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ABSTRACT

In this paper a hybrid data-driven method is applied to model the nonlinear heave responses of
a two-dimensional wedge in irregular waves. The method uses a machine learning model to learn
nonlinear components of the total force. The data-driven force model is embedded in a linear ordinary
differential equation which is solved to yield position, velocity, and acceleration. Training data for the
wedge are generated for different levels of nonlinear forces, including nonlinear hydrostatics, Froude-
Krylov forces, and hydrodynamic memory effects, to investigate how the different forces affect the
performance and configuration of the data-driven model. It is found that the data-driven model
is most effective when linear forces are not learned, but modeled analytically within the governing
equation, and the presence of memory effects requires longer input sequences in the machine learning
model.

Keywords: nonlinear; dynamics; seakeeping; wave-induced; motions; data-driven; neural network.

NOMENCLATURE

α Nonlinear part of a solution [m]
A∞ Two-dimensional linear infinite-frequency added mass coefficient [kg/m]
B0 Two-dimensional linear damping coefficient [kg/s/m]
C0 Two-dimensional linear hydrostatic stiffness coefficient [kg/s2/m]
d Instantaneous depth of wedge [m]
d0 Equilibrium depth of wedge [m]
δ Nonlinear force correction [N]
η Incident wave elevation [m]
F Force [N]
g Acceleration due to gravity [m/s2]
Γ Deadrise angle of wedge [rad]
(h) Superscript denoting a high-fidelity quantity [-]
k Stencil size of input sequence to machine learning model [-]
ki Wave number of i’th Fourier component [m]
K Retardation function in heave [kg/s2/m]
L Length of submerged half-girth of wedge [m]
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(l) Superscript denoting a low-fidelity quantity [-]
m Two-dimensional physical mass [kg/m]
ωi Wave frequency of i’th Fourier component [rad/s]
ϕi Wave phase angle of i’th Fourier component [rad]
ρ Density of water [kg/m3]
t Time [s]
w Width of wedge waterplane [m]

ξ, ξ̇, ξ̈ Heave position, velocity, acceleration [m], [m/s], [m/s2]
x, y, z Longitudinal, transverse, vertical coordinate direction [m]
ζi Wave amplitude of i’th Fourier component [m]

1. INTRODUCTION

The motivation behind most mathematical models of ship dynamics is to predict the motions and
loads of a vessel in waves. Much of the difficulty is the computation of the fluid forces acting on the
vessel. Computational fluid dynamics (CFD) predicts the total force directly at high-accuracy, though
this comes at a large computational cost. Most workhorse methods are based on a phenomenological
subdivision of the forces, so that they may be modeled in a component-wise manner. Linear methods
are common in engineering practice due to their low-cost and robust solutions, though they do not
perform well when evaluating large amplitude responses in high-energy seaways (Smith & Silva, 2017).
For this reason, it is also common to use weakly-nonlinear methods, where some force components
which are inexpensive to compute are modeled in a nonlinear manner (Weems & Wundrow, 2013).
However, these methods still omit important physics. Due to the cost of predicting hydrodynamic
forces at high-fidelity, it is impossible to analyze the motions of a vessel in a large number of wave
conditions, or to generate long time series to identify extreme values, without a reduction in accuracy.
This compromise between computational cost and accuracy precludes comprehensive high-fidelity
evaluations of a ship’s performance in waves.

Some work has been done to bring high-fidelity, yet low cost, simulations into the state-of-the-art.
Most of the effort focuses on data-driven methods, such as Long Short-Term Memory (LSTM) neural
networks (Hochreiter & Schmidhuber, 1997), to develop time-domain surrogate models of the problem.
These methods rely on training datasets and machine learning models to learn the entire physical
process, taking waves as input and returning vessel motions as output. Some examples of LSTM-
based data-only surrogate models in ship motions include the work by Xu (2020), Xu, Maki, and Silva
(2021), Guo, Zhang, Tian, Lu, and Li (2022), and Silva and Maki (2022). Some authors have explored
alternative architectures, such as the feed-forward networks of (Liong & Chua, 2022), the recent work
by M. Zhang, Taimuri, Zhang, and Hirdaris (2023), and the Temporal Convolutional Network (TCN)
with attention by (B. Zhang, Wang, Deng, Jia, & Xu, 2023). However, data-only methods typically
require a large training data set and if a design parameter is changed, such as rudder size or loading
condition, the entire data set must be updated and the surrogate model retrained. Since training data
is ideally developed using high-fidelity, yet high-cost, simulation tools, the practicality of frequent
retraining is limited.

