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ABSTRACT 

In the present research work, a theoretical approach to evaluate the ultimate resistance of 

aluminium alloy members subjected to local buckling under uniform compression is 

provided. In particular, starting from the J2 deformation theory of plasticity, the theory of 

plastic buckling of plates has been extended including the variability of the Poisson’s ratio 

depending on the stress levels. the differential equation of the plates at the onset of 

buckling is developed and the corresponding solution is determined. This derivation 

represents an innovative step compared to the theoretical solutions currently existing in 

the technical literature because the variability of the Poisson’s ratio in the elastic-plastic 

region is commonly not accounted.  

Subsequently, starting from the obtained closed-form solution, the interactive buckling 

either in the elastic or in the plastic range of a generic aluminium members in 

compression is analysed. Two types of cross-sections are analysed: box-shaped members. 

To this scope, the Levy solution of the differential equation of a single plate in elastic-

plastic range is applied to the assembled plates constituting the cross-sections. 

Obviously, the interaction between the plate elements constituting the section is explicitly 

accounted by means of the boundary conditions accounting for restraining action. The 

previous boundary conditions lead to a system of equations whose trivial solution 

corresponds to the member in its non-deformed configuration. The prediction of the 

critical stress corresponding to local buckling in the elastic-plastic region is obtained as 

the value corresponding to the existence of a non-trivial solution for which the 

determinant of the matrix of the equation system is equal to zero. Finally, in order to 

consider the geometric imperfections of aluminium members, the procedure has been 

repeated by considering different geometric properties of plates composing the analysed 

cross-sections. 

1. INTRODUCTION 

The ultimate behaviour of aluminium members under uniform compression or in bending is 

strongly affected by the local buckling effects, the strain hardening behaviour and the 

interaction between the plate composing the cross-sections. The current provision, EN199-1-

1[1], adopts the same approach used for the carbon steel members. However, it is recognized 

that this approach is very conservative in the case of aluminium alloys[2]-[6]. Consequently, 
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some simplified approaches are presented in the scientific literature as the continuous strength 

method (CSM), direct strength method (DSM) or the extension of effective thickness method 

(ETM)[7]-[9]. In this work an alternative theoretical procedure has been developed starting 

from the deformation theory of plasticity. 

It is well known that the occurrence of buckling leads to a sudden loss of strength due to 

second-order effects rising from the deformed configuration resulting from buckling itself. In 

the case of metal structures, depending on the overall slenderness and on the local slenderness 

of the structural elements, buckling can be of concern for the structure as a whole, the 

individual structural elements or the plate elements constituting the member section. Besides, 

it can occur either in the elastic or in the plastic range. So, the first problem to deal with the 

theoretical study of the elastic-plastic response of structures under certain loading conditions 

is the definition of appropriate stress-strain relationships to describe the mechanical behaviour 

of material. In the simple cases of pure compression or tension, it is possible to adopt uniaxial 

stress-strain curves, however, under actual loading conditions, particular attention must be 

devoted to the material behaviour under multiaxial stress states. Generally, the plasticity 

models currently adopted for metal structures can be divided into two main groups: 1) the 

flow (Lévy-Mises) theory of plasticity, 2) the deformation (Hencky-Nadai) theory of 

plasticity. the flow theory of plasticity leads to a path-dependent relationship where the 

current strain depends not only on the value of the current total stress but also on how the 

actual stress value has been reached. Conversely, the deformation theory of plasticity 

represents essentially a special path-independent nonlinear constitutive law. Although from 

the scientific point of view, the flow theory of plasticity is more rigorous than second one, in 

many engineering problems regarding the inelastic buckling of structures, the deformation 

theory seems to be more in agreement with the experimental results. This phenomenon is 

usually referred to as the “plastic buckling paradox” [10]-[12].  

This work is not aimed to contribute to solving the controversies resulting from the plastic 

buckling paradox. The theoretical study herein presented will refer to the deformation theory 

of plasticity. The novelty of this work regards the introduction of the variability of the 

Poisson’s ratio in the elastic-plastic range, i.e., as dependent on the stress intensity measure, 

in the evaluation of the plate buckling differential equation. Then, the elastic-plastic plate 

buckling differential equation is used to define a theoretical procedure to estimate the ultimate 

resistance of aluminium members subjected to local buckling in compression. 

 

2. PLATE BUCKLING EQUATION IN ELASTIC-PLASTIC RANGE 

 

In this section, the plate buckling equation in elastoplastic region is provided. In particular, 

starting from the unified theory of plastic buckling presented by Stowell et al. [13], the 

general differential equation of plate stability has been derived in the elastic-plastic range to 

account for the mechanical non-linearity of aluminium material. The difference between the 

equation provided by Stowell and the one herein presented regards the assumption of the 

Poisson’s ratio. In fact, according to the classical Stowell’s and Ilyushin’s [14] assumption, 

the Poisson’s ratio is assumed equal to 0.50 according to the plastically incompressible state. 

