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This paper presents a partitioned modeling of internal and gravity fluid waves that interact with flexible
structures. The governing interaction model consists of three completely partitioned entities: fluid model,
structural model, and interface model that acts as an internal constraint on the fluid–structure interface
boundary. Thus, the proposed partitioned multi-physics modeling can employ two completely modular
fluid and structure software modules plus an interface solver, hence amenable to partitioned solution
algorithms. The interface discretization can exploit the nonmatching interface algorithm previously
developed via the method of localized Lagrange multipliers. Also noted is that the present fluid model
can make use of widely available finite element software for standard Poisson-type problems.
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1. Introduction

Fluid–structure interaction (FSI) phenomena have recently
emerged as one of the most widely encountered multi-physics
problems in science and engineering. As a result, various special-
ized FSI formulations have been developed and successfully ap-
plied to problems involving internal fluid problems [1–22],
external fluids problems [23–40], and recently biomechanics
[41–46], among others. Interested readers may consult a review
by Dowell and Hall [47] for general FSI problems viewed from
the fluid mechanics context, by Tijsseling [48] for piping flow,
and by de Boera et al. [49] for various interface coupling methods.
From the viewpoint of formulation, modeling, discretization and
numerical solution, a wide range of computational procedures
have been developed over the past three decades. They range from
tightly-to-loosely coupled to locally partitioned [51–70]. For exam-
ple, FSI problems of blood flow typically adopt tightly coupled
formulation and solution procedures [41], whereas aeroelasticity
problems employ partitioned solution procedures [71]. The view
of present authors is that, as much as possible, the task for
multi-physics simulation is facilitated by adopting partitioned
solution procedures. Among the beneficial sides of invoking
partitioned solution procedures, we mention substantial reduc-
tions, both in development time and cost, of the development of
ll rights reserved.
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single-discipline oriented analysis software, upgrading ease and
simplified maintenance, and the efficient use of discipline-specific
specialists.

This has motivated us to undertake a series of critical revision of
FSI problems and, if necessary and/or possible, to reformulate FSI
problems such that the resulting form may facilitate the treatment
of partitioned solution procedures. Because of our background and
experience, we begin with the reformulation of a flexible structure
interacting with internal compressive fluids including gravity
effects while deferring reformulations of other FSI problems to a
later exposition. It should be pointed out that we focus solely on
FSI formulations with small displacements and the method of local-
ized Lagrange multipliers, although not necessarily restricted to lin-
ear, that leads naturally to partitioned solution procedures for the
remainder of the paper. Readers interested in other formulations
such as Eulerian–Lagrangian approach, fictitious/mortar element
approach may consult recent articles [70,66,61] and references
therein. To this end, we offer a review of existing FSI formulations
of internal waves with gravity and free surface interacting with
flexible structures.

The governing equations of motion for inviscid internal fluids
contained by flexible structures often rely on the so-called excess
pressure [75] or modified pressure in [76] defined as follows:
‘‘if the absolute pressure occurs in the boundary conditions, as
happens if part of the boundary is an interface with another fluids
or if it is a free surface, . . .the effect of gravity reenters the prob-
lem.” Thus, the modified pressure is the difference between the
total pressure and the gravity-induced pressure. This concept is
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Fig. 1. Classical treatment of the partition interface frame.
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adequate for air whose boundary condition involves only the
velocity. When the fluids interact with flexible structures, how-
ever, complications arise depending on how the interface kine-
matic compatibility condition is enforced. For example, Morand
and Ohayon [13] utilize the modified pressure. To compensate
for the omission of the fluid pressure due to gravity, they embed
the fluid pressure into the initial stress in the governing equations
of motion for structures. Hence, the structural analysis software
must have access to the current fluid field geometry that is in turn
used to compute the initial stress acting on the fluid–structure
interface. This requirement hinders the use of partitioned analysis.
There is an additional complication in prescribing the interface
compatibility conditions, viz., the enforcement of the fluid–struc-
ture interface conditions in terms of the modified pressure instead
of the total pressure as a conjugate Lagrange multiplier may lead to
an inconsistent formulation or involve an iterative strategy.

The present formulation reverts to the total pressure for the
construction of fluid energy, and employs the localized Lagrange
multipliers [50,57–59,63] for treating the interaction. These two
choices render unnecessary the incorporation of gravity-induced
pressure as initial stress in the equations of motion for structures,
and lead to a consistent construction of interface kinematic com-
patibility. Conditioning of the interface compatibility is achieved
by a regularization of the localized Lagrange multipliers [59,18].
It will be shown that the resulting reformulation enables one to
employ two stand-alone software modules, viz., a structural ana-
lyzer and an internal acoustic and gravity wave model for conduct-
ing the coupled dynamics of internal and gravity waves interacting
with flexible structures. In so doing, we restrict ourselves in the
present paper to the partitioned formulation aspects of internal
fluid–structure interaction and leave computer implementation
aspects to a later article, although we include a summary of inter-
face treatment strategies. The rest of the paper is organized as
follows.

Section 2 reviews the method of classical Lagrange multipliers
to enforce the fluid–structure interface constraint, and then moves
on to describe the method of localized Lagrange multipliers. A dis-
tinct feature of the latter method introduces two linearly indepen-
dent Lagrange multipliers, one for the fluid partition boundary and
the other for the structural partition boundary. This enables to en-
force the force and moment balance across the interface boundary
for nonmatching discretizations. Thus, the fluid and structural
meshes can be chosen independently without having to introduce
a special remeshing or interpolations of the classical Lagrange
multipliers.

Section 3 derives inviscid fluid equations that model coupled
acoustic pressure and gravity pressure as well as nonlinearities
by treating the acoustic and gravity pressure terms as initial stres-
ses. This formalism adopts the same finite element discretization
techniques used in structural modeling. More precisely, the inter-
nal variational energy density term rf : rduf is discretized instead
of ðr � rf Þ � duf that often employed existing literature(see, e.g.,
[13]).