Hybrid methods, which combine physics-based models with data-driven techniques, are gaining trac-
tion in recent years as they have been shown to reduce the required size of the training data set and
to better generalize across input conditions (Willard, Jia, Xu, Steinbach, & Kumar, 2020). Some ex-
amples include the physics-based learning models (PBLMs) proposed by Weymouth and Yue (2014),
where one input in the data-driven model is a “physics basis”. Wan, Vlachas, Koumoutsakos, and
Sapsis (2018) expressed a “complementary dynamics” where an LSTM network corrects the overall dy-
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namics and applied the technique to example problems in dynamics and fluids. Raissi, Perdikaris, and
Karniadakis (2019) proposed the Physics Informed Neural Network (PINN) which considers physics
in the development of the network architecture. More recently, Diez, Serani, Gaggero, and Campana
(2022) proposed a unique method where RNNs and DMD work in tandem as a hybrid multi-fidelity
framework. Contributions such as Schirmann, Collette, and Gose (2022) continue to point out the
value of physics-based knowledge, further exposing the limitations of data-only methods.

One hybrid method, the neural-corrector method proposed by Marlantes and Maki (2022), focuses on
modeling only the nonlinear component of the total force which cannot be represented using linear
terms. The method takes the same phenomenological approach to the subdivision of forces as classical
ordinary differential equation (ODE) methods, but corrects the low-order physics by adding data-
driven force terms. The idea is to use data-driven modeling only when absolutely necessary, and
to use robust low-order physics whenever possible. Focusing on the force means the model does not
necessarily need to be retrained if a design parameter is changed, especially if the change is captured by
the low-order physics. Furthermore, Marlantes and Maki (2022) show that the method can accurately
predict responses in wave conditions that are different from the original training data set.

The work in this paper uses a canonical problem–a two-dimensional heaving wedge–to explore how
different nonlinear force components acting on a ship in waves affect the performance and configu-
ration of the neural-corrector method when predicting nonlinear motions. The goal is to determine
how best to learn the nonlinear force components and how the learned forces affect solutions to the
governing equations. The remainder of this paper is divided into three sections. Section 2 outlines the
neural-corrector method, the two-dimensional wedge model, the governing equations, and the different
hydrodynamic force terms which will be used as the subject of the study. Section 3 gives the results
of the study, with particular attention to the effects of different nonlinear forces and optimal model
configurations. Section 4 gives a brief summary of the findings and provides conclusions.

2. METHODOLOGY

The neural-corrector method requires a high-fidelity (h) and low-fidelity (l) model, as shown by Eqs. (1)
and (2), respectively, and indicated by superscripts. Eqs. (1) and (2) collect all force components into
the force vector on the right-hand-side, which may include fictitious forces if using a non-inertial
reference frame.

m
⃗̈
ξ(h) = F⃗(h) (1)

m
⃗̈
ξ(l) = F⃗(l) (2)

m
⃗̈
ξ∗ = F⃗(l) + δ⃗(ξ⃗(l), η) (3)

The h- and l-models are brought together in Eq. (3), where a data-driven term δ⃗ is included on
the right-hand-side to correct the low-fidelity forces. This decomposition of the forces can be shown
analytically using expansions of the high-fidelity force components, as shown in Marlantes and Maki
(2022). The solution to Eq. (3) is the state ξ⃗∗ which should approach ξ⃗(h) if δ⃗ is accurately modeled.
If δ⃗ is zero, ξ⃗∗ will equal the low-fidelity solution. Solutions to Eq. (3) are sought via numerical

integration, so that
⃗̈
ξ∗,

⃗̇
ξ∗, and ξ⃗∗ are obtained simultaneously.

In this work, δ⃗ is modeled as a function of the low-fidelity state ξ⃗(l), its derivatives, and the wave
elevation η. This is done to uncouple the force model from the solution ξ⃗∗ when solving Eq. (3)
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Figure 1: Two-dimensional heaving wedge.

numerically. To accommodate numerical integration of Eq. (3), δ⃗ receives k-length discrete sequences
of ξ⃗(l) and η as inputs at each time step. The optimal value of k and how it is influenced by the
underlying physics in the h- and l-models will be investigated.

Figure 1 gives the geometric details of the heaving wedge which serves as a prototypical example of
a ship in waves. The reference frame (y, z) is inertial and the motion is restricted to a single degree-
of-freedom, so that the governing equations from this point onward are scalar and fictitious forces are
not present. The initial static equilibrium depth is d0 and the instantaneous depth is d. Note that
incident waves are assumed to travel into the page, i.e. head seas if the wedge is viewed as a ship
section. The unsteady free-surface is then defined by η, which appears as a vertical change in surface
elevation.

