
VIII International Conference on Particle-Based Methods
PARTICLES 2023

U. Perego, M. Cremonesi, A. Franci (Eds)

ISPH WITH A GEOMETRIC MULTIGRID PRECONDITIONING
SOLVER USING BACKGROUND CELLS IN GPU ENVIRONMENT

H. OSAKI1, D. MORIKAWA2 AND M. ASAI3

1 Department of Civil Engineering, Graduate School of Engineering, Kyushu University
744 Motooka, Nishi-ku, Fukuoka 819-0395, JAPAN

e-mail: h-osaki@doc.kyushu-u.ac.jp, https://kyushu-u.wixsite.com/structural-analysis

2 Ph.D., Center for Mathematical Science and Advanced Technology, JAMSTEC
3173-25 Shōwamachi, Kanazawa Ward, Yokohama, Kanagawa, JAPAN

e-mail: morikawad@jamstec.go.jp

² Ph.D., Associate Prof., Department of Civil Engineering, Graduate School of Engineering,
Kyushu University

744 Motooka, Nishi-ku, Fukuoka 819-0395, JAPAN
e-mail: asai@doc.kyushu-u.ac.jp, https://kyushu-u.wixsite.com/structural-analysis

Abstract. Incompressible fluid analysis using the ISPH or MPS methods requires the solution of the pressure
Poisson equation, which takes up most of the overall computation time. In addition, the iteration number for
solving pressure Poisson equations may increase as the simulation model scale increases. This is a common
problem in particle methods and the other implicit time integration solvers. In different methods, FEM, etc., good
quality preconditioning, such as multigrid preconditioning, can significantly improve the convergence of iterative
solution methods. There are two types of multigrid preconditioners, algebraic multigrid and geometric multigrid
methods, but there are few examples of their application in particle methods.

In this study, we attempted to develop a framework for a geometric multigrid preconditioner for solving the
pressure Poisson equation in the ISPH. First, we focused on the geometric multigrid preconditioner using
background cells, which are used for neighboring particle search, and implemented it on a GPU environment.
Through a simple dam-break problem, we compared the computation time between the Conjugate gradient (CG)
solver with a traditional preconditioner and the CG solver with a geometric multigrid preconditioner. We
confirmed that the background cell-based geometric multigrid preconditioner is practical for the ISPH method.

Keywords: SPH, ISPH, Multigrid Method, Preconditioner, GPU.

1 INTRODUCTION

In Japan, large-scale disasters have occurred frequently in recent years, including the Great
East Japan Earthquake of 2011. The importance of disaster impact assessment based on
numerical analysis is increasing to prepare for such large-scale disasters. Particle methods such
as the SPH (Smoothed Particle Hydrodynamics) method[1] are used for disaster simulations
such as tsunami run-up analysis[2] and slope disaster[3]. Water and ground are modeled in
these disaster simulations as incompressible or highly viscous fluids. When solving
incompressible viscous fluids with the SPH method, the semi-implicit ISPH (Incompressible
SPH) method[2] and the implicit IISPH (Implicit ISPH) method[3] are used to relax the CFL
condition and the diffusion number condition and to solve the fluid stably. In this method, the
pressure and velocity are obtained by solving a simultaneous linear equation using an iterative

H. Osaki, D. Morikawa and M. Asai

 2

solver such as the conjugate gradient (CG) method.
Since the SPH method must be solved with uniform particle spacing, the computational

model is inevitably large for wide-area disaster simulations. In general, it is difficult to maintain
scalability (efficiency of parallel computation) in parallel computation when solving large-scale
simultaneous linear equations.