Conversely, in the theoretical developments the Poisson’s ratio is assumed to be dependent on 

the stress level as suggested by Gerard and Wildhorn [15]. Consequently, the variation of 

stresses during buckling are derived according to the procedure outlined by Jones [16]. 
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The mathematical steps to derive the stability equation of a single plate in the elastic-plastic 

region are provided in the following sections. 

2.1.Relations in J2 Deformation Theory of Plasticity 

According to the J2 deformation theory of plasticity for isotropic materials under biaxial plane 

stress state (𝜎𝑧 = 𝜏𝑥𝑧 = 𝜏𝑦𝑧 = 0), the stress intensity and the corresponding strain intensity 

are given by: 

𝜎𝑖 = √𝜎𝑥
2 + 𝜎𝑦

2 − 𝜎𝑥𝜎𝑦 + 3𝜏𝑥𝑦
2  (1) 

and: 

휀𝑖 =
1

1 − 𝜈2
√(1 − 𝜈 + 𝜈2)(휀𝑥

2 + 휀𝑦
2) − (1 − 4𝜈 + 𝜈2)휀𝑥휀𝑦 +

3

4
(1 − 𝜈)2𝛾𝑥𝑦

2  (2) 

While the stress-strain relations with general non-linear material properties are equal to: 

𝜎𝑥 =
𝐸𝑠

1 − 𝜈2
(휀𝑥 + 𝜈휀𝑦) 𝜎𝑦 =

𝐸𝑠
1 − 𝜈2

(휀𝑦 + 𝜈휀𝑥) 𝜏𝑥𝑦 =
𝐸𝑠

2(1 + 𝜈)
𝛾𝑥𝑦 (3) 

where 𝐸𝑠 represents the secant modulus and it is given by: 

𝐸𝑠 =
𝜎𝑖
휀𝑖

 (4) 

The coefficient 𝜈 is the Poisson’s ratio and, in the elastic plastic region, his expression is 

provided by Gerard and Wildhorn [15]: 

𝜈 = 𝜈𝑝 − (𝜈𝑝 − 𝜈𝑒)
𝐸𝑠
𝐸

 (5) 

where 𝜈𝑒 and 𝜈𝑝 are, respectively, the Poisson’s ratio in elastic and plastic range. By 

rearranging Eq. (3), it is possible to express the strains as function of the stresses: 

휀𝑥 =
𝜎𝑥 − 𝜈𝜎𝑦

𝐸𝑠
 휀𝑦 =

𝜎𝑦 − 𝜈𝜎𝑥

𝐸𝑠
 𝛾𝑥𝑦 =

2(1 + 𝜈)

𝐸𝑠
𝜏𝑥𝑦 (6) 

2.2.Variation of Stresses during Buckling 

According to Figure 1, the stresses during buckling vary from their pre-buckling values. By 

considering the variability of 𝐸𝑠 and 𝜈 with the stress levels, the variation of the normal stress 

𝛿𝜎𝑥 can be derived from the first of Eqns. (3) as follows: 

𝛿𝜎𝑥 =
𝐸𝑠

1 − 𝜈2
[𝛿휀𝑥 + 𝜈𝛿휀𝑦] +

𝛿𝐸𝑠
1 − 𝜈2

(휀𝑥 + 𝜈휀𝑦) + 𝐸𝑠휀𝑥𝛿 [
1

1 − 𝜈2
] + 𝐸𝑠휀𝑦𝛿 [

𝜈

1 − 𝜈2
] (7) 

it is worthwhile noting that: 

𝛿𝐸𝑠 = −
𝐸𝑠
2

𝜎𝑖
(1 −

𝐸𝑡
𝐸𝑠
) 𝛿휀𝑖 𝛿 [

1

1 − 𝜈2
] =

2𝜈

(1 − 𝜈2)2
𝛿𝜈 [

𝜈

1 − 𝜈2
] =

1 + 𝜈2

(1 − 𝜈2)2
𝛿𝜈 (8) 

where the variation of Poisson’s ratio is equal to: 

𝛿𝜈 = (
1
2⁄ − 𝜈𝑒

𝐸
) (1 −

𝐸𝑡
𝐸𝑠
)
𝐸𝑠
2

𝜎𝑖
𝛿휀𝑖 (9) 

where 𝐸𝑡 represents the tangent modulus. By substituting Eqns. (8) and (9) into Eq.(7), and 

taking into account the Eq.(3), it is obtained: 

𝛿𝜎𝑥 =
𝐸𝑠

1 − 𝜈2
(𝛿휀𝑥 + 𝜈𝛿휀𝑦) −

𝐸𝑠
𝜎𝑖
(1 −

𝐸𝑡
𝐸𝑠
) [𝜎𝑥 −

1 − 2𝜈

2(1 − 𝜈2)
(𝜎𝑦 + 𝜈𝜎𝑥)] 𝛿휀𝑖 (10) 
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According to the mathematical steps reported in [17] and [18], the variation of the strain 

intensity has to be expressed as a function of the stress levels and the variation of the strains 

as follows: 

