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SUMMARY

We present a formulation for analysis of turbulent incompressible flows using a stabilized finite element
method (FEM) based on the finite calculus (FIC) procedure. The stabilization terms introduced by the
FIC approach allow to solve a wide range of fluid flow problems at different Reynolds numbers, including
turbulent flows, without the need of a turbulence model. Examples of application of the FIC/FEM
formulation to the analysis of 2D and 3D incompressible flows at large Reynolds numbers exhibiting
turbulence features are presented. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Stabilized finite element method (FEM) have been successfully used in the past to solve a wide
range of fluid mechanics problems [1–28]. The intrinsic dissipative properties of the stabilization
terms (which can be interpreted as an additional viscosity) typically suffice to yield good results for
low and moderate values of the Reynolds number (Re). For high values of Re most stabilized FEM
fail to provide physically sound results and the numerical solution is often unstable or inaccurate.
The introduction of a turbulence model is then mandatory in order to obtain meaningful results.

The relationship between the dissipation introduced by a turbulence model and the intrinsic
dissipative properties of stabilized FEM is an open topic which is attracting increasing attention
in the CFD community [29–34]. It is clear that both remedies (the turbulence model and the
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stabilization terms) play a similar role in the numerical solution, i.e. that of ensuring a solution
which is ‘physically correct’ and as accurate as possible.

This paper extends the work recently presented by Oñate et al. [35, 36] where an enhanced
stabilized FEM for incompressible flows was derived via finite calculus (FIC). The FIC approach
is based on expressing the balance laws in mechanics in a domain of finite size. This introduces
additional terms in the classical differential equations of momentum and mass balance of infinites-
imal fluid mechanics [37–39]. The FIC terms are a function of characteristic length dimensions
related to the finite element sizes and also to the values of the numerical solution. The FIC terms
in the modified governing equations provide the necessary stabilization to the discrete equations
obtained via the standard Galerkin FEM. The resulting FIC/FEM formulation allows to use low-
order finite elements (such as linear triangles and tetrahedra) with an equal order approximation
for the velocity and the pressure variables [35–39].

This paper shows that the nonlinear stabilization terms introduced by the FIC formulation into
the momentum equations have a form of a nonlinear viscosity which is a function of the velocity
and the velocity gradients. On the other hand, the FIC formulation introduces a Laplacian of
pressure term into the mass balance equation. The resulting FIC/FEM formulation can be used
to solve accurately high Re number flows without the need of introducing any turbulence model.
The good results obtained in the examples presented indicate that the (nonlinear) FIC stabilization
terms play the role of a turbulent model. The remarkable aspect of this approach is that the FIC
equations are derived from basic principles in mechanics, such as balance of momentum and mass
over a domain of finite size and, in conjunction with a numerical procedure such as the FEM, they
provide a very simple procedure for the analysis of complex fluid mechanics problems.

The outline of the paper is the following. In the next section, the basic concepts of the FIC
method are outlined for the simple one-dimensional (1D) advection–diffusion problem. Then,
the FIC governing equations for an incompressible viscous flow are derived. A discussion of
the stabilization terms introduced by the FIC procedure into the momentum and mass balance
equations is presented. The discretization of the FIC governing equations using equal order linear
finite elements is described and the matrix form of the element matrices and vectors for 3D fluid
flow analysis is detailed. The time integration of the discretized equations using a fractional step
scheme is described. The procedure for computing the stabilization parameters is presented. The
accuracy of the FIC/FEM formulation for analysis of turbulent flows is verified in two examples
of application.

2. FINITE CALCULUS: BASIC CONCEPTS

The FIC method developed by Oñate and co-workers [35–57] is a consistent procedure for re-
formulating the governing equation in mechanics introducing new terms involving characteristic
space and time dimensions into the equations. The modified equations are derived by invoking the
balance laws in mechanics in a space–time domain of finite size. The new terms introduced by
the FIC approach are essential to obtain physical (stable) numerical solutions for all ranges of the
parameters governing the physical problem.

The merit of the modified equations via the FIC approach is that they lead to stabilized schemes
using any numerical method. Moreover, many stabilized numerical methods typically used in
practice can be recovered using the FIC equations [37, 43].
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COMPUTATION OF TURBULENT FLOWS 611

Figure 1. Equilibrium of fluxes in a space balance domain of finite size.

The FIC/FEM formulation has proven to be very effective for the solution of a wide class
of problems, such as convection–diffusion [37–45] and convection–diffusion–reaction problems
[46–48] involving arbitrary high gradients, incompressible flow problems accounting for free
surface effects and fluid–structure interaction situations [49–54] and quasi and fully incompressible
problems in solid mechanics [55–57].

In order to introduce the basic concepts of the FIC method, we will consider a steady-state
convection–diffusion problem in a 1D domain � of length L . The equation of balance of fluxes
in a subdomain of size d belonging to � (Figure 1) is

qA − qB = 0 (1)

where qA and qB are the incoming and outgoing fluxes at points A and B, respectively. The flux
q includes both convective and diffusive terms; i.e. q = u� − kd�/dx , where � is the transported
variable (i.e. the temperature in a thermal problem), u is the velocity and k is the diffusivity of
the material. For simplicity, the density and the specific heat constant have been assumed to have
a unit value.

