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Abstract

Discontinuous Galerkin methods have received considerable atten-
tion in recent years for applications to many problems in which convec-
tion and diffusion terms are present. Several alternatives for treating
the diffusion flux effects have been introduced, as well as, for treat-
ment of the convective flux terms. This report summarizes some of the
treatments that have been proposed. It also considers how elementary
finite volume methods may be considered as the most primative form
of a discontinuous Galerkin method as well as how it may be formed
as a finite element method. Several numerical examples are included
in the report which summarize results for discontinuous Galerkin solu-
tions of one-dimensional problems with a scalar variable. Results are
presented for diffusion-reaction problems, convection-diffusion prob-
lems, and a special problem with a turning point. We identify aspects
which relate to accuracy as well as stability of the method.
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1 Introduction

The work by B.G. Galerkin on approximate solution of differential equations
appears in the literature for the first time in 1915 in a paper discussing
series solutions of rods and plates.[1] Apparently, he was a civil engineer at
the Petersburg Technological Institute. This work, which complemented the
earlier work of Rayleigh and Ritz, was addressed to similar problems and
at the time did not make a great stir. Some use of the method is made
by S. Crandall in his book on Engineering Analysis.[2] There the procedure
of weighted residuals is discussed and here distinction between the various
choices of weighting and trial functions is made. In these, Crandall attributes
the name of Galerkin to one procedure alone – that is, the one in which the
weighting and trial functions are identical.

Much later it was recognized that the Galerkin procedures form a basis
of most, if not all, finite element formulations for both linear and non-linear
problems (e.g., see Chapter 3 of Reference [3]). However, for some categories
of application it became necessary to distinguish the procedures which fol-
lowed Crandall’s definition of Galerkin methods and those in which alterna-
tive weighting functions could perform better. An example here was a proper
model for convection and, for this problem, one of the first mathematicians
dealing with it by finite element methods, Professor Ron Mitchell (Dundee),
remarked that Galerkin methods can be divided into two categories: those
associated with the name of Bubnov[4] for which equal interpolation and
weighting is used and all the others in which they are not. The latter are
taken to be the basis of Petrov-Galerkin methods[5] and the origin of both
names can be found in the book on variational methods by S.G. Mihklin.[6]

We are uncertain about the exact definition for the two approaches, since in
conversations by the first author with some people at St. Petersburg Univer-
sity it appears that the reverse order could be made in this nomenclature.

We should point out that in all the early works cited above (except
Mitchell’s) it was assumed that the trial functions employed in the solu-
tion satisfied all boundary conditions of the problem addressed (e.g., of both
Dirichlet and Neumann type) and the solution was constructed by merely
multiplying the differential equation by the individual weight functions and
integrating over the domain.[2, 6] This implies that the functions used in the
approximations must possess derivatives to the order of the differential equa-
tion. When the first use of integratation by parts to lower the order of
the derivatives appearing and to include the Neumann boundary conditions
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as part of the resulting variational type equation is unclear. However, this
added step is now universally accepted as part of the Galerkin solution proce-
dure. Indeed, the name of Galerkin now survives in both Bubnov and Petrov
forms and in many usages of finite elements has been associated with various
additional adjectives.

The Characteristic Galerkin method, for instance, describes a procedure
in which the concept of characteristics and the integration along that di-
rection is important.[7] Other names, such as Taylor-Galerkin[8, 9], Galerkin
Least Square[10], and the present one, Discontinuous Galerkin appear fre-
quently. Of course if all finite element methods are of Galerkin type there
is an infinite scope as all procedures can be so described. We have recently
heard of another name, that of perturbed Galerkin. It was made primarily
because of his fame and wideness of the work this might be a name for some
applications. But more about discontinuous Galerkin methods.

The name of discontinuous Galerkin appears to have started to be used
in the early 1980’s, and to the authors knowledge the name first appears
in a paper by Delfour and Trochu in 1978.[11] An analysis for the scalar
hyperbolic problem is presented by Johnson and Pitkäranta[12] and later in
the book by Johnson for parabolic problems.[13] However, what is the concept
and what does the methodology present? Viewed from the current ideas it
is the opinion of the authors that it represents a method of linking separate
domains in which finite element, series, or whatever other current procedures
of solution is used for approximation.

It is well known that such linking can be accomplished by addition of fur-
ther functions, Lagrangian multipliers, at contiguous interfaces of the various
domains (which in themselves might be either a single element or multiple
element size). The first such Lagrangian procedures in a finite element con-
text have been used by Pian and his associates[14, 15], however, the essence
of discontinuous Galerkin lies in elimination of the Lagrangian multiplier so
that the total number of variables remains the same as that in the individ-
ual regions. How can such elimination be made? The most obvious method
perhaps is that of elimnation of the Lagrange multipliers is by a direct sub-
stitution of the variables. Such substitution could be made either in the final
approximating equations but perhaps better in the variational principle (or
weak form) from which they are derived. The first use of such an elimination
was provided by a paper of Kikuchi and Ando[16] in which the process is used
to restore slope compatibility between the incompatible elements introduced
by Bazeley et al. in 1966.[17] The paper was much criticized and perhaps
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did not make the impact it should have. An almost identical process was
used by Nitsche[18] in a mathematical sense and he discovered that direct
substitution can lead to numerical problems such as the singularity of result-
ing equation system or their indefiniteness. To avoid this Nitsche added a
further imposition of the constraint by a least square process, introducing of
course another parameter which can be considered today as simply one of
stabililzation. The ideas expressed at that time did not appear very much
used in solution of practical problems although they have been directly ap-
plied to the process of pure convection by Johnson and Pitkäranta [Reed and
Hill[19] and Lesaint and Raviart[20]]. This of course leads to the solution of
the first order equations occuring in time and presents a possibility of yet
another finite element approximation in time. The nature of impetus to the
work is contained in the practical applications introduced various authors
for problems in fluid dynamics and aerodynamics [e.g., see Karniadakis et al.
[21, 22, 23] and Cockburn [24, 25]] and a recently published dissertation by
C.E. Baumann[26], who together with Oden published a series of important
papers.[27, 28, 29, 30, 31] In all of these precisely the notions explained above
are used but the procedure of Oden and Baumann to stabilize the equation
appears to be one of simply changing the sign of the terms ensuring the in-
terelement compatibility for diffusive flux terms, which seems to avoid the
difficulties for all elements with an order higher than two, but not those for
an element of order one.

We shall describe the various applications and some of the mathematics
of linking in the following sections. However, at the outset we would like
to outline some of our general views about the practicality of the process –
even though on occasions it may prove to achieve computational results of
standard finite elements.