Fig. 1 shows a Breakdown of computation time for dam-break calculations using ISPH. The
iterative matrix solver accounts for most of the computation time, and increasing the
computation time increases the number of solver iterations, which increases the computation
time. The computational efficiency is also reduced accordingly. Fig. 2 shows the weak
scalability of the SPH method when up to 64 GPUs are used to analyze the dam-break problem.
It can be seen that the explicit method maintains high parallelization efficiency even when the
number of GPUs and the problem size are increased. In contrast, the semi-implicit method
significantly decreases parallelization efficiency as the problem size increases, indicating that
the scalability is not maintained. To investigate the cause of this problem, Fig. 3 shows the
number of iterations required to solve a simultaneous linear equation using the conjugate
gradient method. As shown in the figure, the number of iterations required until convergence

Figure 1. Breakdown of computation time for dam-break calculations using the ISPH method

(left: 5 million particles (1 GPU), right: 320 million particles (64 GPUs))

Figure 2. Results of weak scaling

Figure 3. Efficiency loss of the semi-

implicit method and number of iterations of
the CG method

3.2億流体粒子

CG solver

Predictor step

Creating coefficient
matrix
Corrector step

Others

0

2000

4000

6000

8000

10000

500万流体粒子

C
om

pu
ta

ti
on

al
ti

m
e

[s
]

Scaling up5 million fluid particles 3.2 billion fluid particles

96.9

64.4

92.2

0.0

20.0

40.0

60.0

80.0

100.0

0 10 20 30 40 50 60

Explicit

Semi-Implicit

Semi-Implicit Per iteration of CG

IdealPa
ra

ll
el

 e
ff

ic
ie

nc
y[

%
]

Number of GPUs

800

900

1000

1100

1200

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

0 10 20 30 40 50 60

Parallelization efficiency loss due to
semi-implicit method
Number of iterations per step of CG

Number of GPUs

H. Osaki, D. Morikawa and M. Asai

 3

increases as the problem size increases. In other words, it is impossible to maintain the high
parallelization efficiency of the implicit solver unless there is a good preconditioning technique
that prevents the number of iterations in the iterative solver from increasing as the problem size
increases. There is a multigrid method for grid-like computational models such as the difference
method [4,5] where the number of iterations does not depend on the problem size. There are
many examples of application of multigrid methods to numerical methods that use grids or
meshes, such as the finite difference method (FDM)[4] and the finite element method (FEM)
[6]. However, there are few examples of application of the multigrid method to particle
methods[7-9], and none to the SPH method used in this study. In this study, we develop a
multigrid preconditioning solver for the linear equations of the ISPH method. Specifically,
following previous studies[8,9], we develop a geometric multigrid preconditioning solver that
constructs an auxiliary grid based on the background cell used to search for neighboring
particles. Then, we compare the number of iterations between the no-preconditioning CG
method and the multigrid preconditioning CG method using a dam-breaking problem for
incompressible fluids and confirm the effectiveness of the multigrid preconditioning method.

2 INCOMPRESSIBLE SMOOTHED PARTICLE HYDRODYMANICS (ISPH)

2.1 Governing equations

The governing equations in ISPH methods are the incompressible Navier-Stokes equation
and continuity equation, which, in vector notation, can be written as

𝐷𝐯

𝐷𝑡
= −

1

𝜌
∇𝑝 + 𝜈∇ 𝐯 + 𝐠

(1)

and

∇ ⋅ 𝐯 = 0, (2)

where 𝒗 is the velocity vector, 𝐷/𝐷𝑡 the time derivative, 𝑝 the pressure, 𝜌 the density of the
fluid, 𝜈 the kinematic viscosity, 𝒈 the acceleration of gravity, and 𝑡 the time, respectively.