Let us express now the fluxes qA and qB in terms of the flux at an arbitrary point C within
the balance domain (Figure 1). Expanding qA and qB in Taylor series around point C up to
second-order terms gives

qA = qC − d1
dq

dx

∣∣∣∣
C

+ d21
2

d2q

dx2

∣∣∣∣∣
C

+ O(d31 ), qB = qC + d2
dq

dx

∣∣∣∣
C

+ d22
2

d2q

dx2

∣∣∣∣∣
C

+ O(d32 ) (2)

Substituting Equation (2) into Equation (1) gives after simplification

dq

dx
− h

2

d2q

dx2
= 0 (3)

where h = d1 − d2 and all the derivatives are computed at the arbitrary point C .
Standard calculus theory assumes that the domain d is of infinitesimal size and the resulting

balance equation is simply dq/dx = 0. We will relax this assumption and allow the space balance
domain to have a finite size. The new balance equation (3) incorporates now the underlined term
which introduces the characteristic length h.

Distance h in Equation (3) is as a free parameter depending on the location of point C within
the balance domain. Note that −d�h�d and, hence, h can take a negative value. At the discrete
solution level the domain d should be replaced by the balance domain around a node. This gives
for an equal size discretization −le�h�le where le is the element or cell dimension. Equation (3)
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is the exact balance equation (up to second-order terms) for any 1D domain of finite size. The FIC
balance equations can be used to derive numerical schemes with enhanced properties simply by
computing the characteristic length parameter from an adequate ‘optimality’ rule, such as requiring
an smaller error in the numerical solution [40–48].

Consider, for instance, the 1D convection–diffusion problem. Neglecting third-order derivatives
of �, Equation (3) can be rewritten in terms of � as

−u
d�

dx
+
(
k + uh

2

)
d2�

dx2
= 0 (4)

We see clearly that the FIC method introduces naturally an additional diffusion term in the
standard convection–diffusion equation. This is the basis of the popular ‘artificial diffusion’ proce-
dure [1, 2, 10, 25] where the characteristic length h is typically expressed as a function of the cell
or element dimension. The critical value of h can be computed by requiring that the numerical
solution of Equation (4) is physically meaningful [1, 2, 10, 25, 37–43].

Equation (3) can be extended to account for source terms. The resulting FIC balance equation
can then be written in compact form as [37]

r − h

2

dr

dx
= 0 (5)

with

r :=−u
d�

dx
+ d

dx

(
k
d�

dx

)
+ Q (6)

where Q is the external source. Note that for h = 0 the standard heat balance equation of the
infinitesimal theory (r = 0) is recovered.

The essential (Dirichlet) boundary condition for Equation (5) is �= �̄ on �� where �� is
the boundary where the prescribed value �̄ is imposed. For consistency, a stabilized Neumann
boundary condition must be obtained as described next.

Let us consider a balance domain next to a Neumann boundary point B (Figure 2).

BA

qA

[uφ]A

Q

xL

h/2

q-

Figure 2. Balance domain next to a Neumann boundary point B.
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COMPUTATION OF TURBULENT FLOWS 613

The length of the balance segment AB next to a Neumann boundary is taken as one half of
the characteristic length h for the interior domain. The balance equation, assuming a constant
distribution for the source Q, is

q̄ − q(xA) − [u�]A − h

2
Q = 0 (7)

where q̄ is the prescribed total flux at x = L and xA = xB − h/2.
Using a second-order expansion for the advective and diffusive fluxes at point A gives [37]

−u� + k
d�

dx
+ q̄ − h

2
r on x = L (8)

where r is given by Equation (6). Again for h = 0, the infinitesimal form of the 1D Neumann
boundary condition is obtained.

It is important to recall that the underlined terms in Equations (5) and (8) introduce the necessary
stabilization in the discrete solution using whatever numerical scheme [37, 39].

Quite generally the FIC equations can be written for any problem in mechanics as

ri − hi j
2

�ri
�x j

− �

2

�ri
�t

= 0, i = 1, nb, j = 1, nd (9)

where ri is the i th standard differential equation of the infinitesimal theory, hi j are characteristic
length parameters, � is a characteristic time parameter and nb and nd are, respectively, the number
of balance equations and the number of space dimensions of the problem (i.e. nd = 3 for 3D
problems). The usual sum convention for repeated indexes is used in the text unless otherwise
specified. In this work, the term involving the time parameter � will be neglected in the FIC
equations.

3. FIC EQUATIONS FOR AN INCOMPRESSIBLE VISCOUS FLOW

The FIC momentum equations are obtained by expressing the balance of momentum along each
of the space directions in a domain of ‘finite’ size. Figure 3 shows a typical finite domain for a
two-dimensional (2D) problem. Following a procedure analogous to that explained in the previous

Figure 3. Finite domain where balance of momentum is imposed along the horizontal direction.
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Figure 4. Finite domain where balance of momentum is imposed along the vertical direction.

section for the 1D advection–diffusion problem the balance equation along the i th space direction
can be written as

∑
fi d�= �

�t

∫
�

�ui d� +
∫

�
(�ui )uTn d�, i = 1, nd (10)

where � is the density, which is assumed to be constant hereafter, ui is the component of the
velocity along the i th space direction, u=[u1, u2, u3]T is the velocity vector, n is the unit vector
normal to the domain boundary and fi includes the forces due to the stresses acting on the boundary
of the balance domain and the body forces per unit area bi (Figures 3 and 4).

