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Abstract. Incompressible fluid analysis using the ISPH or MPS methods requires the solution of the pressure 
Poisson equation, which takes up most of the overall computation time. In addition, the iteration number for 
solving pressure Poisson equations may increase as the simulation model scale increases. This is a common 
problem in particle methods and the other implicit time integration solvers. In different methods, FEM, etc., good 
quality preconditioning, such as multigrid preconditioning, can significantly improve the convergence of iterative 
solution methods. There are two types of multigrid preconditioners, algebraic multigrid and geometric multigrid 
methods, but there are few examples of their application in particle methods. 

In this study, we attempted to develop a framework for a geometric multigrid preconditioner for solving the 
pressure Poisson equation in the ISPH. First, we focused on the geometric multigrid preconditioner using 
background cells, which are used for neighboring particle search, and implemented it on a GPU environment. 
Through a simple dam-break problem, we compared the computation time between the Conjugate gradient (CG) 
solver with a traditional preconditioner and the CG solver with a geometric multigrid preconditioner. We 
confirmed that the background cell-based geometric multigrid preconditioner is practical for the ISPH method.  
 
Keywords: SPH, ISPH, Multigrid Method, Preconditioner, GPU. 

 
1 INTRODUCTION 

In Japan, large-scale disasters have occurred frequently in recent years, including the Great 
East Japan Earthquake of 2011. The importance of disaster impact assessment based on 
numerical analysis is increasing to prepare for such large-scale disasters. Particle methods such 
as the SPH (Smoothed Particle Hydrodynamics) method[1] are used for disaster simulations 
such as tsunami run-up analysis[2] and slope disaster[3]. Water and ground are modeled in 
these disaster simulations as incompressible or highly viscous fluids. When solving 
incompressible viscous fluids with the SPH method, the semi-implicit ISPH (Incompressible 
SPH) method[2] and the implicit IISPH (Implicit ISPH) method[3] are used to relax the CFL 
condition and the diffusion number condition and to solve the fluid stably. In this method, the 
pressure and velocity are obtained by solving a simultaneous linear equation using an iterative 
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solver such as the conjugate gradient (CG) method. 
Since the SPH method must be solved with uniform particle spacing, the computational 

model is inevitably large for wide-area disaster simulations. In general, it is difficult to maintain 
scalability (efficiency of parallel computation) in parallel computation when solving large-scale 
simultaneous linear equations. 

Fig. 1 shows a Breakdown of computation time for dam-break calculations using ISPH. The 
iterative matrix solver accounts for most of the computation time, and increasing the 
computation time increases the number of solver iterations, which increases the computation 
time. The computational efficiency is also reduced accordingly. Fig. 2 shows the weak 
scalability of the SPH method when up to 64 GPUs are used to analyze the dam-break problem. 
It can be seen that the explicit method maintains high parallelization efficiency even when the 
number of GPUs and the problem size are increased. In contrast, the semi-implicit method 
significantly decreases parallelization efficiency as the problem size increases, indicating that 
the scalability is not maintained. To investigate the cause of this problem, Fig. 3 shows the 
number of iterations required to solve a simultaneous linear equation using the conjugate 
gradient method. As shown in the figure, the number of iterations required until convergence 

 
Figure 1. Breakdown of computation time for dam-break calculations using the ISPH method  

(left: 5 million particles (1 GPU), right: 320 million particles (64 GPUs)) 
  

  
Figure 2. Results of weak scaling 

 
Figure 3. Efficiency loss of the semi-

implicit method and number of iterations of 
the CG method 
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increases as the problem size increases. In other words, it is impossible to maintain the high 
parallelization efficiency of the implicit solver unless there is a good preconditioning technique 
that prevents the number of iterations in the iterative solver from increasing as the problem size 
increases. There is a multigrid method for grid-like computational models such as the difference 
method [4,5] where the number of iterations does not depend on the problem size. There are 
many examples of application of multigrid methods to numerical methods that use grids or 
meshes, such as the finite difference method (FDM)[4] and the finite element method (FEM) 
[6]. However, there are few examples of application of the multigrid method to particle 
methods[7-9], and none to the SPH method used in this study. In this study, we develop a 
multigrid preconditioning solver for the linear equations of the ISPH method. Specifically, 
following previous studies[8,9], we develop a geometric multigrid preconditioning solver that 
constructs an auxiliary grid based on the background cell used to search for neighboring 
particles. Then, we compare the number of iterations between the no-preconditioning CG 
method and the multigrid preconditioning CG method using a dam-breaking problem for 
incompressible fluids and confirm the effectiveness of the multigrid preconditioning method. 