2.2 SPH Approximations

The SPH is a Lagrangian numerical technique that discretizes the space as individual
particles and approximates the different attributes of each particle using a smoothing kernel
function 𝑊 . In this manner, the equations for approximating a genetic function 𝜙 (either scalar
or vector) is

〈𝜙〉 =
𝑚

𝜌
𝜙 𝑊 𝐫 , ℎ , (3)

where the subscripted indexes 𝑖 and 𝑗 represent the target and neighboring particles,
respectively, ℎ is the smoothing length, 𝑚 is the mass of the fluid particle , 𝜌 is the density of
the fluid particle, 𝒓 = 𝒙 − 𝒙 is the relative position vector between particles 𝑖 and 𝑗 , and

symbol 〈⋅〉 signifies the application of the SPH approximation. In this study, we selected the
cubic spline function as the kernel function and selected ℎ = 1.2𝑑 .

H. Osaki, D. Morikawa and M. Asai

 4

The derivative ∇𝜙 and the Laplacian ∇ 𝜙 can be assumed by using the above-defined SPH
approximation as follows:

〈𝛻𝜙〉 =
𝑚

𝜌
𝜙 − 𝜙 𝛻𝑊 𝒓 , ℎ , (4)

〈∇𝜙〉 =
𝑚

𝜌

𝜙

𝜌
+

𝜙

𝜌
∇𝑊 𝐫 , ℎ ,

(5)

〈∇ 𝜙〉 = 2
𝑚

𝜌

𝐫 ⋅ ∇𝑊 𝐫 , ℎ

𝐫
𝜙 − 𝜙 ,

(6)

where ∇= , , is the nabla operator.

In this study, Eq. (5) is used for the velocity divergence, while an alternative form for the
SPH approximation of the derivative of a function, Eq. (6), is used for the pressure gradient.

2.3 ISPH formulation and linear matrix equation in the ISPH

The ISPH method is based on a fractional step method. The main advantage of the stabilized
ISPH method is that the pressure is calculated through a theoretically rigorous pressure Poisson
equation (PPE), as opposed to weakly compressible SPH (WCSPH), where it is calculated from
an empirical equation of state. That is, ISPH is not as sensitive as WCSPH to empirical
coefficients. However, the pressure distribution on ISPH is obtained by solving a 𝑁 × 𝑁

matrix equation from the PPE, where 𝑁 is the number of fluid particles.
In this section, we describe ISPH formulation based on the fractional step method. First, the

Navier-Stokes equation (Eq. (1)) is divided into two projection steps.
Predictor step:

𝐯∗ = 𝐯 + Δ𝑡(𝜈∇ 𝐯 + 𝐠) (7)

and corrector step:

𝐯 + = 𝐯∗ + Δ𝑡 −
∇𝑝 +

𝜌
,

(8)

where 𝛥𝑡 is the time increment, 𝑛 and 𝑛 + 1 superscript indexes refer to the current and next
time steps, and the superscript ∗ indicates the predictor step.

Then, multiplying both sides of Eq. (8) by ∇ leads to

∇ ⋅ (𝐯 + − 𝐯∗) = ∇ ⋅ Δ𝑡 −
∇𝑝 +

𝜌
.

(9)

∇ ⋅ 𝐯 + = 0 because of Eq. (2), so rearranging Eq. (9), the pressure can be calculated from the PPE

∇ 𝑝 + =
𝜌

Δ𝑡
∇ ⋅ 𝐯∗. (10)

[10] proposed a stabilized ISPH method to stabilize the pressure distribution. It combines
density invariance and divergence-free conditions, which we also adopted in this study.

According to [10], PPE (Eq. (10)) reformulated as

H. Osaki, D. Morikawa and M. Asai

 5

∇ 𝑝 + =
𝜌

Δ𝑡
∇ ⋅ 𝐯∗ + 𝛼

𝜌 − 〈𝜌 〉

Δ𝑡
,

(10)

where 𝛼 is called the relaxation coefficient and is generally set to be much less than 1.0.
To summarize the time integration method in the ISPH method, first, the predictor velocity

𝐯∗ is obtained by Eq. (8), then the pressure field 𝑝 is obtained by Eq. (10). Finally, velocity is
corrected by Eq. (9).

