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Abstract. Limit state analysis of masonry arches sets to assess the safety of the structure by 
determining the minimum thickness that just contains a thrust line. Based on the Heymanian 
assumptions regarding material qualities and the equilibrium approach to the static 
theorem it has been explicitly proven for semi-circular arches that both the thrust line 
and the resulting minimum thickness value is subject to stereotomy (brick or stone 
laying pattern), while present study demonstrates, that the latter statement holds for 
pointed-circular arches as well. This is not straightforward, since the number- and 
arrangement of the hinges at limit state vary subject to the geometry in case of pointed-
circular arches, resulting a more complex problem. It is also explicitly shown, that 
stereotomy might also affect the corresponding (rotational) failure mode (for certain 
arch geometries). Stereotomy of an existing structure is not always known, hence it is 
relevant to search for a stereotomy related bounding value of minimum thickness for each of 
the various failure modes. The potential of the envelope of resultants as a thrust line 
(resulting from vertical stereotomy) leading to bounding value minimum thicknesses is 
discussed: as shown elsewhere it bounds the family of thrust lines, hence leads to an upper 
bound value of minimum thickness in case of semi-circular arches. It is demonstrated 
however, that this cannot be generalized for other rotational failure modes which occur 
for circular-pointed arches. The envelope of resultants does not necessarily lead to a 
bounding value of minimum thickness, and even if it does, it can be either an upper or a 
lower bound. However, it is found that the range of minimum thickness values is 
bounded in all possible failure mode types. The necessary conditions are provided for 
each. 

1 INTRODUCTION 

Minimum thickness analysis is based on the consideration, that equilibrium of a 

structure made of no-tension material is only achievable if the thrust line does not exit its 

boundaries. It determines the smallest possible cross section, that can still fully incorporate 

the corresponding 
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thrust line for a given loading and compares it to the actual thickness of the arch. Thrust line is 

subject to the overall geometry of the structure, its loading and its stereotomy (brick or stone 

laying pattern). The classical approach (e.g. [1],[2]) for minimum thickness analysis assumes a 

certain stereotomy (mostly radial) and determines the unique thrust line and/or minimum 

thickness value for a fixed loading. Moseley, however, already suggested [3] that this set up 

can be varied. Present study considers the relation of thickness and thrust line fixed (that the 

latter does not exit the boundaries) and seeks a suitable stereotomy for which the thickness 

becomes minimal (at which the structure turns into a mechanism). This approach was already 

applied by the authors in investigating the effect of stereotomy on the minimum thickness of 

semi-circular arches [4]. It has been shown there and elsewhere [5, 6], that for self-load, the 

envelope of the resultant force vectors coincides with the thrust line in case of a vertical 

stereotomy: this is called the catenary-type thrust line. It is rather easily comprehensible that it 

bounds all other thrust lines corresponding to the same thickness and different stereotomy, if 

the arch’s reference line is convex, see also [4]. Consequently, the catenary type thrust line 

results in an upper bound minimum thickness value for the semi-circular arch. 

Even if the Heymanian assumptions are obeyed, the kinematically admissible (rotational) 

failure modes (number and arrangement of hinges) vary subject to arch geometry [7, 8, 9]. 

Nikolić’s recent rigorous study [8] on the rotational failure modes of pointed arches provided a 

reportedly inclusive list of all (altogether 5, see Figure 1) possible hinge arrangements subject 

to the arch geometry. His study suggests, without explicit proof, that 7 is the maximum number 

of concurrent hinges at the limit state for pointed arches. An analytical proof about that 

maximum was provided by us in [10]. Present paper aims to offer an extension to previous 

results by investigating the effect of stereotomy on the minimum thickness value of pointed 

circular arches. Stereotomy of an existing structure is not always known, hence it is relevant to 

search for a stereotomy related bounding value of minimum thickness for each of the various 

failure modes, if they exist. The potential of the catenary type thrust line (resulting from vertical 

stereotomy) leading to bounding value minimum thicknesses is discussed, with special 

emphasis on the 6 (7)- and 5-hinge type (2a) mechanism (it has already been shown by us in 