 

2 INCOMPRESSIBLE SMOOTHED PARTICLE HYDRODYMANICS (ISPH) 

2.1 Governing equations 

The governing equations in ISPH methods are the incompressible Navier-Stokes equation 
and continuity equation, which, in vector notation, can be written as 

𝐷𝐯

𝐷𝑡
= −

1

𝜌
∇𝑝 + 𝜈∇ 𝐯 + 𝐠 

(1) 

and 

∇ ⋅ 𝐯 = 0, (2) 

where 𝒗 is the velocity vector, 𝐷/𝐷𝑡 the time derivative, 𝑝 the pressure, 𝜌 the density of the 
fluid, 𝜈 the kinematic viscosity, 𝒈 the acceleration of gravity, and 𝑡 the time, respectively. 

2.2 SPH Approximations 

The SPH is a Lagrangian numerical technique that discretizes the space as individual 
particles and approximates the different attributes of each particle using a smoothing kernel 
function 𝑊 . In this manner, the equations for approximating a genetic function 𝜙 (either scalar 
or vector) is 

〈𝜙〉 =
𝑚

𝜌
𝜙 𝑊 𝐫 , ℎ , (3) 

where the subscripted indexes 𝑖 and 𝑗 represent the target and neighboring particles, 
respectively, ℎ is the smoothing length, 𝑚  is the mass of the fluid particle , 𝜌  is the density of 
the fluid particle, 𝒓 = 𝒙 − 𝒙  is the relative position vector between particles 𝑖 and 𝑗 , and 

symbol 〈⋅〉 signifies the application of the SPH approximation. In this study, we selected the 
cubic spline function as the kernel function and selected ℎ = 1.2𝑑 . 



H. Osaki, D. Morikawa and M. Asai 

 4

The derivative ∇𝜙 and the Laplacian ∇ 𝜙 can be assumed by using the above-defined SPH 
approximation as follows: 

〈𝛻𝜙〉 =
𝑚

𝜌
𝜙 − 𝜙 𝛻𝑊 𝒓 , ℎ , (4) 

〈∇𝜙〉 =
𝑚

𝜌

𝜙

𝜌
+

𝜙

𝜌
∇𝑊 𝐫 , ℎ , 

(5) 

〈∇ 𝜙〉 = 2
𝑚

𝜌

𝐫 ⋅ ∇𝑊 𝐫 , ℎ

𝐫
𝜙 − 𝜙 , 

(6) 

where ∇= , ,  is the nabla operator. 

In this study, Eq. (5) is used for the velocity divergence, while an alternative form for the 
SPH approximation of the derivative of a function, Eq. (6), is used for the pressure gradient. 

2.3 ISPH formulation and linear matrix equation in the ISPH 

The ISPH method is based on a fractional step method. The main advantage of the stabilized 
ISPH method is that the pressure is calculated through a theoretically rigorous pressure Poisson 
equation (PPE), as opposed to weakly compressible SPH (WCSPH), where it is calculated from 
an empirical equation of state. That is, ISPH is not as sensitive as WCSPH to empirical 
coefficients. However, the pressure distribution on ISPH is obtained by solving a 𝑁 × 𝑁  

matrix equation from the PPE, where 𝑁  is the number of fluid particles.  
In this section, we describe ISPH formulation based on the fractional step method. First, the 

Navier-Stokes equation (Eq. (1)) is divided into two projection steps. 
Predictor step: 

𝐯∗ = 𝐯 + Δ𝑡(𝜈∇ 𝐯 + 𝐠) (7) 

and corrector step: 

𝐯 + = 𝐯∗ + Δ𝑡 −
∇𝑝 +

𝜌
, 

(8) 

where 𝛥𝑡 is the time increment, 𝑛 and 𝑛 + 1 superscript indexes refer to the current and next 
time steps, and the superscript ∗ indicates the predictor step. 

Then, multiplying both sides of Eq. (8) by ∇ leads to 

∇ ⋅ (𝐯 + − 𝐯∗) = ∇ ⋅ Δ𝑡 −
∇𝑝 +

𝜌
. 