Expressing the values of the momentum and force terms at the corner points of the balance
domain in terms of the values at the corner point A using higher-order Taylor expansions in the
space directions and retaining second-order terms, gives after some algebra the FIC momentum
equations along the i th coordinate direction as [37]

r̄mi − 1

2
hi j

�r̄mi

�x j
= 0, i, j = 1, nd (11)

where

r̄mi := �

[
�ui
�t

+ �
�x j

(uiu j )

]
− ��i j

�x j
− bi (12)

with �i j = si j − p�i j , where p is the pressure, �i j is the Dirac delta and si j are the viscous stresses
related to the velocities by the standard expression

si j = 2�

(
�i j − �i j

1

3

�uk
�xk

)
(13)

where

�i j = 1

2

(
�ui
�x j

+ �u j

�xi

)
(14)
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Figure 5. Finite domain where balance of mass is enforced.

Note that distance h12 is arbitrary when writing the balance of momentum along the x1 direction.
The same applies for the distance h21 when deriving the balance equation along the x2 direction.
Thus, in general, h12 �= h21.

The convective term in the expression of r̄mi of Equation (12) is written in conservation
form, as deduced from the FIC momentum balance equations. A simplified form of r̄mi can
be written by introducing the incompressibility condition (�ui/�xi = 0) into the convective term
of r̄mi and using the split of the stresses �i j into their deviatoric and pressure components
giving

rmi − 1

2
hi j

�rmi

�x j
= 0, i, j = 1, nd (15)

with

rmi := �

(
�ui
�t

+ u j
�ui
�x j

)
+ �p

�xi
− �si j

�x j
− bi (16)

The two forms of the FIC balance equations (11) and (15) are identical for the exact incompress-
ible solution. Both forms will be used to the advantage of each derivation step in the following
sections.

3.1. Mass balance equation

The FIC mass balance equation is obtained by invoking the balance of mass in the finite domain
of Figure 5 ∫

�
�uTn d�= 0 (17)
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Expanding the values of �ui at the corner points in terms of the value at the corner point A
gives the FIC mass balance equation as [37, 38]

�v − 1

2
h j

��v
�x j

= 0, j = 1, nd (18a)

with

�v = �ui
�xi

(18b)

Note that a matrix form of the characteristic distances is not obtained in this case as the mass
balance equation expresses the conservation of the mass in the domain ABCD of Figure 5 with
dimensions h1 and h2. Distances h1 and h2 are in general different from the distances hi j defining
the domain where balance of momentum is enforced. In the following, we will assume that h1 = h11
and h2 = h22 for simplicity.

3.2. Boundary conditions

The FIC Neumann boundary conditions are obtained by expressing the balance of momentum in
a domain of finite size adjacent to a boundary �t where the surface tractions ti act. After some
algebra we obtain [37, 38]

n j�i j − ti + 1
2hi j n jrmi = 0 on �t , j = 1, nd no sum in i (19a)

In Equation (19a) the hi j distances define the domain where equilibrium of boundary tractions
is established. The boundary condition on the Dirichlet boundary �u is the standard one

u j − u p
j = 0 on �u (19b)

Note that in the discretized problem the characteristic distances become the order of the typical
element dimensions. The infinitesimal form of the fluid mechanics equations is recovered by
making these distances equal to zero.

Equations (11)–(19) are the starting points for deriving stabilized FEM for solving the incom-
pressible Navier–Stokes equations. The underlined FIC terms in Equations (11) (or (15)) and (19a)
are essential to overcome the numerical instabilities due to the convective terms in the momentum
equations, whereas the underlined terms in Equation (18a) take care of the instabilities due to the
incompressibility constraint. An important feature of the FIC formulation is that it allows to use
equal order interpolation for the velocity and pressure variables [38, 54].

4. A DISCUSSION OF THE STABILIZATION TERMS IN THE FIC EQUATIONS

The compact residual forms of the FIC equations of momentum balance (Equations (11) or (15))
and mass balance (Equation (18a)) hide the relevant terms that contribute to the stabilization of
the numerical solution for all flow regimes. We will show next that the FIC terms introduce a
nonlinear anisotropic viscosity into the standard momentum equations of the infinitesimal theory.
Also, it is shown that the FIC terms in the mass balance equation introduce a pressure Laplacian
term.
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4.1. Momentum equations

Let us write the i th FIC momentum equation of Equation (15) as

�

[
�ui
�t

+ u j
�ui
�x j

]
+ �p

�xi
− �si j

�x j
− bi − hik

2

�
�xk

[
ci + �u j

�ui
�x j

]
= 0 (20)

where

ci := �
�ui
�t

− ��i j
�x j

− bi (21)

is termed the convective projection term. Note that in the infinitesimal limit

rmi := ci + �u j
�ui
�x j

= 0 (22)

Substituting the expression of the viscous stresses of Equation (13) into Equation (20) and using
Equation (14) yields after small algebra

�

[
�ui
�t

+ u j
�ui
�x j

]
+ �p

�xi
− �

�xk
[��k j + �̄k j ]

�ui
�x j

− bi − hik
2

�ci
�xk

+ �
��v
�xi

= 0 (23)

where

�̄k j =
�u jhik

2
(24)

In the derivation of Equation (23) we have assumed that the space derivatives of the characteristic
lengths hi j are zero.

Equation (23) shows clearly that the FIC formulation introduces the following new terms into
the i th momentum equation of the infinitesimal theory:

(a) an additional (nonlinear) anisotropic viscosity �̄k j given by Equation (24) and
(b) a convective projection term of value −hik/2(�ci/�xk).

