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Abstract. It is demonstrated how finite-volume methods can be designed such that, next to
the primary invariants (mass, momentum and internal energy), they also conserve secondary
invariants (kinetic energy), i.e., they are supra-conservative. Key ingredient is a consistency
between the discrete divergence terms in the constituting equations and the discrete pressure
gradient. The requirements hold for any discretization method with a volume-consistent scaling.

1 INTRODUCTION

It has been found advantageous for discretized flow equations to possess additional (sec-
ondary) invariants, next to the (primary) invariants from the constituting conservation laws.
Much effort has been put in finding formulations of the flow equations that lead to these ad-
ditional properties - a recent overview of such attempts for the compressible flow equations is
presented in [1, 2]. Analytically all formulations are equivalent, because of the conservation of
mass, and they possess the same invariants. But after discretization this equivalence is partly
lost, and differences appear in the induced discrete invariants.

The Euler equations describing fluid dynamics can be expressed as conservation laws in terms
of primary variables mass density ρ, momentum per unit mass (= velocity) u, and internal energy
per unit mass e:

∂ρ

∂t
+∇ ·m = 0 ;

∂ρu

∂t
+∇ · (m⊗ u) = −∇p ;

∂ρe

∂t
+∇ · (me) = −p∇ · u . (1a,b.c)

Here, m ≡ ρu denotes the mass flux and p the pressure. The set of equations is closed by an
equation of state p = p(ρ, e).

The introduction of the mass flux m will help to distinguish between the two appearances of
u in the momentum equation: one as transporting velocity, the other as transported quantity.
Most of the considerations in this paper hold for any vector field m.

The equations are solved on a (two- or three-dimensional) domain Ω with appropriate initial
and boundary conditions. For convenience, we will assume either homogeneous boundary con-
ditions or periodic ones, in order not to bother with the boundaries. Physically, this means that
external influences on the flow field are excluded.
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Background The earliest mention of the favorable influence of preserving discrete kinetic
energy can be found around 1960 while studying non-linear instabilities in long-time integration
for weather prediction [3, 4]. An important ingredient is the skew-symmetric discretization of
convection [5]. These ideas have led to a follow-up in finite-difference options for incompressible
flow on uniform grids as reviewed by Morinishi [6]. A generalization to non-uniform grids
was presented in [7] and further generalized to structured curvilinear staggered grids in [8].
Discrete skew-symmetry of the convective terms also features in the summation-by-parts (SBP)
method [9].

In the 1990s, inspired by [10], the symmetry-preserving higher-order finite-volume approach
of Verstappen and Veldman [11–13] combined discrete mass, momentum and energy conservation
for incompressible flow on non-uniform, staggered Cartesian grids. They emphasized the need
for, counter-intuitive, geometry-independent interpolations for the fluxes. The generalization to
unstructured, collocated and staggered, grids has been presented in [14,15].

For compressible flow, also early use of skew-symmetric forms can be mentioned, such as the
formulation by Feiereisen et al. [16]. Consistency between the individual discrete equations is
found beneficial for stability [17,18]. To numerically describe shock wave discontinuities the use
of entropy variables can be profitable [19,20], but often discrete momentum conservation is lost.

In contrast, and complementary, our interest is in the treatment of the relatively smooth
(possibly turbulent) part of the flow; hence the restriction to subsonic flow. Yet, due to the
absence of numerical diffusion, our approach will not interfere with the, necessarily, dissipative
character of numerical shock treatment. We would like to retain all primary conservation prop-
erties and to extend them with additional secondary conservation. Some finite-volume studies
in this vein can be mentioned already, e.g. [21–25].

Next to the spatial discretization, also the time integration needs attention, e.g. by using
symplectic methods [26,27]. Further, compressible flow seems to require the introduction of the
square root of the density

√
ρ, as discussed in [24,28–31]. For an overview of energy-preserving

time-integration methods for compressible flow see [2, Sect. 4].

Supra-conservative discretization The general idea behind many of the above methods is
to discretely conserve more (secondary) invariants additional to the (primary) ones in the con-
servation laws. Therefore, these methods are coined supra-conservative and designed according
to a principle of non-interference [32]. This requires compatibility between the discrete opera-
tors in the equations of motion. We will discuss the details of such a discrete compatibility for
structured and unstructured computational grids with a collocated positioning of the unknowns.