(9) 

∇ ⋅ 𝐯 + = 0 because of Eq. (2), so rearranging Eq. (9), the pressure can be calculated from the PPE 

∇ 𝑝 + =
𝜌

Δ𝑡
∇ ⋅ 𝐯∗. (10) 

[10] proposed a stabilized ISPH method to stabilize the pressure distribution. It combines 
density invariance and divergence-free conditions, which we also adopted in this study. 

According to [10], PPE (Eq. (10)) reformulated as 
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∇ 𝑝 + =
𝜌

Δ𝑡
∇ ⋅ 𝐯∗ + 𝛼

𝜌 − 〈𝜌 〉

Δ𝑡
, 

(10) 

where 𝛼 is called the relaxation coefficient and is generally set to be much less than 1.0. 
To summarize the time integration method in the ISPH method, first, the predictor velocity 

𝐯∗ is obtained by Eq. (8), then the pressure field 𝑝 is obtained by Eq. (10). Finally, velocity is 
corrected by Eq. (9). 

Using the SPH approximation for the Laplacian operator (Eq. (7)), the PPE (Eq. (10)) can be 
rewritten as 

2
𝑚

𝜌

𝐫 ⋅ ∇𝑊 𝐫 , ℎ

𝐫
𝑝 + − 𝑝 +

=

=
𝜌

Δ𝑡
∇ ⋅ 𝐯∗ + 𝛼

𝜌 − 〈𝜌 〉

Δ𝑡
. 

(11) 

This is a 𝑁 × 𝑁  matrix equation with pressure 𝑝 as the unknown variable. 

3 MULTIGRID METHOD 

As shown in section 2.3, matrix equation from the PPE needs to be solved in the ISPH 
method. This procedure is time-consuming and requires a large amount of memory, so we 
developed a background cell-based geometric multigrid preconditioner following previous 
studies[7-9]. 

3.1 General iterative solvers and multigrid method 

In general, iterative matrix solvers such as Successive Over Relaxation (SOR), Conjugate 
gradient (CG), and so on, errors in the high-frequency component of the same frequency as the 
grid size converge quickly, and convergence of low-frequency components is delayed[4].  

On the other hand, in the multigrid method, Errors in all frequency components converge 
uniformly. To understand the effect of the multigrid method, we describe it shortly. 

The computational scheme of the multigrid method is as follows. First, pre-smoothing is 
performed on the fine grid to some extent, and the residuals that cannot be converged are 
restricted to the fine grid (restriction). Based on this, the solution is corrected on a coarse grid 
(coarse grid correction), extended to a fine grid (prolongation), and finally smoothed again on 
a fine grid (post-smoothing). The geometric multigrid method uses geometric information to 
perform the above calculations, whereas the algebraic one uses only the algebraic information 
of the coefficient matrix[7]. For example, numerical analysis methods that use grids or meshes, 
such as FDM[4] and FEM[6], can compute restriction and prolongation operations and 
coefficient matrices on coarse grids using their geometrical information. This is the geometric 
multigrid method. On the other hand, regardless of the type of numerical analysis method, only 
the coefficient matrix and the right-hand side vector are used as input information for their 
computation in the algebraic multigrid method. 

Comparing the two methods in particle methods, [8] reported that the cell-based geometric 
multigrid method solver was more efficient because the algebraic multigrid solver needs to be 
set up at every time step due to the dynamic change in connectivity. Therefore, we developed a 
geometric multigrid method for ISPH with background cells in this study.  
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3.2 Background cell-based geometric multigrid preconditioner 

As shown in section 3.1, the construction of the geometric multigrid method requires the 
definition of restriction and prolongation in a hierarchical manner. However, the grid is not 
used explicitly in the particle method, instead, background cells are used for neighboring 
particle search in particle methods in general.  

Therefore, we thought of utilizing background cells to geometrically construct a multigrid 
and use them as preconditioning for the CG method following previous studies[7-9]. Fig 4. 
shows the algorithm for the background cell-based geometric multigrid preconditioned 
conjugate gradient method (MGCG). As shown in Fig. 4, the grid levels are numbered from the 
finer cells, and the grid with the width of one cell is set as level 1. 