Eq. (4) gives the high-fidelity model that will be used in this work, where ξ(h) is the high-fidelity heave
position of the wedge.

(m+A∞)ξ̈(h)(t) +B∞ξ̇(h)(t) + C(ξ(h))ξ(h)(t)︸ ︷︷ ︸
hydrostatics

+

∫ t

0
K(τ)ξ̇(h)(t− τ) dτ︸ ︷︷ ︸

memory

= Fw(t, η, ξ
(h))︸ ︷︷ ︸

wave excitation

(4)

The model includes linear infinite-frequency added mass A∞ and damping B∞, nonlinear hydrostatic
restoring forces C(ξ(h)), memory effects in the radiation forces, where K(τ) is the retardation function,
and nonlinear wave excitation forces Fw(t, η, ξ

(h)). m is the physical mass of the wedge.

The irregular wave elevation η is given by Eq. (5), where N is the number of Fourier components and
x is the longitudinal location of the wedge in the wave, which is always zero. The wave components
are sampled from a wave energy spectrum and the phase angles ϕi are randomly selected.

η(t) =
N∑
i

ζi cos(kix− ωit+ ϕi) (5)

The low-fidelity model is given by Eq. (6), which is simply the linearized version of Eq. (4). A linear
damping coefficient B0, determined using an energy method or system identification, replaces the
memory terms and the hydrostatic stiffness coefficient C0 corresponds to the equilibrium condition
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when d = d0. The wave excitation forces also no longer depend on the state and are instead linearized
around the equilibrium condition.

(m+A0)ξ̈
(l)(t) +B0ξ̇

(l) + C0ξ
(l)(t) = F (l)

w (t, η) (6)

In this work, the neural-corrector form of the governing equation can take two forms, Eq. (7) or
Eq .(8), depending on how the hydrodynamic forces are included in δ.

(m+A0)ξ̈
∗(t) +B0ξ̇

∗(t) + C0ξ
∗(t) = F (l)

w + δ−(ξ
(l), η) (7)

mξ̈∗(t) = F (l)
w + δ+(ξ

(l), η) (8)

The first form excludes the linear added mass, damping, and restoring force terms from δ−. The
second form includes the linear force terms in the force correction δ+, so that they are learned by the
data-driven model and not computed analytically. Of particular interest is whether the linear force
terms should be included in δ and learned by the data-driven model or modeled directly within the
governing equation.

2.1 Wave Excitation Force

The excitation force due to incident waves is the body-exact Froude-Krylov force, given by Eq. (9) for
a harmonic wave, where ζ is the wave amplitude, n̂ = sin (Γ)ĵ − cos (Γ)k̂ is the surface normal vector
pointing into the fluid, as shown in Fig. 1. For simplicity, diffraction forces are ignored.

F⃗FK = −2ρgζ cos(kx− ωt+ ϕ)

∫
L
exp(kz) · n̂ dl (9)

The wetted surface L is related to the instantaneous depth of the wedge d and the deadrise angle Γ,
given by Eq. (10). The instantaneous depth of the wedge is a function of the incident wave elevation
and the heave position of the wedge as given by Eq. (11). The assumption that d ≥ 0 for all t is
enforced.

L = d csc(Γ) (10)

d = d0 + η − ξ (11)

Since the wedge is free in heave, only the vertical component of the force F⃗FK is needed and n̂ is
replaced by its vertical component, − cos(Γ)k̂. By making a coordinate transformation z = l sin(Γ)−d,
the integral in Eq. (9) is evaluated to yield Eq. (12), where subscript i denotes the i’th Fourier
component of the irregular wave train. The total wave excitation force for an irregular wave train
composed of N Fourier components is given by Eq. (13), where ϕi is the component phase angle.

Fw,i(t, η, ξ) = 2ρgζi cos(kix− ωit+ ϕi)
ki tan (Γ)

exp(kid)
(exp(kiL sin (Γ))− 1) (12)

Fw(t, η, ξ) =
N∑
i

Fw,i(t, ξ) (13)
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Figure 2: Retardation function for a two-dimensional wedge (Γ = 45◦) oscillating in heave. The function is
computed from the frequency dependent damping coefficient for the equilibrium condition d0 = 0.5 m.

2.2 Memory Effects

Hydrodynamic memory effects are included using a convolution term, as shown in Eq. (4). The kernel
is the impulse response function K(τ) in heave computed from the frequency dependent hydrodynamic
damping coefficient B(ω), given by Eq. (14). In this work B(ω) is computed using a 2D boundary
element potential flow method over a range of wave frequencies.