Section 4 outlines a general derivation of the variational equation
of motion for structures and specializes to a linearized equation with
initial stress that produces the well-known geometric stiffness.

Section 5 discusses the discretization of the fluid–structure
interface constraint functional, of the virtual work of the fluid par-
tition and of the structural partition. The stationarity of the total
variational expressions, viz., the discretized constraint functional,
the discretized virtual work of the fluid and structure partitions,
leads to the present partitioned coupled fluid–structure interaction
model, which can be used for vibration analysis as well as transient
response analysis.

Section 6 presents the partitioned equation for vibration analy-
sis, an implicit–implicit transient response analysis algorithm, an
implicit–explicit algorithm, and an explicit–explicit algorithm. It
is shown that the three transient analysis algorithms can be imple-
mented within one software module as their differences are in how
the stiffness force terms are treated.

Section 7 discusses the applicability and limitations of the pres-
ent FSI formulation as well as further work to be carried out in or-
der to extend the present work to couple with external acoustics
and surface wave motions.

2. Overview of present partitioned FSI formulation

The essence of the present partitioned formulation is stated as

dPf þ dPs þ dp‘ ¼ 0; ð1Þ

where dPf is the virtual work for the fluid; dPs is the virtual work
for the flexible structure; and, dp‘ is the partition interface con-
straint, respectively. It should be noted that dPf ¼ 0 yields the gov-
erning equations of motion for the fluid. Similarly, dPs ¼ 0 yields
the equations of motion for the structure. This implies that the pres-
ent formulation may utilize two independently developed fluid and
flexible structural dynamics analysis software modules to perform
FSI analysis, with the addition of an interface treatment module
whose main function is to enforce the interface constraint dp‘ ¼ 0.

We now describe the formulation of each of the three virtual
work expressions in the subsequent sections.

3. Fluid–structure interface description

We adopt the viewpoint that the interface between fluid and
structure strictly as internal constraints. This viewpoint obviates
the need for evaluating the interface boundary energy terms for
the fluid and structure. More specifically, the fluid–structure inter-
face materializes on account of distinctly different constitutive
relations for the two media. We then treat the internal interface
via the method of localized Lagrange multipliers that, as subse-
quently demonstrated, leads naturally to a partitioned formulation.

We start by reviewing the interface conditions (cf. see [13]). The
interface compatibility condition for infinitely small displacements
may be stated as (see Fig. 1)

cfs ¼ ðuf � usÞ � n ¼ 0; ð2Þ

where ðuf ;usÞ are the fluid and structural displacement, respec-
tively, and n is the unit normal to the interface surface.
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Enforcement of the above interface constraint is realized by the
classical Lagrange multipliers method, resulting in a functional
form

pc ¼
Z

Cint

kfscfs dS: ð3Þ

In passing, it should be noted that in most existing formulations
[13,77,78] the fluctuation pressure on the boundary is used to form
the interface constraint functional

pcon ¼
Z

Cint

pecfs dS; ð4Þ

for which pe denotes the fluctuation pressure, and the displace-
ments ðuf ;usÞ are to be interpreted as perturbation quantities, not
the total fluid and structural displacements.

In the present work we introduce a localized partition or frame
as shown in Fig. 2. As a consequence, fluid and structure do not
interact directly but with the reference interface. This may be ex-
pressed as

Fluid interface constraint : cf ¼ ðuf � ubÞ � n ¼ 0;
Structure interface constraint : cs ¼ ðus � ubÞ � n ¼ 0;

ð5Þ

where ub is the frame displacement treated as an independent dis-
placement variable. It will be shown that the interface forces and
moment balance equations are obtained with respect to this frame
displacement, a feature that can be exploited both for solution reg-
ularization and software modularity. The resulting constraint func-
tional thus requires two independent Lagrange multipliers (see
Fig. 3):

p‘ðuf ;us;ub; kf ; ksÞ ¼
Z

Sf

kT
f cf dSþ

Z
Ss

kT
s cs dS: ð6Þ

The first variation of the fluid–structure interface constraint in-
volves five variables:

dp‘ðuf ;us;ub;kf ;ksÞ ¼þ
Z

Sf

dkT
f ðuf �ubÞ �ndSþ

Z
Ss

dkT
s ðus�ubÞ �ndS

þ
Z

Sf

kT
f duf �ndSþ

Z
Ss

kT
s dus �ndS

�
Z

Sf

ðkT
f þ kT

s Þdub �ndS: ð7Þ

If the interface geometry is allowed to vary, the following terms
must be added as discussed in [13,77]:
Fig. 2. Localized treatment of the partition interface frame.
@p‘

@n
dn ¼

Z
Sf

kT
f ðuf � ubÞ � dndSþ

Z
Ss

kT
s ðus � ubÞ � dndS

in which dn ¼ @n
@u

du: ð8Þ

In the present paper we will replace n by an averaged value for each
discrete interface segment or interface element, nav . This normal is
not subject to variation. Consequently, (7) becomes

dp‘ðuf ;us;ub;kf ;ksÞ ¼þ
Z

Sf

dkT
f ðuf �ubÞ �nav dSþ

Z
Ss

dkT
s ðus�ubÞ �nav dS

þ
Z

Sf

kT
f duf �nav dSþ

Z
Ss

kT
s dus �nav dS

�
Z

Sf

ðkT
f þ kT

s Þdub �nav dS: ð9Þ

The preceding variational functional constitutes one of the three
variational expressions for the derivation of the partitioned fluid–
structure interaction equation set. The remaining two are the vir-
tual work of the fluid domain and that of the flexible structure do-
main. Their derivations are discussed in the subsequent sections.

