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Abstract. A boundary element formulation based on the consistent couple stress theory is 
used to analyze two-dimensional size-dependent piezoelectric response in isotropic dielectric 
materials. In this approach, there exist a size-dependent piezoelectricity or flexoelectricity 
effect for centrosymmetric materials. The size-dependent effect is specified by one 
characteristic length scale parameter l, and the electromechanical effect is specified by one 
flexoelectric coefficient f. This phenomenon is a coupled problem involving mechanical and 
electrical effects. A boundary-only formulation is used for which the primary variables are 
displacements, rotations, force-tractions, couple-tractions, electric potential, and normal 
electric displacement. This BEM formulation is applied to a bimaterial computational problem 
to confirm the validity of the numerical implementation and to explore the physics of the 
flexoelectric coupling. 
 
1 INTRODUCTION 

The classical continuum mechanics predicts the piezoelectric effects only for non-
centrosymmetric materials. But experiments show that such an effect can be anticipated when 
the material is centrosymmetric, such as isotropic or cubic materials. Unlike the classical theory, 
this effect cannot be explained by the coupling of the polarization and strain. To be able to 
understand the piezoelectric effect in centrosymmetric materials, a size-dependent continuum 
theory is needed. In the fully consistent flexoelecticity [1], these effects are related to the 
coupling of the polarization and mean curvature. This theory includes length scales and 
considers rotation as a primary degree of freedom [2]. The couple stress flexoelectricity 
involves only one length scale parameter and one flexoelectricity coefficient, which makes it 
very convenient.  

2 SIZE-DEPENDENT FLEXOELECTRICITY 

The governing equations for two-dimensional size-dependent flexoelectricity include the 
force balance, the moment balance, and the electric Gauss law as following [1] 

𝜎 , + 𝐹 = 0 (1) 
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𝜇 , + 𝜀 𝜎 = 0 (2) 

𝐷 , + 𝜌 = 0 (3) 

where 𝜎  is the force-stress tensor, 𝜇  is the skew-symmetric couple-stress tensor, and 𝐷  the 
electric displacement vector. 𝐹  is the body force, 𝜌  is the electric charge density is the volume, 
and 𝜀  is the three-dimensional alternating or Levi-Civita symbol. Note that the force-traction 
𝑡 , couple-traction 𝑚  and normal electric displacement d on the surface of an element are 
defined as 

𝑡 = 𝜎 𝑛  (4) 

𝑚 = 𝜇 𝑛  (5) 

d = 𝐷 𝑛  (6) 

where 𝑛  is the normal unit vector on the surface. The constitutive relations for an isotropic 
dielectric material are 

𝜎( ) = 𝜆𝑒 𝛿 + 2𝜇𝑒  (7) 

𝜇 = −8𝐺𝑙 𝜅 + 2𝑓𝐸  (8) 

𝐷 = 𝜀𝐸 + 4𝑓𝜅  (9) 

where 𝜎( ) is the symmetric part of the force-stress tensor, 𝑒  is the symmetric part of the strain 
tensor, 𝜇  is the true couple stress vector dual to the pseudo tensor 𝜇 , 𝜅  is the mean curvature 
vector, and 𝐸  is the electric field. The moduli 𝜆 and 𝐺 are the Lamé elastic constants for an 
isotropic material and 𝜀 denotes the electric permittivity of the free space. Note that 𝐺 is the 
shear modules and for isotropic materials, 𝐺 = 𝐸 2(1 + 𝜈)⁄ . Finally, 𝑙  and 𝑓  are the intrinsic 
length scale parameter and the flexoelectric coefficient respectively. They are both properties 
of the material that need to be found by experiments.  

After using the constitutive relations (7)-(9), the governing equations (1)-(3) reduce to the 
mechanical and electrical equilibrium equations as following: 

[𝜆 + 𝐺(1 + 𝑙 𝛻 )] 𝑢 , + 𝐺(1 − 𝑙 𝛻 )𝛻 𝑢 + 𝐹 = 0 (10) 

𝜀𝛻 𝜑 + 𝜌 = 0 (11) 

where 𝑢  is the displacement vector and 𝜑 is the electric potential. Note that in the consistent 
size-dependent flexoelectricity, the three primary degrees of freedom are the displacement 𝑢 , 
rotation 𝜔 , and potential 𝜑 such that  

𝑒 =
1

2
𝑢 , + 𝑢 ,  (12) 

𝜅 =
1

2
𝜀 𝜔 ,  (13) 

𝐸 = −𝜑,   (14) 
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In order to solve equations (10)-(11) we need boundary conditions in the form of either 
essential or natural boundary conditions for each degree of freedom. Displacement, rotation and 
potential are the essential boundary conditions and the corresponding natural boundary 
conditions are force-traction 𝑡 , couple-traction 𝑚 , and normal electric displacement d. 

3 BOUNDARY ELEMENT IMPLEMENTATIONS 

Analytical solution is available to equations (10)-(11) for some planar size-dependent 
flexoelectric problems, but for a general application of the theory to model a wide range of 
problems, a robust numerical method is required. In the present work, boundary element method 
is used to solve a biomaterial flexoelectric problem with a simple geometry. The details on the 
integral representation of the formulation using the reciprocal theorem is provided in [3]. These 
integral representations are then discretized and implemented as a boundary element method 
formulation. It will be in the form of a set of algebraic linear equations.  