K(τ) =
2

π

∫ ∞

0
(B(ω)−B∞) cos (ωt) dω (14)

2.3 Hydrostatic Restoring Force

The body-exact hydrostatic restoring force acting on the wedge is modeled using a nonlinear stiffness
coefficient C(ξ), given by Eq. (15), where w is the instantaneous width of the waterplane of the wedge.
The coefficient is derived exactly for the wedge geometry shown in Fig. 1, yielding the expression for
w given by Eq. (16).

C(ξ) = ρgw(ξ) (15)

w(ξ) = 2 cot(Γ)d(ξ) (16)

Substituting the instantaneous depth d from Eq. (11) into Eq. (16), simplifying and expanding, the
nonlinear hydrostatic restoring force is given by Eq. (17), where the linear and nonlinear components
of the force are evident.

FHS = C(ξ)ξ = 2ρg cot (Γ)
(
d0ξ + ηξ − ξ2

)
(17)

2.4 Machine Learning Model for δ

The neural-corrector method may be configured using any type of machine learning architecture
suitable for the time-marching problem. In Marlantes and Maki (2022), LSTM recurrent neural
networks are utilized. However, given the relatively small values of k used in that study, the need
for recurrent architectures may be questioned. In this work, feed-forward dense neural networks are
utilized due to their simplicity, rapid training, and low evaluation time. Fig. 3 illustrates the neural
network architecture used in this study. A total of three hidden layers with ten cells each are used.
ReLu activation functions are specified in the input and hidden cells, and a single cell linear activation
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Figure 3: Feed-forward dense neural network architecture used to model δ.

function is used for the output layer. The model is configured according to a many-to-one paradigm,
so that it will receive k-length sequences of ξ(l) and η in the input layer and output a single value of
δ at the next time step.

The dense networks are trained using the Adam optimizer (Kingma & Ba, 2014) using a mean-
squared-error loss function. The training process is halted when convergence is observed in the loss
on successive epochs. This stopping policy avoids over-fitting and ensures adequate training when the
size or quality of training data may vary between comparable models.

3. RESULTS

The particulars of the wedge considered in this study are shown in Table 1.

Table 1: Particulars of wedge.

Γ (deg) 45.0
d0 (m) 0.5
m (kg/m) 256.3
ρ (kg/m3) 1000.0

Irregular waves are generated using a JONSWAP wave spectrum with a significant wave height Hs

of 1 meter and a peak period Tp of 4 seconds. The energy spectrum is discretized using N = 100
harmonic components using a uniform random sampling over the frequency range [1/2Tp, 4/Tp] to
prevent a repeat period in the resulting irregular wave elevation. Two different wave realizations ηtrain
and ηtest are developed–the first is used as training data and the second is reserved for testing data.
Each wave realization is 400 s in length with a time step of 0.01 s and has a different set of random
phase angles ϕi and harmonic components.

Vertical motions of the wedge are computed numerically for the two irregular wave realizations using
four different levels of nonlinearity, as shown in Table 2. Level I corresponds to a numerical solution
of the linearized low-fidelity model Eq. (6). Level II includes only memory effects–the hydrostatic
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Figure 4: Acceleration, velocity, and position training data predictions for levels I though IV.

restoring force and Froude-Krylov forces remain linear. Level III includes only nonlinear hydrostatic
and Froude-Krylov forces, which must be considered together. Level IV includes all nonlinear force
components. Where nonlinearity is present, a system identification is used to determine the linear
coefficients, see Appendix B. Figure 4 shows a sample of the acceleration, velocity, and position time
series training data for each level of nonlinearity.

Table 2: Levels of nonlinearity and linear coefficients for wedge motion predictions.

Level, i Nonlinear HS Nonlinear FK Memory Effects
A0

(kg/m)
B0

(kg/s/m)
C0

(kg/s2/m)

I False False False 22.8 1500.0 9810.0
II False False True 44.5 527.0 10719.2
III True True False -85.7 1712.3 9156.2
IV True True True 29.5 515.0 10714.4

For each level in Table 2, training data for δ are computed by solving Eqs. (7) and (8) for δ− and δ+,
respectively. To ensure that ξ∗ approaches ξ(h), the responses are replaced with the high-fidelity time
series from each level of nonlinearity to develop the training data. Figure 5 shows a snippet of δ− and
δ+ time series for levels II through IV, with F (l) also shown for reference.