4. Variational formulation of internal acoustics and gravity
waves

4.1. Virtual work for fluid

The formulation of internal and gravity fluid waves have been
studied by many investigators [73,72,75,13], among others. For
the present purpose, we will assume the flow to be inviscid and be-
gin with the following Lagrangian virtual work principle stated
over the fluid volume Vf :

dPf ¼
Z

Vf

fr0 � Tþ b0 � q0 €uf g � duf dV0 ¼ 0; T ¼ J F�1 � r;

F ¼ rxf ¼ Iþruf ; xf ¼ Xþ uf ; X ¼ Xiþ Yjþ Zk;
uf ¼ u1iþ u2jþ u3k ¼ uiþ vjþwk;

r0 ¼
@

@X
iþ @

@Y
jþ @

@Z
k; J ¼ detðFÞ � 1þr � uf : ð10Þ

In the above variational equation, we assume that both the pre-
scribed traction and displacement boundary conditions are exactly
satisfied; T and r are the first Piola–Kirchhoff stress and the Cauchy
stress tensor, respectively; b0 is the body force; q0 is the mass den-
sity; €uf is the fluid particle acceleration; X and uf refer to the initial
configuration and the fluid displacement, respectively; and sub-
script 0 denotes the initial configuration. In the above variational
form, we omitted the convective term and the viscosity term from
the standard Navier-Stokes equations for the fluid as usually the
case with modeling of internal waves.

As we will see shortly, the starting variational equations both
for the fluid (10)1 and for the structure are the same. It is in the
use of constitutive relations that will lead to fluid or solid model.
In the present study we take the fluid stress tensor as modeled by

r ¼ �PI3; P ¼ pac þ pgr ; pac ¼ �q0ðzÞc2r � uf ;

pgr ¼ qðzÞgðh� zÞ; z ¼ Z þ k � uf ; ð11Þ

where I3 is the (3 � 3) identity matrix; P is the total pressure; pac is
known as the fluctuation pressure that causes acoustic waves; pgr is
the pressure due to gravity that causes gravity waves; pa is the
atmospheric pressure; c is the speed of sound of the fluid; h is the
depth of the fluid measured from the free surface to the bottom
of the fluid that is taken as the origin of the Z-coordinate, some-
times referred to as hydraulic head; z is the vertical coordinate at
the fluid particle of interest; uf is the particle displacement; g is



Fig. 3. Partitioning of internal fluid–structure interaction system.
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the gravitational acceleration; and k is the upward unit vector along
the vertical direction, that is, the Z-direction.

It is emphasized that, in contrast to [13], both pac and pgr are ex-
pressed in a Lagrangian frame. A first-order expansion of the first
Piola-Kirchhoff stress tensor T gives:

T � �ð1þr � uf ÞPI3 þ Pðruf Þ
� �ð1þr � uf ÞPI3 þ Pðdiag½ruf �Þ; ð12Þ

where the replacement of ðruf ÞT by diag½ðruf ÞT � is effected by
inviscid assumption in which case fluid experiences no resistance
to shearing strains.

At this juncture it should be mentioned that there are two paths
by which one can carry out variational process and subsequently
discretize the resulting variational equation to obtain the discrete
equations of motion. One is to obtain r � T and substitute into
(10)1. Then carry out integration by part only for terms involving
rpac . This is the path taken in [77,78]. In the present paper, we pro-
ceed along the lines of solid mechanics and the integration by parts
to arrive at the virtual energy density for fluid that is analogous to
the term ðr : �Þ used for finite element discretization in solid
mechanics. To this end, by using the formula

ðr0 � TÞ � du ¼ r � ðT � duÞ � TT : r0du; ð13Þ

the first term in (10)1 is transformed toZ
V0

ðr0 � TÞ � duf dV0 ¼
Z

C
ðT � duf Þi � ni dCi �

Z
V0

TT : r0duf dV0:

ð14Þ

In the above equation, the first free surface integral represents sur-
face traction energy while the second one is the internal energy. As
noted in the beginning of Section 2, we treat the fluid–structure
interface as internal constraint, not as a boundary condition for the
fluid. This is another contrast with classical fluid formulations that
treat the fluid surface contacting the structure by a wall boundary
condition.

4.2. Surface energy model

On the free surface we have

P ¼ pa þ rsr � n ¼ pa þ q0gk � uf ; ð15Þ

where pa the atmospheric pressure acting on the surface of the
fluid; rs represents the surface tension (for water rs � 70
dynes=cm); and the well-known Young–Laplace equation that
relates the surface tension to the gravity force is used. It should be
noted that the preceding model is valid in principle for flat sur-
faces. As the surface of each discretized surface element may be as-
sumed to be flat even though the overall surface may be curved, we
are permitted to employ the flat surface hypothesis. Substituting the
above relation into the first of (14) leads toZ

Cf

ðT � duf Þ � ndC ¼ �
Z

Cf

paðn � duf ÞdC�
Z

Cf

q0gðk � uf Þðn � duf ÞdC:

ð16Þ

It should be noted that the present surface tension energy does not
account for surface curvature effects as detailed in Landau [74] and
Lighthill [75]. However, its effect is known to be within a few per-
centage error for waves whose length exceeds 0.1 m.