𝛿휀𝑖 =
1

2𝐻𝜎𝑖(1 − 𝜈
2)
{[(2 − 𝜈)𝜎𝑥 − (1 − 2𝜈)𝜎𝑦]𝛿휀𝑥 + [(2 − 𝜈)𝜎𝑦 − (1 − 2𝜈)𝜎𝑥]𝛿휀𝑦 + [3(1 − 𝜈)𝜏𝑥𝑦]𝛿𝛾𝑥𝑦} (11) 

where 𝐻 is equal to: 

𝐻 = 1 −
1 − 2𝜈

2(1 − 𝜈2)
(1 −

𝐸𝑡
𝐸𝑠
) {2𝜈 +

1

2𝜎𝑖
2 [2(𝜈 + 2)𝜎𝑥𝜎𝑦 − (2𝜈 + 1)(𝜎𝑥

2 + 𝜎𝑦
2) − 6(1 + 𝜈)𝜏𝑥𝑦

2 ]} (12) 

By substituting Eq.(11) into Eq.(10), the stress variation is expressed as a function of the 

stress levels and strain variations: 

𝛿𝜎𝑥 =
𝐸𝑠

1 − 𝜈2
{(𝛿휀𝑥 + 𝜈𝛿휀𝑦) + 𝛷𝑥 [𝑘𝑥𝜎𝑥𝛿휀𝑥 + 𝑘𝑦𝜎𝑦𝛿휀𝑦 +

1

2
𝑘𝑥𝑦𝜏𝑥𝑦𝛿𝛾𝑥𝑦]} (13) 

where: 

𝛷𝑥 =
1

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) [

1 − 2𝜈

2(1 − 𝜈2)
(𝜎𝑦 + 𝜈𝜎𝑥) − 𝜎𝑥] 

𝑘𝑥 = [(2 − 𝜈) − (1 − 2𝜈)𝜎𝑦/𝜎𝑥] 

𝑘𝑦 = [(2 − 𝜈) − (1 − 2𝜈)𝜎𝑥/𝜎𝑦] 

𝑘𝑥𝑦 = 6(1 − 𝜈) 

(14) 

By exchanging 𝑥 with 𝑦, the stress variation 𝛿𝜎𝑦 is equal to: 

𝛿𝜎𝑦 =
𝐸𝑠

1 − 𝜈2
{(𝛿휀𝑦 + 𝜈𝛿휀𝑥) + 𝛷𝑦 [𝑘𝑥𝜎𝑥𝛿휀𝑥 + 𝑘𝑦𝜎𝑦𝛿휀𝑦 +

1

2
𝑘𝑥𝑦𝜏𝑥𝑦𝛿𝛾𝑥𝑦]} (15) 

where Φ𝑦 is equal to: 

𝛷𝑦 =
1

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) [

1 − 2𝜈

2(1 − 𝜈2)
(𝜎𝑥 + 𝜈𝜎𝑦) − 𝜎𝑦] (16) 

From Eqns. (3) (third): 

𝛿𝜏𝑥𝑦 =
𝐸𝑠

2(1 + 𝜈)
𝛿𝛾𝑥𝑦 + 𝛾𝑥𝑦 [

𝛿𝐸𝑠
2(1 + 𝜈)

+
𝐸𝑠
2

𝛿𝜈

(1 + 𝜈)2
] (17) 

Accounting for Eqns. (8)and (9), the variation of the shear stress is given by: 

𝛿𝜏𝑥𝑦 =
𝐸𝑠

2(1 − 𝜈2)
{(1 − 𝜈)𝛿𝛾𝑥𝑦 −

1

2𝜎𝑖
(1 −

𝐸𝑡
𝐸𝑠
) 6(1 − 𝜈)𝜏𝑥𝑦𝛿휀𝑖} (18) 

Finally, by substituting Eq.(11) into Eq.(18), also the variation of the shear stress is expressed 

as a function of the stress levels and strain variations: 

𝛿𝜏𝑥𝑦 =
𝐸𝑠

2(1 − 𝜈2)
{(1 − 𝜈)𝛿𝛾𝑥𝑦 +𝛷𝑥𝑦 [𝑘𝑥𝜎𝑥𝛿휀𝑥+ 𝑘𝑦𝜎𝑦𝛿휀𝑦 +

1

2
𝑘𝑥𝑦𝜏𝑥𝑦𝛿𝛾𝑥𝑦]} (19) 

where 𝛷𝑥𝑦 is equal to: 

𝛷𝑥𝑦 = −
3

2𝐻𝜎𝑖
2
(1 −

𝐸𝑡

𝐸𝑠
) (

𝜏𝑥𝑦

1 + 𝜈
) (20) 