The three levels of nonlinearity in Table 2 and the two different force corrections, δ− and δ+ in
Eqs. (7) and (8), form a matrix of six model configurations. A separate neural network model is
trained for each configuration using responses from the training waves ηtrain for k values between 1
and 200. The trained models are embedded in Eqs. (7) or (8), as appropriate, and the equations are
solved numerically to yield responses in ηtest. The predicted position ξ∗, velocity ξ̇∗, acceleration ξ̈∗

are compared to direct solutions of Eq. (4) and average L2 and L∞ error norms are computed for
the time series. Table 3 gives the minimum average L2 error in the state predictions for each model
configuration.
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Figure 5: δ for the different levels of nonlinearity, excluding or including linear forcing terms: a) gives δ−
where the linear force terms are modeled analytically. b) gives δ+ where the linear force terms are included in
the force correction.

Table 3: Minimum average L2 errors and associated k values for different configurations of the neural-corrector
method when compared to test data.

Linear Force Terms

Level Response Exclude, δ− Include, δ+

II
acc (m/s2)
vel (m/s)
pos (m)

0.371, k=150
0.068, k=150
0.022, k=100

0.289, k=200
0.301, k=25
17.257, k=1

III
acc (m/s2)
vel (m/s)
pos (m)

0.372, k=150
0.058, k=150
0.014, k=200

0.284, k=200
0.212, k=50

10.697, k=200

IV
acc (m/s2)
vel (m/s)
pos (m)

0.370, k=150
0.069, k=100
0.023, k=200

0.281, k=200
0.278, k=100
9.769, k=100

Nonlinear effects are often most evident in the accelerations, as shown in Figure 4. For this reason,
it may be advantageous to optimize k based on the acceleration (and therefore total force) given that
integration of an accurate force model should also result in accurate velocity and position predictions,
but a model optimized for position may not yield a good prediction of acceleration and force. The
values of k that yield the lowest errors in acceleration for most configurations in Table 3 are >50,
however, the value of k that corresponds to the minimum possible error is not necessarily the optimal
value in practice.

Figure 6 shows the L2 and L∞ errors for the acceleration, velocity, and position predictions for levels
II, III, and IV using δ−. The errors for levels II and IV drop rapidly after k ≳40 and then plateau.
This suggest that the minimum k value when memory effects are present should be about 50, or a
time period of about 0.5 s, which is rather brief. Though this may not yield the absolute minimum
error, it is computationally more efficient, as shorter sequences are typically less costly to evaluate.

9



Kyle E. Marlantes, Piotr J. Bandyk and Kevin J. Maki

Figure 6: L2 and L∞ prediction errors using δ− for increasing values of k.

Figure 7: Acceleration, velocity, and position predictions using δ− and k=100 in test waves ηtest for level IV.

For level III, which includes nonlinear hydrostatic and Froude-Krylov forces, the prediction errors for
acceleration and velocity initially start off smaller, then increase near k=25, before decreasing and
plateauing. For predictions of position, the errors remain similar across changes in k. The prediction
errors for level III are also much smaller than the errors for II and IV for small values of k. This
is consistent with the underlying physics, where the nonlinear hydrostatic and Froude-Krylov forces
depend only on the instantaneous position of the wedge. As a result, small values of k yield relatively
good performance. In the presence of memory effects, however, small values of k lead to larger errors.
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Figure 8: Position, velocity, and acceleration predictions for δ+ using k=75 for level IV. Notice the drift in the
velocity and position predictions.

Figure 7 gives the level IV acceleration, velocity, and position predictions in ηtest for δ− and a k value
of 100. The neural-corrector predictions follow the high-fidelity test data closely. Solutions to the
low-fidelity model, Eq. (6), are also shown for reference.

3.1 Effect of Linear Force Terms

Table 3 shows that errors for δ−, which excludes linear force terms, are lower for velocity and position
predictions. For δ+, which includes the linear forces, errors in the acceleration predictions are lower,
however, very large errors are observed for velocity and position. Figure 8 gives the acceleration,
velocity, and position time series at level IV using the δ+ configuration. Notice the drift in the
velocity and position predictions which grows with time.

The reason for this drift can be explained analytically. Consider a simplified equation of motion as
given by Eq. (18), where F (l) is the linear part of the force. Assuming δ− is exact, the solution to
Eq. (18) yields the nonlinear state ξ(h).

mξ̈(h) + C0ξ
(h) = F (l) + δ− (18)

The neural-corrector method makes the assumption that the total force can be decomposed into a
linear and nonlinear part. Under this assumption, the state can also be decomposed into a linear and
nonlinear part, such that ξ(h) = ξ(l) + α as given in Eq. (19), where F (l) and δ− are also brought to
the left-hand-side of the equation. Because the linear equation satisfies the linear terms, the terms
cancel and only the nonlinear component of the solution α remains, as shown by Eq. (20).

m(ξ̈(l) + α̈) + C0(ξ
(l) + α)− F (l) − δ− = 0 (19)

mα̈+ C0α− δ− = 0 (20)
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Figure 9: Nonlinear solution component α as a function of nonlinear force correction δ− or δ+ for C0=9810.0
kg/s2/m and m=256.3 kg/m.