In our discussion we will start from the discrete finite-volume formulation of the basic equa-
tions (1), and never return to the analytical formulation [33]. In this way discrete conservation
of the primary invariants is guaranteed from the start. Then, at the discrete level, the freedom
left in the formulation will be used to generate additional properties like secondary invariants.
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2 CONSERVATION OF ENERGY - ANALYTIC

The flow equations ‘automatically’ describe the conservation properties of mass, momentum
and internal energy. They additionally convectively preserve total energy by a proper exchange
of kinetic and internal energy. The analytic derivation of this property forms a guide line to
mimic step-by-step in the discretization.

From the primary conservation laws one can deduce secondary conservation laws for kinetic
energy ρEkin ≡ 1

2ρu
2 and total energy ρEtot ≡ ρ(Ekin + e). The evolution of the total energy

can be calculated analytically as a weighted combination of the primary conservation laws (1).
Equation (2) schematically shows how the derivation of the energy evolution proceeds. It is
stressed that this derivation holds for any m: its explicit value ρu is not used.

∂

∂t
(ρEtot) = − 1

2(u · u)
∂

∂t
ρ + u · ∂

∂t
(ρu) +

∂

∂t
(ρe)

=

mass (1a)︷ ︸︸ ︷
1
2(u · u)∇ ·m − u ·

momentum (1b)︷ ︸︸ ︷{
∇ · (m⊗ u) + ∇p

}
−

internal energy (1c)︷ ︸︸ ︷{
∇ · (me) + p∇ · u

}
(2a)

= u ·
{

1
2(∇ ·m)u − ∇ · (m⊗ u)

}
︸ ︷︷ ︸

Property 1

− ∇ · (me) −
{
u · ∇p + p∇ · u

}
︸ ︷︷ ︸

Property 2

(2b)

= − ∇ · (1
2mu2) − ∇ · (me)︸ ︷︷ ︸

Property 3

− ∇ · (pu) (2c)

= − ∇ · (mEtot) − ∇ · (pu) . (2d)

The derivation in (2) reveals, by means of a background shading, how terms from the sepa-
rate primary conservation laws have to be combined, requiring a certain level of compatibility.
Analytically this is not an issue, but in a discrete setting it is not straightforward. In the last two
steps, from (2b) to (2c) and from (2c) to (2d), three analytic properties between the operators
are essential. We will discuss these steps in detail, making a distinction between the various
appearances of the ∇-operator, indicated by subscripts.

Property 1 ((2b)→(2c)). The convection operator for momentum conservation ∇mom conv to-
gether with the divergence operator of mass conservation ∇mass form a convective divergence
expression with operator ∇toten conv. This requires that (for any m) the operator

A : u→ ∇mom conv · (m⊗ u)− 1
2(∇mass div ·m)u is skew symmetric. (3)

Explanation. First, let the L2-inner product for real-valued functions be defined through
((
φ, ψ

))
≡∫

Ω
φψ dΩ. Then, if an expression φAφ can be rewritten as φAφ ≡ ∇B(φ) for some function B, then

(for all real-valued φ)
((
φ,Aφ

))
=
∫

Ω
φAφ dΩ =

∫
Ω
∇B(φ) dΩ = 0 because of Gauss’ theorem and our

assumption that the outer boundaries of Ω do not contribute. That means that A is skew-symmetric
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with respect to this L2-inner product. Indeed, we can rewrite (for any m and φ) ∇· (mφ)− 1
2 (∇·m)φ ≡

1
2∇ · (mφ) + 1

2 (m · ∇)φ, which reveals the skew-symmetry as an operator acting on φ.

Property 2 ((2b)→(2c)). The gradient ∇mom grad is the negative L2-transpose of the divergence
∇inten div in the dilatation term of the internal energy equation:((

u,∇mom grad p
))

= −
((
∇inten div · u, p

))
for all u and p. (4)

In short hand, this property can be written as

∇mom grad = −∇T
inten div (= −∇T

mass) . (5)

Between parentheses the incompressible limit is given [34].

Property 3 ((2c)→(2d)). The convective operator ∇inten conv in the internal energy equation is
the same as the divergence operator ∇mom conv in the momentum equation:

∇inten conv = ∇mom conv (≡ ∇toten conv) .

The above properties reveal a close relation between the operators from the individual con-
servation laws. We will transfer these analytic properties towards the discrete setting.