2.3.Variation of internal actions in thin plates 

According to the theory of thin plates, it is possible to assume that the segments which are 

orthogonal to the mid-plane of the plate remain orthogonal also in the deformed configuration 

(Figure 2). Therefore, the strain variations are given by: 

𝛿휀𝑥 = 𝛿휀𝑥.0 − 𝑧𝛿𝜒𝑥 𝛿휀𝑦 = 𝛿휀𝑦.0 − 𝑧𝛿𝜒𝑦 𝛿𝛾𝑥𝑦 = 2𝛿휀𝑥𝑦.0 − 2𝑧𝛿𝜒𝑥𝑦 (21) 
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where 𝛿휀𝑥.0, 𝛿휀𝑦.0 and 2𝛿휀𝑥𝑦.0 are the strain variations at the mid-thickness line of the plate; 

𝛿𝜒𝑥, 𝛿𝜒𝑦 and 2𝛿𝜒𝑥𝑦 are, respectively,  the curvature variations and twisting, while  𝑧 is the 

distance of the generic fibre from the mid-thickness line of the plate. 

By substituting the previous relations into Eqns.(13),(15), (18) and by means of some 

mathematical steps, the following relationships are provided: 

𝛿𝜎𝑥 =
𝐸𝑠

1 − 𝜈2
[(𝛿휀𝑥.0 + 𝜈𝛿휀𝑦.0) − 𝑧(𝛿𝜒𝑥 + 𝜈𝛿𝜒𝑦) − Ψ𝜎𝑥𝑆𝑥

∗(Κ𝜀 − 𝑧Κ𝜒)] 

𝛿𝜎𝑦 =
𝐸𝑠

1 − 𝜈2
[(𝛿휀𝑦.0 + 𝜈𝛿휀𝑥.0) − 𝑧(𝛿𝜒𝑦 + 𝜈𝛿𝜒𝑥) − Ψ𝜎𝑦𝑆𝑦

∗(Κ𝜀 − 𝑧Κ𝜒)] 

𝛿𝜏𝑥𝑦 =
𝐸𝑠

2(1 − 𝜈2)
[2(1 − 𝜈)(𝛿휀𝑥𝑦.0 − 𝑧𝛿𝜒𝑥𝑦) − Ψ𝜏𝑥𝑦𝑆𝜏

∗(Κ𝜀 − 𝑧Κ𝜒)] 

(22) 

where: 

Ψ =
1

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 

𝑆𝑥
∗ = [1 −

1 − 2𝜈

2(1 − 𝜈2)

(𝜎𝑦 + 𝜈𝜎𝑥)

𝜎𝑥
] =

𝑘𝑥

2(1 − 𝜈2)
 

𝑆𝑦
∗ = [1 −

1 − 2𝜈

2(1 − 𝜈2)

(𝜎𝑥 + 𝜈𝜎𝑦)

𝜎𝑦
] =

𝑘𝑦

2(1 − 𝜈2)
 

𝑆𝜏
∗ =

3

1 + 𝜈
 

Κ𝜀 = 𝑘𝑥𝜎𝑥𝛿휀𝑥.0 + 𝑘𝑦𝜎𝑦𝛿휀𝑦.0 + 𝑘𝑥𝑦𝜏𝑥𝑦𝛿휀𝑥𝑦.0 

Κ𝜒 = 𝑘𝑥𝜎𝑥𝛿𝜒𝑥 + 𝑘𝑦𝜎𝑦𝛿𝜒𝑦 + 𝑘𝑥𝑦𝜏𝑥𝑦𝛿𝜒𝑥𝑦 

(23) 

The relationships reported in Eq.(22) represent the dependence between the stress variations 

on strain variations. 

The variations of the bending and twisting moments due to buckling are given by: 

𝛿𝑀𝑥 = ∫ 𝛿𝜎𝑥 ∙ 𝑧𝑑𝑧
+𝑡/2

−𝑡/2

 𝛿𝑀𝑦 = ∫ 𝛿𝜎𝑦 ∙ 𝑧𝑑𝑧
+𝑡/2

−𝑡/2

 𝛿𝑀𝑥𝑦 = ∫ 𝛿𝜏𝑥𝑦 ∙ 𝑧𝑑𝑧
+𝑡/2

−𝑡/2

 (24) 

By substituting the relations presented in Eq.(23) into previous equation, it is obtained: 

𝛿𝑀𝑥 = −𝐷𝑠[𝐴11𝛿𝜒𝑥 + 𝐴12𝛿𝜒𝑦 + 𝐴13𝛿𝜒𝑥𝑦] 

𝛿𝑀𝑦 = −𝐷𝑠[𝐴21𝛿𝜒𝑥 + 𝐴22𝛿𝜒𝑦 + 𝐴23𝛿𝜒𝑥𝑦] 