Using the SPH approximation for the Laplacian operator (Eq. (7)), the PPE (Eq. (10)) can be
rewritten as

2
𝑚

𝜌

𝐫 ⋅ ∇𝑊 𝐫 , ℎ

𝐫
𝑝 + − 𝑝 +

=

=
𝜌

Δ𝑡
∇ ⋅ 𝐯∗ + 𝛼

𝜌 − 〈𝜌 〉

Δ𝑡
.

(11)

This is a 𝑁 × 𝑁 matrix equation with pressure 𝑝 as the unknown variable.

3 MULTIGRID METHOD

As shown in section 2.3, matrix equation from the PPE needs to be solved in the ISPH
method. This procedure is time-consuming and requires a large amount of memory, so we
developed a background cell-based geometric multigrid preconditioner following previous
studies[7-9].

3.1 General iterative solvers and multigrid method

In general, iterative matrix solvers such as Successive Over Relaxation (SOR), Conjugate
gradient (CG), and so on, errors in the high-frequency component of the same frequency as the
grid size converge quickly, and convergence of low-frequency components is delayed[4].

On the other hand, in the multigrid method, Errors in all frequency components converge
uniformly. To understand the effect of the multigrid method, we describe it shortly.

The computational scheme of the multigrid method is as follows. First, pre-smoothing is
performed on the fine grid to some extent, and the residuals that cannot be converged are
restricted to the fine grid (restriction). Based on this, the solution is corrected on a coarse grid
(coarse grid correction), extended to a fine grid (prolongation), and finally smoothed again on
a fine grid (post-smoothing). The geometric multigrid method uses geometric information to
perform the above calculations, whereas the algebraic one uses only the algebraic information
of the coefficient matrix[7]. For example, numerical analysis methods that use grids or meshes,
such as FDM[4] and FEM[6], can compute restriction and prolongation operations and
coefficient matrices on coarse grids using their geometrical information. This is the geometric
multigrid method. On the other hand, regardless of the type of numerical analysis method, only
the coefficient matrix and the right-hand side vector are used as input information for their
computation in the algebraic multigrid method.

Comparing the two methods in particle methods, [8] reported that the cell-based geometric
multigrid method solver was more efficient because the algebraic multigrid solver needs to be
set up at every time step due to the dynamic change in connectivity. Therefore, we developed a
geometric multigrid method for ISPH with background cells in this study.

H. Osaki, D. Morikawa and M. Asai

 6

3.2 Background cell-based geometric multigrid preconditioner

As shown in section 3.1, the construction of the geometric multigrid method requires the
definition of restriction and prolongation in a hierarchical manner. However, the grid is not
used explicitly in the particle method, instead, background cells are used for neighboring
particle search in particle methods in general.

Therefore, we thought of utilizing background cells to geometrically construct a multigrid
and use them as preconditioning for the CG method following previous studies[7-9]. Fig 4.
shows the algorithm for the background cell-based geometric multigrid preconditioned
conjugate gradient method (MGCG). As shown in Fig. 4, the grid levels are numbered from the
finer cells, and the grid with the width of one cell is set as level 1.

We define the restriction from particles to cells to take the sum of the variables of the
particles in the cell:

𝑝 = 𝑝
∈

, (12)

where the superscript 𝑐 means the coarse grid, and in contrast, 𝑓 means the fine grid. The
subscript 1 means that the grid level is 1. On the other hand, the prolongation from cells to
particles is defined as copying the variables of the cell containing the particle so that the
restriction matrix 𝐑 and the prolongation matrix 𝐏 are in a transpose relation:

𝐏 = 𝐑 . (13)

As shown in Fig. 4, the geometric structure is defined so that there are 4 fine cells (8 in 3-
dimensions) in one coarse cell. The restriction from the fine cell to the coarse cell is defined as

𝑝 + = 𝑝
∈ +

 (14)

Figure 4. Algorithm for background cell-based geometric multigrid preconditioned

conjugate gradient method (MGCG)