To be able to use the formulation for multiregion problems, we need to write the integral 
equations for each region separately. Then, by enforcing appropriate interface conditions, we 
bring the two sets of equations together. It is noteworthy to mention that for perfectly bounded 
interfaces, the interface conditions are the continuity of displacements 𝑢  and rotations 𝜔 , and 
equilibrium of force-traction 𝑡  and couple-tractions 𝑚  of the two regions. 

4 COMPUTATIONAL EXAMPLES 

The formulations and numerical implantation discussed above is used to study the effects of 
electrical fields on a bimaterial strip that is made of two isotropic homogenous materials. The 
main part is a L = 10 by h = 1 rectangle made of a non-flexoelectric material while the top layer 
has a thickness of t = 0.2 made of a flexoelectric dielectric material (Figure 1). Since the 
problem is dimensionless, the specifications have no units. 

 
Figure 1: Bimaterial strip with a flexoelectric material on the top 

The idea is to place this strip in an electric field and see how the flexoelectric top layer responds 
to the electrical field and makes the whole object deform. The properties of both materials are 
given in Table 1. Note that the couple-stress parameter is defined as 𝜂 =  𝐺𝑙 . 
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Table 1: Material properties 

 Rectangle Top Layer 
Modules of Elasticity (E) 5.2 2.0 

Poisson Ratio () 0.25 0.2 
Permittivity () 1.0 1.0 

Flexoelectricity (f) 0. -1.0 
Couple-stress Parameter () 1.0 0.5 

4.1 Example I: Free with potential difference 

As the first example, we place the strip in an electrical domain, such that the potential on the 
top and bottom surface are different. On the other hand, the two side surfaces are electrically 
insulated, i.e. d = 0. The strip is free, but to prevent rigid body motion, the midpoint on the 
lower surface is fixed in the vertical direction, i.e. 𝑢  = 0 (Figure 2 top).  

 

Figure 2: Free strip with potential difference, full (top), half (bottom)  

It is seen in the figure that the geometry of the problem and boundary conditions are 
symmetric with respect to the vertical midline. Thus, for simplicity, the analysis can be done 
for half of the strip, as shown in Figure 2 bottom. Boundary conditions for the midline are 
prescribed based on the symmetry of the problem. Thus, the horizontal displacement 𝑢  and 
rotation 𝜔 = 𝜔 are zero. 

As mentioned above, the top layer is made of a flexoelectric material. The difference in the 
electric potential at the top and bottom surfaces of the strip creates an electric field which leads 
to mechanical stresses in the flexoelectric material. Since the strip is free, the top layer bends 
due to those stresses and makes the entire strip bend.  

The change in the normal force-tractions t1 and t2 and couple-tractions m3 = m along the 
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vertical midline and along the horizontal interface are presented in Figures 3 and 4, 
respectively. 

 

Figure 3: Normal force-traction t1 and couple-traction m along vertical midline for Example I 

 
Figure 4: Normal force-traction t2 and couple traction m along the interface for Example I 

4.2 Example II: Bottom on rollers with potential difference 

In the next example, the strip is not free to bend anymore. The bottom surface is constrained 
in the vertical direction, while it is still free to rotate or move horizontally as shown in Figure 
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5. Due to this constraint, force-tractions are created in the bottom surface. However, since this 
surface is free to rotate, the couple-traction is zero. 

 

Figure 5: Bimaterial strip on rollers with potential difference 

Apparently, the strip cannot bend, but there is some deformation in the top flexoelectric 
layer, specially near the corners of the interface area. This deformation can lead to delamination 
in the structure which makes the layer gradually start to separate from the base strip. This is a 
design issue which needs to be resolved for such structures. 

Figure 6 represents the change in the normal force- and couple-tractions along the vertical 
midline, while in Figures 7 and 8, the normal force-traction along the bottom surface t2, and the 
normal force-traction t1 and couple-traction m along the interface are shown respectively.  

 
Figure 6: Normal force-traction t1 and couple-traction m along vertical midline for Example II 
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Figure 7: Normal force-traction t2 along the bottom surface for Example II 

 
Figure 8: Normal force-traction t2 and couple traction m along the interface for Example II 

4.3 Example III: Fully fixed bottom with potential difference 

The third example also involves the fixing of the bottom surface, but this time it is fully 
fixed. This means that the vertical and horizontal motions and the rotation are constrained on 
this surface (Figure 9). As a result of the electric field, couple-tractions will also be created on 
the bottom surface. 

 
Figure 9: Bimaterial strip with fully fixed bottom surface and potential difference 
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The normal force-tractions and couple-tractions are shown in Figures 10, 11, and 12 along 
the vertical midline, bottom surface, and the interface, respectively. 

 
Figure 10: Normal force-traction t1 and couple-traction m along vertical midline for Example III 

 

 
Figure 11: Normal force-traction t2 and couple-traction m along the bottom surface for Example III 
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Figure 12: Normal force-traction t2 and couple-traction m along the interface for Example III 

 

5 SUMMARY AND CONCLUSION 

In order to explain the flexoelectricity, self-consistent couple-stress theory is used. In this 
theory, rotation is a degree of freedom. The governing equations involve two coefficients only, 
that are the length scale parameter l and the flexoelectricity coefficient f. BEM solutions are 
used for biomaterial flexoelectric dielectric to solve some numerical examples. The results 
show good convergence and predict delamination in the structure due to electric field.  
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