4.3. Internal energy model

Inserting the constitutive relation (11) into the stress tensor
(12) gives

TT ¼ �ð1þr � uf Þð�q0c2r � uf þ pgrÞI3 þ ðpac þ pgrÞdiagðruf Þ:
ð17Þ

The internal fluid energy density (TT : rduf ) is thus obtained as

TT :rduf ¼�ð1þr�uf Þð�q0c2r�uf þpgrÞr � duf

þðpacþpgrÞ
X3

i¼1

@ui

@Xi
� @dui

@Xi
ð18Þ

pgr ¼ q0gðh� Z � uf � kÞ; pac ¼ �q0c2r � uf :

The internal energy is thus obtained by integrating over the fluid
volume asZ

Vf

TT :rduf dV

¼
Z

Vf

ðr �uf Þðq0c2Þðr � duf ÞdV �
Z

Vf

pgrðr � duf ÞdV

�
Z

Vf

ðr �uf ÞðpgrÞðr � duf ÞdV þ
Z

Vf

X3

i¼1

@ui

@Xi

� �
ðpgrÞ

@dui

@Xi

� �
dV

�
Z

Vf

ðr �uf ÞðpacÞðr � duf ÞdV

þ
Z

Vf

X3

i¼1

@ui

@Xi

� �
ðpacÞ

@dui

@Xi

� �
dV : ð19Þ
4.4. Density stratified fluids

If the fluid density qðzÞ varies along the z-axis, the second term
in the foregoing equation becomes
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Z
Vf

pgrr � duf dV ¼
Z

Sf

pgrk � duf dS�
Z

Vf

rpgr � duf dV

¼ �
Z

Vf

rpgr � duf dV ; ð20Þ

where pgr ¼ 0 is used on the free surface in the first term of
(20)1. While we defer the problem of density stratification due
to gravity to a subsequent work, the second terms in (19)2, when
the density varies due solely to gravity, requires the following
modifications.

First, for ease of derivation we employ a change of variable to
express the pressure due to gravity as

pgr ¼ qgðZ0 þ nÞ; Z0 ¼ h� Z; n ¼ �ðuf � kÞ: ð21Þ

That is, Z0 is measured from the free surface to the fluid particle, and
n is a small displacement of the particle toward the bottom of the
container. Using the change of variables, rZ0pgr is evaluated as

rZ0pgr ¼
@pgr

@Z0
k0 ¼ @q

@Z0
gðZ0 þ nÞ þ qg þ @n

@Z0

� �
k0;

k0 ¼ �k � @q
@Z0

gðZ0 þ nÞ þ qg
� �

k0: ð22Þ

Second, one must employ the constitutive relation for density that
reflects the effect of gravity influence, viz.,

qðzÞ ¼ q0 þ
@pgr

@Z0
� @q0

@p
n ¼ q0 þ ðq0gÞ � ð 1

c2ðzÞÞn;
@q0

@p
¼ 1

c2ðzÞ :

ð23Þ

Substituting (22) and (23) into (20), one obtainsZ
Vf

pgrr � duf dV ¼ �
Z

Vf

q0½1�
q00ðzÞ
q0ðzÞ

Z0�ðg � duf ÞdV

� 1
2

Z
Vf

q0ðzÞ½N�
2dðk � uf Þ�2 dV ½N�2

¼ �
"

g2

c2ðzÞ þ g
q00
q0

#
; q0 ¼ @q

@Z
¼ � @q

@Z0
: ð24Þ

Here ½N� is referred to as the Väisälä-Brunt frequency and ½N�2 rep-
resents the maximum stiffness solely due to gravity. Readers inter-
ested in a classical derivation of the foregoing stiffness may consult
Chapter 4 of Lighthill [75].

4.5. External energy

The external force b0 consists of two parts: the gravity force
(q0g) and any externally excited forces such as an acoustically gen-
erated wave generator f f ðtÞ. Thus, the virtual external work may be
expressed asZ

Vf

b0 � duf dV ¼
Z

Vf

fq0g � duf þ f f ðtÞ � duf gdV : ð25Þ
4.6. Partitioned variational equation for fluids

Substituting (14), (16), (19), (24), and (25) into (10)1 the parti-
tioned variational equation for fluids is finally obtained as shown
below:

Inertia force :
Z

Vf

q0 €u � duf dV ;

Acoustic stiffness : þ
Z

Vf

ðr �uf Þðq0c2Þðr � duf ÞdV ;

V€ais€al€a-Brunt stiffness :þ1
2

Z
Vf

q0ðzÞ½N�
2dðk �uf Þ�2 dV ;
Gravity geometric stiffness 1 : �
Z

Vf

ðr �uf ÞðpgrÞðr � duf ÞdV ;

Gravity geometric stiffness 2 : þ
Z

Vf

X3

i¼1

ð@ui

@Xi
ÞðpgrÞ

@dui

@Xi

� �
dV ;

Acoustic geometric stiffness 1 : �
Z

Vf

ðr �uf ÞðpacÞðr � duf ÞdV ;

Acoustic geometric stiffness 2 : þ
Z

Vf

X3

i¼1

ð@ui

@Xi
ÞðpacÞ

@dui

@Xi

� �
dV ;

Surface stiffness : þ
Z

Sf

q0gðk �uf Þðk � duf ÞdS;

Body force : ¼
Z

Vf

fðtÞ � duf dV ;

Atmospheric pressure : �
Z

Sf

pan � duf dS;

Density stratification : þ
Z

Vf

q00gZ0ðk � duf ÞdV ;

V€ais€al€a-Brunt frequency : ½N� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� g2

c2ðzÞ�g
q00
q0

s
; ð26Þ

where the pressure due to gravity pgr and the acoustic pressure pac

are given in (18). For those who are not familiar with fluid formula-
tions that contain initial pressure terms in the foregoing formula-
tion, we note that if a full Newton solution iteration is adopted,
then the initial pressures would be updated during the iteration
process. On the other hand, if a modified Newton iteration is used,
then the initial pressures would be from the last time step values.

The present partitioned Eq. (26) for internal and gravity waves
possesses several noteworthy features:

� The present formulation embodies purely acoustic waves, purely
gravity waves, their combined effects, depending on which of
the stiffness terms are retained.

� All stiffness terms are quadratic in uf , which leads to a symmet-
ric stiffness matrix.