The last term in Equation (23) involving �v is usually disregarded in practice. We have found,
however, that retaining this term is very important in free surface viscous flows [58]. For this
reason, the full compact (residual) form of Equations (11) or (15) is used in practice.

4.2. Mass balance equation

The FIC momentum balance equation (11) is written as (assuming the viscosity � to be constant)

�

[
�ui
�t

+ u j
�ui
�x j

]
+ �ui �v + �p

�xi
− �

�x j
(2��i j ) + 2

3
�

��v
�xi

− bi − hi j
2

�r̄mi

�x j
= 0 (25)

From the FIC mass balance equation (18a) we deduce

�v = h j

2

��v
�x j

(26)
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Substituting �v from Equation (26) into (25) gives after small algebra

��v
�xi

= 1

ai

[
hi j
2

�r̄mi

�x j
− rmi − �

uihk
2

��v
�xk

]
, i �= k (27)

with

ai = 2�

3
+ �

uihi
2

no sum in i (28)

We note that all terms in Equation (27) vanish for the exact solution. On this basis, the following
simplified expression is chosen for ��v/�xi :

��v
�xi

= hii
2ai

�rmi

�xi
no sum in i (29)

Substituting Equation (29) into (18a) gives the following useful expression for the FIC mass
balance equation incorporating the momentum equations rmi :

�v −
nd∑
i=1

�i
�rmi

�xi
= 0 (30)

with

�i =
(

8�

3h2i i
+ 2�ui

hii

)−1

(31)

Note that in Equation (31) the assumption hi = hii has been used.
The �i ’s in Equation (33) when multiplied by the density are equivalent to the intrinsic time

parameters, seen extensively in the stabilization literature [1–28]. The interest of Equation (30) is
that it introduces a Laplacian of pressure term into the mass balance equations through the first
derivative of rmi . To show this clearly it is convenient to express the rmi terms as

rmi =
�p
�xi

+ �i (32)

where �i are termed the pressure gradient projections. The exact expression of �i is deduced by
substracting the pressure gradient terms from the standard momentum equations, i.e.

�i := �

[
�ui
�t

+ u j
�ui
�x j

]
− �

�x j
(2�si j ) − bi (33)

This form of �i will not be, however, used in practice as the nodal values of �i are directly
computed from the projection of the pressure gradients, as explained in the next section.
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Substituting the expression of rmi of Equation (32) into Equation (30) gives

�v −
nd∑
i=1

�i
�

�xi

(
�p
�xi

+ �i

)
= �v −

nd∑
i=1

�i

[
�2 p
�x2i

+ ��i
�xi

]
= 0 (34)

Equation (33) shows that the FIC formulation introduces naturally a Laplacian of pressure term
into the mass balance equation. The consistency of the approach is ensured by the pressure gradient
projection terms �i , as the bracketed terms in Equation (34) are equal to the momentum equations
and, therefore, they vanish as these equations are satisfied for the ‘exact’ solution.

5. INTEGRAL FORM OF THE FIC GOVERNING EQUATIONS

The weighted residual form of the momentum and mass balance equations (Equations (15) and
(30)) is ∫

�
�ui

[
rmi − hi j

2

�rmi

�x j

]
d� +

∫
�t

�ui

(
�i j n j − ti + hi j

2
n jrmi

)
d�= 0 (35a)

∫
�
q

[
�v −

nd∑
i=1

�i
�rmi

�xi

]
d�= 0 (35b)

where �ui and q are arbitrary weighting functions representing virtual velocities and virtual
pressure fields. Integrating by parts the terms involving the derivatives of rmi in Equations (34)
gives ∫

�
�uirmi d� +

∫
�t

�ui (�i j n j − ti ) d� +
∫

�

hi j
2

��ui
�x j

rmi d�= 0 (36a)

∫
�
q�v d� +

∫
�

[ nd∑
i=1

�i
�q
�xi

rmi

]
d� −

∫
�

[ nd∑
i=1

q�i ni rmi

]
d�= 0 (36b)

We will neglect hereonwards the third integral in Equation (36b) by assuming that rmi is
negligible on the boundaries. The deviatoric stresses and the pressure terms in the first integral
of Equation (36a) are integrated by parts in the usual manner. The resulting momentum and mass
balance equations are

∫
�

[
�ui�

(
�ui
�t

+ u j
�ui
�x j

)
+ ��ui

�x j

(
si j − �i j p

)]
d� −

∫
�

�uibid�

−
∫

�t

�ui ti d� +
∫

�

hi j
2

��ui
�x j

rmi d�= 0 (37a)

∫
�
q

�ui
�xi

d� +
∫

�

[ nd∑
i=1

�i
�q
�xi

rmi

]
d�= 0 (37b)
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The computation of the residual terms is simplified if we introduce the convective projections
ci (Equation (22)) and the pressure gradient projections �i (Equation (32)). We therefore express
rmi in Equations (37a) and (37b) in terms of ci and �i , respectively, which then become additional
variables. The system of integral equations is now augmented in the necessary number of equations
by imposing that the residual rmi vanishes (in a weighted residual sense) for both forms given by
Equations (22) and (32). This gives the final system of governing equation as

∫
�

[
�ui�

(
�ui
�t

+ u j
�ui
�x j

)
+ ��ui

�x j
(si j − �i j p)

]
d� −

∫
�

�uibi d�

−
∫

�t

�ui ti d� +
∫

�

hik
2

�(�ui )

�xk

(
�u j

�ui
�x j

+ ci

)
d�= 0 (38)

∫
�
q

�ui
�xi

d� +
∫

�

nd∑
i=1

�i
�q
�xi

(
�p
�xi

+ �i

)
d�= 0 (39)

∫
�

�ci�

(
�u j

�ui
�x j

+ ci

)
d�= 0 no sum in i (40)

∫
�

��i�i

(
�p
�xi

+ �i

)
d�= 0 no sum in i (41)

with i, j, k = 1, nd. In Equations (40) and (41) �ci and ��i are appropriate weighting functions
and the � and �i weights are introduced for convenience.