𝛿𝑀𝑥𝑦 = −
𝐷𝑠
2
[𝐴31𝛿𝜒𝑥 + 𝐴32𝛿𝜒𝑦 + 𝐴33𝛿𝜒𝑥𝑦] 

(25) 

where: 

𝐴11 = 1 −
𝜎𝑥
2

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 𝑘𝑥𝑆𝑥

∗ 

𝐴12 = 𝜈 −
𝜎𝑥𝜎𝑦

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 𝑘𝑦𝑆𝑥

∗ 

𝐴13 = −
𝜎𝑥𝜏𝑥𝑦

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 𝑘𝑥𝑦𝑆𝑥

∗ 

𝐴21 = 𝜈 −
𝜎𝑥𝜎𝑦

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 𝑘𝑥𝑆𝑦

∗ 

𝐴22 = 1 −
𝜎𝑦
2

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 𝑘𝑦𝑆𝑦

∗  

𝐴23 = −
𝜎𝑦𝜏𝑥𝑦

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 𝑘𝑥𝑦𝑆𝑦

∗ 

(26) 

𝐴31 = −
𝜎𝑥𝜏𝑥𝑦

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 𝑘𝑥𝑆𝜏

∗ 
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𝐴32 = −
𝜎𝑦𝜏𝑥𝑦

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 𝑘𝑦𝑆𝜏

∗ 

𝐴33 = 2(1 − 𝜈) −
𝜏𝑥𝑦
2

2𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) 𝑘𝑥𝑦𝑆𝜏

∗ 

The symbol 𝐷𝑠 represent the secant flexural stiffness of the plate and it is equal to: 

𝐷𝑠 =
𝐸𝑠𝑡

3

12(1 − 𝜈2)
 (27) 

 

 
 

Figure 1. Single plate under membrane actions Figure 2.Orthogonality of section to 

mid-plane of plate 

2.4.Equilibrium equation at the buckling 

In the case of plate subjected to only membrane force, the bending deflection of the plate is 

equal to zero. Therefore, by denoting with 𝑤 = 𝑤(𝑥, 𝑦) the bending deflection of the plate at 

buckling, the changes in curvatures are given by: 

𝛿𝜒𝑥 =
𝜕2𝑤

𝜕𝑥2
 𝛿𝜒𝑦 =

𝜕2𝑤

𝜕𝑦2
 𝛿𝜒𝑥𝑦 =

𝜕2𝑤

𝜕𝑥𝜕𝑦
 (28) 

Therefore, by denoting the membrane actions as 𝑁𝑥, 𝑁𝑦 and 𝑁𝑥𝑦, at the buckling, the 

differential equation of the plate under in-plane loading at buckling can be expressed as: 

𝜕2(𝛿𝑀𝑥)

𝜕𝑥2
+ 2

𝜕2(𝛿𝑀𝑥𝑦)

𝜕𝑥𝜕𝑦
+
𝜕2(𝛿𝑀𝑦)

𝜕𝑦2
= 𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
 (29) 

So, by substituting the relationships reported in Eqns.(25) and (28) into previous equation, the 

plate buckling differential equation accounting for the variability of the Poisson’s ratio in the 

elastic-plastic range is provided: 

𝐶1
𝜕4𝑤

𝜕𝑥4
− 𝐶2

𝜕4𝑤

𝜕𝑥3𝜕𝑦
+ 2𝐶3

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
− 𝐶4

𝜕4𝑤

𝜕𝑥𝜕𝑦3
+ 𝐶5

𝜕4𝑤

𝜕𝑦4
= −

1

𝐷𝑠
(𝑁𝑥

𝜕2𝑤

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝜕2𝑤

𝜕𝑥𝜕𝑦
+ 𝑁𝑦

𝜕2𝑤

𝜕𝑦2
) (30) 

where: 
𝐶1 = 𝐴11 𝐶2 = −(𝐴13 + 𝐴31) 𝐶3 = 0.5(𝐴12 + 𝐴21 + 𝐴33) 𝐶4 = −(𝐴23 + 𝐴32) 𝐶5 = 𝐴22 (31) 

Taking into account the Eqns.(14),(23) and (26), the final expressions of coefficients 𝐶𝑖 are 

equal to: 

𝐶1 = 1 −
1

4𝐻𝜎𝑖
2(1 − 𝜈2)

(1 −
𝐸𝑡
𝐸𝑠
) [(2 − 𝜈)𝜎𝑥 − (1 − 2𝜈)𝜎𝑦]

2
 

𝐶2 =
3𝜏𝑥𝑦

𝐻𝜎𝑖
2(1 + 𝜈)

(1 −
𝐸𝑡
𝐸𝑠
) [(2 − 𝜈)𝜎𝑥 − (1 − 2𝜈)𝜎𝑦] 