δ− is treated as a perturbation parameter, where a solution to Eq. (20) is expressed as a power series
in terms of δ− and the derivatives of the solution are simply derivatives of the expansion.

α(δ−) = a0 + a1δ− + a2δ
2
− + a3δ

3
− + a4δ

4
− + a5δ

5
− + a6δ

6
− + ... (21)

Substituting Eq. (21) and its derivatives into Eq. (20), expressions for the coefficients an are found.
Note that a0 and a1 correspond to the initial conditions for α(δ−(t = t0)) = α0 and α̇(δ−(t = t0)) = α̇0,
respectively. Constructing the solution leads to Eq. (22), which is a closed-form function that describes
the nonlinear part of the solution α as a function of the nonlinear force correction δ−. Note that√
C0/m = ωn is the natural frequency of the system and the function is only valid for C0 > 0. Details

of the solution process are given in Appendix A.

α(δ−) = α0 (1 + (cos(ωnδ−)− 1)) +
δ−
C0

+ ωnm

(
α̇0C0 − 1

C2
0

)
sin(ωnδ) (22)

To derive an expression for α when C0α is included in δ+ and not modeled separately, C0 is set to
zero in Eq. (20). The result is given by Eq. (23), where δ+ includes the linear restoring force.

α(δ+) = α0 + α̇0δ+ +
δ3+
3!

1

m
(23)

Selecting values for C0 and m to match the values for the wedge and assuming α0 = α̇0 = 0, the
solution α for both Eq. (22) and Eq. (23) is shown in Fig. 9. The vertical axis is log-scaled to better
show the difference between the two solutions. The results suggest that α will evolve much faster as
a function of δ when restoring forces are included in the force correction. This means a numerical
solution to Eq. (8) is more sensitive to errors in δ+, as the solution may vary quickly and potentially
lead to solution drift or possible instability.
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4. CONCLUSIONS

The data-driven neural-corrector method of Marlantes and Maki (2022) is applied to predict nonlinear
heave responses of a two-dimensional wedge in irregular waves. A machine learning model is used
to learn a nonlinear force correction δ which is then included in a low-fidelity ordinary differential
equation. The force correction δ is modeled as a function of k-length sequences of a low-fidelity state
solution ξ(l) and the wave elevation η. The resulting hybrid equation of motion, which includes both
analytical and data-driven terms, is solved numerically to yield improved-fidelity predictions of position
ξ∗, velocity ξ̇∗, and acceleration ξ̈∗. Training data are generated for different levels of nonlinear forces,
including nonlinear hydrostatics and Froude-Krylov forces, and hydrodynamic memory effects, to
explore how different physics present in ship hydrodynamics affect the performance and configuration
of the neural-corrector method.

Several conclusions can be drawn from the work:

1. The presence of hydrodynamic memory effects requires a larger stencil size k. When only non-
linear hydrostatic and Froude-Krylov forces are present, smaller values of k are more accurate
as the nonlinearity depends only on the instantaneous state.

2. Numerical and analytical results show that including the linear force terms, especially the hy-
drostatic restoring force C0ξ, in the nonlinear force correction δ often results in large prediction
errors in velocity and position. Therefore, linear forces should not be learned by the machine
learning model, and instead modeled analytically.

3. The neural-corrector method is able to learn all four levels of nonlinear forces effectively, sug-
gesting that the method could be used with more complex high-fidelity simulation data.
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A. APPENDIX

Closed form expressions for the nonlinear part of the solution α as a function of the nonlinear force
correction δ can be derived following a perturbation approach. The expressions show how excluding
linear restoring force terms from δ leads to solutions which grow much slower for increasing values of δ
than solutions obtained when including the terms. Consider a simplified equation of motion as given
by Eq. (A1), where F (l) is the linear part of the force. Assuming δ− is exact, the solution to Eq. (A1)
yields the nonlinear state ξ(h).

mξ̈(h) + C0ξ
(h) = F (l) + δ− (A1)

It is assumed that the total force can be decomposed into a linear and nonlinear part. Under this
assumption, the state can also be decomposed into a linear ξ(l) and nonlinear α part as shown, where
F (l) and δ− are also brought to the left-hand-side of the equation. Because the linear equation satisfies
the linear terms, the terms cancel and only the nonlinear component of the solution α remains, as
shown by Eq. (A3).

m(ξ̈(l) + α̈) + C0(ξ
(l) + α)− F (l) − δ− = 0 (A2)

mα̈+ C0α− δ− = 0 (A3)

δ− is treated as a perturbation parameter, where a solution to Eq. (A3) is expressed as a power series
in terms of δ− and the derivatives of the solution are simply derivatives of the expansion.