3 CONSERVATION OF ENERGY - DISCRETE

The discretization will be carried out with finite-volume methods, starting from a reformu-
lation as conservation laws (for an arbitrary control volume Ωh with boundary Γh):∫

Ωh

∂ρ

∂t
dΩh +

∫
Γh

m · n dΓh = 0 , (6a)∫
Ωh

∂ρu

∂t
dΩh +

∫
Γh

(m · n)u dΓh = −
∫

Γh

pn dΓh , (6b)∫
Ωh

∂ρe

∂t
dΩh +

∫
Γh

(m · n)e dΓh = −
∫

Ωh

p∇ · u dΩh . (6c)

The discretized versions of (6a)-(6c) will be abbreviated as

H
∂ρ

∂t
+ Dmass m = 0 ; H

∂ρu

∂t
+ Cm

mom u = −Gmom p ; H
∂ρe

∂t
+ Cm

inten e = −p Dinten u . (7)

Here, H is a diagonal (matrix) operator containing the control volumes Ωh. The dependent
variables are discrete (vector) grid functions, with the same (lower case) symbols as in the con-
tinuous case. The Fraktur-font operators denote volume-consistent [17,32] approximations.

– Dmass is a discrete divergence operator acting on the mass flux m in (6a). With the grid
vector Dmass m, a diagonal grid matrix diag(Dmassm) can be formed.
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– Cm
mom is a discrete grid operator, acting on u, for the convective term in the momentum

equation (6b). Its coefficients depend on the mass flux m.

– Gmom is a discrete gradient operator in (6b) acting on the pressure p.

– Cm
inten is a discrete grid operator for the convective term in the conservation law for internal

energy (6c), acting on e and dependent on m.

– Dinten is a discrete divergence operator acting on the velocity u in (6c).

The sizes H of the control volumes are included in the operators, i.e. the scaling in (7) is volume
consistent [17,32]. This fits naturally in the finite-volume setting, and the symmetry properties
of the discrete differential operators will come out more directly.

With the notation from (7), and similar to Eq. (2), the discrete (finite-volume) evolution of
total energy can be formulated locally as

H
∂ρEtotal

∂t
= 1

2 (u · u) Dmassm − u ·
(
Cmmom u + Gmom p

)
− Cmintene− pDintenu

= u ·
(

1
2 diag(Dmass m) − Cmmom

)
u−

(
u · Gmom p + pDintenu

)
− Cminten e . (8)

The last line in (8) corresponds with line (2b) in the analytic derivation. From here, we would
like to make the steps to (2c) and (2d) in this discrete version too. Therefore, let us find out
which relations between the discrete operators have to be satisfied.

The evolution of the total amount of energy can be found by summing (8) over all grid cells:

∂

∂t

∑
Ωh

H ρEtotal = −
∑
Ωh

u ·
(
Cm

mom − 1
2 diag(Dmass m)

)
u

−
∑
Ωh

(
u · Gmom p + pDintenu

)
−
∑
Ωh

Cm
inten e , (9)

where on staggered grids the notation has to be interpreted with some liberty. Because of the
finite-volume scaling of (7), the left-hand side forms a consistent approximation of the total
amount of energy in the domain. This volume-consistent [32] scaling property motivated us to
‘hide’ the size of the control volumes into the definition of the discrete operators.

The first two summations in the right-hand side of (7) are inner products in the space of
scalar and vector-valued grid functions. The symmetry properties that we will discuss below are
with respect to these inner products. We will see in the sequel that discrete energy conservation
requires a certain amount of compatibility between the discrete operators.

Requirement 1. The first summation in the right-hand side of (9) should vanish, i.e. the
matrix operator between the first pair of brackets should satisfy

Cm
mom − 1

2 diag(Dmass m) is skew-symmetric. (10)

This necessary and sufficient condition for discrete convective energy conservation has thus
far been mentioned only a few times, e.g. [8,23,24,35]. It provides a relation between the diag-
onal of Cm

mom and discrete mass conservation Dmass m.
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Requirement 2. For the second sum in the right-hand side of (9) to vanish, the (pressure)
gradient and the dilatational divergence should be each other’s negative transpose:

Gmom = −DT
inten (= −DT

mass) . (11)

In (11), between parentheses corresponds the incompressible limit [34]. It leads to a symmetric
negative-definite Laplacian in the pressure Poisson equation. Condition (11) is necessary and
sufficient for the contribution of the pressure to the total energy to vanish.

Finally, the discretization of the equation for internal energy, first of all, should be conserva-
tive. Additionally, for low Mach numbers [34] we would like it to approach a discretization for
incompressible flow. This requires further consistency between the discrete operators.