We define the restriction from particles to cells to take the sum of the variables of the 
particles in the cell: 

𝑝 = 𝑝
∈

, (12) 

where the superscript 𝑐  means the coarse grid, and in contrast, 𝑓  means the fine grid. The 
subscript 1 means that the grid level is 1. On the other hand, the prolongation from cells to 
particles is defined as copying the variables of the cell containing the particle so that the 
restriction matrix 𝐑 and the prolongation matrix 𝐏 are in a transpose relation: 

𝐏 = 𝐑 . (13) 

As shown in Fig. 4, the geometric structure is defined so that there are 4 fine cells (8 in 3-
dimensions) in one coarse cell. The restriction from the fine cell to the coarse cell is defined as 

𝑝 + = 𝑝
∈ +

 (14) 

 
Figure 4. Algorithm for background cell-based geometric multigrid preconditioned 

conjugate gradient method (MGCG) 
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so that it is the sum of the variables of the fine grid as well as Eq. (12), and the prolongation 
from a coarse cell to the fine cell is defined so that 𝐑 and 𝐏 are transpose relations. As defined  
 
above, the coefficient matrix 𝑨 +  in coarse cells of level 𝑙 + 1 can be defined recursively from 
fine cells of level 𝑙 : 

𝐀 + = 𝐑 + 𝐀 𝐏 + . (15) 

In this study, following a previous study[9], we defined preconditioning matrix 𝐌 as 

𝐌 = 𝐃− + 𝐏𝐋− 𝐑, (16) 

where 𝑫−  is the diagonal scaling matrix and 𝐋−  is an iterative matrix representing the 
multigrid computation at grid level 1. 𝐋−  defines recursively the multigrid calculation in the 
coarser cell hierarchy: 

𝐋− = (𝐀 )− − (𝐈 − 𝐃− 𝐀 ) (𝐀 )− (𝐈 − 𝐀 𝐃− )  

         +(𝐈 − 𝐃− 𝐀 ) 𝐏 𝐌 + 𝐑 (𝐈 − 𝐀 𝐃− ) , 

(17) 

where 𝜈 is the number of smoothing iterations at level l. The calculations are performed by V-
cycles with several iterations in each grid hierarchy using the Jacobi method as a smoother.  

3.3 GPU implementation 

We wrote the GPU part of the code entirely on CUDA Fortran using some cuSPARSE and 
Thrust libraries. Generally, the SPH equations described here will be calculated for every fluid 
or wall particle. Therefore, we associate one GPU thread for each particle and evoke them 
simultaneously in a CUDA kernel.  

Here, in this section, we describe the background cells for searching neighboring particles 
and their use in constructing a multigrid. We leave a detailed explanation of the former to [2], 
and explain the latter in detail. 

We do not use a neighbor list to store the neighbor information of each particle. Instead, we 
search for neighboring particles located in neighboring cells in every step. 

First, a cell grid is defined at the beginning of the simulation in which each cell is a cube, 
the size of the influence radius 𝑟 . Using the cubic spline kernel function, the influence radius 
yields 𝑟 = 2ℎ. As schematically illustrated in Fig. 5, each cell has a specific ID 𝑖𝐶 defined by 
its grid position (𝑖𝐶 , 𝑖𝐶 , 𝑖𝐶 ) as 

 
Figure 5. Schematic illustration of the cell grid 
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𝑖𝐶 = 𝑁 𝑁 (𝑖𝐶 − 1) + 𝑁 (𝑖𝐶 − 1) + 𝑖𝐶 , (18) 

where 𝑁  and 𝑁  are the number of cell divisions in the X and Y directions. Notice that Eq. 
(18) enumerates the cells prioritizing the X > Y > Z.  

The cell position for each particle is retrieved from  

𝑖𝐶 = int
𝑥 − 𝑥

𝑟
+ 1, 

(19) 

𝑖𝐶 = int
𝑦 − 𝑦

𝑟
+ 1, 

(20) 

𝑖𝐶 = int
𝑧 − 𝑧

𝑟
+ 1, 

(21) 

where int() is the operator that returns the largest integer number lower or equal to its input  
value, (𝑥, 𝑦, 𝑧) are the each particle position and 𝑥 , 𝑦 , and 𝑧  are the minimum 
values of (𝑥, 𝑦, 𝑧) in the calculation domain, respectively. During these calculations, no 
additional arrays are necessary to find the cell ID that each particle belongs to. We sort 
particle ID using sort_by_key[11] in the Thrust library every time step as the particles move. 
And then, we store only the ID information of each cell's first and last particle in the array 
partCell.  