(32) 
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𝐶3 = 1 −
1

4𝐻𝜎𝑖
2 (1 −

𝐸𝑡
𝐸𝑠
) {
[(2 − 𝜈)𝜎𝑥 − (1 − 2𝜈)𝜎𝑦][(2 − 𝜈)𝜎𝑦 − (1 − 2𝜈)𝜎𝑥] + 18𝜏𝑥𝑦

2 (1 − 𝜈)2

1 − 𝜈2
} 

𝐶4 =
3𝜏𝑥𝑦

𝐻𝜎𝑖
2(1 + 𝜈)

(1 −
𝐸𝑡
𝐸𝑠
) [(2 − 𝜈)𝜎𝑦 − (1 − 2𝜈)𝜎𝑥] 

𝐶5 = 1 −
1

4𝐻𝜎𝑖
2(1 − 𝜈2)

(1 −
𝐸𝑡
𝐸𝑠
) [(2 − 𝜈)𝜎𝑦 − (1 − 2𝜈)𝜎𝑥]

2
 

It is easy to recognize that in the elastic range the value of coefficients 𝐶1, 𝐶3 and 𝐶5 is equal 

to 1.00 and the value of coefficients 𝐶2 and 𝐶4 is equal to zero because 𝐸𝑡 = 𝐸𝑠 = 𝐸. 

Consequently, Eq.(29) will provide the well-known De Saint Venant equation. Conversely, by 

imposing 𝜈 = 𝜈𝑝, the mathematical relations of coefficients 𝐶𝑖 are the same as those derived 

by Stowell[13]. 

2.5.Plate stability under uniform compression 

The attention is focused on the analysis of box-shaped aluminium members under uniform 

compression. Consequently, according to Figure 3, the following reference is made to the case 

of plate uniaxial compression: 

𝜎𝑥 = 𝜎𝑖  𝜎𝑦 = 𝜏𝑥𝑦 = 0 (33) 

The differential equation, Eq.(30), is simplified as: 

𝐶1
𝜕4𝑤

𝜕𝑥4
+ 2𝐶3

𝜕4𝑤

𝜕𝑥2𝜕𝑦2
+ 𝐶5

𝜕4𝑤

𝜕𝑦4
= −

𝑁

𝐷𝑠

𝜕2𝑤

𝜕𝑥2
 (34) 

where the coefficients 𝐶𝑖 are equal to: 

𝐶1 = 1 −
(2 − 𝜈)2

4𝐻(1 − 𝜈2)
(1 −

𝐸𝑡
𝐸𝑠
) 

𝐶3 = 1 +
(2 − 𝜈)(1 − 2𝜈)

4𝐻(1 − 𝜈2)
(1 −

𝐸𝑡
𝐸𝑠
) 

𝐶5 = 1 −
(1 − 2𝜈)2

4𝐻(1 − 𝜈2)
(1 −

𝐸𝑡
𝐸𝑠
) 

𝐻 = 1 +
(1 − 2𝜈)2

4(1 − 𝜈2)
(1 −

𝐸𝑡
𝐸𝑠
) 

(35) 

According to Levy’s form, the solution of Eq.(34) can be found as: 

𝑤(𝑥, 𝑦) = 𝐹(𝑦) sin ( 
𝑚𝜋𝑥

𝑎
) (36) 

where 𝑎 is the length of the plate and 𝑚 is the number of half-waves along the longitudinal 

direction. By substituting Eq. (36) into Eq.(34), through some mathematical steps, the 

solution of the differential equation can be found as follows: 

𝑤(𝑥, 𝑦) = (𝐴1𝑐𝑜𝑠ℎ𝛼𝑦 + 𝐴2𝑠𝑖𝑛ℎ𝛼𝑦 + 𝐴3𝑐𝑜𝑠𝛽𝑦 + 𝐴4𝑠𝑖𝑛𝛽𝑦)𝑠𝑖𝑛𝑘𝑥 (37) 

where 𝑘 = 𝑚𝜋 𝑎⁄  and 𝛼, 𝛽 are equal to: 

𝛼 = √
𝐶3𝑘

2

𝐶5
+ √(

𝐶3
𝐶5
)
2

𝑘4 − 𝑘2 (𝑘2
𝐶1
𝐶5
−

𝑁

𝐷𝑠𝐶5
) 𝛽 = √−

𝐶3𝑘
2

𝐶5
+ √(

𝐶3
𝐶5
)
2

𝑘4 − 𝑘2 (𝑘2
𝐶1
𝐶5
−

𝑁

𝐷𝑠𝐶5
) (38) 

The integration constants 𝐴𝑖 have to be derived accounting for the boundary conditions. The 

writing of the boundary conditions can concern kinematic conditions (i.e. displacements and 

rotations) and static conditions (i.e. internal actions). Obviously, the trivial solution 𝑠𝑖𝑛𝑘𝑥 =
0 has to be neglected. 
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Figure 3. Single plate under uniform compression 