α(δ−) = a0 + a1δ− + a2δ
2
− + a3δ

3
− + a4δ

4
− + a5δ

5
− + a6δ

6
− + ... (A4)

α̇(δ−) = a1 + 2a2δ− + 3a3δ
2
− + 4a4δ

3
− + 5a5δ

4
− + 6a6δ

5
− + ... (A5)

α̈(δ−) = 2a2 + 6a3δ− + 12a4δ
2
− + 20a5δ

3
− + 30a6δ

4
− + ... (A6)

Substituting Eqs. (A4) though (A6) into Eq. (A3) and collecting like terms, expressions for the coeffi-
cients an are found. Note that a0 and a1 correspond to the initial conditions for α(δ(t = t0)) = α0 and
α̇(δ(t = t0)) = α̇0, respectively. Constructing the solution leads to Eq. (A8), which can be expressed
using the summation notation shown in Eq. (A9).

α(δ−) = α0 −
δ2−
2!

C0α0

m
+

δ4−
4!

C2
0α0

m2
−

δ6−
6!

C3
0α0

m3
+

δ8−
8!

C4
0α0

m4
− ... (A7)

+ α̇0δ− +
δ3−
3!

1− C0α̇0

m
−

δ5−
5!

C0(1− C0α̇0)

m2
+

δ7−
7!

C2
0 (1− C0α̇0)

m3
−

δ9−
9!

C3
0 (1− C0α̇0)

m4
+ ... (A8)

= α0 +
∞∑
n=1

(−1)nδ2n−
(2n)!

Cn
0 α0

mn
+ α̇0δ− −

∞∑
n=1

(−1)nδ2n+1
−

(2n+ 1)!

Cn−1
0 (1− C0α̇0)

mn
(A9)

The first line corresponds closely with the power series representation of cosine and the second line
corresponds closely to that of sine. Also note that

√
C0/m = ωn, which is the natural frequency
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of the system. Making these substitutions and simplifying results in Eq. (A10), which is a closed-
form function that describes the nonlinear part of the solution α as a function of the nonlinear force
correction δ−. Note that this function is only valid for C0 > 0.

α(δ−) = α0 (1 + (cos(ωnδ−)− 1)) +
δ−
C0

+ ωnm

(
α̇0C0 − 1

C2
0

)
sin(ωnδ−) (A10)

If the body starts from rest, α0 = α̇0 = 0, and the first term in Eq. (A10) vanishes. The solution
simplifies to Eq. (A11).

α(δ−) =
δ−
C0

− ωnm

C2
0

sin(ωnδ−) (A11)

To derive an expression for α when C0α is included in δ+ and not modeled separately, C0 is set to
zero in Eq. (A3) and the process repeated such that only three non-zero terms remain, as shown in
Eq. (A12).

α(δ+) = α0 + α̇0δ+ +
δ3+
3!

1

m
(A12)

Again assuming α0 = α̇0 = 0, the expression simplifies to a cubic expression in terms of δ+.
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B. APPENDIX

The original intent of the neural-corrector method is to use a data-driven model to learn the component
of the total force which cannot be represented using linear coefficients. This leads to the following
minimization problem: minimize ∥δ∥2 for a given high-fidelity solution ξ̈(h), ξ̇(h), ξ(h), and low-fidelity
force model F (l), by choosing optimal values for A∗

0, B
∗
0 and C∗

0 . Here, ∥ · ∥2 is the 2-norm defined by
Eq. (B1), which also relates to the total energy in the signal δ. The vector notation here indicates a
vector in time. The cost function is given by Eq. (B3).