Accounting for the convective and pressure gradient projections enforces the consistency of the
formulation as it ensures that the stabilization terms in Equations (38) and (39) have a residual
form which vanishes for the ‘exact’ solution. Neglecting these terms can reduce the accuracy of
the numerical solution and it makes the formulation more sensitive to the value of the stabilization
parameters [54–56].

6. FINITE ELEMENT DISCRETIZATION

We choose C◦ continuous linear interpolations for the velocities, the pressure, the convective
projections ci and the pressure gradient projections �i over 3-noded triangles (2D) and 4-noded
tetrahedra (3D). The linear interpolations are written as

ui = Nkūki , p= Nk p̄k

ci = Nkc̄ki , �i = Nk �̄ki
(42)

where the sum goes over the number of nodes of each element n = 3, 4 for triangles/tetrahedra,
¯(·)k denotes the nodal variables and Nk are the linear shape functions [25, 26].
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Substituting approximations (42) into Equations (38)–(41) and choosing the Galerkin form with
�ui = q = �ci = ��i = Ni lead to the following system of discretized equations:

M ˙̄u + Hū − Gp̄ + Cc̄= f (43a)

GTū + L̂p̄ + Qp̄= 0 (43b)

Ĉū + Mc̄= 0 (43c)

QTp̄ + M̂p̄= 0 (43d)

where

H=A + K + K̂

The matrices and vectors in the above equations are assembled from the element contributions
in the standard manner. The element expressions for 3D problems are given next

Me
i j =

∫
�e

�Ni N j I3 d�, Ce
i j =

1

2

∫
�e

⎡
⎢⎢⎣
hT1∇Ni 0 0

0 hT2∇Ni 0

0 0 hT3∇Ni

⎤
⎥⎥⎦ N j d�

Ae
i j =

∫
�e

�Ni (uT∇N j )I3 d�, Ke
i j =

∫
�e

BT
i DB j d�, K̂e

i j =
∫

�e
(∇̄Ni )TD̄∇̄N j d�

Ge
i j =

∫
�e

BT
i mN j d�, L̂e

i j =
∫

�e
(∇Ni )T[s]∇N j d�

Qe
i j =

∫
�e

(∇Ni )TN j [s] d�, Ĉi j =
∫

�e
�2Ni (uT∇N j )I3 d�

M̂i j =
∫

�e
Ni N j [s] d�, m=[1, 1, 1, 0, 0, 0]T, hi =[hi1, hi2, hi3]T

D̄= �

2

⎡
⎢⎢⎣
h1uT 0 0

0 h2uT 0

0 0 h3uT

⎤
⎥⎥⎦ , ∇̄=

⎡
⎢⎣

∇ 0 0

0 ∇ 0

0 0 ∇

⎤
⎥⎦

∇ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

�
�x1
�

�x2
�

�x3

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

, [s] =
⎡
⎢⎣

�1 0 0

0 �2 0

0 0 �3

⎤
⎥⎦ (44)
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Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�Ni

�x1
0 0

0
�Ni

�x2
0

0 0
�Ni

�x3
�Ni

�x2

�Ni

�x1
0

�Ni

�x3
0

�Ni

�x1

0
�Ni

�x3

�Ni

�x2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, D= �

([
2I3 0

0 I3

]
− 2

3
mmT

)

I3 =
⎡
⎢⎣
1 0 0

0 1 0

0 0 1

⎤
⎥⎦ , fi =

∫
�e

Nib d� +
∫

�e
Ni t d�

where i, j, k = 1, nd in the above expressions.
A 3D finite element has typically 10 d.o.f.: three velocities ūki , one pressure p̄k , three pressure

gradient projections �̄kc and three convective projections c̄ki , i = 1, 2, 3. Note, however, that the
solution for the p̄ and c̄ variables is usually decoupled from the rest of equations and it is performed
explicitly as shown in Section 8.

7. TRANSIENT SOLUTION SCHEME

The solution in time of the system of Equations (43) can be written in general form as

M
1

�t
(ūn+1 − ūn) + Hn+	ūn+	 − Gp̄n+	 + Cn+	c̄n+	 = fn+	 (45a)

GTūn+	 + L̂n+	p̄n+	 + Qn+	p̄n+	 = 0 (45b)

Ĉn+	ūn+	 + Mc̄n+	 = 0 (45c)

[Qn+	]Tp̄n+	 + M̂n+	p̄n+	 = 0 (45d)

where Hn+	 =H(ūn+	), etc. and the parameter 	 ∈ [0, 1]. The direct monolithic solution of
Equations (45) is possible using an adequate iterative scheme. However, in our work we have
used the fractional step method described next.
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8. FRACTIONAL STEP METHOD

A fractional step scheme is derived by splitting the discretized momentum equation (45a) into the
following two equations:

M
1

�t
(ũn+1 − ūn) + Hn+	ũn+	 − 
Gp̄n + Cn+	c̄n+	 = fn+	 (46a)

M
1

�t
(ūn+1 − ũn+1) − G(p̄n+1 − 
p̄n) = 0 (46b)

In Equations (46) ũn+1 is a predicted value of the velocity at time n + 1 and 
 is a variable
whose values of interest are zero and one. For 
 = 0 (first-order scheme) the splitting error is of
order 0(�t), whereas for 
 = 1 (second-order scheme) the error is of order 0(�t2) [19, 21]. We
have chosen 
 = 1 for the solution of the examples presented in the paper.