Geometric multigrid preconditioning ()

Level 0 (particle)

Level 1 (grid)

Level 2=max (grid)

Level 1 (grid)

Level 0 (particle)

Main iteration

Initilalization

CG solver

H. Osaki, D. Morikawa and M. Asai

 7

so that it is the sum of the variables of the fine grid as well as Eq. (12), and the prolongation
from a coarse cell to the fine cell is defined so that 𝐑 and 𝐏 are transpose relations. As defined

above, the coefficient matrix 𝑨 + in coarse cells of level 𝑙 + 1 can be defined recursively from
fine cells of level 𝑙 :

𝐀 + = 𝐑 + 𝐀 𝐏 + . (15)

In this study, following a previous study[9], we defined preconditioning matrix 𝐌 as

𝐌 = 𝐃− + 𝐏𝐋− 𝐑, (16)

where 𝑫− is the diagonal scaling matrix and 𝐋− is an iterative matrix representing the
multigrid computation at grid level 1. 𝐋− defines recursively the multigrid calculation in the
coarser cell hierarchy:

𝐋− = (𝐀)− − (𝐈 − 𝐃− 𝐀) (𝐀)− (𝐈 − 𝐀 𝐃−)

 +(𝐈 − 𝐃− 𝐀) 𝐏 𝐌 + 𝐑 (𝐈 − 𝐀 𝐃−) ,

(17)

where 𝜈 is the number of smoothing iterations at level l. The calculations are performed by V-
cycles with several iterations in each grid hierarchy using the Jacobi method as a smoother.

3.3 GPU implementation

We wrote the GPU part of the code entirely on CUDA Fortran using some cuSPARSE and
Thrust libraries. Generally, the SPH equations described here will be calculated for every fluid
or wall particle. Therefore, we associate one GPU thread for each particle and evoke them
simultaneously in a CUDA kernel.

Here, in this section, we describe the background cells for searching neighboring particles
and their use in constructing a multigrid. We leave a detailed explanation of the former to [2],
and explain the latter in detail.

We do not use a neighbor list to store the neighbor information of each particle. Instead, we
search for neighboring particles located in neighboring cells in every step.

First, a cell grid is defined at the beginning of the simulation in which each cell is a cube,
the size of the influence radius 𝑟 . Using the cubic spline kernel function, the influence radius
yields 𝑟 = 2ℎ. As schematically illustrated in Fig. 5, each cell has a specific ID 𝑖𝐶 defined by
its grid position (𝑖𝐶 , 𝑖𝐶 , 𝑖𝐶) as

Figure 5. Schematic illustration of the cell grid

19 20 21 22 23 24

13 14 15 16 17 18

7 8 9 10 11 12

1 2 3 4 5 6

X

Y

1 2 3 4 5 6

1
2

 3

4

H. Osaki, D. Morikawa and M. Asai

 8

𝑖𝐶 = 𝑁 𝑁 (𝑖𝐶 − 1) + 𝑁 (𝑖𝐶 − 1) + 𝑖𝐶 , (18)

where 𝑁 and 𝑁 are the number of cell divisions in the X and Y directions. Notice that Eq.
(18) enumerates the cells prioritizing the X > Y > Z.

The cell position for each particle is retrieved from

𝑖𝐶 = int
𝑥 − 𝑥

𝑟
+ 1,

(19)

𝑖𝐶 = int
𝑦 − 𝑦

𝑟
+ 1,

(20)

𝑖𝐶 = int
𝑧 − 𝑧

𝑟
+ 1,

(21)

where int() is the operator that returns the largest integer number lower or equal to its input
value, (𝑥, 𝑦, 𝑧) are the each particle position and 𝑥 , 𝑦 , and 𝑧 are the minimum
values of (𝑥, 𝑦, 𝑧) in the calculation domain, respectively. During these calculations, no
additional arrays are necessary to find the cell ID that each particle belongs to. We sort
particle ID using sort_by_key[11] in the Thrust library every time step as the particles move.
And then, we store only the ID information of each cell's first and last particle in the array
partCell.