[10] that for 5-hinge type (2b) though it provides a bound, that is a lower one, as opposed to the 

case of 5-hinge type (1), the semi-circular arch (Figure 1.)). The complexity of the problems 

discussed here originates in the geometric indeterminacy of the studied mechanisms: since no 

hinge is located at either the top (6-h) or the bottom(5-h2a) of the arch, the location of the array 

of resultants might vary relative to the axis of the arch. 

Motivation of present study is further discussed in Section, 2. Modelling, geometry and 

methodology is treated in Section 3, while results on the effect of stereotomy on the minimum 

thickness value for pointed arches corresponding to the 6-hinge and 5-hinge type (2a) 

mechanism are derived in Section 4. Finally, conclusions are drawn in Section 5. 
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2 MOTIVATION 

In particular, we aim to investigate, whether 

 the dependence of minimum thickness value on stereotomy is valid for all type of 

rotational failure modes. 

 stereotomy affects the type of failure mode. 

 it is relevant to define the stereotomy related bounding value of the minimum 

thickness for each of the various failure mode types (i.e. arch geometry), if exists. It 

would substantially simplify the analysis if there was one specific type of the thrust 

line (i.e. stereotomy), resulting a bounding value for all cases. The catenary type 

thrust line (linked to a vertical stereotomy) results in an upper bound minimum 

thickness and hence provides a safe estimation for the semi-circular arch (5-h1 type) 

– therefor it seems a natural candidate. 

3 MODELLING, GEOMETRY AND METHODOLOGY 

The applied material model is rigid-plastic, furthermore necessary assumptions proposed by 

Heyman [1] regarding the constitutive hypotheses are adopted: 

- the material has no tensile strength – in specific, the joints do not transfer tensile forces, 

- the material has infinite compressive strength, 

- no sliding occurs between the elements. 

The most notable consequence of these assumptions for present research is that only a rotational 

failure mode is considered. The static approach of limit state analysis is followed. The 

equilibrium condition is that the thrust line should not exit the boundaries of the arch. The yield 

condition is determined by the eccentricity of the resultant force vector: a plastic hinge forms, 

if the eccentricity equals half-thickness. Following Heyman’s proposal [1], minimum thickness 

analysis is treated as a plastic design methodology that seeks an optimal geometry. The assumed 

corresponding rotational failure mode (subject to geometry and loading) determines the 

arrangement of (plastic) hinges at the limit state, which allows for a geometric formulation of 

the equilibrium and the yield condition: at the limit state the thrust line crosses all hinges (yield) 

and must be tangent to the boundary of the arch at the internal hinges(equilibrium). In the 

following, the equilibrium condition is hence denoted tangency condition, in accordance with 

the geometric formulation. 

Figure 1. Rotational collapse modes of circular arches, based on [8] 
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3.1 Geometry 

The arch is modeled as a planar structure made 

of voussoirs. In order to account for all the 

theoretically possible arrangements, a 

continuous model is applied with sections (s) 

essentially substituting joints. Only constant 

thickness (t) and symmetrical arches are 

considered, the analysis is hence carried out on 

a half-arch and symmetry is accounted for in 

the constraints. (Minimum) thickness is scaled 

by the radius (R) of the arch, hence the notation 

t/R is used.  A major simplification of the 

applied model is that it considers the loading 

(self-weight) distributed evenly along the center 

line of the arch, which is treated as the 

reference line (r), regardless of the stereotomy. 

Consequently, the E vector (resultant force, see 

Figure 3) field becomes independent of the 

stereotomy and it seems essential for an 

analytical study of the problem. 