Equations (46) are completed with the following three equations emanating from Equations
(45b)–(45d)

GTūn+1 + L̂np̄n+1 + Qnp̄n = 0 (47a)

Ĉn+1ūn+1 + Mc̄n+1 = 0 (47b)

[Qn+1]Tp̄n+1 + M̂n+1p̄n+1 = 0 (47c)

The value of ūn+1 obtained from Equation (47b) is substituted into Equation (47a) to give

GTũn+1 + �tGTM−1G(p̄n+1 − 
p̄n) + L̂npn+1 + Qn p̄n = 0 (48)

The product GTM−1G can be approximated by a Laplacian matrix, i.e.

GTM−1G= 1

�
L with Li j =

∫
�e

(∇Ni )T∇N j d� (49)

The steps of the fractional step scheme (for 
 = 1) are as follows.

Step 1: Equation (46a) is linearized as

M
ũn+1 − ūn

�t
+ Hnūn − Gp̄n + Cn c̄n = fn (50)

The fractional nodal velocities ũn+1 can be explicitly computed from Equation (50) by

ũn+1 = ūn − �tM−1
d [Hnūn − Gp̄n + Cn c̄n − fn] (51)

Step 2: Compute p̄n+1 from Equation (48) as

p̄n+1 = −
[
L̂n + �t

�
L
]−1 [

GTũn+1 − �t

�
Lp̄n + Qnp̄n

]
(52)

Step 3: Compute ūn+1 explicitly from Equation (46b) as

ūn+1 = ũn+1 + �tM−1
d G(p̄n+1 − p̄n) (53)
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Step 4: Compute c̄n+1 explicitly from Equation (47b) as

c̄n+1 = − M−1
d Ĉn+1ūn+1 (54)

Step 5: Compute p̄n+1 explicitly from Equation (47c) as

p̄n+1 = − M̂−1
d [Qn+1]Tp̄n+1 (55)

In the above equations Md and M̂d denote the lumped diagonal form of matrices M and M̂,
respectively.

Steps 1–5 are repeated until convergence for ūn+1, p̄n+1, c̄n+1 and p̄n+1 is found. Typically,
three iterations per time step sufficed to find a converged solution in the examples presented in
the paper.

Above algorithm has improved stabilization properties versus the standard pressure segregation
methods due to the introduction of the Laplacian matrix L̂ in Equation (52) which emanates from
the FIC stabilization terms.

The boundary conditions are applied as follows. No condition is applied in the computation
of the fractional velocities ũn+1 in Equation (51). The prescribed velocities at the boundary are
applied when solving for ūn+1 in the Step 3. The prescribed pressures at the boundary are imposed
by making p̄n equal to the pressure values computed explicitly from the Neumann boundary
condition (19a), neglecting the stabilization terms, i.e.

pn = 1

3

∑
i

(sni j n j − ti ), i = 1, nd (56)

Equation (56) shows that for low values of the viscosity, the standard assumption of pn = 0 on
free surfaces (with ti = 0) can be used.

We note that there is no need to prescribe any value of the pressure at the boundary if the form
of matrix L= �GTM−1G as deduced from Equation (48) is used. This expression for L has a
wider bandwidth than the Laplacian form of Equation (48) and therefore it is more inconvenient for
practical purposes. In our work, we have used for L the simple Laplacian form of Equation (49).

9. COMPUTATION OF THE CHARACTERISTIC DISTANCES

The computation of the stabilization parameters is a crucial issue as they affect both the stability
and accuracy of the numerical solution. The different procedures to compute the stabilization
parameters are typically based on the study of simplified forms of the stabilized equations [1–28].

Recent work of the authors has shown that the stabilizing FIC terms for convection–diffusion
problems take the form of a simple orthotropic diffusion if the balance equation is written in
the principal curvature directions of the solution. Excellent results were reported in [45, 47] by
computing first the characteristic length distances along the principal curvature directions, followed
by a standard transformation of these distances to global axes. The resulting stabilized finite element
equations capture the high gradient zones in the vicinity of the domain edges (boundary layers)
as well as the sharp gradients appearing randomly in the interior of the domain [45, 47]. The
FIC/FEM thus reproduces the best features of the so-called transverse (cross-wind) dissipation or
shock-capturing methods [25, 26].
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Figure 6. Definition of the principal curvature direction ni1 along the gradient of ui .