1. Actual physical discontinuities are only well modelled if by luck or
by previous adaptive analysis, the interface of the elements is placed
exactly on such discontinuity. Thus, the modeling of fluid mechanics
shocks in high speed flow is not an immediate advantage.

2. For hyperbolic problem, to some extent, an easing of the instability
due to convective terms is achieved. The most important way in which
the methodology does it however, is in not enforcing the convection
conditions exactly at the outlet of exit boundary for the problem. This
is well known to achieve the desired result even if a standard finite
element process is known. Thus, for instance, in the one-dimensional
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problem all the oscillations disappear if the exit conditions are removed
or simply the Neumann condition is imposed on the diffusive part.

3. The cost of using discontinuous Galerkin appears to be very large. In
one-dimensional problems at the junction of any two subdomains the
variables are doubled in number and this increase becomes much larger
in two- and three-dimensions depending on the nature of the problem.
The very description of the problem in such circumstances may be
difficult though it appears to be achieved by quite well by some people.
However, the perhaps future progress lies in a more limited application
of discontinuous Galerkin only to areas where such discontinuities may
occur.

2 Diffusion-Convection-Reaction Equations with

Scalar field

We begin by considering the solution of the diffusion-convection-reaction
equation expressed in terms of the scalar function u.

∂u

∂t
−∇ · [k(x)∇u− au] + c(x)u = q(x) (1)

Here ∇ denotes the gradient, k(x) is a symmetric matrix of diffusion co-
efficients, a(x) is a convection velocity, c(x) is a reaction function, q(x) a
specified loading function and () · () denotes the inner (dot) product between
two vectors. The differential equation is assumed to be valid for all x in a
domain Ω.

We define fluxes for diffusion and convection by

F d = k∇u and F c = au , (2)

respectively. In the sequel the fluxes play an important roll in the con-
struction of interface approximations between two contiguous subdomains
(elements).

For the transient problem it is necessary to specify an initial condition.
This may be written as

u(x, 0) = u0(x) ; x ∈ Ω (3)
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In addition to the initial condition boundary conditions are considered in
two forms. These are

u(x, t) = ūd ; x ∈ Γd (4)

known as the Dirichlet condition, and

n · F d = F̄n ; x ∈ Γn (5)

known as the Neumann condition.
In the first part of this report we consider the steady-state problem given

by

−∇ · [k(x)∇u− au] + c(x)u = q(x) (6)

which obviously does not necessitate use of an initial condition.

2.1 Galerkin Solution - Weak Forms

To construct an approximate solution to the steady state problem given
above we introduce a standard Galerkin procedure in which the differential
equation is multiplied by an arbitrary weight function δu(x). Subsequently,
the diffusion term is integrated by parts to obtain the weak form:

B(δu, u) = L(δu) (7)

where

B(δu, u) =

∫
Ω

{
(∇δu)T [k∇u] + δu [∇ · (au) + c u]

}
dΩ

−
∫

Γ

δu [n · F d] dΓ (8)

and

L(δu) =

∫
Ω

δu q dΩ (9)

For this form to be valid the weight function δu and any approximation
to the solution variable u must be at least C0 continuous in Ω, which is
some region of interest and may be one or more elements in a finite element
representation.
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Accordingly, here we first introduce the standard Galerkin approximation

u(x) = N(x) ũ and δu(x) = N(x) δũ (10)

which we shall assume are p-order polynomials in Ω. Evaluation of integrals
appearing in Eqs (8) and (9) gives the matrix problem:

Hũ−
∫

Γ

NTFn dΓ = f (11)

where

H =

∫
Ω

(∇N)T k∇N︸ ︷︷ ︸
Diffusion

dΩ +

∫
Ω

NT cN︸ ︷︷ ︸
Reaction

dΩ +

∫
Ω

(N)T [∇ · (aN)]︸ ︷︷ ︸
Convection

dΩ (12)

and

f =

∫
Ω

NT q dΩ . (13)

Ω

Γ
d

Γ
n

Figure 1: Single domain and its boundary parts

For single domain problems we divide the boundary into the two parts

Γd ∪ Γn = Γ ; Γd ∩ Γn = 0

as shown in Fig. 1 Accordingly, we split the boundary integral in Eq. (12)
and introduce the known value for the Neumann part of the boundary to
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obtain ∫
Γ

NT Fn dΓ =

∫
Γd

NT Fn dΓ︸ ︷︷ ︸
Omit: δu=0

+

∫
Γn

NT F̄n dΓ . (14)

The matrix problem for a single domain may then be written as

Hũ = f +

∫
Γn

NT F̄n dΓ = f̃ (15)

to which we also must impose u = ū on Γd.

2.2 Multiple Domains

Ω1 Ω2

Γ
d

Γ
n

Figure 2: Two subdomains with an interface boundary

Consider next a problem which is divided into multiple subdomains. It
is sufficient to consider the two subdomain problem shown in Fig. 2. Here
there are two sets of Galerkin equations which we denote as:

H1ũ1 −
∫

Γ
NT

1 F
1
n dΓ = f1

H2ũ2 −
∫

Γ
NT

2 F
2
n dΓ = f2

(16)

We now divide each subdomain boundary into three parts

Γid ∪ Γin ∪ Γint = Γi ; i = 1, 2 (17)
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in which Γint is the interface boundary of contiguous subdomains (Figure 3).
In any solution procedure we must satisfy, at least approximately, a con-

dition on continuity for u which may be expressed by

u1 = u2 (18)

as well as a condition on flux equilibrium given by

n1 · [k1∇u1] + n2 · [k2∇u2] = 0 (19)

and this must be enforced along each interface Γint.