� In keeping with the geometric stiffness concept employed in
structural modeling of initial stresses, the present equation
brings along the gravity pressure acting as an initial stress for
modeling acoustic waves.

� When the acoustic pressure (pac) is sufficiently large, it acts as an
initial acoustic geometric pressure. This may serve well for mod-
eling of nonlinear waves whose group velocity is sufficiently dif-
ferent from the speed of fluid.

� It should be noted that the above fluid equation can account for
cavitation models which can be important for containment ves-
sels, especially carrying gaseous fluids. This can be realized by
noting pac ¼ �qc2r � uf for which r � uf takes on the positive
value instead of negative value for compression state.

� As discussed in [18], the preceding fluid displacement model
may be transformed into a pressure-based model by replacing
pac from the relation:

pac ¼ �qc2r � uf ; subject to : curlðuf Þ ¼ 0: ð27Þ

� The present formulation models the density stratification as
indicated by the Väisälä-Brunt stiffness term. When there is no
noticeable stratification, viz., q0 � 0, the term can be ignored
as g2=c2 � 8:3� 10�4 for air and g2=c2 � 4:3� 10�5.

4.7. Comparison with existing formulations

In the work of Andrianarison and Ohayon [78] based on the
Lighthill model of gravity and compressibility interaction contribu-
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tions [75], they reported the following formulations (see Eq. (19)
therein):

Inertia force :
Z

Vf

q0
€u � duf dV ;

Acoustic stiffness : þ
Z

Vf

ðr � uf Þðq0c2Þðr � duf ÞdV ;

Partial V€ais€al€a-Brunt stiffness : þ 1
2

Z
Vf

q0ðzÞ½�q0g�dðk � uf Þ�2 dV ;

Gravity gradient : þ
Z

Vf

q0 d½ðg � uf Þðr � uf Þ�dV ;

Surface stiffness : þ
Z

Sf

q0ðg � duf Þðk � duf ÞdS;

Body force : ¼
Z

Vf

fðtÞ � duf dV : ð28Þ

Observe that the first three terms in (28)1-3 and the surface stiff-
ness terms are regular and yield symmetric matrices. The gravity
gradient term yields, while symmetric, rank-deficient arrow-head
type matrix. In contrast, all of the terms in the present deriva-
tion(26) yield symmetric and regular matrices. In addition, the ini-
tial gravity pressure and acoustic geometric stiffness terms are
absent in their formulation.

5. Variational formulation of flexible structures

In the variational formulation of internal and gravity waves car-
ried out in the previous section, the fluid motion is assumed to be
small. This means the interacting structural motion must be also
small. This does not imply the structure behave linearly. In fact it
would be sensible for the structure to undergo both geometric
and material nonlinear states. To this end, we start the present var-
iational formulation of the structural partition with the following
virtual work for the structure:

dPs ¼
Z

V0

fr0 � Tþ b0 � q0
€usg � dus dV0 ¼ 0;

¼
Z

V
fr � rþ b� q€usg � dusdV ¼ 0;

r ¼ @

@x
iþ @

@x
jþ @

@x
k;qdV ¼ q0 dV0; qbdV ¼ q0b0 dV0: ð29Þ

In the preceding equation, the first Piola–Kirchhoff stress tensor (T),
and the current position vector (xs), the displacement (us), etc. are
defined in the same way as introduced in the virtual work state-
ment for the fluid (10). It should be noted that the above principle
of virtual work satisfies the equations of motion for a continuum
plus the boundary conditions:

us � �us ¼ 0 on Cuss � r � nr ¼ 0 on Cr ð30Þ

provided the virtual displacement dus is chosen to satisfy

dus ¼ 0 on Cu: ð31Þ

In (30) the displacement us is prescribed on Cu and the traction s

represents the prescribed traction on Cr and nr is unit normal vec-
tor on the traction surface S. It should be noted that Cu and Cr ex-
clude the fluid–structure interface which is treated as internal
constraint in the present paper.

The structural virtual work can be expressed either in the unde-
formed configuration(29)1 or in the deformed configuration(29)2,
with the former leading to the total Lagrangian procedure [79–
84] and the latter to the updated Lagrangian or corotational solu-
tion procedures [85–89]. In the present derivation, we will adopt
the corotational formulation because of our familiarity with that
kinematical description.
Integrating by parts the virtual work due to the strain energy
we obtain:Z

V
ðr � rÞ � dudV ¼

Z
Cr

ss � dus dC�
Z

V
r : rdus dV ; ð32Þ

where the symmetry of the Cauchy stress tensor, viz., rT ¼ r, has
been used. Substituting into (29)2 leads to

dEinertiað€xÞ þ dEintðxÞ ¼ dEextðxÞ;

dEinertiað€xÞ ¼
Z

V
q€us � dus dV ;

dEintðxÞ ¼
Z

V
r : rdus dV ; ð33Þ

dEextðxÞ ¼
Z

V
b � dus dV þ

Z
Cr

ss � dus dC;

x ¼ Xþ us:

Discretization and subsequent solution of the above equation for
structures require linearization of dEint . To this end, a constitutive
relation based on the Truesdell stress rate [90,82] can be stated as

Mr<T> ¼ Mr� l � r� r � lT þ trðlÞr; l ¼ M�F � �F�1;

eðMusÞ ¼
1
2
f �rðMusÞ þ �rðMT usÞg;

�r ¼ @

@�x
iþ @

@�y
jþ @

@�z
k; �x ¼ Xþ �us; ð34Þ

�F ¼ F�us ;

M�F ¼ �rðMusÞ; us ¼ �us þ Mus:

An incremental constitutive relation we adopt may be expressed as

M

r11

r22

r33

r12

r23

r31

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

¼

c11 c12 c13 c14 c15 c16

c22 c23 c24 c25 c26

c33 c34 c35 c36

c44 c45 c46

c55 c56

sym: c66

2
6666666666664

3
7777777777775
M

e11

e22

e33

e12

e23

e31

8>>>>>>>>>>>><
>>>>>>>>>>>>:

