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ABSTRACT 
This paper describes the use of concrete electrical resistivity as durability performance parameter and 

the complementary information that resistivity can provide like: setting period, mechanical strength and 

degree of curing. Also, it is explained how to design the concrete mix to obtain a target resistivity. 

Current codes have prescriptive requirements for the durability of concrete and reinforcement corrosion. 

However, modern trends specify the performance rather than the concrete characteristics. This 

performance approach demands to define a durability controlling parameter, such as the chloride 

diffusion coefficient, with its corresponding test and the model to predict the time to steel corrosion.  
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Diseño y evaluación de la vida útil a través de resistividad eléctrica concreta 
 

RESUMEN 
Este artículo describe el uso de la resistividad eléctrica del concreto como parámetro de desempeño 

de durabilidad y la información complementaria que puede proporcionar la resistividad, como: 

período de fraguado, resistencia mecánica y grado de curado. Además, se explica cómo diseñar la 

mezcla de concreto para obtener una resistividad objetivo. Los códigos actuales aún tienen 

requisitos prescriptivos para el diseño por durabilidad del concreto y para la corrosión del refuerzo. 

Sin embargo, las tendencias modernas especifican el desempeño más que las características del 

concreto. Este enfoque de desempeño exige definir un parámetro de control de la durabilidad, 

como el coeficiente de difusión del cloruro, con su prueba correspondiente y el modelo para 

predecir el tiempo de corrosión del acero.  

Palabras clave: resistividad eléctrica concreta; desempeño de durabilidad; coeficiente de difusión 

de cloruro. 
 

Projeto e avaliação da vida útil através da resistividade elétrica do concreto 

 
RESUMO 

As normas atuais têm requisitos para o projeto de durabilidade do concreto com base na resistência 

à compressão e provisões relacionadas ao teor de cimento e à relação água-cimento. Para corrosão 

da armadura, os códigos também especificam as larguras máximas das fissuras de flexão. No 

entanto, as tendências modernas preferem especificar o desempenho em vez das características do 

concreto. Essa abordagem de desempenho exige definir um parâmetro de controle de durabilidade, 

como o coeficiente de difusão de cloreto, com seu teste correspondente e o modelo para prever o 

tempo de corrosão do aço. Este artigo descreve o uso da resistividade elétrica do concreto a ser 

usada como parâmetro de desempenho de durabilidade e as informações complementares que a 

resistividade pode fornecer como é: o período de ajuste, a resistência mecânica e o grau de cura. 

Além disso, é explicado como projetar a mistura de concreto para obter uma resistividade alvo. 

Palavras-chave: resistividade elétrica do concreto; desempenho em durabilidade; coeficiente de 

difusão de cloretos. 

 

 

1. INTRODUCTION 
 

Concrete electrical resistivity was measured comparatively early with respect to the application of 

other electrochemical techniques in concrete because studies are reported from the 40-50’s 

(Hammond and Robson, 1955; Monfore, 1968) related to the characterization of concrete as an 

electrical insulator to be used in train sleepers and because it was applied to non-destructive 

measurement of cement setting (Calleja, 1953). It is in the decade of the 60’s when reinforcement 

corrosion was started to appear as an important potential distress and electrochemical techniques 

started to be applied, in particular polarization curves (Gjorv et. al 1986; Gouda and Monfore 

1965). 

However, its role in these electrochemical experiments was not appraised until Polarization 

Resistance technique, Rp, was used to measure the instantaneous corrosion rate (Andrade and 

Gónzalez 1978; González et.al 1980), because their values could be very much affected by the 

ohmic drop if not removing resistive component from the recorded value. The systematic 

measurement of the ohmic drop affecting Rp measurements enabled the evidence that the concrete 

resistivity is a direct function of concrete porosity and its degree of water saturation (Andrade et. 

al 2000a; McCarter and Garvin 1989) and then, the corrosion rate results a direct function of 



 

                                                                              Revista ALCONPAT, 8 (3), 2018: 264 – 279 

                                                 Design and evaluation of service life through concrete electrical resistivity 
C. Andrade 

266 

resistivity with the consequence that ohmic control is the key rate controlling mechanism of 

reinforcement corrosion. 