2.3 Lagrange Multiplier Solution

As a first procedure to enforce the continuity and flux equilibrium along each
interface we consider a classical lagrangian multiplier method. Accordingly,
we introduce the Lagrange multiplier λ on Γint as

λ = n1 · [k1∇u1] = −n2 · [k2∇u2] (20)

Clearly, this automatically satisfies the flux equilibrium equation given by
Eq. (19). If, further, we add to B(δu, u) a classical multiplier form

Bλ(δu, δλ, u, λ) =

∫
Γint

[
δu2 − δu1

]
λ dΓ +

∫
Γint

δλ
[
u2 − u1

]
dΓ (21)

u1

u2

λ

Γ
int

Ω1 Ω2

Γ
d
1 ∪ Γ

n
1

Γ
d
2 ∪ Γ

n
2

Figure 3: Two subdomains with Lagrange multiplier on interface boundary
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together with the approximation for the multiplier as

λ = Nλλ̃ (22)

we obtain from Eq. (16) the matrix problem

H1ũ1 −C1λ̃ = f̃1

H2ũ2 + C2λ̃ = f̃2

(23)

where as before f̃ now includes the Neumann boundary term,

C1 =

∫
Γint

NT
1 Nλ dΓ and C2 =

∫
Γint

NT
2 Nλ dΓ . (24)

To these we add the continuity condition as:∫
Γint

δλ
[
u2 − u1

]
dΓ = 0 (25)

Substituting the approximations for the fields we get the added matrix set
of constraints

−(C1)T ũ1 + (C2)T ũ2 = 0 (26)

The above steps may be written compactly as: H1 0 −C1

0 H2 C2

−(C1)T (C2)T 0

 
ũ1

ũ2

λ̃

 =


f̃1

f̃2

0

 (27)

in which λ̃ is the extra set of variables from the lagrangian multipliers. This
set is a standard mixed form and the coefficient matrix is clearly indefinite.

Any solution to the problem must enforce conditions for the mixed prob-
lem and these include a count condition given by[3]

n1 + n2 ≥ nλ (28)

in which ni denotes the number of free parameters in each ui set. In addition,
the equations must always have a unique solution. For further details on these
requirements see Reference [3].

In the sequel we seek methods to replace λ̃ by some expression in the
remaining variables, ũi. This is the basis of all domain decomposition meth-
ods (e.g., DtN, overlapping domains, mortaring, etc.). It is also the goal of
discontinuous Galerkin methods.
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2.4 Discontinuous Galerkin Methods

Numerous methods have been proposed by proponents of the discontinuous
Galerkin method for expressions which replace λ by some expression in u1

and/or u2. Here we consider only some of these together with an evaluation
of results attained from each.

2.4.1 Solutions for diffusion term

For diffusion terms, one of the simplest is to replace λ by the average of
the flux from the contiguous elements along the interface boundary Γint.
Accordingly, we can write

λ =
1

2
n ·
[
k1∇u1 + k2∇u2

]
(29)

in which n is an outward normal to one of the domains. Introducing this
into the Galerkin equations for each domain gives first two sets of equations
as

H1ũ1 − C11ũ1 −C12ũ2 = f1 (30)

H2ũ2 + C21ũ1 + C22ũ2 = f2 (31)

At this stage the method is consistent, but usually singular or very ill-
conditioned. It is necessary to include the effects from the constraint equation

(δλ̃)T
[
−C1ũ1 + C1ũ1

]
= 0 . (32)

which is the matrix expression resulting from the condition Eq. (25). This
condition immediately suggests using a similar condition to replace δλ by a
variation on the average flux. The final result of such substitution is the pair
of equations [

H1 −C11 −C11,T
]
ũ1 +

[
C21,T −C12

]
ũ2 = f̃1[

C21 −C12,T
]
ũ1 +

[
H2 + C22 + C22,T

]
ũ2 = f̃2 (33)

or [
H + C + CT

]
Ũ = F̃ ; Ũ = (ũ1 , ũ2)T
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Returning to the original Galerkin form taken from Eq. (12) and ex-
tended to two subdomains Ω1 and Ω2 indicates the steps accomplished in the
replacement of the multipliers for the diffusion treatment.

We define an average flux using the notation〈
k∇u

〉
=

1

2

(
k1∇u1 + k2∇u2

)
(34)

and a jump in the solution at the interface by 1

[|un|] = u1n1 + u2n2 (35)

with similar expressions for the variation.
For a two subdomain problem with a single interface boundary Γint. the

Galerkin equations may be written as (where a is assumed for now as zero):

B(δu, u) =
2∑
i=1

∫
Ωi

{(
∇δui

)T [
ki∇ui

]
+ δui

[
c ui
]︸ ︷︷ ︸

Two bodies

}
dΩ

−
∫

Γint

[|δun|] ·
〈
k∇u

〉
︸ ︷︷ ︸

Flux balance

dΓ + α

∫
Γint

〈
k∇δu

〉
· [|un|]︸ ︷︷ ︸

Continuity of u

dΓ(36)

(37)

and

L(δu) =
2∑
i=1

∫
Ωi
δui qi dΩ (38)

For standard replacement of Lagrange multipliers we set α = −1, however,
it is most important to note that α can be other choices.

Nitsche used α = −1 to impose Dirichlet boundary conditions as natural
condions in a variational problem.[18] In this effort it was necessary to include
an added least-square term which stabilized the result. In the context of a
discontinuous interface condition the resulting expressions are as above but
with the added term introduced into the weak form as∫

Γint

τ [|δun |] · [|un |] dΓ

1Different methods are given in the literature for defining the flux and jump separa-
tion, however, the above appears to be particularly useful when coding the discontinuous
Galerkin method.
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where τ is the stabilization parameter which Nitsche finds must beO(|k|/h) >
0 in which h is an element size measure and |k| is a norm of the diffusion
matrix.

As an alternative Oden & Baumann[27, 29, 30] choose:

α = 1 .

This method leads to the modified form[
H + C−CT

]
Ũ = F (39)

and it is found the coefficient matrix is often stable for τ = 0 when polynomial
orders of two or more are used to approximate the ui in each subdomain.

To understand why α = 1 is a more stable approximation consider a
one-dimenaional problem where we will obtain a form

C−CT ∝
[

0 1
−1 0

]
which obviously is a term with a positive determinant. Generally, in multiple
dimensions Oden & Baumann find that the interface terms are stable with
τ = 0.

2.4.2 Treatment of convection terms

We now return to the case where a is not zero. In this case the convection
term in the Galerkin equation (8) is given by

Bc(δu, u) =

∫
Ω

δu∇ · [au] dΩ (40)

where the convective flux is expressed by F c = au. Normally, in approxi-
mate solutions this term is not integrated by parts, however, in developing
a treatment within the context of a discontinuous Galerkin process we do
integrate it by parts to obtain

Bc(δu, u) =

∫
Ω

δu∇ · [au] dΩ = −
∫

Ω

(∇δu)T au dΩ +

∫
Γ

δun · F c dΓ

(41)

In this form a discontinuous Galerkin process can treat the convective
flux by a process similar to that used for F d.
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Thus, we again consider two domains where the terms become

Bc(δu, u) =
2∑
i=1

∫
Ωi
δui∇T

(
aiui

)
dΩ

= −
2∑
i=1

∫
Ωi

(∇δui)T aiui dΩ +

∫
Γ

[|δun|]T
〈
F c

〉
dΓ (42)

in which [|δun|] = δu1n1 + δu2n2.
Treatment of the boundary term now involves the solution field u directly,

hence it is necessary only to find a consistent replacement for the convective

flux. A good approximation for
〈
F c

〉
on each interface is the outflow value

from a domain. Thus, all boundaries of subdomains are examined according
to the behavior of the normal flux and separated into the two categories:

n · a > 0⇒ outflow

n · a < 0⇒ inflow

The value of the convective flux on the outflow boundary [denoted as the
minus (−) boundary] is then used for the approximation〈

F c

〉
= a−u− (43)

The process is shown conceptually for a one-dimensional problem in Fig. (4).