Depending on the problem discussed, the 

reference line is either parameterized with 

respect to the angle to the vertical denoted by  in a polar, or by x in a Cartesian coordinate 

system. Stereotomy is treated as a continuous function ordering the direction of s to each point 

along r. The thrust line is the set of points of intersection between lines E and s. Notation is 

shown in Figure 2 and 3, right. 

We consider circular-pointed arches with a unit radius (xe, ye є [0,1]). We define a deviation 

function (d(x)) in the Cartesian coordinate system as the difference between the center line r(x) 

and the catenary-type thrust line c(x). For a catenary-type thrust line results from a vertical 

stereotomy, d(x) is rather convieniently defined, the applied transformation from the polar 

system back and forth is straightforward. Depicting d(x) corresponds to the vertical projection 

of c(x) and r(x). 

𝑑(𝑥): = 𝑟(𝑥) − 𝑐(𝑥). (1) 

The equation of the envelope of resultants (or the catenary-type thrust line) is obtained based 

on the vanishing moment: 

𝑐(𝑥) = 𝑦0 −
𝑉(𝑥)

𝐻

⏞
𝑚(𝑥)

(𝑥 − 𝑥𝑉(𝑥)), (2)
 

where y0 denotes the y-intercept of H at the top, and xV the x-coordinate of the center of mass. 

While r(x) reads 

𝑟(𝑥) = √1 − (𝑥 + 𝑥𝑒)
2 − 𝑦𝑒 . (3) 

Thrust line’s eccentricity at the top from r(x), denoted et, [-1,1] is a unitless quantity, scaled by 

t/2R, half-thickness to radius ratio of the arch. Its eccentricity from r(x) at the springing is es [-

Figure 2. Notation of geometry (6-h mechanism)   

c(x) catenary 
type thrust line 

r(x) reference 
line 

s(x) section 
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1,1], analogously to et. At the intersections of E(x) with the intrados (or extrados) (Figure 2), 

the following relations hold (the necessary conversion for angles measured at the extrados is 

made, though not detailed here, before depicting them on the α-φ plane for φ refers to angles 

measured at the intrados, see Figure 2, 3): 

𝑥 = (1 ±
1

2

𝑡

𝑅
) sin(φ) − sin(𝛼𝑡) , (4) 

𝑦 = (1 ±
1

2

𝑡

𝑅
) cos(𝜑) − cos(𝛼𝑠) . (5) 

3.2 Methodology 

The methodology of determining the admissible stereotomy functions for a given minimum 

thickness value is presented in detail in [4] for the case of the semi-circular arch. A very brief 

outline is given here, while its application to the more general case of pointed arches is to be 

found in Section 4. As per definition, the stereotomy-dependent thrust line points lay on the 

resultants (which only depend on the geometry, i.e r and t/R in the frame of the model), hence 

those sections of the resultants are inadmissible which are outside (if the arch is sufficiently 

thin, see [4]) the boundaries of the arch. This allows for the definition of inadmissible ranges 

of the angle φ for each point along the reference line. Here φ denotes the internal angle to the 

vertical of intersection of section and intrados. The results are depicted on the α-φ plane for a 

given t/R ratio. A visual explanation is given in Figure 3. below: 

Figure 3. Diagram of admissible stereotomy function-range (left white) in the α-φ plane (left), and the 

explanation of admissible-and inadmissible (orange) ranges on the arch (right) 

4 EFFECT OF STEREOTOMY ON THE MINIMUM THICKNESS VALUE 

Following the initial assumption that the catenary type thrust line leads to a bounding value 

minimum thickness we start each analysis of an arch (characterized by xe, ye, or, equivalently, 

by αs and αt, see Figure 2) with a given r(x) reference line by determining the t/R and the 

corresponding α-φ diagram depicting the admissible range of stereotomies based on c(x). 