It is in the decade of the 90’s when the interest on resistivity arises again when the relation between 

chloride diffusion and concrete resistivity is demonstrated (Andrade et al, 2000b). To explore this 

relation was not appreciated and instead, most of the researchers focused to develop models and 

tests on chloride migration (Andrade, 1993; Tang, 1996). However, the author of this 

communication has been attracted by the potential numerous applications of concrete resistivity 

and in particular has identified that it is the key parameter linking microstructure with transport 

ability of concrete and has studied in depth the fundamentals of resistivity in particular the 

possibility to predict the reinforcement service life from its characterization (Andrade et al, 1993; 

Andrade, 2004). In present work some of the microstructural bases of the resistivity as universal 

parameter controlling transport processes in concrete as porous medium are described as well as 

the relation between reinforcement corrosion and degree of saturation which makes to vary 

concrete resistivity. 

 

2. CONCRETE RESISTIVITY FUNDAMENTALS 

 
Concrete electrical resistance, R, is the relation between the voltage drop, V, applied to a 

conductive body and the current, I, induced by it. 

 

                                                                  (1) 

 
This Resistance, if standardized to a regular geometry, enables to know the resistivity through 

Ohm’s law which is given in equation 1 (d= the distance between electrodes and A is the cross-

section area in figure 1). 

 

 
Figure 1. Left: direct, method to measure resistivity (the pore network is made evident for the 

sake of the representation). Right: four points or Wenner method. Concrete resistivity is an 

indication of the concrete porosity and degree of water saturation. 

   

The most common method of measurement of resistivity is the “direct” or “bulk” method (figure 

1-left). Two electrodes as placed in two parallel faces of a concrete specimen or disc and voltage 

is applied. The other common method is that known as “four points or Wenner method” shown 

right in the same figure. 

 

2.1 Evolution of resistivity during setting and hardening 

When water is mixed with the cement powder the paste formed is very fluid and then the resistivity 

is very low (figure 2), however as soon as the paste is setting, the resistivity increases following 

𝑅 =
𝑉

𝐼
= 𝜌 

𝑑

𝐴
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cement hydration (Calleja, 1953). The increase continues during hardening as porosity evolves 

with cement hydration. This increase with time serves to monitor the “aging factor of hydration” 

which will be addressed later. 

 

  
Figure 2. Left: Evolution of resistivity of mortar with w/c ratio of 0.65 during cement setting. 

Right: example of evolution of concrete resistivity during hardening 

 

2.2 Relation resistivity and mechanical strength 

The increase of resistivity with time is parallel to that of mechanical strength due both parameters 

depend on concrete porosity. In figure 3 is shown their relation for numerous concretes which 

indicates that the resistivity may be used to predict mechanical strength when the specimens are of 

the same cement type and cured in standardized conditions. 

 

 
Figure 3. Relation of compressive strength of concretes at different ages and resistivity. 

 

2.3 Relation of Resistivity with pore microstructure and water saturation 

Concrete is a porous body in which the solid phases are non-conductive being the pores filled with 

a solution which is the conductive phase. Then the resistivity/conductivity of the concrete will 

depend on the total pore volume and on its pore size distribution. As higher is the porosity, lower 

is the resistivity providing the concrete is water saturated. If the concrete is not saturated then, the 

resistivity is an indication of concrete degree of saturation (McCarter and Garvin, 1989; Andrade 

et. al, 2000b). This relation can be expressed through a modification of Archie’s law (Archie, 
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1942), where 0= the resistivity of the pore solution (average value from 10 to 50 .cm), W is the 

volumetric fraction of water and  is the tortuosity factor, : 

 



−

= W0
                                                                           (2) 

 

Regarding the influence of the chemical composition of pore solution, 0, its impact in the total 

resistivity following equation 2 is small providing the concrete remains alkaline. If concrete is 

carbonated then, the value of 0 is much higher. 

 

 
Figure 4. Relation between volumetric fractions of porosity saturated with water and resistivity of 

four different mixes. The value of  of equation 2 is 2.52 in the figure (Andrade, Bolzoni, Fullea, 

2011) 

 

An illustration of this empirical relation is given in figure 4 (Andrade, Bolzoni, Fullea, 2011) where 

four concrete mixes have been conditioned to several relative humidities in which the resistivity 

was measured together with the weight.  It indicates that below a RH of 65% the resistivity rises 

exponentially while it is above 85-90% RH when it reaches the minimum values due to the capillary 

pores that are starting to be filled with evaporable water. 