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

;

eij ¼
1
2

@ui

@xj
þ @uj

@xi

� �
: ð35Þ

Taking the Frechet derivative of dEint utilizing the above constitutive
relation, and after considerable algebraic manipulations, we arrive
at the following linearization:

dEintð�xþ MusÞ ¼ dEintð�xÞ þ KðMusÞ;

dEintð�xÞ ¼
Z

V
deT

vrv d�V ;

KðMusÞ ¼ KmatðMusÞ þ KgeomðMusÞ;

KmatðMusÞ ¼
Z

V
deT

vC<T>
m Mev d�V ;

KgeomðMusÞ ¼
Z

V

X3

i¼1

�rðduiÞ � �r � �rðMuiÞd�V :

ð36Þ

The linearized variational equation of motion for structures can
now be written as

dEinertiaðM€usÞ þ KmatðMusÞ þ KgeomðMusÞ

¼ dEextðxÞ � dEinertiað €�xsÞ � dEintð�xsÞ: ð37Þ

In the remainder of the paper we consider the structure undergoing
small strains yet with finite displacements and rotations but small
strains. Thus the geometric stiffness force must be retained. When
this assumption is invoked, the foregoing equation simplifies to



Fig. 4. Nonmatching localized interface example.

Fig. 5. Nonmatching localized interface example for curved interface.
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With �us ¼ 0 ) Mus ! us :

+
dEinertiað€usÞ þ KmatðusÞ þ KgeomðusÞ ¼ dEextðxÞ

Or; expressed in terms of dPlin
s

dPlin
s ¼ dEextðxÞ � dEinertiað€usÞ � KmatðusÞ � KgeomðusÞ ¼ 0:

ð38Þ

It should be mentioned that a parallel linearization can be carried
out for the use of structural analysis software that is based on the
total Lagrangian formulation [79,80,90,84]. Here one replaces the
linearized constitutive relation (35) by the corresponding linearized
one based on the second Piola–Kirchhoff (2nd P–K) stress tensor,
and similarly the initial Cauchy stress by the 2nd P–K stress tensor,
respectively. One also must use the Green–Lagrange strain mea-
sures for consistency.

6. Discrete equations for coupled internal waves and structures

Discretization of both the variational fluid Eq. (26) and the var-
iational linearized structural Eq. (38) by the finite element method
is well documented (cf. Zienkiewicz [91] and Pironneau [92]). Thus
we will simply state the discrete equations. Discretization of the
internal fluid–structure interface, however, is not straightforward
as explained next.

6.1. Discretization of interface constraint functional

A simple algorithm for discretizing the localized interface con-
straint collocates the localized Lagrange multipliers (k) with the
interface displacement. This means that we place a fluid-side La-
grange multiplier set(kf ) for each interface fluid node, and similarly
for each structural node (see Fig. 2). Hence, discretization of the
interface constraint is reduced to determine the frame nodes and
interpolate the frame elements. A more detailed procedure for
determining the frame nodes may be found in [93].

For the present problem, the localized Lagrange multipliers are
normal components. Hence, we sample them at the element cen-
troids for linear or constant-strain elements, requiring only one La-
grange multiplier per elements. This is illustrated in the example
problem shown in Fig. 4 For this example problem, the present
localized interface constraint functional (6) is shown to be discret-
ized as(see, for the detailed procedure, [94])

p‘ðuf ;us;ub; kf ; ksÞ ¼
Z

Sf

kT
f ðuf � ubÞ � ndSþ

Z
Ss

kT
s ðus � ubÞ

� ndS

¼ kT
f kT

s

h i Bf 0
0 Bs

� �
uf

us

� �
� Lf

Ls

� �
ub

� �
: ð39Þ

In the foregoing equation the discretized quantities referring to
Fig. 4 are given by

Bf ¼
1
2

1 1 0

0 1 1

" #
; Bs ¼

1
2

1 1 0 0

0 1 1 0

0 0 1 1

2
64

3
75;

Lf ¼
1

16

7 9 0 0

0 9 7 0

" #
; Ls ¼

1
8

5 3 0 0

0 1
2

1
2 0

0 0 3 5

2
64

3
75;

kT
f ¼ ½k

ð1Þ
f kð2Þf �; kT

s ¼ ½k
ð1Þ
s kð2Þs kð3Þs �;

uT
f ¼ ½u

ð1Þ
f uð2Þf uð3Þf �;

uT
s ¼ ½uð1Þs uð2Þs uð3Þs uð4Þs �;

uT
b ¼ ½u

ð1Þ
b uð2Þb uð3Þb uð4Þb �:

ð40Þ
There is an important geometrical consideration that must be incor-
porated when the interface is curved because the normals on the
fluid elements, the frame elements and the structural elements do
not necessarily coincide. This is illustrated in Fig. 5. Specifically,
the difference in the normals should be taken care of as shown in
(41). DeRuntz and Geers [95] used a similar approach in their com-
putation of added mass when boundary element method was used
to account for the pressure acting on the structural surface via
added mass modification.

p‘ ¼
XNf

i¼1

kðiÞf ðn
ðiÞ
f � u

ðiÞ
f ð0Þ � nðiÞf � n

ðiÞ
b uðiÞb ðnf ÞÞ

þ
XNs

i¼1

kðiÞs ðnðiÞs � uðiÞs ð0Þ � nðiÞs � n
ðiÞ
b uðiÞb ðnsÞÞ

+
p‘ ¼ kT

f ð~Bf uf � ~Lf ubÞ þ kT
f ð~Bsus � ~LsubÞ; ð41Þ

where the normals and the evaluation coordinates on the frame ele-
ment are shown in Fig. 5; uð0Þ indicates that the displacements are
evaluated at the element centroid; ubðnf Þ denotes the mid-point of
the interfacing fluid element mapped onto the frame element coor-
dinates, and likewise ubðnsÞ; and (Nf , Ns) are the total number of
interfacing elements for fluid and structure, respectively.