Requirement 3. (A) To combine the momentum and internal-energy equations into a unified
equation for total energy, the respective discrete convective operators should be the same:

Cm
inten = Cm

mom . (12)

(B) A smooth transition from compressible flow to incompressible flow requires that the diver-
gence operators in (6c) are consistent (in the incompressible limit) with the divergence in (6a):

Dinten = Dmass ∨ Cm
inten → ρ0Dmassu (13)

(ρ0 is the incompressible density).

In view of the relations (10) and (12), the conditions in Requirement 3B will usually be
satisfied.

A discretization satisfying the above requirements is called symmetry preserving. During the
above reasoning we have shown the following:

A (volume-consistent) finite-volume discretization of the (in)compressible Euler equa-
tions (1) preserves discrete energy if and only if it is symmetry-preserving.

The above requirements guide the way to construct finite-volume discretizations which all ad-
ditionally conserve discrete kinetic energy. In particular, the choice for the discretization of the
convective term Cm

mom induces all other discretizations:

1. Through Requirement 1 the discretization of the conservation of mass Dmass is determined.

2. Requirement 2 then determines the discrete pressure gradient Gmom in the conservation of
momentum, and the dilatational divergence Dinten in the conservation of internal energy.

3. Finally, Requirement 3 determines the discrete convective term Cm
inten in the conservation

of internal energy.

It is remarked that the above requirements have been derived starting from the symbolic
discrete formulation in (7). As a consequence, all requirements for discrete energy conservation
hold for any discretization method of the form (7) with a volume-consistent scaling, independent
of the analytic formulation of the flow equations (for an overview, see [2]).

A diffusive term can be added, independently of the above discretizations. Perot [36] gives
guide lines for arbitrary grids.
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4 COMPRESSIBLE FLOW - COLLOCATED GRID

On a structured collocated grid all flow variables are defined in ‘cell centers’ with a liberal
interpretation of the meaning of ‘center’ (centroid, circumcenter, ...); see Fig. 1 (left). E.g.,
positioning the faces halfway the locations where the flow variables are defined (known as a
Voronoi grid) is a valid option, as in Fig. 1 (right) of an unstructured grid.

Figure 1: Control volumes for collocated grids: (left) structured with u-locations halfway faces (= cell-
centered); and (right) unstructured with faces halfway u-locations (= face- or vertex-centered).

4.1 Conservation of mass

With reference to Fig. 1, it is natural to choose the finite-volume form of the divergence term
in the equation for mass conservation (7a) as

Dmass m|C ≡ m̃x
e + m̃y

n − m̃x
w − m̃y

s =
∑
f∈FC

m̃f · nf . (14)

The summation is over the faces f of the volume around C, together constituting the set FC ,
and nf is an outward-pointing normal.

4.2 Conservation of momentum

Convection With similar notation, the discrete convective contribution to the momentum
equation reads

Cm
mom u|C ≡ m̃x

eue + m̃y
nun − m̃x

wuw − m̃y
sus =

∑
f∈FC

(m̃f · nf )uf . (15)

To compute the fluxes at the cell faces, an equal-weighted 1
2 -1

2 interpolation for the velocity
component u must be applied:

uf = 1
2(uC + unb(f)) , (16)

where nb(f) denotes the neighboring grid cell sharing the face f . In this way, the coefficients
in the convective contribution are skew-symmetric outside the diagonal. The 1

2 -1
2 interpolation

is essential, even when the edges are not half-way between the cell centers. Jameson [22, 37],
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interpreted the values in the cell centers as averages over the cells, after which a 1
2 -1

2 averaging
at the separating face is natural.

With the interpolation (16), the coefficient on the diagonal of Cm
mom (15) becomes

diag(Cm
mom) = 1

2

∑
f∈FC

(m̃f · nf )
(14)
= 1

2Dmassm .

Hence the vector diag(Cm
mom) − 1

2Dmassm vanishes. In fact, the latter requirement determines
the choice of Dmass! The above discretization, (14) + (15) with interpolation (16), satisfies the
main Requirement 1: Cm

mom − 1
2diag(Dmass m) is skew symmetric, for all choices of the mass

fluxes m̃. There is some freedom left to use geometry information to interpolate from the values
of m in the cell centers to the values of m̃ at the faces [38].

Pressure gradient A natural choice for the finite-volume form of the pressure gradient is

Gmom p|C ≡ (p̃e − p̃w)ex + (p̃n − p̃s)ey =
∑
f∈FC

p̃fnf .