 

2.4 Influence of temperature in the Resistivity  

With respect to the influence of temperature, it has an important effect on resistivity: resistivity 

increases when temperature decreases. This effect only can be generalized if the  values are 

standardized to a reference temperature that it is proposed to be 25ºC. Other possibility is the use 

of Arrhenius law; however, it has been detected that the Activation energy depends on the degree 

of saturation and a single value seems not exiting (Andrade, Zuloaga, et. al, 2011). For practical 

applications, however the effect can be neglected if the temperature is varying from 18 to 22ºC. 

Larger variations may need standardization. 

On the other hand, an increase in temperature usually means evaporation of pore water, which in 

turn means increase of resistivity. That is, the final effect of temperature in the corrosion is counter-

influencing as an increase in temperature may produce a slowing of the Diffusion coefficient and 

the corrosion rate due to the drying. Therefore, the incorporation of temperature effects on models 

is very premature and more results are needed. 
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3. RELATION BETWEEN RESISTIVITY, DIFFUSIVITY AND 

CORROSION RATE 
 

3.1 Resistivity-Diffusivity 

Being concrete a porous material, Resistivity is related to its ionic transport ability by applying 

Einstein law on conductivity-diffusivity which relates the movement of electrical charges to the 

conductivity of the medium (Andrade, 1993) as represented in figure 5 in a log-log graph: 

  

ef

e F
F

D


4-2E
σ

ρef

===                                                                (3) 

Where: 

De = effective diffusion coefficient 

F   = a factor, which depends on the external ionic concentration 

ef  = “effective” resistivity (in this case of concrete saturated with water) 

   = conductivity (inverse of resistivity) 

A value of kCl of 20x10-5 can be used for external chloride concentrations of 0.5 to 1 M. 

  

 
Figure 5. Relation between resistivity and diffusivity as calculated from Einstein law. 

 

3.2 Resistivity- Corrosion Rate 

It is the dependence with moisture of the resistivity which explains the relation between it and the 

reinforcement corrosion rate which is illustrated with the graph Icorr-resistivity (Andrade et. al. 

2000a; Lambert et. al., 1991) of figure 6, in which it is illustrated the average relation and some 

values of a particular test. The inclined line in the figure 6 represents the expression: 

 

                                                                        (4) 

 

If the Icorr is given as Vvorr in mm/year this expression 3 results in expression 4: 

 

                                                                (5) 
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Where Vcorr = (mm/year), 0.0116 = conversion factor between Vcorr and Icorr and  = concrete 

resistivity (ohmcm).  

This relation has opened the door to derive the corrosion rate from resistivity providing the 

corrosion is in active state, because when the steel is passive the resistivity cannot be used to 

forecast corrosion rates. 

 
Figure 6. Two examples of the Graph Icorr- ef which indicates the relation between the Icorr and 

the degree of concrete saturation. 

 

3.3 Diffusion Coefficient-Corrosion Rate 

It is apparent that equation 3 and equation 4 are very similar in spite that one (that of the diffusivity) 

is based in the well based theory of movement of electrical charges and the other (that of the Icorr) 

is empirical and developed for concrete (perhaps it could be applied to some porous materials as 

corrosion of metals in soils). What is the physical meaning of that similarity?. The explanation 

found with respect to the equation of the Icorr- was the well-known “resistance control” of the 

corrosion activity of the micro- and macro-galvanic cells. That is, the resistivity of the electrolyte 

controls the maximum rate of corrosion (either the movement of the produced iron ions and that of 

the hydroxides produced in the cathode) while in solution the corrosion activity rate is more 

controlled by the energy of activation (activation control) or the concentration of the ions oxidized 

in the anodic areas or reduced in the cathodic ones (concentration control).  This resistance control 

is what expresses the equation 4 of the diffusivity: the ions cannot move faster that the resistivity 

of the solution allows. Being the movement of electrical charges (ions) involved in the corrosion 

and in the diffusion, both are controlled by the resistivity of the electrolyte.  

Apart from the physical meaning, it has also to be considered the mathematical similarity. This is 

very interesting from a practical point of view because, in addition to make possible the calculation 

of the diffusion coefficient and the corrosion rate from the resistivity of the concrete, it also enables 

the calculation of the maximum corrosion rate to be produced in a concrete if the coefficient of 

diffusion is known and vice versa, the deduction of the coefficient of diffusion from a measurement 

of maximum corrosion rate.  

Operating mathematically by equalizing both expression 3 and 4 and assuming that for the sake of 

simplification in equation 4 the value of k= 2.6∙10-5 instead of k= 2.3∙10-5, it can be deduced that: 
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which aims into: 

 

8

5
10

1026

26000
=


=

− eecorr DDI                                                 (7) 

 

And 

 

                                                                      (8) 

Table 1 gives some calculations for different values of Icorr and Def. 