On the other hand, the cell position from each cell ID 𝑖𝐶 is retrieved from

 𝑖𝐶𝑋 = mod (𝑖𝐶 − 1),𝑁𝑋 + 1, (22)

𝑖𝐶 = mod int
𝑖𝐶 − 1

𝑁
,𝑁 + 1,

(23)

 𝑖𝐶𝑍 = int
𝑖𝐶 − 1

𝑁𝑋𝑁𝑌
+ 1.

(24)

where mod(A,B) is the operator that returns t remainder of A divided by B.
Using these formulas and the array partCell, we can compute the restriction and prolongation

operations between cells and particles (between grid levels 0-1). The restriction and
prolongation operations are computed by defining matrices 𝐑 and 𝐏. Since these are sparse
matrices, they are stored in CSR format to reduce memory usage. Also, the coefficient matrices
at the coarse grid level in Eq. (15) are computed using the sparse matrix – sparse matrix product
library cusparseSpGEMM[12] in cuSPARSE libraries.

Cells located within 𝑖𝐶 , 𝑖𝐶 × 𝑖𝐶 , 𝑖𝐶 × 𝑖𝐶 , 𝑖𝐶 are

used as the grids, where 𝑖𝐶 , 𝑖𝐶 are minimum and maximum positions in the 𝑋
direction of the cell where fluid particles are present, the 𝑌 and 𝑍 directions are the same. For
grid level 2, in other words, when multiple cells are combined into one coarse cell, cells located
within 𝑖𝐶 /2, 𝑖𝐶 /2 × 𝑖𝐶 /2, 𝑖𝐶 /2 × 𝑖𝐶 /2, 𝑖𝐶 /2 are
used as the grids and it can be calculated by changing 𝑁 ,𝑁 ,𝑁 in Eqs. (19)-(21) to
𝑁 /2,𝑁 /2, 𝑁 /2 basically. For grid level 3 and above, the range is further divided by 2.

H. Osaki, D. Morikawa and M. Asai

 9

4 NUMERICAL EXPERIMENT

4.1 Problem

To confirm the background cell-based geometric multigrid preconditioned solver, we
calculated the 3-dimensional dam-break problem for the incompressible fluid shown in Fig. 6.
The calculation are performed using the conditions shown in Table 1.

4.2 Number of iterations

Fig. 7 shows convergence histories at t=3.2 s for the no preconditioning CG solver and cell-
based multigrid preconditioned CG (MGCG) solver, where MGCG(m,n) means that m grids of
the multigrid method are added and the number of smoothing iterations in each grid hierarchy
is n. Compared to the CG solver, the MGCG solver improves the decreasing trend of residuals
to convergence and reduces the number of iterations. Also, comparing MGCG(1,4) and
MGCG(2,4), it was confirmed that the number of iterations can be significantly reduced by
increasing the number of grids, even though the number of iterations in each grid hierarchy is
the same.

Next, we compare the number of iterations when the model in Fig. 6 is run at different widths
and with a different number of particles and show the result in Fig. 8. The number of iterations
increases in the CG solver. In contrast, the number of iterations is suppressed in the MGCG
solver, which confirms the effectiveness of multigrid preconditioning.

5 CONCLUSION

In this study, we tried to accelerate the pressure Poisson solver in ISPH by incorporating
preconditioning using a background cell-based geometric multigrid method. As a result, the
number of main iterations of the iterative solver was greatly reduced.

In the future, we will further tune the pre-processing matrix calculation part to further speed
up the entire matrix solver. We also expect to develop a solver that can solve landslide problems
at high speed by extending it to the IISPH method [3], which also solves the velocity vector
implicitly.

