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Abstract.

Self-organization in active materials, inspired by biological systems, shows many fea-
tures, not found in passive materials. Self-propelling Brownian spheres undergo phase
separation, rod-like particles show unusual defects behavior. Both types of particles, how-
ever, have a center of symmetry. In order to explore the influence of shape asymmetry,
a new 2D shape, named a circulangle, is introduced. Kinetic Monte Carlo simulations of
two-dimensional hard Brownian circulangles are presented. Self-propulsion is introduced
by additional MC moves along particles’ axes. The system undergoes transition from
homogeneously distrubited particles to micellar structures arranged in clusters/networks.
Circulangles appear to be the first known particles, which form micelles without attrac-
tive forces. The newly discovered phenomenon may have wide implications in design
of (meta)materials for energy conversion and storage, sensorics, micromechanics, swarm
intelligence and targeted drug delivery.

1 INTRODUCTION

The term and main principles of self organization were first formulated by William
Ross Ashby in 1947 [1]. Later, work by Ilya Prigogine led to groundbreaking research in
the field of dissipative systems, for which he was awarded the Nobel Prize in Chemistry in
1977. The central idea of self-organizing systems is that not all structures and designs are
developed with a central authority, but are based on an interplay between rules, dynamic
adaptation and an appropriate level of entropy. It is important to note that spontaneous
formation of order, can only occur at a certain level of still existing disorder and entropy,
and no longer occurs with an over-regulated system [2].
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In nature we see a whole series of such examples beginning with bird and fish swarms,
ant and bees colonies [3]. In sociology, there are similar patterns with a positive rein-
forcement effect in the use of new communications technologies, such as telephones or the
Internet, as well as in the formation of agglomerations. It is even advocated that almost
all processes worldwide are dominated by self-organizing systems, which is known as the
Gaia hypothesis [4].

The key advantages of a self-organizing system are [2]:

- Resilience: the ability of systems not to fail completely in the face of partial disrup-
tion;

- Robustness: the ability to handle adaptations without letting the internal stable
structures become defective;

- Efficiency: ability to use available resources and opportunities sparingly.

Self-organization due to self-propulsion stems from biological systems, composed of
living self-propelling entities. Artificial (non-living) particles are manufactured to gain
self-motility via self-diffusio-phoresis due to asymmetric chemical reaction [8, 9, 10] or via
thermophoresis for Janus particles [11, 15]. There are also macroscopic models of active
materials [16, 17, 18].

Self-propelled Brownian spheres undergo phase separation [12], rod-like particles show
unusual defects behavior, which was confirmed experimentally [14]. Both types of parti-
cles, however, have a center of symmetry.

In order to explore the influence of shape asymmetry, a new 2D shape, named a circu-
langle, is introduced.

2 CIRCULANGLE

A circulangle is composed of a circle, wedged into an angle, such that the angle’s sides
attach to the circle tangentially thus preserving continuous curvature. It is characterized
by an elongation factor L/R, which is 1 for a circle (Fig.1). From now on we assume
that the radius of the circle is alwas R = 1, so L is just directly the aspect ratio. The
shape can be continuously varied from a circle (L = 1) to a rodlike particle. In order
to simulate mechanical behaviour of a circulangle, its center of inertia and the radius of
gyration must be calculated. These quanitities can be calculated analytically.

The area of a circulangle as a function of L

S(L) =
√
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Figure 1: A circulangle with aspect ratio L/R = 6. Its position is characterized by the
center of the circle r, orientation by the director n along the axis of length L.

The radius of gyration
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The dependencies l(L) and Rg(L) given by Eqs.(1) and (2) respectively are depicted
on Fig.2

3 SIMULATION METHOD

Conventional way to model a system of brownian particles is to use Langevin equations
[12]. In this case pairwise interaction between particles must be described dynamically,
i.e. either continuously in a form of soft potentials [12], or as a single collision event for
hard particles. It is easy for soft isotropic interaction, where one may use LJ, WCA,
hard-wall potential, etc. In the case of complex shapes, like circulangles, calculation
of pairwise interaction, is not straightforward. Unlike spheres, there are no collision
operators calculated yet for hard circulangles.
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Figure 2: Center of inertia l (Eq. (1)) and radius of gyration Rg (Eq.(2)) as a function of
L. A set of circulangles with L = 1(disc),2, 4, 6.