 

Table 1. Equivalence between Def and Icorr for the value of k=2.6E-5 

Def (cm2/s) 0.1E-8 1E-8 10E-8 

Icorr (m/year) 0.1 1 10 

 

It must be stressed that such relations are based in the so called “effective diffusion coefficient”, 

De which is a steady-state value and not in the Apparent Dap that averages the evolution of the 

coefficient along the testing time and it is the result of a non-steady-state regime.  

 

3.4 Relation between resistivity and water saturation 

Following with analogies, it is possible to calculate the corrosion rate from the water saturation, as 

this one depends on the resistivity. Substituting equation 2 and 3 in 4 results in equation 6: 

 

                                                           (9) 

 

Being:   W= Sw∙, Sw = concrete water saturation degree, % and = porosity in volume, % This 

equation enables to deduce the maximum velocity of corrosion in a concrete in function of its 

volumetric fraction of pores saturated with water. Thus, as an example, for a W = 0.05 (50% of 

saturation degree in a concrete with 10% of porosity in volume), the maximum corrosion rate would 

be of 15 m/year. 

Then, in figure 7, all the concordances and analogies are summarized. 

 

 
Figure 7. Relations between Resistivity-Diffusivity and Corrosion rate 

 

 

 

𝐷𝑒 = 𝐼𝑐𝑜𝑟𝑟 ∙ 10−8 

𝑉𝑐𝑜𝑟𝑟  (
𝑚𝑚

𝑦𝑒𝑎𝑟
) = 6 ∙ 𝑊2 
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4. SERVICE LIFE MODEL BASED IN THE RESISTIVITY 

MEASUREMENTS 
 

Two main aspects must be taken into account when trying to calculate the service life from the 

resistivity (Andrade, 2004). 

- It is necessary to introduce the relation of  with time 

- The  is proportional to the effective diffusion coefficient, that is the reaction of chlorides 

with the hydrated cement phases has to be incorporated. 

 

4.1 Relation with time 

The resistivity can be introduced in a “square root law” enabling the relation between time and the 

resistivity. Thus, if using the standard square root law: 

 

                                                     (10) 

 

Where x= depth of carbonation or chloride threshold penetration and t= time life. The model based 

in the resistivity was proposed (Calleja, 1953) by substituting the value of D by expression 7 which 

gives: 

                

                                                                            (11) 

 

Based in this relation, a complete model has been developed (Calleja, 1953). For the sake of 

summarizing it is presented in equation 12 and equation 13: 
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=                                                                                (13) 

 

Where: 

 ti= initiation period 

 tp= propagation period 

 ef = effective resistivity (at 28 days of wet curing) 

 kCO2, Cl = environmental factor depending on exposure class 

Knowing the value of the resistivity in the same specimen than that used for mechanical strength 

at 28 days, this model enables the calculation of the time to corrosion and the corrosion propagation 

period, if some information on the reaction ability of the cement phases and the aging factor are 

known.  

 

4.2 Consideration of chloride reaction and other factors 

As has been mentioned, the ability of resistivity to quantify diffusivity is based in one of the 

Einstein laws which relates the movement of electrical charges to the conductivity of the medium 

(Andrade, 1993; Andrade et al, 1993; Andrade, 2004; Garboczi, 1990) (see equation 3). This 

expression only accounts for the transport of the chloride ions through the pore network which is 

𝑥 =  𝑉𝐶𝑂2,𝐶𝑙 ∙  𝑡 =  2 ∙ D ∙ 𝑡 

𝑥 =   2 ∙
𝑘

𝜌
∙ 𝑡 
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insufficient to characterize the transport through concrete where reaction of chlorides takes place 

and this reaction and the hydration make to evolve the porosity. Then some factors have to be 

applied to equation 3 to account for these effects together with the value of the k factor which takes 

into account the concentration of the chloride or aggressive substance. 

The factors introduced in the equation 3 have been: 

- k has been named “environmental factor”. It depends on chloride concentration and in the 

case of carbonation, on the concrete moisture content (Andrade, 1993; Andrade, 2004) 

- rb “retarder or reaction factor” (Andrade et al, 2014) which multiplies the resistivity to 

account for the “retarder” effect of chloride binding during penetration of chlorides. It can 

also be applied to the case of carbonation. This is due to carbonation progresses when the 

concrete is partially saturated. That is, as higher is the porosity or the empty pores due to 

dry conditions, higher the carbonation depth will be but a certain moisture level is necessary 

for the carbonation reaction to proceed. 