Table 1. Calculation conditions
Parameters Value

Particle diameter 𝑑 1.0 m

Time increment Δ𝑡 10-2 s

Stabilized parameter 𝛼 10-2

Density 𝜌 103 kg/m3

Kinematic viscosity 𝜈 106 m2/s

Number of total steps 4,000

Number of fluid particles 58,621
 Figure 6. Model diagram of the dam break

problem

H. Osaki, D. Morikawa and M. Asai

 10

REFERENCES

[1] J.J. Monaghan, “Simulating free surface flows with SPH”, Journal of Computational Physics, 110,
pp. 399-406, 1994.

[2] D.S. Morikawa, H. Senadheera and M. Asai, Explicit Incompressible Smoothed Particle
Hydrodynamics in a multi-GPU environment for large scale simulations, Computatinal Particle
Mechanics, 8(3), pp. 493-510, 2020.

[3] D.S. Morikawa and M. Asai, A phase-change approach to landslide simulations: Coupling finite
strain elastoplastic TLSPH with non-Newtonian IISPH, Computers and Geotechnics, 148, pp.
104815, 2022.

[4] U. Trottenberg, C.W. Oosterlee and A. Schuller, Multigrid, Elsevier, Amsterdam ,2000.
[5] O. Tatebe and Y. Oyanagi, Efficient implementation of the multigrid preconditioned conjugate

gradient method on distributed memory machines, Proceedings of SC’94, pp. 194-203, 1994.
[6] T. Ichimura, K. Fujita, P. E. B. Quinay, L. Maddegedara, M. Hori, S. Tanaka, Y.Shizawa, H.

Kobayashi, and K. Minami, Implicit NonlinearWave Simulation with 1.08T DOF and 0.270T

Figure 7. Convergence history in t=3.2[s] for the dam break problem

Figure 8. Number of iterations in the scaled cases (Horizontal axis is a logarithmic scale)

1.0E-13
1.0E-11
1.0E-09
1.0E-07
1.0E-05
1.0E-03
1.0E-01
1.0E+01
1.0E+03
1.0E+05
1.0E+07
1.0E+09
1.0E+11

0 50 100 150 200

R
es

id
ua

l |
r|

2

Number of iterations

CG

MGCG(1,4)

MGCG(2,4)

1011

107

103

10-1

10-5

10-9

10-13

0

50

100

150

200

250

300

350

5000 50000 500000

N
um

be
r

of
 I

te
ra

tio
ns

Number of particles

CG

MGCG(1,4)

MGCG(2,4)

H. Osaki, D. Morikawa and M. Asai

 11

Unstructured Finite Elements to Enhance Comprehensive Earthquake Simulation, Proceedings of
SC’ 15, pp. 1–12, 2015.

[7] T. Matsunaga, K. Shibata, K. Murotani and S. Koshizuka, Solution of pressure Poisson equation in
particle method using algebraic multigrid method，Transactions of JSCES, 2016, 20160012, 2016.
(Japanese).

[8] A. Södersten, T. Matsunaga and S. Koshizuka, Bucket-based multigrid preconditioner for solving
pressure Poisson equation using a particle method, Computers and Fluids, 191, 104242, 2019.

[9] M. Kondo, J. Matsumoto and T. Sawada, A scalable physically consistent particle method for high-
viscous incompressible flows. Computational Particle Mechanics, 2023.

[10] M. Asai, AM. Aly, Y. Sonoda and Y. Sakai, A stabilized incompressible SPH method by relaxing
the density invariance condition, Int. J. for Applied Mathematics, 2012, Article ID 139583, 2012.

[11] NVIDIA, The API Reference Guide for Thrust. Last updated July 25, 2023. Retrieved from
https://docs.nvidia.com/cuda/thrust/index.html

[12] NVIDIA, The API Reference Guide for cuSPARSE. Last updated December, 2022. Retrieved from
https://docs.nvidia.com/cuda/cusparse/index.html