Ω1 Ω2
n1 n2

a1 a2

Figure 4: Treatment of convective flux in one-dimension

Often for implementation the volume term in Eq. (42) is integrated by
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parts again to get the alternative expression convective term as

Bc(δu, u) =
2∑
i=1

∫
Ωi
δui∇T

(
aiui

)
dΩ +

∫
Γint

δu+
[
n+ · (a−u− − a+u+)

]
dΓ

(44)

In this form terms on boundaries appear only on inflow and interface parts.
On an inflow boundary point we use the Neumann boundary condition and
set: n+ · [a+u+]→ F̄n. Inflow boundary terms then are added to the L(δu)
given in Eq. (9).

Treatment of the convective terms by the above process amounts to an
upwind treatment at the interfaces. We shall observe in the examples, how-
ever, that no such upwind treatment is available within each subdomain.
Thus, within each subdomain additional treatment may be needed to control
spurrious oscillations.[7]

2.5 Discontinuous Galerkin weak form

Collecting all the above terms together we obtain the final form for the solu-
tion of a diffusion-convection-reaction equation by a discontinuous Galerkin
procedure. The result is

B(δu, u) =
2∑
i=1

∫
Ωi

{(
∇δui

)T [
ki∇ui

]
+ δui

[
c ui
]

+ δui∇T
(
aiui

)}
dΩ

−
∫

Γint

[|δun|] ·
〈
k∇u

〉
dΓ + α

∫
Γint

〈
k∇δu

〉
· [|un|] dΓ (45)

+

∫
Γint

δu+
[
n+ · (a−u− − a+u+)

]
dΓ

and

L(δu) =
2∑
i=1

{∫
Ωi
δui qi dΩ +

∫
Γn

δui F̄ i
ndΓ

}
(46)
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2.6 One-dimensional Diffusion-Advection-Reaction Prob-
lems

The differential equation for a scalar second order diffusion-advection-reaction
equation in one dimension may be written as

− d

dx

(
k(x)

du

dx

)
+

d

dx

(
a(x)u

)
+ c(x)u = q(x) ; x ∈ Ω (47)

where k(x) is the diffusion coefficient, a(x) is an advection coefficient, c(x)
is a reaction coefficient, u is the scalar unknown variable, and q is a given
loading function.

Boundary conditions may be given as specified u (Dirichlet type)

u(x) = ū ; x ∈ Γd (48)

or specified flux (Neumann type)

Fd(x) = k
du

dx
= F̄n ; x ∈ Γn (49)

where Γ = Γd ∪ Γn and Γd ∩ Γn = 0 with Γ the total boundary of domain Ω.

2.6.1 Weak form in one-dimension

The terms in the weak form for a discontinuous Galerkin solution of the
problem given in Eqs. (47) to (49) may be written as

B(u,w) =

∫
Ωe

[
dw

dx
k
du

dx
− dw

dx
a u+ w c u

]
dx

−
[
wFd(u)

]
Γd

+ α
[
wFd(u)

]
Γd

−
[

[|w|] 〈Fd(u)〉
]

Γint
+ α

[
[|u|] 〈Fd(w)〉

]
Γint

(50)

+
[
w a− u

]
Γ−

+
[
w a− u

]
Γ−int

+ τ
[
w u
]

Γd
+ α

[
Fd(w) ū

]
Γd

+
[

[|w|] [|u|]
]

Γint

and

L(w) =

∫
Ωe

w f dx+ α
[
Fd(w) ū

]
Γd

+
[
w F̄d

]
Γn

−
[
w a− u

]
Γ−

+ τ
[
w ū
]

Γd
(51)
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In the above Ωe denotes the integral over the interior of elements and Γint
is the interface between contiguous elements. The terms within the special
brackets are interpretted as the jump

[|u|] = u+n+ + u−n− (52)

where u+ is the value on the right + boundary; u− the value on the − side
boundary; n+ is the outward pointing normal to the + boundary and n− is
the outward pointing normal on the − boundary. Similarly,

〈F 〉 =
1

2

(
F+ + F−

)
(53)

where F+ is the flux from the + element and F− the flux from the − element.
Satisfaction of these two conditions exactly implies continuity of the solution
u and balance of the flux F at the interfaces.

The parameter α takes the values −1 or 1 depending on the particular
form of the discontinuous Galerkin scheme to be used. Use of α = −1 gives
a fully symmetric tangent for the diffusion term, whereas use of α = 1 gives
the form used by Oden and Baumann.[31] Finally, the parameter τ is used to
provide better stability to the approximation.[32]

3 Transient Problems

Until now we have not considered the solution of transient problems, however,
it is in this class of problems that a very desirable feature of the discontinuous
Galerkin method is obtained.

For the second order problem considered, a transient first order time
derivative appears in the Galerkin solution as

∂u

∂t
→

2∑
i=1

∫
Ωi
δu

[
∂u

∂t

]
dΩ (54)

This is shown for the two-body case but as can observe generalizes for any
number of bodies merely by extending the sum over the number of subregions
(elements) used.

Introducing a standard finite element approximation written in the sep-
arable form

u(x, t) = N (x) ũ(t) (55)
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the time derivatives may be computed by differentiating the parameters ũ.
Evaluation of the integrals in space gives the semi-discrete form of the first
derivative term as

2∑
i=1

∫
Ωi
δu

[
∂u

∂t

]
dΩ =

[
δũ1 δũ2

] [ M11 0
0 M22

] {
∂ũ1

∂t
∂ũ2

∂t

}
(56)

We immediately observe that there is no coupling between the rate terms in
the two subregions. This generalizes for an N -body problem to

N∑
i=1

∫
Ωi
δu

[
∂u

∂t

]
dΩ =

[
δũ1 δũ2 . . . δũN

]


M11 0 0 0
0 M22 0 0

0 0
. . . 0

0 0 0 MNN




δũ1

δũ2

. . .
δũN


(57)