3. APPLICATION OF THEORETIC PROCEDURE TO BOX SECTIONS 

The theoretic procedure, reported in Section 2.5, can be applied to all plates constituting a 

generic aluminium cross-section. According to Figure 4, the application of procedure is 

reported with reference to the box-shaped aluminium member. So, Eq.(37) can be developed 

for plate 1 and plate 2 as follows: 

Plate 1: 𝑤(1)(𝑥, 𝑦) = 𝐴1
(1)
𝑐𝑜𝑠ℎ𝛼𝑦 + 𝐴2

(1)
𝑠𝑖𝑛ℎ𝛼𝑦 + 𝐴3

(1)
𝑐𝑜𝑠𝛽𝑦 + 𝐴4

(1)
𝑠𝑖𝑛𝛽𝑦 

Plate 2:𝑤(2)(𝑥, 𝑦) = 𝐴1
(2)
𝑐𝑜𝑠ℎ𝛼𝑦 + 𝐴2

(2)
𝑠𝑖𝑛ℎ𝛼𝑦 + 𝐴3

(2)
𝑐𝑜𝑠𝛽𝑦 + 𝐴4

(2)
𝑠𝑖𝑛𝛽𝑦 

(39) 

8 integration constants have to be derived, consequently, the following boundary conditions 

have to be developed: 

 𝜑1|𝑦1=0 = 0  𝜑2|𝑦2=0 = 0  𝑅1
∗|𝑦1=0 = 0  𝑅2

∗|𝑦2=0 = 0 
(40) 

𝑤1|𝑦1=𝑏1 = 0  𝑤2|𝑦2=−𝑏2 = 0 𝜑1|𝑦1=𝑏1 = 𝜑2|𝑦2=−𝑏2 𝑀1|𝑦1=𝑏1 = 𝑀2|𝑦2=−𝑏2 

where 𝑤𝑖 and 𝜑𝑖 are the kinematic conditions and they represent, respectively, the 

displacement and the rotation of a single plate. Instead, 𝑀𝑖 and 𝑅𝑖
∗ are the static conditions 

and they represent the bending moment and the equivalent shear action, respectively. Their 

expressions in the elastic-plastic range are equal to: 

𝑀𝑖 = −𝐷𝑠 [𝐶5
𝜕2𝑤

𝜕𝑦2
+ (𝜈 + 𝐶3 − 1)

𝜕2𝑤

𝜕𝑥2
] 𝑅𝑖

∗ = −𝐷𝑠 [𝐶5
𝜕3𝑤

𝜕𝑦3
+ (𝐶3 + 1 − 𝜈)

𝜕3𝑤

𝜕𝑥2𝜕𝑦
] (41) 

It is important to underline that by applying the first four boundary conditions (rotations and 

equivalent shear equal to zero), it is obtained: 

𝐴2
(1)
= 𝐴4

(1)
= 𝐴2

(2)
= 𝐴4

(2)
= 0 (42) 

This result derived due to double symmetry. Instead, the remain boundary conditions lead to 

the following system of equations: 

[
 
 
 
 

𝑐𝑜𝑠ℎ(𝛼1𝑏1) 𝑐𝑜𝑠(𝛽1𝑏1) 0 0

0 0 𝑐𝑜𝑠ℎ(𝛼2𝑏2) 𝑐𝑜𝑠(𝛽2𝑏2)

𝛼1𝑠𝑖𝑛ℎ(𝛼1𝑏1) −𝛽1𝑠𝑖𝑛(𝛽1𝑏1) 𝛼2𝑠𝑖𝑛ℎ(𝛼2𝑏2) −𝛽2𝑠𝑖𝑛(𝛽2𝑏2)

𝐷𝑠
(1)
𝛼1
2𝑐𝑜𝑠ℎ(𝛼1𝑏1) −𝐷𝑠

(1)
𝛽1
2𝑐𝑜𝑠(𝛽1𝑏1) −𝐷𝑠

(2)
𝛼2
2𝑐𝑜𝑠ℎ(𝛼2𝑏2) +𝐷𝑠

(2)
𝛽2
2𝑐𝑜𝑠(𝛽2𝑏2)]

 
 
 
 

{
 
 

 
 𝐴1

(1)

𝐴3
(1)

𝐴1
(2)

𝐴3
(2)
}
 
 

 
 

= {

0
0
0
0

} (43) 

Obviously, a trivial solution 𝑨 = 𝟎 represents the unbuckled configuration. A nontrivial 

solution is provided when the axial load reaches a value such that the determinant of the 

coefficient matrix is equal to zero. This solution corresponds to occurrence of elastic-plastic 

buckling. It is important to underline that the solution of Eq.(43) can not be obtained in closed 

form, because the parameters 𝛼 and 𝛽 are dependent on the stress level and, consequently, on 

the value of the critical stress to be determined. For this reason, a numerical procedure has 
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been developed through the MATLAB software program[19]. Moreover, it is easy to 

recognize that the critical value of the stress in the elastic-plastic range 𝜎𝑐𝑟.𝑝, corresponding to 

the bifurcation point of equilibrium, can be found for increasing values of the axial stress in 

the plate elements until the determinant of the coefficient matrix is equal to zero, as shown in 

Figure 4. More details of the previous procedure are reported also in [17] and [18]. 