Besides, if we focus only on the structural arrangements of particles, kinetic Monte
Carlo for active paricles suffices [20]. Thus, instead of calculating dynamics of pairwise
interactions, we may limit ourselves to calculation of overlap condition of two circulangles.
The limitation of the MC compared to brownian particles

There are three types of movement in the system: directed self-propulsion, diffusive
translation and diffusive rotation. In the originally proposed form, the method has two
control parameters: rotational Péclet number and noise-to-persistence ratio, both of which
include noise.

We choose different parametrisation pair in order to confine noise to a single parameter:
the ratio of rotation to translation and the ratio of self-propulsion to translation.

Consider the overdamped Langevin equation for a single particle
{

vi =
√
2Dtξ

T (t) + vpni

ωi =
√
2Drξ

R(t)
(3)

where position and orientation of i-th circulangle is described by the coordinates of
its center of inertia ri and orientation angle of its axis ϕi respectively, having linear
velocity vi and angular velocity ωi respectively. Axis is also described by it director
ni = (cosϕi, sinϕi). Where Gaussian white noise variables 〈ξi(t)〉 = 0 and 〈ξi(t)ξj(t′)〉 =
δijδ(t − t′) , where ξ(t) is either ξT (t) or ξR(t), vp is the self-propulsion velocity. The
center of inertia of a circulangle is shifted by l along the axis with respect to the origin
of the circle. It depends on L, and for our particular case of L = 6 we have l ≈ 1.5, as
calculated by Eq.1 and shown on Fig.2.
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Initial configuration was generated as a random set of N = 363 particles in a periodic
boundary box sized 100 × 100, and their orientation angle is also randomly generated in
the range (0, 2π], as depicted on Fig. 3. The generated circulangle was accepted to the
ensemble, if no overlaps occured, and rejected otherwise. This corresponds to the surface
fraction of 0.278, which remains constant during MC sampling due to fixed number of
particles and fixed size of the box. Then we proceed with kinetic Monte Carlo sampling.
At each MC sweep each individual circulangle is attempted to be translated and rotated
according to the set of overdamped Langevin equations (3). The algorithm might seem
like conventional brownian dynamics, but we do not employ pairwise interaction term.
Instead, we proceed according to kinetic MC scheme [20] with hard particles: the move
is either accepted if no overlap between particles occur, or rejected otherwise. We use
Langevin equations just to show physical meaning of our parametrisation as opposed to
parametrisation used in [20]. Therefore the time variable in Eq.3 can only be considered
as an MC sweep counter, and not as a real time. Here we are interested only in a final
stable structure and not in its time evolution.

Precisely speaking, for anisotropic particles, which circulangles are, diffusion coefficient
will also be anisotropic and orientation-dependent. We simplify it in this work to a scalar
Dt. Translation and rotation is coupled for both, conservative and dissipative effects.
Ballistically, they are coupled by particle’s mass and its moment of inertia, which can
be parametrised using the radius of gyration. Dissipative effects, i.e. drag and torque,
are coupled by the particles’ shapes, and its relative distrubution can be parametrised
using the aspect ratio L. For this work we simply use the ratio of scalar rotational
diffusion coefficient to translational diffusion coefficient as a control parameter. The

results, presented in this work were obtained for
√

Dr

Dt
= 1. The second control parameter

is responsible for the relative contribution of self-propulsion to translational motion. We
characterize it by the Péclet number PeL = Lvp

Dt
, which in our case was 120. Relation of

these parameters to persistence length as defined in [20] will be presented elsewhere.