∥δ∥2 =
√

δ⃗ · δ⃗ (B1)

f(A0, B0, C0) → min (B2)

f(A0, B0, C0) = ∥δ∥2 (B3)

Substituting Eq. (7) into Eq. (B1), the cost function can be expanded to yield Eq. (B4), where the
expression under the radical will be called Ω and is given by Eq. (B5). The superscript (h) is omitted
from the responses ξ̈, ξ̇, and ξ for brevity.

f(A0, B0, C0) = Ω1/2 (B4)

Ω = A2
0
⃗̈
ξ · ⃗̈ξ + 2A0B0

⃗̇
ξ · ⃗̈ξ + 2A0C0ξ⃗ · ⃗̈ξ − 2A0F⃗

(l) · ⃗̈ξ

+B2
0
⃗̇
ξ · ⃗̇ξ + 2B0C0ξ⃗ · ⃗̇ξ − 2B0F⃗

(l) · ⃗̇ξ

+ C2
0 ξ⃗ · ξ⃗ − 2C0F⃗

(l) · ξ⃗ + F⃗(l) · F⃗(l) (B5)

The 2-norm is strictly convex, which means a gradient-based method such as Newton’s iteration is
appropriate. The update equation is given by Eq. (B6) where X⃗k is a vector of the coefficients Ak

0,
Bk

0 , and Ck
0 for the k’th iteration, ∇f is the gradient of the cost function, H is the Hessian matrix of

f , and αk is an over-relaxation parameter.

X⃗k+1 = X⃗k − αkH(X⃗k)−1 · ∇f(X⃗k) (B6)

Expressions for the gradient and Hessian can be evaluated analytically by taking partial derivatives
of Eq. (B4) and are given as follows:

∇f =


∂f
∂A0
∂f
∂B0
∂f
∂C0

 =
1

2
Ω−1/2


∂Ω
∂A0
∂Ω
∂B0
∂Ω
∂C0

 , H =


∂2f
∂A2

0

∂2f
∂A0∂B0

∂2f
∂A0∂C0

∂2f
∂B0∂A0

∂2f
∂B2

0

∂2f
∂B0∂C0

∂2f
∂C0∂A0

∂2f
∂C0∂B0

∂2f
∂C2

0

 (B7)
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∂2f

∂A2
0

=
1

2
Ω−1/2 ∂

2Ω

∂A2
0

− 1

4
Ω−3/2 ∂Ω

∂A0

∂Ω

∂A0
(B8)

∂2f

∂A0∂B0
=

1

2
Ω−1/2 ∂2Ω

∂A0∂B0
− 1

4
Ω−3/2 ∂Ω

∂B0

∂Ω

∂A0
(B9)

∂2f

∂A0∂C0
=

1

2
Ω−1/2 ∂2Ω

∂A0∂C0
− 1

4
Ω−3/2 ∂Ω

∂C0

∂Ω

∂A0
(B10)

∂2f

∂B0∂A0
=

∂2f

∂A0∂B0
(B11)

∂2f

∂B2
0

=
1

2
Ω−1/2 ∂

2Ω

∂B2
0

− 1

4
Ω−3/2 ∂Ω

∂B0

∂Ω

∂B0
(B12)

∂2f

∂B0∂C0
=

1

2
Ω−1/2 ∂2Ω

∂B0∂C0
− 1

4
Ω−3/2 ∂Ω

∂C0

∂Ω

∂B0
(B13)

∂2f

∂C0∂A0
=

∂2f

∂A0∂C0
(B14)

∂2f

∂C0∂B0
=

∂2f

∂B0∂C0
(B15)

∂2f

∂C2
0

=
1

2
Ω−1/2 ∂

2Ω

∂C2
0

− 1

4
Ω−3/2 ∂Ω

∂C0

∂Ω

∂C0
(B16)

∂Ω

∂A0
= 2A0

⃗̈
ξ · ⃗̈ξ + 2B0

⃗̇
ξ · ⃗̈ξ + 2C0ξ⃗ · ⃗̈ξ − 2F⃗ · ⃗̈ξ (B17)

∂Ω

∂B0
= 2A0

⃗̇
ξ · ⃗̈ξ + 2B0

⃗̇
ξ · ⃗̇ξ + 2C0ξ⃗ · ⃗̇ξ − 2F⃗ · ⃗̇ξ (B18)

∂Ω

∂C0
= 2A0ξ⃗ · ⃗̈ξ + 2B0ξ⃗ · ⃗̇ξ + 2C0ξ⃗ · ξ⃗ − 2F⃗ · ξ⃗ (B19)

∂2Ω

∂A2
0

= 2
⃗̈
ξ · ⃗̈ξ (B20)

∂2Ω

∂A0∂B0
= 2

⃗̇
ξ · ⃗̈ξ (B21)

∂2Ω

∂A0∂C0
= 2ξ⃗ · ⃗̈ξ (B22)

∂2Ω

∂B2
0

= 2
⃗̇
ξ · ⃗̇ξ (B23)

∂2Ω

∂B0∂C0
= 2ξ⃗ · ⃗̇ξ (B24)

∂2Ω

∂C2
0

= 2ξ⃗ · ξ⃗ (B25)
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