0 

-0.4 18.23 19.40 

2.0 7 25.36 
-0.2 20.54 21.78 28.25 
0.0 22.85 24.20 31.32 
0.2 25.11 26.62 34.50 

I 
0.4 27.36 29.05 37.78 

Tabla V. Valores del coeficiente de frecuencia fundamental Ro0 = @uooa2 
correspondiente a una placa rectangular isótropa cuyos bordes 1,  2 y 3 
están rígidamente empotrados, mientras que el borde 4 está libre. Rl = 
R 2 = R 3 = m , R 4 = T 4 = 0 , p = 0 . 3 , c 2 = 0 , T z = m , ( i = 1 , 2 , 3 )  

1 
C I  = o ,  C2 = o  C l  = 0.2, C2 = o 

R1 1 R,=O R 3 = R 4 = 0  R 4 = 0  
4 

R,=O R 3 = R 4 = 0  R 4 = 0  
( z = 2 , 3 , 4 )  R2=Rl  R2=IZ3=R1 ( i = 2 , 3 , 4 )  R2=R1  R 2 = R 3 = R 1  i 

l d 
m 23.67 28.95 31.86 26.17 32.00 35.18 
100 23.53 28.54 31.37 26.01 31.40 34.48 1 Y 1 26.02 28.27 24.93 28.13 

21.38 22.12 22.66 23.27 : 1 
Tabla VI. Valores del coeficiente de frecuencia fundamental Roa = &uooa2 

correspondiente a una placa isotrópica cuadrada de espesor variable. Ri = 
- 

2s R 2 = ' 2 b  jq -'3" R - m  
D ( ? )  ' 1 ,  3 - 1 )  4 - ~ ( 1 )  , 7-1 = a l b  = 11 T% == m ,  
(2 = l , 2 ,  3 , 4 )  

PLACAS CON CONDICIONES DE APOYO CLÁSICOS 

En la Tabla VI1 se muestran valores del coeficiente de frecuencia fundamental 
para placas rectangulares de espesor constante, con distintos tipos de material, y con 
condiciones de apoyo clásicos. Para el caso de anisotropía se usaron los parámetros 
Di = Dll, 0 2  = 0 2 2 ,  D3 = 0 1 2 ,  0 4  = D66, D5 = D16, D6 = D26, con los mismos 



valores que los usados en la Tabla 1. Para el caso de ortotropía se usaron: 

Se incluyen además, valores para el caso de isotropía, tomados de referencia [2]. 
Tal como puede observarse, la concordancia de valores es muy buena. 

Borde 1 2 3 4 1-1 = a l b  0.5 1.00 2.00 

SA SA SA SA (1) 12.34 19.74 (19.739) 49.37 
(11) 10.02 17.10 40.10 
(111) 11.38 16.18 32.36 

SA SA RE RE (1) 13.72 28.95 (28.950) 95.44 
(11) 11.12 23.18 70.91 
(111) 11.63 18.95 49.97 

SA SA RE SA (I) 12.98 23.67 (23.646) 69.39 
(11) 10.59 19.81 53.44 
(111) 11.68 17.69 40.15 

SA SA RE L (1) 10.61 12.92 (12.687) 22.92 
(11) 8.20 11.29 20.93 
(111) 10.52 12.40 18.94 

SA SA SA L (1) 10.38 11.79 (11.684) 16.22 
(11) 7.83 9.95 15.81 
(111) 10.37 11.72 15.99 

RE RE RE RE (1) 24.64 35.99 (35.992) 98.59 
(11) 18.43 28.14 73.72 
(111) 23.22 27.44 53.88 

RE RE RE SA (1) 24.23 31.86 (31.829) 73.58 
(11) 18.10 25.38 57.03 
(111) 23.32 26.87 45.37 

RE RE RE L (1) 22.85 24.20 (24.020) 31.32 
(11) 16.56 18.61 26.53 
(111) 22.69 23.48 27.21 

Tabla VII. Valores del coeficiente de frecuencia fundamental de una placa rectangular 
de espesor constante con distintas condiciones de apoyo en los bordes. 
(1): Valores de RO0 = dphlD wooa2 correspondiente a una placa isótropa. 
( p  = 0.3) 
(11): Valores de Sloo = d m  wooa2 correspondiente a una placa 
ortótropa (Dx/Hx, = D,/Hx, = 0.5, p, = 0.3) 
(111): Valores de Roo = 4- wooa2 correspondiente a una placa 
anisótropa. (Los coeficientes Di son iguales a los de la Tabla 1). Los 
valores que figuran entre paréntesis corresponden a referencia [2] 
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CONCLUSIONES 

El algoritmo presentado permite generar valores, con buena precisión, del 
coeficiente de frecuencia fundamental, correspondiente a una gran variedad de placas 
rectangulares. Además, permite generar distintas expresiones analíticas para varios 
parámetros característicos, posibilitando una automática comparación de valores del 
coeficiente de frecuencia entre trabajos donde se han usado distintas expresiones 
analíticas para dichos parámetros. 

Un caso que permite demostrar la versatilidad del algoritmo aquí desarrollado, es 
el que surge cuando se adoptan los valores de los parámetros pi, D* y 1, que permiten 
generar valores del coeficiente de frecuencia: 

no0 = uoobz, cuando los coeficientes de rigidez están dados por: 

Estos coeficientes (excepto por el uso de a y b en lugar de ¿i y b), son los utilizados 
por Warburton y Edney en el trabajo indicado en referencia [21]. Con el uso del 
algoritmo aquí presentado se puede realizar una comparación directa de valores del 
coeficiente de frecuencia mencionado. 

El desarrollo de un algoritmo con estas características permite una rápida y eficiente 
determinación de valores de coeficiente de frecuencia, para una gran cantidad de 
problemas distintos, y resulta por ende de importancia en trabajos de diseño preliminar. 
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Definición de las variables y parámetros que intervienen en la ecuación (10) 

Las expresiones analíticas de los términos PXij,  PY,j, RXij, RY,j, TXij, TY,j, 
CXj  y CYj están dadas por: 
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donde es: 

1 4 5 5  a i b j d k n i ( n i  - l ) m j ( m j  - 1)  
PXi3 = f ( x ) 3 ~ : ' ~ ; d x  = Y x ( 1  - ( - l ) n m G - 4  

n m i j  - 4 > >  
k=l i=3 j=2 

3 2 aajajdk f ( x )  X ,  di .  = E E - ( 1  - ( - l ) n i j )  

k=l i , j=l  n i j  

aibjdk ~ ( x ) ~ x ~ x ~ ~ L = E E -  ( 1  - ( - l > n m i j >  
n m i j  

k=l i , j=l  

1 4 5 5  ~ i b j d k m j ( ~ j  - l )  
P X 3 3  = f ( Z ) ~ X I  x i d x  = E ( l  - ( - l ) n m i j - 2  

n m i j  - 2 
k=l i=l j=2 

) 

3 12 bibjdkrnirnj 
f ( x )  X 2  d z  = 

( 1  - ( - l ) m i j - 2  
m i j  - 2 

k=l i , j=l  
) 

1 4 5 a a i b j d k n i m j  

P X 4 3  = ll f ( z ) ~ x : x ; ~ ~  = Y x ( 1  - (-l)nm"7-2) 

k=l i=2 j=l n m i j  - 2 
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Los términos que dependen de  la  variable y, se obtienen directamente mediante el 
reemplazo de  los coeficientes (definidos en (7) y (8)) ai y bi, por los coeficientes a: y 
bi respectivamente en  las expresiones que corresponden, de  acuerdo a la  tabla que se 
indica a continuación. 
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