4 RESULTS

The system with initial configuration, shown on Fig.3, undergoes MC moves according
to the procedure, described above. After ≈ 10000 MC moves the system structurally
stabilizes as shown on Fig.4, forming partially aggregated micelles. The fundamental
difference from the conventional micelle-forming particles [7] is that circulangles do not
have to have attractive forces to micellize. Further MC sampling till 25000 MC moves
causes no change in global structures, just a few solitary particles travelling between
clusters.

Initially homogeneous system develops ordered structures, which we now want to quan-
titatively characterize. Apparently, we have a coupled orientational and positional order.
From one hand, there are widely used orientatioinal orders, e.g. nematic, tetratic, cu-
batic, etc. However, they do not account for polarity, which clearly present in our case,
and are able to describe orientational order only with an expected predefined rotational
symmetry. From the other hand, there is the bond orientational order parameter [21].
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Figure 3: Homogeneously distributed circulangles in a periodic boundary box 100 × 100.
Initial configuration.

It is quite tempting to use the latter to adopt it for characterization of axes’ orientation
micellewise. But it makes sense for the cases, where rotational symmetry of bonds is
an integer fraction of 2π, so the corresponding Fourier component is peaked. This order
parameter may indeed be proper to use for L satisfying the condition, that circulangle’s
noses stack into a pie with integer number of polarly tight micelle with α = sin 1

L
= 2π

n
,

where n is an integer. But circulangles with L = 6 do not satisfy this condition.
So we used the most assumption-free and simple parameter: the average angle between

the adjucent circulangles (Fig.5): s1 = 〈cos∆ϕ〉 = 〈n1 · n2〉, where ∆ϕ is the angle
between the axes of adjucent circulangles. The average is taken over the neighbors, which
have their median points r+ nL−1

2
within the vicinity of 2R.

As can be seen from Fig.6, the order parameter reaches the saturation level of ≈ 0.85,
and then slightly fluctuates around this level. The upper limit of the order parameter
yielded by the smallest possible ∆ϕmin = 1− 2

L2 , which in the case of L = 6 is ∆ϕmin ≈ 0.94
(Fig.6).
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Figure 4: Micellar aggregates/networks in a periodic boundary box 100 × 100, formed by
MC sampling. Final (stable) configuration.
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Figure 5: Definition of order parameter s1 = 〈cos∆ϕ〉 = 〈n1 · n2〉, where ∆ϕ is the
angle between the axes n1 and n2 of adjucent circulangles. The average is taken over the
neighbors, which have their median points r+ nL−1

2
within the vicinity of 2R.
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Figure 6: Changle of order parameter s1, defined on Fig.5, with MC sweep. The saturation
level of ≈ 0.85 is reached for the stable structure, shown on Fig.4. Upper limit of order
parameter smax

1 ≈ 0.94 for ideally micellized circulangles with L = 6.
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5 CONCLUSIONS AND PROSPECTS

We have introduced a particle with a new shape, which we named a circulangle. A
circulangle represents a simplistic particle’s model, which belongs to a unique class of
shapes, having:

- Only a single curvature singularity

- No center of symmetry

- Analytically integrable geometrical moments (surface, center, radius of gyration)

A system of circulangles, self-propelled along the axis of symmetry, self-organize into
aggregated micellar structures. Circulangles are the first known particles, which form
micelles without attractive forces, which implies full reversibility of the process. We
believe that the properties shown have powerfull implications for fundamental as well as
applied research.

From the applied point of view, the discovered phenomenon enables new approaches
in numerous applications: design of (meta) materials for energy conversion and storage,
sensorics, micromechanics, targeted drug delivery, swarm intelligence, etc.:

- Energy conversion from the source of self-propulsion, e.g. chemical, thermal, pho-
tonic etc., to mechanical energy in a macroscopic sense. The process is enabled by
entropic energy accumulation via micellisation. Taking into account reversibility of
micellisation of circulangles (circulangle-like particles), this opens an entirely new
niche in energy storage and conversion technology.

- Targeted drug delivery may be leveraged by micelles, formed by circulangles. They
seem to be promising candidates to transport difficult to dissolve drugs and thus
reduce the number of necessary particles of a drug and ensure better transportability
[5, 6].
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