- Finally, the “aging factor” q (Andrade, Castellote, D’Andrea, 2011) which accounts for the 

evolution with time of the porous microstructure. 

These factors have been quantified to introduce them in an expression linking resistivity with time 

that will be described later. 

    

Environmental factor F 

The environmental factors FCl and FCO2 depend on the exposure conditions (Andrade, 1993; 

Andrade, 2004). Table 2 presents values that were calculated by inverse analysis of test results 

obtained on real structures. 

 

Table 2. Values of environmental factors, kCl and kCO2, following the exposure classification of 

EN206 

Exposure class F (cm3Ω/year) 

X0,XC1,XC2 200 

XC3 moderate humidity 1000 

XC4 cycles wet and dry  3000 

XS1 (d > 500 m distance to the coast line) 5000 

XS1 (d < 500 m distance to the coast line) 10000 

XS2 submerged 17000 

XS3  tidal 25000 

 

Reaction factor rb 

The reaction factors rCl and rCO2 (Andrade et al, 2014) depend on the type and amount of cement 

and therefore on the reaction of the penetrating substance with the cement phases.  Equation 3 can 

be expressed as: 

 

2,

2,

2
· COClef

COCl

CO
r

F
D


=                                                                 (14) 

 

The values can be calculated either by direct measurement, or indirectly by measuring the relation 

between the effective and apparent diffusion coefficients, or by calculation based on the cement 

composition. Table 3 presents examples of rCl values that were calculated based on test results 

obtained by comparing steady and non-steady diffusion coefficients. 
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Table 3. Examples of values of the reaction factor of chlorides, rCl, for 3 types of cement 

Cement rCl Standard Deviation 

CEM I 1.9 1.3 

CEM I + silica fume 1.5 0.5 

CEM IIA (with pozzolan and fly ash, in ≤ 20%) 3.0 2.1 

 

Aging Factor q 

It accounts for the refinement of the concrete pore system results in an increase of resistivity with 

time (Andrade, Castellote, D’Andrea, 2011). The resistivity evolves with time due to the 

progression of hydration, the combination of the cement phases with the chlorides or carbon 

dioxide which usually decreases the porosity and by the concrete drying out (depending on the 

environment. It can be calculated through the expression 15. 
q

t
t

t










=

0

0                                                                                          (15) 

         

Where: 

ρt = resistivity at any age t 

ρ0 = resistivity at the age of the first measurement t0           

Values of q found for different cement types are given in table 4. 

 

Table 4. Values of the ageing factor 

Cement q Standard Deviation 

I 0.22 0.01 

II/A -P 0.37 0.06 

II/A-V 0.57 0.08 

 

The relation between q and the aging factor n of the diffusion coefficient gives the expression 23: 

 

                                                                                              (16) 

 

4.3 Propagation period  

In the case of considering the propagation of corrosion (tp), considering the loss in rebar diameter, 

or pit depth, (Pcorr) as the limit corrosion attack, the service life of structure can be written by the 

expression 9: 

 

                                                   (17) 

 

The relation for the service life prediction can be then formulated as follows (16): 
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                                                              (18) 
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Where:  

Pcorr  = steel cross section reached at the time tp 

ef    = resistivity at 28 days in saturated conditions 

q      = aging factor of the resistivity (Table 4) 

     = environmental factor of the corrosion rate (it can be of 102 for carbonation and 305 for 

chlorides) 

Kcorr = constant with a value of 26 µA/cm2·k·cm= to 26 mV/cm relating the resistivity and the 

corrosion rate Icorr 

Complete expression of the service life model based in the resistivity. 

Then, the final expression of the service life model based on resistivity is: 
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Example of application 

For the initiation period the application of the above theory can be shown by way of example, 

assuming a concrete with a cover depth of 4 cm made with cement type I with silica fume (reaction 

factor = 1.5 and aging factor = 0,22) to be placed in exposure class XS3 (tidal and splash 

conditions). Considering a service life of 100 years, the values of the reaction, as well as the 

environmental and aging factors are presented in Table 5. The calculations indicate that the 

resistivity needed at 28 days of age, measured in saturated conditions, is 215 -m. 