Let us assume that there exists at each point a local orthogonal coordinate system character-
ized by the local directions �ij with associated vectors nij ( j = 1, 2 for 2D problems) such that

�2u′
i/��ij��ik = 0 for j �= k, where u′

i is the velocity component along the �ii direction (Figure 6).
The i th FIC momentum equation (23) written in such a local coordinate system reads

�

[
�u′

i

�t
+ u′

j
�u′

i

��ij

]
+ �p

��ij
− �

��ij
(� + �̄ j j )

�u′
i

��ij
− bi − h′

ik

2

�ci
��ik

+ �
��v
��ii

= 0 (57)

The stabilizing dissipation introduced by the FIC approach has now the form of the orthotropic
viscosity term underlined in Equation (57). For 2D problems

�

��ij
�̄ j j

�u′
i

��ij
= �

��i1

(
�̄11

�u′
i

��i1

)
+ �

��i2

(
�̄22

�u′
i

��i2

)
(58)

with

�̄ j j =
�u′

j h
′
i j

2
no sum in j (59)

The characteristic length distances h′
i j in Equation (57) are defined in the local axes nij . Note

that the upper index i in vector nij denotes the i th momentum equation corresponding to the

u′
i velocity, while index j denotes the local directions, i.e. �i1, �i2 are the two local coordinate

directions corresponding to the i th momentum equation (Figure 6).
The value of h′

i j can be estimated by analogy of Equation (57) with the linear 1D advection–
diffusion equation

�u′
j
��

��ij
− �

��ij
(� + �̄ j j )

��

��ij
= 0 no sum in i (60)

where � is the transported variable.
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Figure 7. Definition of the element characteristic distances li1 and li2 corresponding
to the i th momentum equation.

Introducing into Equation (60) the expression of �̄ j j of Equation (59) and assuming � and �̄ j j
to be independent of the space coordinates gives (for �= u′

i )

h′
i j =

⎡
⎣2

(
�u′

i

��ij

)(
�2u′

i

��i2j

)−1

− 1

�i j

⎤
⎦ li j = 
i j li j no sum in i, j (61)

where


i j = 2

(
�u′

i

��ij

)(
�2u′

i

��i2j

)−1

− 1

�i j
, �i j =

�u′
i li j
2�

(62)

and li j is a characteristic element dimension along the �ij direction (Figure 7).
Note that �i j can be interpreted as a local Reynolds number. It can be shown that 
i j → 1 for

large values of �i j inducing high local gradients of the transported variable.
A good approximation for 
i j deduced by analogy with the stabilization parameter for the linear

advection–diffusion equation [1, 37, 39] is


i j = coth �i j − 1

�i j
(63)

Observation of Equation (63) shows that 
i j>0.95 for �i j>20. Indeed, 
i j � 1 for high values
of �i j typical of turbulent flows.

The characteristic distances hi j are finally computed by transforming their local values h′
i j to

global axes xi . Details of the transformation are given below.
The numerical computations are simplified without apparent loss of accuracy if the �i1 direction

is taken to be constant within each element and equal to the direction of the gradient of the ui
velocity component at the element centre. The other coordinates �ij ( j = 2, 3 for 3D problems) are

defined so as to form an orthogonal system with �i1.
The algorithm described above for computing the characteristic distances hi j is detailed below

for 3D problems and linear tetrahedra elements. The particular form of some expressions for 2D
problems using 3-noded linear triangles is given.
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For the i th momentum balance equation and every time step of the transient solution
scheme:

1. A coordinate system �i1, �i2, �i3 is defined at the element centre such that vector ni1 is
aligned with the gradient of ui (n

i
1 =∇ui ), vector n

i
2 is orthogonal to ni1 in anticlockwise

sense and vector ni3 is defined by the vector product of ni1 and ni2. Figure 6 shows the
definition of ni1 and ni2 for 2D problems.

2. The element characteristic distances li j , j = 1, 2, 3 are defined as the maximum projections
of the element sides along the nij axes (Figure 7).

3. The characteristic distances hi j , j = 1, 2, 3 are computed as

hi =Th′
i , i = 1, 2 (64)

with

T=

⎡
⎢⎢⎣

(1, 1′)i (1, 2′)i (1, 3′)i

(2, 1′)i (2, 2′)i (2, 3′)i

(3, 1′)i (3, 2′)i (3, 3′)i

⎤
⎥⎥⎦ , hi =

⎧⎪⎨
⎪⎩
hi1

hi2

hi3

⎫⎪⎬
⎪⎭ , h′

i =

⎧⎪⎪⎨
⎪⎪⎩
h′
i1

h′
i2

h′
i3

⎫⎪⎪⎬
⎪⎪⎭ (65)

where ( j, k)i is the cosine of the angle between the global x j -axis and the �ik-axis.
For 2D problems

T=
[
ci −si

si ci

]
(66)

where ci = cos 
i , si = sin 
i and 
i is the angle that �i1 forms with the global axis x1
(Figure 6). The local distances h′

i j are computed as

h′
i j =

(
coth �i j − 1

�i j

)
li j , �i j =

�u′
j li j

2�
, j = 1, 2 (67)

where u′
j is the component of the velocity vector along the local axis nij (Figure 6).

10. EXAMPLES

The first version of the FIC/FEM stabilized formulation presented above was successfully tested
in a number of 2D problems including the flow over a backwards facing step and the flow past a
cylinder. Excellent results were obtained for a range of Reynolds numbers as reported in [35]. The
first 3D application of a flow past a cylinder at Re= 1000 also produced excellent results and it was
briefly reported in [36]. The examples presented next provide further evidence of the effectiveness
and accuracy of the FIC/FEM formulation presented in this paper for solving complex flows at
high Reynolds numbers exhibiting turbulence effects.
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Figure 8. Initial configuration for the 2D mixing layer problem.