We note that the form is particularly useful for any explicit solution
method as any p-order approximation leads to a block diagonal coefficient
to all rate terms. Indeed, for the structure above, the matrix may be made
completely diagonal by using shape functions which are orthogonal on each
element. For a class of elements such orthogonal shape functions have been
deduced by Karniadakis et al.[21, 22, 33]

It is also possible to use discontinuous Galerkin methods in time. The
process follows precisely the approach for convective terms and has been
exploited quite early by Johnson[34, 13, 3] However, most applications to date
which use the discontinuous Galerkin method for spatial discretization use
standard integrations methods[3] or those of the Runge-Kutta type.[33]

4 Finite Volume Methods and their Relation

to Discontinuous Galerkin Procedures

It is the view of some users that the discontinuous Galerkin process has
much in common with the finite volume process. In particular, as both
satisfy what is apparently known as local conservativity on each domain (el-
ement) individually.[33] It is perfectly true that if the integral of inflows and
outflows is taken over a finite volume (or over a finite element derived by
the discontinuous Galerkin process) it will be found that exact satisfaction
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of local conservativity conditions is achieved. But that does not mean the
fluxes recorded are correct or even accurate. It simply is a record of the fact
that what goes into the artificial element or cell is precisely balanced by what
goes out and/or is is stored. The authors do not view the fact that there is
any merit in such local conservativity if the alternative procedure of finite
elements results in more accurate fluxes at every stage of the calculation.
Clearly such fluxes have to be evaluated by suitable recovery from the gra-
dients which devise an element but this is suitably described in texts[3] and
can always be shown to be true.

4.1 Cell centered method

In this section we would like to indicate that the finite volumes as frequently
used are simply discontinuous Galerkin elements wherein very low order ap-
proximations are assumed to represent the variable in the cell. As the linear
discontinuous element of one-dimensional or two-dimensional types has al-
ready been discussed and found to be quite sophisticated and accurate, the
only possibility here is to look at zero order expansions with an element.

qI

I−1 I I+1

F
L
I F

R
I

N
I
 = 1

Figure 5: Cell centered finite volume in one dimension

In figure 5 we consider several cells of linear type in which a node I is
indicated at the center simply to record the value of the function u within
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each element and this is presumed to be constant there. We are thus talking
about shape functions which are simply unity and indeed we shall use weight
functions of the same kind.

In the figure we indicate very unequal size elements show fluxes where
elements or cells are joined. Considering now cell I, shown in Fig. 5 as
shaded, after integration by parts of the Galerkin form for the equation

d

dx

[
k

du

dx
+ a u

]
= q(x) (58)

and evaluating the resulting integrals for constant approximation we obtrain
(see Fig. 5)

1 · FR − 1 · FL = q̄ hI (59)

where the values of unity arise from the constant shape function and FL and
FR are total fluxes arising form convection and diffusion which are given by

FR =

 k
du

dx︸︷︷︸
Diffusion

+ a u︸︷︷︸
Convection


R

(60)

At this stage it is of course impossible to evaluate the diffusive fluxes at
the ends of cell I but a simple finite difference approximation will give the
average gradients as

du

dx

∣∣∣∣
R

=
ũI+1 − ũI

(hI+1 + hI)/2
(61)

and

du

dx

∣∣∣∣
L

=
ũI − ũI−1

(hI + hI−1)/2
(62)

In the same way, for the convective part we use the upwind value as in pre-
vious discontinuous Galerkin approximation. Assuming k and a are positive
and constant we obtain the approximation for the total flux FR as

FR = k
ũI+1 − ũI

(hI+1 + hI)/2
+ a ũI (63)
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and for FL the approximation

FL = k
ũI − ũI−1

(hI + hI−1)/2
+ a ũI−1 (64)

Substitution into Eq. (59) gives

k

[
ũI+1 − ũI

(hI+1 + hI)/2
− ũI − ũI−1

(hI + hI−1)/2

]
+ a

[
ũI − ũI−1

]
= q̄ hI (65)

and it is obvious that full upwinding of the convection part has occurred and
the diffusion part replaced by the average central difference approximation
on unequal intervals.

The same procedures can be extended to two and three-dimensional ele-
ments and in Fig. 6 we show two triangles and their interface. The approxi-
mation are of course a little more difficult.

h
IJ

L
IJI

J

Figure 6: Cell centered finite volume in two dimension

The cell centered finite volume method in two dimensions requires a bal-
ance for each subdomain in which, again, the approximations are assumed to
be constant. All procedes as in the one dimensional case except the area of
the subdomain replaces the hI multiplying the q̄ and flux balance is carried
out over sides of the subdomain. For example, using simple triangles, as
shown in Fig. 6, it is necessary to approximate the integral of the flux along
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the contiguous interface. For simplicity we have shown this as a vertical side
of length LIJ in the figure.

Writing the flux balance we have for the I element the contribution for
the flux along the IJ-side as

FIJ LIJ

where now the flux is given by the normal derivative to the side IJ . Accord-
ingly, we have along any boundary a total flux given by

FIJ = k
du

dn
+ a · nu .

A logical approximation for the normal derivative (which is horizontal in the
figure) is given by the approximation

du

dn
≈ ũJ − ũI

hIJ

The convective part of the flux will again be taken as the upwind value, where
we need again to consider the sign of a · n to decide on inflow and outflow
parts. For triangle I we would use the value of ũI if a ·n is positive and that
of ũJ if the product is negative. Once again, for this finite volume approach
one gets a full upwind treatment.

The above steps are, in effect, the usual procedures for a cell centered
finite volume approach and we observe that it has a certain commonality with
the discontinuous Galerkin provided the upwinding term is always involved.
If not the approximation is the more common one which is thus far distant
from the finite difference process and still requires upwinding.

4.2 Node centered finite volumes

The whole procedure can be extended to node centered finite volumes but
here more imaginative approximations may be required. To indicate why
we again consider a one-dimensional application which again uses constant
weighting over the element. However, now we admit C0 continuous, linear
variation for the solution variable u. A typical element is shown in Fig. 7.
The balance equation is again given by Eq. (59), however, now it is possible
to compute the flux variables directly from the linear interpolation between
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the nodes. For example, the flux FR may be expressed as

FR = k
ũI+1 − ũI

xI+1 − xI
+

1

2
a
(
ũI+1 + ũI

)
(66)

and that for FL by

FL = k
ũI − ũI−1

xI − xI−1
+

1

2
a
(
ũI + ũI−1

)
(67)

where we have again assumed that k and a are positive constants. The result
for this approximation is clearly an average central difference approximation
for both the convective and the diffusive fluxes. For equal size elements h we
obtain the simple balance expression

k

h

[
uI−1 − 2uI + uI+1

]
+

1

2
a
[
uI+1 − uI−1

]
= q̄ h (68)