 

Table 5. Input data for a calculation of the concrete resistivity 

Cement type I with silica fume rCl = 1,85 

Exposure class (XS3) F (cm3Ω/year) = 25000 

Service life t (years) = 100 

Cover depth XCl (cm) = 4 

Ageing factor during 10 years q = 0.22 

 

 
 

With this resistivity the length of the propagation period following Table 6 is: 

 

Table 6. Input data for the propagation period 

Limit Diameter loss, Pcorr 100 m = 0.01 cm 

ef at 28 days  21.5 Kohm.cm 

q applied during 100 years 0.22 

Ws in saturated conditions 1 

100

5.1)
0767.0

100
(

25000
4

22.0

0





=


  21497)(0 = cm → 215)(0 = m  



 

                                                                              Revista ALCONPAT, 8 (3), 2018: 264 – 279 

                                                 Design and evaluation of service life through concrete electrical resistivity 
C. Andrade 

276 

 
 

This propagation period may be included in the 100 years or considered apart as an additional safe 

time until cracking is produced. 

 

5. PRODUCTION OF CONCRETE FOR A SPECIFIED APPARENT 

RESISTIVITY 
 

Once known the resistivity which is needed to reach a nominal service life, it remains to describe 

how the concrete producer can design a mix to fulfil the service life specification. This can be done 

(Andrade and D’Andrade, 2010) by considering a modification of Archie’s law linking resistivity 

and porosity: 

  
 −= od82                                                                           (21) 

 

where 28d is the resistivity of concrete under saturated condition at 28 days,  is the tortuosity 

coefficient which is estimated by fit to the experimental data, and  is the total porosity.  

The coefficient  depends on the concrete composition which is identified to the tortuosity, and 

could be determined from type or family of cement type by means of measuring the porosity and 

the resistivity. The values found in present research are. For type I cement = 1.9, for type II-AV 

= 2.3 and for type II AP = 1.6. 

From the specified resistivity the paste porosity can be obtained and through Power’s relation on 

porosity and w/c ratio 

 

( )
( )
( )

100
320

360


+

−


,

,
%

c
w
c

w
volumenp


                                                 (22) 

        

To use p in the model based on Archie's law, it must convert the porosity of the paste (p) to 

porosity of the concrete (). For this, it is applied a simple method based on multiplying the 

percentage of capillary porosity of the paste by the volume of paste () in the concrete. 

 

 = p                                                                                     (23) 

 

It is feasible to prepare a mix with the needed effective resistivity at 28 days, providing the 

consideration of the type of cement and its retarder factor. The concrete producer should verify by 

testing the reaching of the specified resistivity while the cement producer should give the retarder 

factor of his cements. 

So, the following concrete design methodology based on Archie’s law model is proposed to achieve 

the prescribed value 28d:  

1. Select a type of cement. It fixes the values of reaction factor (r) and tortuosity () are 

defined. 

2. Select a w/c ratio and calculate porosity of the paste following Powers’ model  

=


























=
00116.026

1
0767.0

100
5.2101.0

22.0

lt  34.54 years 
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3. Then calculate the expected resistivity through ( ) 


−
= po . 

 

6. FINAL COMMENTS  
 

Concrete is a very complex material but which is placed on site in many manners by relatively 

simple practices. It needs to be modelled by sophisticated models, but also by simple ones which 

could help to improve the quality and spread the tools for it. The electrical resistivity, being a non-

destructive method simplifies very much the control of the durability. On the other hand, it enables 

multiple applications in concrete technology and the quantification of the expected life. It has been 

summarized some of the possible applications of the concrete electrical resistivity values. Its main 

advantage is that the measurement is non-destructive and the concrete can be monitored. Concrete 

resistivity is able to inform on: 

- Porosity 

- Degree of water saturation 

- Degree of curing 

- Cement setting time 

- Concrete mechanical strength 

- Reinforcement corrosion rate 

- Gas and water permeability 

In present paper is shown the fundamental relations of resistivity with diffusivity and with the 

reinforcement corrosion rate. Resistivity is the parameter enabling to link microstructure with the 

macro-performance Also has been summarized the model for service life prediction based in 

Einstein law relating electrical resistance or conductance with the diffusion coefficient. Making 

certain assumptions this basic law can be applied to the advance of carbonation front or chloride 

threshold, and to the representation of steel corrosion propagation. This model can be used for 

calculating cover thicknesses from actual resistivity values or the minimum resistivity for a certain 

cover thickness.  
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