Determining the minimum thickness value of a pointed-circular arch of given geometry (xe,ye) 

for a specific stereotomy is done by solving the following system of non-linear equations: 

inadmissibl
e range for 
thrust line 
point for 
(O(α)), 
based on 
equilbirium 
condition 

r(α) 
reference 
line 

envelope of 
resultants 

inadmissibl
e range for 
stereotomie
s, based on 
equilbirium 
condition 
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𝑑(𝑥1) = 𝑐(𝑥1) − 𝑟(𝑥1) = 𝑡𝑝𝑟/2𝑅 

𝑑′(𝑥1) = 𝑐′(𝑥1) − 𝑟′(𝑥1) = 0 

𝑑(𝑥2) = 𝑐(𝑥2) − 𝑟(𝑥2) = −𝑡𝑝𝑟/2𝑅 

𝑑′(𝑥2) = 𝑐(𝑥2) − 𝑟(𝑥2) = 0 (6 − 9) 

With x1 and x2 denoting the x-coordinate of the internal hinges, and tpr denoting the projection 

of the half-thickness on the corresponding section. Note that except for the 5-hinge type (1) and 

(2b) (which are not considered here, see Introduction) always two internal (i.e. between the top 

and the springing of the arch) hinges appear, one at the intrados, one at the extrados (Figure 1). 

Then, if possible, we modify the value of t/R along with the et and es parameters (see Figure 2, 

note that r(x) is unaffected!) and observe the effect on the range of admissible stereotomies 

(essentially the /modified/ α-φ diagram) and the rotational failure mode, if applicable. Since the 

equilibrium related constraints are required, we derive the envelope of resultant for each new 

combination. It is important to highlight that we only aim to prove that other stereotomies (and 

hence minimum thicknesses) are possible, but we do not pursue to derive them for illustration. 

This also holds for the bounding value minimum thicknesses: we only intend to find the 

combination that results them (in terms of et and/or es) and not the corresponding stereotomy 

(unless, the bounding value is indeed based on the catenary type thrust line). 

Results based on eqs. (6-9) considering the catenary type thrust line for a selected arch geometry 

(i.e. failure mode 6-hinge) and its corresponding φ-α diagrams are depicted in Figure 4, second 

row, left. Analyzing the cited diagrams in Figure 4, it becomes reasonable to assume that should 

the t/R value be higher, hinge at the intrados would disappear, while for lower t/R values, the 

ranges corresponding to inadmissible points towards the extrados would intersect (hence no 

admissible stereotomy can be constructed) therefor no stereotomy-related variation in terms of 

t/R exists, see Figure 4, first row, middle and right. It is, however, shown below that due to 

their ‘geometric indeterminacy’ (parameter et or es influencing the location of the array of 

resultants) in case of the 6-hinge and 5-hinge type (2a) mechanisms stereotomy related variation 

still exists: multiple minimum thickness values can be derived for the same geometry (i.e. r(x)) 

and moreover the minimum thickness value derived based on catenary-type thrust line does not 

provide a bound. 

4.1 6-hinge mechanism 

In the case of a 6-hinge mechanism we have 4, linearly independent unknowns for a given 

geometry (fixed xe and ye): t/R, et, and the locations of the internal hinges, x1 and x2. 

Consequently, if vertical stereotomy is considered (equivalently: catenary type thrust line), 

solving eqs. (6-9), results a unique ‘et’ value in addition to the location of hinges and t/R value 

for a given geometry. However, relaxing the boundary conditions of the minimum thickness 

analysis still based on catenary-type thrust line (by instead of eqs. (6) and (8) enforcing solely 

the following inequalities on the problem:  

𝑑𝑒(𝑥1) ≤  𝑡𝑝𝑟/2𝑅 (10) 

𝑑𝑖(𝑥2) ≤ −𝑡𝑝𝑟/2𝑅 (11) 

respectively, opens up a range of admissible values of ‘et’, and allows for stereotomy related 

variation of minimum thicknesses for the same geometry. Geometrically, condition (11) means 
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that we allow the catenary type thrust line to cross the boundary towards the intrados, while 

condition (12) means it might not even touch extrados (see Figure 4 second row, middle, left 

and Figure 5). Observe that if both is fulfilled simultaneously alternate admissible stereotomies 

might exists, as all other members of the thrust line family is ‘above’ the catenary-type – i.e. 

one can be found that touches both extrados and intrados. The following questions should then 

be investigated:  

- what is the admissible range of ‘et’? 