For problems with large convection content the solution will clearaly oscillate
and some upwind treatment will be necessary.

qI

I−1 I I+1

F
L
I F

R
I

N
I
 = 1 Weight

x
uI−1 uI uI+1 Solution

Figure 7: Node centered finite volume in one dimension
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Figure 8: Node centered finite volume in two dimensions

Extension of the node centered approach to multiple dimensions is straight
forward. For example, in Fig. 8 we show a set of triangles in which C0 lin-
ear interpolation is made. The cell volume is constructed by connecting
the midsides of the triangles with their centroids. The normal diffusive flux
on each boundary segment may be computed by differentiating the linear
shape functions (which gives a constant) and computing the constant nor-
mal to each boundary segment. Multiplying the result for the normal flux
by the length and conductivity for each triangle gives the desired contribu-
tion to each segment. Similarly, the result for the convective flux may be
easily computed; however, again we shall find that no upwind effect will be
present and it will be necessary to devise some scheme to introduce one. The
node centered approach described is clearly a mix between a discontinuous
Galerkin approximation for the weight function and a continuous Galerkin
approximation for the solution. One could devise an alternative scheme in
which the types of interpolation are switched and in that case it would be
possible to use an upwind approximation for the convective flux.

From the preceding it is seen that the finite volume approach if imple-
mented with usual inflow and outflow type of boundary approximations to
model correctly the convective terms can be classified in the same category
as other elements of the discontinuous Galerkin type.
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4.3 Node centered finite volume as a finite element
method

A node centered finite volume method may be developed as a standard finite
element type. That is, we may consider an element in which the force and
stiffness terms are computed on a single element and assemble the result
using a standard method.[3] Figure 9 shows a node centered finite volume for
a typical node in a mesh of square elements. We have identified the parts of
the contour as ABCD and in the same figure for a single element shown how
the contour parts can be computed as a finite element method. The final
result will be the same whether we compute the complete contour for a given
node at one time or if we compute the parts for the elements adjacent to the
node separately and assemble to get the full node value.

AB

C D

CD

A B

Figure 9: Node centered finite volume as a finite element

5 Numerical Examples

In this section we consider some example solutions for problems in one-
dimension. The solutions are all computed in the context of special cases
of the general linear diffusion-convection-reaction equation. However, to dis-
tinguish between some aspects of the various treatments we consider special
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cases of this differential equation. The first set of examples consider a so-
lution of problems in which convection effects are not included. Thus, the
solution of the resulting diffusion-reaction equation belongs to a class of prob-
lems for which a variational theorem exists and continuous Galerkin approx-
imations are an identical procedure for solving the problem. We thus shall
be concerned with how well the discontinuous Galerkin method performs in
comparison with standard finite element solutions in which C0 approximat-
ing functions are used throughout. It is well known that such Galerkin (or
variational) solutions are optimal in an energy sense.

In the second class of problems considered we consider the solution of
problems which include convection effects only. Here, we explore how well the
convective solution is given using the discontinuous Galerkin process. In the
next set we add diffusion effects, first exploring cases where low convection
is present, one in which standard Galerkin C0 solutions perform quite well
(e.g., ones in which low Peclet numbers are involved). We then look at the
case in which diffusion effects are quite small (i.e., high Peclet numbers).

Finally we consider the case of a second problem which involves all effects.
This is the Hemker problem described by Oden & Baumann[31] which has a
turning point.

5.1 Diffusion-reaction example problem

We first consider the problem shown in Fig. 10 which is an example of a
string under tension k and supported on an elastic Winkler foundation with
support modulus c per length. The differential equation is given by

−k d2u

dx2
+ c u = q(x) ; − 1 < x < 1

for which the properties k = 1 and c = 9 are used. A loading with intensity
q = 1 is applied on −0.1 < x < 0.1 as shown in the figure.

The problem is solved by a simple mesh of 9 elements: 4 on each side of
the loading and one for the loaded length. In Fig. 11 we show the result
for a discontinuous Galerkin solution for which p = 4 and α = 1 (Oden &
Baumann unsymmetric method) is employed. This solution is nearly exact
over the entire length.

For comparison we consider the solution to the problem using different
order of approximation and both symmetric and unsymmetric treatment for
the discontinuous Galerkin treatment of the diffusive flux. In Fig. 12 we
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show the results for the solution using 9-quadratic order elements and both
α ± 1. No τ stabilization is needed to get a stable solution (although the
symmetric treatment resulted in changes in signs of diagonals in a direct
solution without pivots; but little cancellation error in the magnitude of
pivots).

In Fig. 13 we show a comparison between the 9-element p = 2 and p = 3
discontinuous Galerkin (α = 1) and the same order classical C0 finite element
solution. For p = 3 we find a nearly converged solution for both methods
and a plot cannot distinguish between results.

Finally, in graphical comparisons we present a pair of results for the case
where linear interpolation is used in each element. First we present in Fig.
14 results for a 36-element mesh (where each element in the 9 element so-

Figure 10: String on elastic foundation
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Figure 11: 9-Element DG solution for string on elastic foundation (p = 4 &
α = 1)
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lution is divided into 4 equal subincrments). Here for the treatment shown
it is clear that the discontinutity between elements is not completely elimi-
nated. Indeed subsequent increases in the number of elements in the mesh
by factors of 2 show very slow decay in the discontinuity. Oden & Baumann
do not recommend use of linear approximation; however, treatment by the
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Figure 12: 9-element DG solutions for string on elastic foundation (p = 2 &
α± 1)
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Figure 13: 9-element DG and FE solution for string on elastic foundation
(p =, p = 3 & α = 1)
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symmetric discontinuous Galerkin treatment of flux (α = −1) with non-zero
τ gives some improvement to the solution as indicated in Fig. 15. In this
application we also again consider the 9-element problem for which no sta-
bilization is also presented in the figure. Results on 9-elements are nearly
meaningless without the added τ stabilization term. In the computations
shown τ ≈ 5(k/h). Indeed it is easy to show that the discontinuous Galerkin
solution approaches finite element solution when τ →∞ as in that case con-
tinuity is restored by a penalty process. For comparison purposes we present
in Fig. 16 the results for a standard finite element solution using linear ap-
proximations in each element. It is clear that superior results are attained
using the standard finite element procedure.
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Figure 14: 36-element DG solution for string on elastic foundation (p = 1 &
α = 1)

In order to indicate the type of accuracy attained with the linear and
quadratic order approximations we investigate the convergence of the dis-
placement u at the center. The results are tabulated in Tables 1 and 2 for
the linear and quadratic approximations, respectively. For the discontinuous
Galerkin process no τ stabilization has been added. Indeed, as convergence
occurred the discontinuity between elements did become smaller and except
for linear case was negligible long before the final mesh was attained.