6.2. Discretization of fluid equation

Finite element discretization of the fluid equation is straightfor-
ward in that the fluid displacement uf is interpolated by the stan-
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dard isoparametric basis functions and the pressure is sampled at
the Barlow points. That is, for constant-strain elements at the ele-
ment centroid. The resulting discretization of the variational fluid
Eq. (26) can be stated as

d ~Pf ¼ duf ðf f �Mf €uf � Kf ðuf ;pac; pgrÞ uf Þ ð42Þ

It should be noted that the fluid stiffness matrix, Kf ðuf ;pac;pgrÞ, con-
sists of the acoustic stiffness, Väisälä-Brunt stiffness for stratifying
fluids, geometric stiffness due to gravity pressure, and geometric
stiffness due to acoustic pressure.

6.3. Discretization of structural equation

As stated, it is a standard practice to obtain the discrete version
of the linearized variational equation for structure (38) as

d ~Plin
s ¼ dusðfs �Ms €us � KsðrÞ usÞ ð43Þ

where the stiffness matrix, KðrÞ, consists of the material and geo-
metric stiffness matrices as discussed in (38).

6.4. Discrete partitioned fluid–structure interaction equations

The coupled partitioned fluid–structure interaction model can
now be constructed by the following variational statement:

dPtotal ¼ dp‘ þ dPf þ dPs ¼ 0 ð1Þ

Inserting the discrete variational internal constraint (41), the dis-
crete variational fluid Eq. (42) and the discrete variational structural
Eq. (43) into the foregoing equation, the stationarity of the resulting
expression yields the following equation set:

Kf þMf
d2

dt2 0 ~BT
f 0 0

0 Ks þMs
d2

dt2 0 ~BT
s 0

~Bf 0 0 0 �~Lf

0 ~Bs 0 0 �~Ls

0 0 �~LT
f �~LT

s 0

2
666666666664

3
777777777775

uf

us

kf

ks

ub

2
6666666664

3
7777777775
¼

f f

fs

0

0

0

2
6666666664

3
7777777775

ð44Þ
7. Vibration and transient analysis by present partitioned
fluid–structure interaction equations

Efficient algorithms exist for the transient analysis of the above
partitioned multi-physics models [96,97,59,60,63] and for vibra-
tion analysis including reduced-order models [98,99]. While we
defer detailed aspects of computational procedures and numerical
experiments for a later exposition, we briefly discuss several spe-
cial analyses that can accrue from the above formulation (44).

7.1. Vibration analysis of FSI systems

Eq. (44) can be specialized to vibration formulation by taking

d2

dt2 ¼ �x2; with fs ¼ f f ¼ 0 ð45Þ

whose substitutions leads to

Kf �x2Mf 0 ~BT
f 0 0

0 Ks �x2Ms 0 ~BT
s 0

~Bf 0 0 0 �~Lf

0 ~Bs 0 0 �~Ls

0 0 �~LT
f �~LT

s 0

2
666666664

3
777777775

uf

us

kf

ks

ub

2
66666664

3
77777775
¼

0

0

0

0

0

2
66666664

3
77777775
ð46Þ
An efficient flexibility-based vibration analysis technique including
substructuring that is well suited to treat the above vibration model
is discussed in [98–100].

7.2. Transient analysis of FSI systems

There are three modes of transient analysis utilizing the present
partitioned FSI formulation (44): explicit-explicit (meaning explicit
integration for both fluid and structural partitioned equations), ex-
plicit–implicit and implicit–implicit integration. We will describe
the implicit–implicit integration procedure and show that the ex-
plicit-explicit and explicit–implicit procedure follows by extrapo-
lating the stiffness force terms. For illustration purposes, we
employ the implicit-mid-point rule for both the fluid and struc-
tural equations of motion:

_unþ1
2 ¼ _un þ d€unþ1

2; d ¼ 1
2
Mt

unþ1
2 ¼ un þ d _unþ1

2

+

unþ1
2 ¼ hnþ1

2
u þ d2 €unþ1

2; hnþ1
2

u ¼ un þ d _un

ð47Þ

where Mt is the step size. Once unþ1
2 is obtained, unþ1 can be ob-

tained from

unþ1 ¼ 2unþ1
2 � un ð48Þ

Substituting into (44) we obtain the following time-discretized
equation:

ð 1
d2 Mf þ Kn

f Þ 0 ~BT
f 0 0

0 ð 1
d2 Ms þ Kn

s Þ 0 ~BT
s 0

~Bf 0 0 0 �~Lf

0 ~Bs 0 0 �~Ls

0 0 �~LT
f �~LT

s 0

2
666666664

3
777777775

uf

us

kf

ks

ub

2
6666664

3
7777775

nþ1
2

¼

f f þ 1
d2 Mf huf

fs þ 1
d2 Mshus

0
0
0

2
6666664

3
7777775

nþ1
2

ð49Þ

where the stiffness matrices (Kf ;Ks) are approximated by using the
displacement, pressures and stresses at the nth step values.

The numerical solution of the above discrete equation can
be effected by employing a parallel solution algorithm de-
scribed in [60]. Alternatively, one may employ a more mature
FETI-DP or its allied methods [62], by solving for ðuf ;usÞ first,
then projecting out the frame displacement ub except the
so-called cross points interface degrees of freedom, and the
localized Lagrange multipliers are transforming the present
localized Lagrange multipliers to the classical global Lagrange
multipliers as detailed in [57]. There exist a plethora of allied
methods labeled as semi-implicit algorithm (see, e.g., Sy and
Murea [101]) that do need to satisfy the interface compatibility
constraints at each time step. This may present fruitful avenue
for further study.