- whether an analysis based on the catenary-type thrust line results a bounding minimum 

thickness value? 

The deviation function d(x) provides an illustrative tool well suited to investigate these 

questions: 

𝑑(𝑥) = 𝑦0 −𝑚(𝑥)(𝑥 − 𝑥𝑉(𝑥))⏟              
𝑐(𝑥)

− √1 − (𝑥𝑒 − 𝑥)
2 − 𝑦𝑒

⏞            
𝑟(𝑥)

. (12) 

r(x) depends on the geometry, hence any changes of the value t/R or et affects c(x) only. x, xv 

are also independent of these parameters. In order to highlight the effect of any change in these 

parameters, the following formulation is obtained: 

𝑑(𝑥) = (𝒚𝒉 − 𝒚𝒆 + 𝒆𝒕
𝒕

𝟐𝑹

⏞          
𝒚𝟎

)(1 −
𝑉(𝑥)

𝑉(𝑥ℎ)(𝒙𝒎𝒂𝒙(𝒕/𝑹) − 𝑥𝑉(𝑥ℎ))
(𝑥 − 𝑥𝑉(𝑥))

⏟                                          
𝑐(𝑥)

− √1 − (𝑥𝑒 − 𝑥)
2 − 𝑦𝑒

⏞            
𝑟(𝑥)

(13) 

Note that ‘et’ only affects (directly) the value of y0. From this formulation it is obvious that for 

a given t/R value reducing the value of et results lower d(x) values. Hence the admissible range 

of et is found to be:  

𝑒0𝑡 > 𝑒𝑡 > −1, (14) 

where e0t denotes the eccentricity calculated during the determination of minimum thickness 

considering catenary type thrust line. Note that decreasing d(x) means that it moves towards the 

intrados, at a fixed t/R. Hence, it is theoretically possible, to construct arches (by finding 

admissible stereotomies) for both higher and lower t/R values than that defined based on the 

catenary type thrust line: the corresponding lower and upper bound minimum thickness values 

can be found based on the assumption that et =-1. 

 t/R can be increased as long as min(d(x)) ≤t/2R), whereas it can be reduced as long as max(d(x)) 

≤t/2R) – meaning that the envelope of resultant at least touches the intrados, and at most it 

touches the extrados. The extremities of the range of minimum thickness values hence can be 

found by solving  
𝑑𝑒(𝑥1) = 0 ;  𝑑

′
𝑒(𝑥1) = 0; 𝑑𝑖(𝑥2) = 0 𝑤ℎ𝑖𝑙𝑒 𝑒𝑡 = −1 (15) 

or 

𝑑𝑖(𝑥2) = 0 ;  𝑑
′
𝑖(𝑥2) = 0; 𝑑𝑒(𝑥1) = 0 𝑤ℎ𝑖𝑙𝑒 𝑒𝑡 = −1 (16) 

The former resulting lower, the latter the upper bound. Note that the case of e = -1 turns the 

originally 6-hinge mechanism into a 7-hinge mechanism (see Figure 5, far left and left). 
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Up to this point it has been implicitly assumed that the failure mode is not subject to stereotomy 

– i.e. only 6-hinge (or in the limit, 7-hinge) mechanisms has been considered. This kept the 

value of es fixed, at 1. However, this is not a necessary condition. Decrease in the value of es 

has a similar, reducing effect on d(x) (see below), and it can be activated, if the limit in terms 

of et is achieved (i.e. hinge at the top is at the intrados). This turns the 6-hinge mechanism into 

a 5-hinge type (2a) or even (b).  