Several conclusions can be reached from the results presented from this
problem. First, the symmetric treatment of the flux leads to better accuracy.
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This might have been expected as the basis for the solution is rooted in
a full variational theorem (with added stabilized terms). Secondly, as also
could be anticipated, the standard finite element solution process for this
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Figure 15: 9 and 36-element DG solution for string on elastic foundation
[p = 1, α = −1 and τ ≈ 5(k/h)]
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Figure 16: 9 to 36 element FE solution for string on elastic foundation (p = 1)

30



Nelm FE DG(α = −1) DG(α = 1)
9 0.025117 -0.121829 0.059726

18 0.028710 0.028709 0.035672
36 0.028650 0.028634 0.028575
72 0.028636 0.028632 0.028617

144 0.028632 0.028631 0.028627

Table 1: String on elastic foundation: Solution by FE and DG for p = 1

Nelm FE DG(α = −1) DG(α = 1)
9 0.028634 0.028667 0.029224

18 0.028630 0.028630 0.028808
36 0.028631 0.028631 0.028684
72 0.028631 0.028631 0.028645

144 0.028631 0.028631 0.028634

Table 2: String on elastic foundation: Solution by FE and DG for p = 2

class of problems is far more efficient and far more accurate for a given
number of elements. When compared on a basis of the total number equations
involved the comparison is even more favorable to the standard finite element
treatment.

5.2 Pure convection example

As an example of pure convection we consider the problem

du

dx
= q(x) for u(0) = 0

with the loading specified as shown in Fig. 17. A solution obtained using
the discontinuous Galerkin method for approximations of order p = 1 and 2
is also shown in Fig. 17. Since the loading varies linearly with position, the
exact solution is composed of piecewise polynomials of degree two. Hence,
the discontinuous Galerkin solution with p = 2 yields the exact solution and
use of higher order approximations is unnecessary. The linear approximation,
on the other hand, leads to discontinuitites at the element interfaces. Use of
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smaller elements would reduce the size of the jumps. Finally, for this problem
no diffusion effects are present and, thus, there is no effect on choice of α.
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Figure 17: Loading and DG solution for pure convection example for p = 1
and p = 2

5.3 Convection-diffusion example

The first problem selected for this class is a classical convection-diffusion
problem given by the differential equation

d2u

dx2
+ b

du

dx
= 0 ; 0 < x < L

with Dirichlet boundary conditions u(0) = 1 and u(L) = 0.
We first compute a converged solution for the case b = 20 and L = 10

using p = 3 and α = 1 (shown in Fig. 18). For comparison purposes we also
compute standard finite element solutions for meshes of 10 elements with
linear, quadratic, cubic and quartic C0 interpolations. Results for these are
given in Fig. 19. As no upwind modifications are included we note that
the solutions are oscilatory. Indeed these could be improved by introducing
an upwind strategy. A solution using optimal upwind treatment[7] for linear
elements is first computed. Results are also computed for the quadratic order
element (p = 2) with upwind treatment taken as the optimal divided by two
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(higher order elements would divide by p). Results for this comparison are
presented in Fig. 19.

For the same example we compute solutions using the discontinuous
Galerkin procedures described above with α = 1 and polynomial orders rang-
ing from 1 to 4. Results are given in Fig. 21.

As a second example we consider the problem above for various values of
the parameter b. The mesh is selected with 9 elements, each with length h
of 2. In this case, for linear elements (p = 1), the value of b is precisely the
element Peclet number given by[7]

Pe =
b h

2
.

The problem is first solved by standard finite elements (without upwind
treatment) using linear elements of equal length and values of the Peclet
number of 0, 1, 2.5, and ∞. The results are shown in the left diagram in
Fig. 22. The problem is repeated using optimal upwinding and, as expected,
produces the exact values at nodes for all Peclet numbers but with linear
interpolations between the nodes.

This problem is next analyzed by the Discontinuous Galerkin method
with p = 1 and again 9-elements. In addition the problem is analyzed for
a cubic order approximation (p = 3) but using only 3-elements. Results for
these two analyses are presented in Fig. 23. The results obtained are not
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Figure 18: DG solution for convection-diffusion example for p = 3
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Figure 19: 10-element FE solution for convection-diffusion example using
p = 1 to p = 4
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Figure 20: 10-element upwind FE solution for convection-diffusion example
using p = 1 and p = 2

accurate for any of the non-zero values of the Peclet number. Indeed, cubic
results do not lead to an improved estimate of the response. To examine
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Figure 21: 10-element DG solution for convection-diffusion example using
p = 1 to p = 4
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Figure 22: 9-element FE solution for convection-diffusion with Pe =
0, 1, 2.5,∞ (p = 1)

the behavior with a mesh in which the element size varies by a large ratio
between the left and right boundaries we consider a 9-element non-uniform
p = 1 and a 3-element p = 3 example. The mesh was generated by using
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equal increments of ξ for the quadratic isoparametric interpolation given by

x = (1− ξ2) 14 +
1

2
(ξ + ξ2) 18 .

The results of the analysis are displayed Fig. 24 and are found to now
represent quite accurately (though note exactly for all Peclet numbers) the
results. It is remarkable the amount by which the discontinuities are reduced
by using a highly graded mesh.
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Figure 23: 9-element p = 1 and 3-element p = 3 DG solution for convection-
diffusion with Pe = 0, 1, 2.5,∞ (p = 1)

5.4 Hemker problem example

One example presented by Oden $ Baumann[31] is the Hemker problem. The
differential equation for this problem is given by

−k d2u

dx2
− x du

dx
= f ; − 1 < x < 1

where the load function is given by f = kπ2 cos(πx) + πx sin(πx). The
boundary conditions for the problem are both Dirichlet with u(−1) = 2
and u(1) = 0. The exact solution for the problem as reported by Oden &
Baumann is

u(x) = cos(πx) + erf(x/
√

(2k))/erf(1/
√

(2k))
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Figure 24: Non-uniform 9-element p = 1 and 3-element p = 3 DG solution
for convection-diffusion with Pe = 0, 1, 2.5,∞ (p = 1)
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Figure 25: DG solution of Hemker example for p = 4 and 150 elements

In the reference cited it is assumed that k = 10−10 and thus, the error function
erf produces a near vertical jump of magnitude 2 at x = 0 with the remainder
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of the solution given by the cosine term.2. A quite accurate representation
of this solution is given in Fig. 25 where a discontinuous Galerkin solution
using quartic order interpolation in elements and 150 elements is presented.