Once more using equal-weighted interpolation, as in (16), we define the pressure ‘fluxes’ as
p̃f = 1

2(pC + pnb(f)) |dΓf | . The gradient operator can now be rewritten as

Gmom p|C =
∑
f∈FC

1
2 |dΓf |nf pnb(f) , (17)

where the (central) coefficient of pC vanishes because
∑

f∈FC
|dΓf |nf = 0.

4.3 Conservation of internal energy

Similar to the definition of Dmass in (14), the discrete divergence operator Dinten in the
dilatation term of the energy equation is defined as

Dinten u|C ≡ ũxe + ũyn − ũxw − ũys =
∑
f∈FC

ũf · nf .

Again, equal-weighted (1
2 -1

2) interpolation is used to define the face fluxes: ũf = 1
2(uC +

unb(f)) |dΓf | . The divergence operator can now be rewritten as

Dinten u|C =
∑
f∈FC

1
2 |dΓf |nf · unb(f) , (18)

where the (central) coefficient of uC has vanished as in (17). Comparing this operator with
the gradient from (17), it can be seen that Dinten = Dmass and Gmom are each other’s negative
transpose, as imposed by Requirement 2.

The convective term in the equation for internal energy reads

Cm
inten e|C ≡ m̃x

eee + m̃y
nen − m̃x

wew − m̃y
ses =

∑
f∈FC

(m̃f · nf )ef , (19)

which has the same structure as (15) (cf. Requirement 3).
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4.4 Local conservation of total energy

Satisfying the Requirements 1-3 guarantees global conservation of total energy. For finite-
volume discretizations also local energy conservation follows. The local energy flux can be found
by substituting the fluxes given in (15), (17), (18) and (19) into the discrete evolution of total
energy (8). For the above example, this results in a local energy flux given by [1

2m̃f (uC ·unb(f))+
1
2(pnb(f)uC + pCunb(f)) + m̃fef ] · nf .

5 DISCUSSION

We have unraveled a strategy to derive supra-conservative finite-volume discretizations for
compressible Euler flow that possess additional discrete (secondary) conservation properties for
energy. Mimicking the analytic derivation, and following a principle of non-interference, the
key ingredient is a close consistency between the discrete momentum equation and the discrete
mass equation (Requirement 1). In particular, the diagonal of the discrete convection operator
directly determines the discrete divergence in the mass equation and in the dilatation term of
the internal energy equation (Requirement 3). Also, it determines the discrete pressure gradient
(Requirement 2). An equal-weighted interpolation for the velocity from cell centers to cell faces
is essential to achieve the required compatibility, irrespective of any stretching of the grid. More
details can be found in a forthcoming publication [39].

One ‘reward’ for this consistency is the numerical stability of the semi-discretized equations,
without needing any numerical dissipation. This can be proven when the density has a positive
lower bound, as in the incompressible case. No rigorous proof has been found yet for the general
compressible case, but in practice this appears to be mainly a theoretical issue. Another ‘reward’
is that subtleties in (eddy-viscosity) turbulence models are not masked by excessive numerical
dissipation [31,38].

Table 1: A sorted selection of supra-conservative finite-volume methods for the Euler/Navier–Stokes
equations. The references marked [·]∗ use higher-order methods.

flow grid staggered collocated

incompressible structured
[35],
[8, 11–13]∗

[40]

unstructured [15,41,42] [14,15]

compressible structured [24]
[1, 21,22,28],
[23, 25,31]∗

To demonstrate the performance of the above methods, we point the reader to a number
of papers that are successfully using them. Table 1 gives several of such supra-conservative
finite-volume methods for the Euler and/or Navier–Stokes equations. The table has been sorted
according to the grid used (structured or unstructured) and the positioning of the unknowns
(staggered or collocated). Also, higher-order (> 2) variants have been indicated.

Figure 2 shows an example from [31] of an energy-preserving discretization of compressible
flow past a delta wing at a chord Reynolds number Rec = 150, 000, featuring a natural transition
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Figure 2: Numerical simulation of transitional flow past a delta wing at Rec = 150, 000. (left) Axial
slices of the instantaneous vorticity magnitude. (right) Turbulent kinetic energy along a chord line.

from laminar to turbulent flow. The left-hand graph reveals the vortical structures above the
wing showing the transition. The right-hand graph gives the turbulent kinetic energy, on three
grids, in streamwise direction. It shows the start of the transition at x = 250 mm, corresponding
with a local Reynolds number around Rex = 80, 000. This is in close agreement with the
experimentally found start of transition at Rex ≈ 78, 000 [43]. The good correspondence shows
the potential of discretizations which take care of a physically-accurate energy balance.
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