10.1. 2D mixing layer

We consider a temporal developing mixing layer [59], schematically sketched in Figure 8. The
initial horizontal velocity has a hyperbolic-tangent profile:

u1(x2) =U tanh

(
2x2
�0

)
(68)

which implies a vorticity thickness

�0 = 2U
du1
dx2

∣∣∣∣
x2=0

(69)

From linear stability analysis the mixing layer is known to be invisicidly unstable. A perturbation
leads to the formation of vortices by Kelvin–Helmholtz instability, where the most amplified mode
corresponds to a longitude wavelength � = 7�0 [60]. Kelvin–Helmholtz instability leads to the
development of vortices which in a later stage roll-up and merge.

The initial vorticity thickness �0 is chosen such that four vortices should develop in a square
domain of unit size. In order to triggering the instability we superimposed a weak white noise
in the rotational region. The value of U = 1 is chosen in Equation (68) and the viscosity is
� = 3.571 × 10−6 (given a Reynolds number of 2.8× 105). The boundary conditions applied are:
periodic boundary conditions on the lateral boundaries and zero-normal-velocity and zero-shear-
stress at the upper and bottom boundaries. With these boundary conditions, the problem is solved
in a cylindrical domain.

We use a structured mesh of 256× 256 3-noded triangular elements. Five hundred and seventy
time steps of 0.0125 s lead to a total simulation time of 7.125 s.

The mixing layer is a good example for the tendency of 2D turbulence to transfer energy from
small to large scales. This leads to a fast decrease of the complexity of the flow. In Figure 9 the
vorticity modulus contours at several time steps is shown. Four vortices are formed as predicted
by the linear theory, which subsequently undergo successive mergings.
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Figure 9. Vorticity modulus contours at times: (a) 0.5; (b) 0.75; (c) 1; (d) 2; (e) 3; and (f) 4 s.

For the reference simulations a Fourier spectral code was applied to the periodized version of
the problem [61]. The code is based on the pressure–velocity formulation and uses a third order
Adams–Bashforth (AB3) scheme. The numerical resolution was a grid of 256× 256 too. Figure 10
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Figure 10. Enstrophy evolution with time.

Figure 11. Computational domain for 3D flow past a cylinder.

compares the decay in time of the system enstrophy obtained with the reference run and with the
present method. The results show that all the scales of the flow are well-resolved by the FIC
formulation here proposed and compare well with the reference run.

10.2. 3D flow past a cylinder

We present a 3D simulation of unsteady incompressible flow around a circular cylinder. The
simulation is performed at a Reynolds number of 10 000.

The diameter of the cylinder is 2 units and its length is 8 units (this length is recommended in
[62] to capture a few wavelengths along the cylinder axis). The computation domain extends 15
units upstream, 60 units downstream, and 30 units in the cross-flow direction (Figure 11).
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Figure 12. Flow past a cylinder. Details of the mesh used for the computations.
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Figure 13. Velocity vector modulus contours in the plane z = 4 at time 50 s.

The boundary conditions consist of uniform inflow velocity set to 1.0, zero-normal-velocity and
zero-shear-stress at the lateral boundaries, traction-free conditions at the outflow boundary and
no-slip at the cylinder surface.

The computation presented here was carried out on a structured mesh of 5 193 600 linear
tetrahedral elements (80 elements along the cylinder span and 160 along its circumference) and
864 270 nodes. The thickness of the layer of elements around the cylinder is 0.001. Figure 12
shows details of the mesh. For the simulation the time step is set to 0.025. The time-averaged
drag coefficient is 1.07 and compares well with the value of 1.12 reported in experimental mea-
surement [63, 64]. The Strouhal number is 2.02 and also agrees with experimental measurements
[36, 38, 64].
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Figure 14. Vorticity vector modulus  isosurfaces: (a)  = 0.1, 0.2, 0.3; (b)  = 0.2; and (c)  = 2.

The flow field in chordwise planes (perpendicular to the cylinder axis) reveals fine-scale struc-
tures. There is a clear difference between the turbulent wake and the laminar outer flow zones
(see Figure 13). We observe the turbulent recirculating region bounded by shear layers. The shear
layers roll up to produce small-scale vortices at the edge of the formation zone. These vortices
cause entrainment of the free-stream fluid into the recirculating zone. The flow on the cylinder
separates at an angle ≈ 78◦ (measured from the leading stagnation point).

Figure 14 shows the isosurfaces of the vorticity vector modulus for three different vorticity
values. Note that the flow structures are more diffuse due to the increasing turbulence effect.

Figure 15 shows streamlines behind the cylinder within the recirculation area. It is clear that
the structure of the vortex is created in the turbulent region. When the vortex gets enough energy
then it detaches from the cylinder, generating the von Karman street vortexes.
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Figure 15. Streamlines at time t = 50.

11. CONCLUSIONS

The finite calculus (FIC) form of the Navier–Stokes equations is a good starting point for deriving
stabilized FEM for solving a variety of incompressible fluid flow problems. The matrix stabilization
terms introduced by the FIC formulation allow to obtaining physically sound solutions in the
presence of sharp gradients occurring for high Reynolds numbers without the need of introducing
a turbulence model. Good numerical solutions have been obtained in the 2D and 3D examples
solved with relatively coarse meshes for high values of the Reynolds number inducing turbulence
effects. These results reinforce our conviction that the stabilization terms introduced by the FIC
formulation suffice to provide good results for problems for which turbulence models are required
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using alternative numerical methods. The results also confirm the close link between the stabilized
methods and turbulence models.
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