We also compute standard finite element approximations for the solution
using linear and quadratic order interpolations with and without upwind-
ing as described above. For the analysis we use 16-linear elements and 8-
quadratic elements evenly distributed along the length. Results are given in
Fig. 26. To indicate what happens as the number of elements is increased
we also present a solution using 200 linear elements (Fig. 27) which in-
clude upwinding (without upwinding the solution oscillates significantly near
the discontinuity). Optimal upwinding for the constant case is used at each
quadrature point and this is seen to be quite effective with only a small Gibbs
type overshoot near the jump. The solution is, however, somewhat damped
from the pure cosine response (which should be 0 before the jump and 2
after). Thus, use of upwinding has a negative impact on the solution. Com-
parison between Fig. 26 and 27 does indicate a reduction in this damping
effect is occuring and, thus, convergence will eventually occur.

The analysis is now repeated using discontinuous Galerkin procedures
with p = 1 to p = 4 and a uniform mesh of 16 elements for the linear case
and 8-elements for all the others. This is not a fair comparison with the
finite element solutions on an effort basis as the discontinuous approxima-
tion involves one additional unknown for each interface or boundary point,
however, on a polynomial order basis the comparison is useful.

We now consider the solution to the same problem using a discontinuous
Galerkin procedure with α = 1 (the Oden & Baumann treatment). Meshes
of 16 elements for p = 1 and 8 elmeents for higher order p are used with
results shown in Fig. 28. It is evident that the discontinuous Galerkin
method is nearly ideal for this problem and reproduces faithfully the cosine
like solution with the proper jump given. Indeed, one may inquire to what
degree one could perturb the location of the element end from the jump
location without affecting the quality of the solution. Such an experiment
has been conducted for a misplacement of e = −0.01 units and results are
shown in Fig. 29. Surprisingly, there is little polution of the solution beyond
the one element affected by the perturbation. Repeating the experiment for
the finite element solution with linear elements has a similar effect, however,

2The solution is continuous at x = 0 the overall effect of the error function is restricted
to a very narrow band around this point
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the quality of the original solution is not good so neither are those for the
perturbed solution. The results are shown in Fig. 30
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Figure 26: FE solution for Hemker example using p = 1 and p = 2

−1 −0.5 0 0.5 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x−Coordinate

D
is

p
la

ce
m

en
t

FE 200 el: Upwind

Figure 27: FE solution for Hemker example using p = 1 and 200 linear
elements
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6 Closure

In this report we have considered solution by discontinuous Galerkin methods
of problems involving diffusion, convection and reaction. The general form of
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Figure 28: DG solution for Hemker example using p = 1 to p = 4
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Figure 29: DG solution of Hemker example for e = −0.01 using p = 1 to
p = 4
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the discontinuous Galerkin procedure for a scalar equation has been presented
along with alternatives for treating the convective and diffusive fluxes. A
comparison with the finite volume method has also been discussed.

Numerical examples are presented for one dimensional applications. Here
we have compared the symmetric treatment of the diffusive flux with an
unsymmetric form proposed by Oden & Baumann. Our assessment shows
that the symmetric treatment is more accurate than the unsymmetric one,
however, this is balanced by additional stability obtained by the unsymmetric
treatment. Differences in accuracy are small once third order approximations
are used (p = 3) in each element but are noticable for second order treatment.
For the diffusion-reaction problem the best accuracy results from standard
finite element treatment using C0 approximation throughout.

Analysis of convective terms is included using an upwind treatment at
the interfaces. This is shown to be very effective in correctly transmitting
the convective flux throughout the domain, but is sensitive to disturbances
introduced. There is need for additional study on effective means to introduce
some upwind treatment within the individual domains (elements) in a manner
which does not destroy balance properties. The Hemker problem shows that
traditional treatment by upwind finite element methods is not very effective.
Significant error is obtained around the turning point and only very slowly
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Figure 30: FE solution of Hemker example for e = −0.01 using p = 1 and 16
elements
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is eliminated by increasing the number of elements. Moreover, use of higher
order approximations is not easily treated by traditional means.

An important observation from the simple examples treated in this report
that any error in placement of the point where sharp gradients in solution
occur (e.g., jumps) does not polute the solution at distant points from the
misplacement. This is in contrast to conventional finite element errors which
do often polute the entire solution. Whether this observation is valid in other
cases needs additional study.

Another advantage of the discontinuous Galerkin method is the structure
of the resulting mass type matrix. Here the matrix is of block diagonal
structure and can, as done by Karniadakis et al., be put in diagonal form
by suitable construction of orthogonal polynomial approximations. Thus,
p-order approximations may be constructed with fully diagonal matrices. Of
course this is only of importance in explicit time integration problems but
perhaps can be explointed further in iterative approaches.

Finally, we again remark that the advantages of the discontinuous Galerkin
method do not come without some additional costs. First, the number of
variables is increased by the introduction of discontinuous approximations.
Secondly, the overall structure of the implementation is complicated over
that of standard finite element procedures. This is evident in the need to
treat the interfaces where information from contiguous elements is needed
to construct the flux terms. Also, we have found that some problems have
indefinite form even using the Oden & Baumann treatment. Some prelimi-
nary solutions using other values of the α than plus or minus unity can be
effective. Thus, another avenue for further study is available.
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[12] C. Johnson and J. Pitkäranta. An analysis of the discontinuous galerkin
method for a scalar hyperbolic equation. Math. Comp., 46:1–26, 1986.

[13] C. Johnson. Numerical Solutions of Partial Differential Equations by
the Finite Element Method. Cambridge University Press, Cambridge,
1987.

43



[14] T.H.H. Pian. Derivation of element stiffness matrices by assumed stress
distribution. Journal of AIAA, 2:1332–1336, 1964.

[15] T.H.H. Pian and P. Tong. Basis of finite element methods for solid
continua. International Journal for Numerical Methods in Engineering,
1:3–28, 1969.

[16] F. Kikuchi and Y. Ando. A new variational functional for the finite
element method and its application to plate and shell problems. Nuclear
Engineering and Design, 21(1):95–113, 1972.

[17] G.P. Bazeley, Y.K. Cheung, B.M. Irons, and O.C. Zienkiewicz. Tri-
angular elements in bending – conforming and non-conforming solu-
tions. In Proc. 1st Conf. Matrix Methods in Structural Mechanics, vol-
ume AFFDL-TR-66-80, pages 547–576, Wright Patterson Air force Base,
Ohio, October 1966.
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