4.2 5-hinge type (2a) mechanism 

The problem of the 5-hinge mechanism type (2a) is very similar to the above discussed 6-hinge 

mechanism, except that at the top the thrust line is required to touch the intrados (hinge), while 

a hinge at the springing is not a necessary condition, hence es becomes a parameter. Therefor 

eq. (12) turns into: 

𝑑(𝑥) = (𝑦0(𝑡/𝑅))(1 −
𝑉(𝑥)

𝑉(𝑥ℎ) (𝒙𝒉 − 𝒙𝒆 + 𝒆𝒔
𝒕
𝟐𝑹⏟          

𝒙𝒎𝒂𝒙

− 𝑥𝑉(𝑥ℎ))

(𝑥 − 𝑥𝑉(𝑥))

⏟                                        
𝑐(𝑥)

− √1 − (𝑥𝑒 − 𝑥)
2 − 𝑦𝑒

⏞            
𝑟(𝑥)

(17)

 

Clearly, the es parameter only affects the value of xmax. Note that reducing the value of es results 

similarly to above lower d(x) values for arbitrary x. Following the same argument (see Figure 

5 right and far right) as for the case of a 6-hinge mechanism it is deductible that a minimum 

thickness analysis based on catenary type thrust lines does not provide any bound for the 5 

hinge mechanism type (2a) either (either lower or upper). The admissible range of ‘e’ is 

analogously: 

𝑒0𝑠 > 𝑒 > −1 (18) 

Note that the case of es = -1 turns the originally 5-hinge type (2)a mechanism into a 5-

hinge type (2b) mechanism (Figure 5).  

Figure 5. Hinge arrangement and catenary type thrust line in corresponding limit thickness arches (admissible 

stereotomy can exist, since all other members of the thrust line family lay above the catenary type thrust line) 
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5 CONCLUSIONS 

The most important conclusion of the study above, is that eminently the geometry of the circular 

pointed arch determines the failure mode, however, it can be modified by the stereotomy, if the 

failure mode had a geometric indeterminacy (6-hinge, 5-hinge type (2a)) and/or redundancy (7-

hinge – this, though not explicitly discussed above, is directly deductible from the cases 6-h 

and 5-h2a). Furthermore, determination of bounding value of minimum thickness for any 

geometry is possible if the geometric indeterminacy or the redundancy is resolved. To allow 

comparison with former results of the literature the outcome of the present work is visualized 

for a given ye (0.3) value in Figure 6: it contains the resulting minimum thickness values with 

respect to xe, for admissible stereotomies. The diagram can be obtained based on eqs. (6-9). It 

is clearly demonstrated that in perfect agreement with the findings of Nikolić [8] the 7-hinge 

mechanism marks a local minimum on the t/R(xe) function considering both the catenary type 

thrust line, marked bold red or radial stereotomy (marked bold black) in Figure 6. However, if 

the effect of stereotomy is fully accounted for, the geometry corresponding to the 7-hinge 

mechanism no longer marks any local minimum. Instead, the observation can be made that 

lower bound minimum thickness value is to be defined based on the assumption of a 5-hinge 

type (2b) failure mode. It is important to highlight though that the bounding value minimum 

thickness (and hence, failure modes) would require unrealistic stereotomies. 

The relation of the bold black and red line in the Figure also suggests a very important 

conclusion for realistic stereotomies. The formerly proven statement on how considering the 

catenary type thrust line provides lower bound minimum thickness value for failure mode 5-

hinge type (2b) and upper bound for failure mode 5-hinge type (1) can be extended for failure 

modes with geometric indeterminacy: It provides upper bound for 6-hinge mechanisms, and a 

lower bound for 5-hinge type (2a) mechanisms.  

Figure 6. Range of minimum thickness values for ye=0.3 and the corresponding rotational 

failure mechanisms 
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