On the other hand, the cell position from each cell ID 𝑖𝐶 is retrieved from  

             𝑖𝐶𝑋 = mod (𝑖𝐶 − 1),𝑁𝑋 + 1, (22) 

𝑖𝐶 = mod int
𝑖𝐶 − 1

𝑁
,𝑁 + 1, 

(23) 

              𝑖𝐶𝑍 = int
𝑖𝐶 − 1

𝑁𝑋𝑁𝑌
+ 1. 

(24) 

where mod(A,B) is the operator that returns t remainder of A divided by B. 
Using these formulas and the array partCell, we can compute the restriction and prolongation 

operations between cells and particles (between grid levels 0-1). The restriction and 
prolongation operations are computed by defining matrices 𝐑 and 𝐏. Since these are sparse 
matrices, they are stored in CSR format to reduce memory usage. Also, the coefficient matrices 
at the coarse grid level in Eq. (15) are computed using the sparse matrix – sparse matrix product 
library cusparseSpGEMM[12] in cuSPARSE libraries.  

Cells located within 𝑖𝐶 , 𝑖𝐶 × 𝑖𝐶 , 𝑖𝐶 × 𝑖𝐶 , 𝑖𝐶  are 

used as the grids, where 𝑖𝐶 , 𝑖𝐶  are minimum and maximum positions in the 𝑋 
direction of the cell where fluid particles are present, the 𝑌 and 𝑍 directions are the same. For 
grid level 2, in other words, when multiple cells are combined into one coarse cell, cells located 
within 𝑖𝐶 /2, 𝑖𝐶 /2 × 𝑖𝐶 /2, 𝑖𝐶 /2 × 𝑖𝐶 /2, 𝑖𝐶 /2  are 
used as the grids and it can be calculated by changing 𝑁 ,𝑁 ,𝑁  in Eqs. (19)-(21) to 
𝑁 /2,𝑁 /2, 𝑁 /2 basically. For grid level 3 and above, the range is further divided by 2. 
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4 NUMERICAL EXPERIMENT 

4.1 Problem 

To confirm the background cell-based geometric multigrid preconditioned solver, we 
calculated the 3-dimensional dam-break problem for the incompressible fluid shown in Fig. 6. 
The calculation are performed using the conditions shown in Table 1.  

4.2 Number of iterations 

Fig. 7 shows convergence histories at t=3.2 s for the no preconditioning CG solver and cell-
based multigrid preconditioned CG (MGCG) solver, where MGCG(m,n) means that m grids of 
the multigrid method are added and the number of smoothing iterations in each grid hierarchy 
is n. Compared to the CG solver, the MGCG solver improves the decreasing trend of residuals 
to convergence and reduces the number of iterations. Also, comparing MGCG(1,4) and 
MGCG(2,4), it was confirmed that the number of iterations can be significantly reduced by 
increasing the number of grids, even though the number of iterations in each grid hierarchy is 
the same.  

Next, we compare the number of iterations when the model in Fig. 6 is run at different widths 
and with a different number of particles and show the result in Fig. 8. The number of iterations 
increases in the CG solver. In contrast, the number of iterations is suppressed in the MGCG 
solver, which confirms the effectiveness of multigrid preconditioning. 

5 CONCLUSION 

In this study, we tried to accelerate the pressure Poisson solver in ISPH by incorporating 
preconditioning using a background cell-based geometric multigrid method. As a result, the 
number of main iterations of the iterative solver was greatly reduced. 

In the future, we will further tune the pre-processing matrix calculation part to further speed 
up the entire matrix solver. We also expect to develop a solver that can solve landslide problems 
at high speed by extending it to the IISPH method [3], which also solves the velocity vector 
implicitly. 

 

Table 1. Calculation conditions 
Parameters Value 

Particle diameter 𝑑  1.0 m 

Time increment Δ𝑡 10-2 s 

Stabilized parameter 𝛼 10-2 

Density 𝜌 103 kg/m3 

Kinematic viscosity 𝜈 106 m2/s 

Number of total steps 4,000 

Number of fluid particles 58,621 
 Figure 6. Model diagram of the dam break 

problem 
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