7.2.1. Explicit–implicit transient analysis procedure
For explicit–implicit procedure, i.e., integrating the fluid equa-

tions by an explicit integration formula and the structural equa-
tions by an implicit formula, all one needs to do is to transfer the
fluid stiffness force term to the right-hand side with the displace-
ment replaced by a predictor. This is illustrated in the equation
below.
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1
d2 Mf 0 ~BT

f 0 0

0 ð 1
d2 Ms þ Kn

s Þ 0 ~BT
s 0

~Bf 0 0 0 �~Lf

0 ~Bs 0 0 �~Ls

0 0 �~LT
f �~LT

s 0

2
666666664

3
777777775

uf

us

kf

ks

ub

2
6666664

3
7777775

nþ1
2

¼

ðf f � Kf un
f Þ þ 1

d2 Mf huf

fs þ 1
d2 Mshus

0
0
0

2
6666664

3
7777775

nþ1
2

ð50Þ

It can be shown that the net result of the foregoing procedure is
equivalent to integrating the fluid equations by the central differ-
ence formula while implicitly integrating the structural equations
by the trapezoidal rule.

7.2.2. Explicit-explicit transient analysis procedure
A straightforward explicit-explicit procedure can be realized by

transferring the ðKsu
nþ1

2
s Þ-term to the right-hand side with

unþ1
2

s � un
s . This is described below.

1
d2 Mf 0 ~BT

f 0 0

0 1
d2 Ms 0 ~BT

s 0
~Bf 0 0 0 �~Lf

0 ~Bs 0 0 �~Ls

0 0 �~LT
f �~LT

s 0

2
666666664

3
777777775

uf

us

kf

ks

ub

2
6666664

3
7777775

nþ1
2

¼

ðff �Kf un
f Þþ 1

d2 Mf huf

ðfs�Ksun
s Þþ 1

d2 Mshus

0
0
0

2
6666664

3
7777775

nþ1
2

ð51Þ

In passing, it should be noted that the present partitioned FSI for-
mulation (44) reduces to a monolithic formulation if the interface
forces (kf ; ks) are eliminated. While the reduction is straightforward
for matching interfaces, they are not trivial for nonmatching inter-
faces, let alone destroying software modularity.

A computationally efficient and still adhering to partitioned
solution process can be developed as follows. First, obtain
ðunþ1

2
f ;unþ1

2
f Þ from the first two of the explicit–implicit equation set

(51) and then consequently ðunþ1
f ;unþ1

f Þ via (48). Here we assume
to have used diagonalized mass matrices.

Second, instead of implicitly solving simultaneously
ðkf ; ks;ubÞnþ

1
2, we proceed as follows. Obtain ub from a least squares

solution of the third and fourth equation of (51):

unþ1
b ¼

~Lf

~Ls

" #þ ~Bf 0

0 ~Bs

" #
uf

us

� �nþ1

ð52Þ

where the superscript ðÞþ denotes pseudo-inverse of a rectangular
matrix.

Third, using unþ1
b and its previous-step values, obtain €unþ1

b .
Fourth, twice-differentiate the compatibility equations, viz., the

third and fourth equation set, to obtain

~Bf 0

0 ~Bs

" #
€uf

€us

� �nþ1

¼
~Lf

~Ls

" #
€unþ1

b ð53Þ

Fifth, introduce from the first and second equation of (44) to express
ð€unþ1

f ; €unþ1
f Þ as

€unþ1
f ¼M�1

f fnþ1
f � Kf unþ1

f � ~Bf k
nþ1
f

	 

€unþ1

s ¼M�1
s fnþ1

s � Ksunþ1
s � ~Bsk

nþ1
s

	 
 ð54Þ

Substituting ð€unþ1
f ; €unþ1

f Þ in the above equation into the twice-differ-
entiated interface compatibility Eq. (53), one obtains the localized
Lagrange multipliers computed separately in their respective soft-
ware modules as

knþ1
f ¼ ½~Bf M

�1
f

~BT
f �
�1 ~Bf M�1

f fnþ1
f � Kf unþ1

f

	 

� ~Lf €unþ1

b

n o
knþ1

s ¼ ½~BsM
�1
s

~BT
s �
�1 ~BsM

�1
s fnþ1

s � Ksunþ1
s

	 

� ~Ls €unþ1

b

n o ð55Þ

Now that as the solution set for the time step tnþ1 is available, one
can proceed to integrate for the next step, namely, tnþ2.

8. Discussions

The present paper has focused on the partitioned formulation of
a class of inviscid fluid–structure interaction system that can mod-
el sloshing and acoustic waves interacting with flexible structures.
The present interface model assumes no dissipation. An immediate
extension may be to generalize the present internal interface mod-
el to accommodate dissipative interface [102]. A novel feature of
the present fluid formulation is that the gravity pressure and non-
linear acoustic pressure terms are retained as initial stress stiff-
ness. This may allow to model cavitation, although not explicitly
specified, within the present formulation frame work, just as plas-
ticity can be modeled into the present structural model.

The present partitioned internal fluid–structure interaction
model can be coupled with the external acoustic model [40] so that
the structure sandwitched between internal fluid and external
acoustic fluid field can be analyzed via a three-field partitioned
solution procedure.

The present model, although it is possible to include cavitation
in principle, neglects explicit inclusion of cavitation phenomena
[103,104] in the model. Cavitation can be an important issue for
gaseous containers. Further work is needed to adequately model
cavitation within the framework of the present formulation.

For a more complete analysis of sea-borne submerged and sur-
face vehicles, the ocean waves interacting with vehicles must be
brought to bear. This and other extended modeling issues are being
actively pursued and will be presented in the future.
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