 
 

Figure 4. Geometric scheme of box section under compression (left). A generic trend between 

the determinant of matrix and the stress level in compression (right) 

4. ANALYSIS AND RESULTS 

In this section, an analysis performing on a generic box section by varying the width-to-

thickness ratio and a comparison with experimental tests provided in the scientific literature 

are provided. The analysis has been carried out on the box-shaped members made of EN AW 

6082-T6 aluminium alloy, characterized by the conventional yield strength equal to 𝑓0.2 =
260 MPa and the strain hardening coefficient equal to 𝑛 = 25. It is important to underline 

that the material is modelled according to Ramberg-Osgood’s law: 

휀 =
𝜎

𝐸
+ 0.002 (

𝜎

𝑓0.2
)
𝑛

 
𝑛 =

𝑙𝑛(0.002/휀0.𝑢)

𝑙𝑛(
𝑓
0.2

𝑓
𝑢
)

 
(44) 

where 휀0.𝑢 is the residual strain corresponding to the maximum stress 𝑓𝑢 , and it is equal to 

휀0.𝑢 = 휀𝑢 −  0.002. The analysis has been carried out for increasing the number buckling 

half-waves along the loading direction. The final value of the buckling stress will be the 

smallest among those computed. The result is depicted in Figure 5. It is easy to recognize that 

for the values of 𝑏/𝑡 > 35, the buckling effect occurs in the elastic region, while for values 

𝑏/𝑡 ≤ 35, the local buckling occurs in the post elastic range.  
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Figure 5. Trend between the width-to-thickness ratio and the interactive local buckling 

In order to evaluate the accuracy of this procedure, a comparison with experimental stub 

column tests presented in the scientific literature. In particular, the experimental campaign 

performed by Su et al[20] at the University of Hong Kong and those carried out by Faella et 

al[21] at the University of Salerno have been considered in this work. The comparison has 

been provided in terms of the ultimate resistance and non-dimensional strain. Consequently. 

the theoretical buckling loads 𝑁𝑢.𝐷𝑇𝑃, obtained by the deformation theory of plasticity 

procedure, are compared with the experimental results 𝑁𝑢.𝑒𝑥𝑝 as reported in Figure 6 (left). 

the comparison between the theoretic normalised strains 휀�̅�.𝐷𝑇𝑃, corresponding to 𝑁𝑢.𝐷𝑇𝑃, and 

the experimental normalised strains휀�̅�.𝑒𝑥𝑝  is shown in Figure 6 (right). The normalization of 

the strain is performed by the value 휀0 = 𝑓0.2 𝐸⁄ . The results of comparison are summarized in 

Table 1. 

  
Figure 6. Comparison between the theoretic and experimental results in terms of the 

resistance (left) and the non-dimensional strain (right) 
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Table 1.Mean value and standard deviation of the 

 𝑁𝑢.𝐷𝑇𝑃 𝑁𝑢.𝑒𝑥𝑝⁄  and 휀�̅�.𝐷𝑇𝑃 휀�̅�.𝑒𝑥𝑝⁄  ratios 

 Mean [μ] Standard deviation [σ] 

𝑁𝑢.𝐷𝑇𝑃 𝑁𝑢.𝑒𝑥𝑝⁄  1.03 0.09 

휀�̅�.𝐷𝑇𝑃 휀�̅�.𝑒𝑥𝑝⁄  0.99 0.18 

5. CONCLUSIONS 

In this work, a theoretic procedure for evaluating the ultimate behaviour of aluminium 

members under uniform compression has been presented. Starting from the deformation 

theory of plasticity, the stability equation of a single plate under uniform compression is 

derived in the elastic-plastic region, considering the variability of Poisson ratio. Subsequently, 

the solution of the plate differential equation has been applied, by means of appropriate 

boundary conditions, to compute the interactive buckling occurring in the case of box 

sections.  

The accuracy of fully theoretical approach has been evaluated by comparing the predicted 

buckling resistance and the corresponding strain with the results of available experimental 

tests. The obtained results have shown that the mean value of the ratio  
 between the theoretical value of the ultimate resistance and the corresponding experimental 

value (𝑁𝑢.𝐷𝑇𝑃 𝑁𝑢.𝑒𝑥𝑝⁄ ) is equal to 1.03, with a standard deviation equal to 0.09. Instead, the 

mean value of the ratio between the theoretical value of non dimensional ultimate strain with 

those obtained by the experimental tests  (휀�̅�.𝐷𝑇𝑃 휀�̅�.𝑒𝑥𝑝⁄ ) assumes value equal to 0.99 with a 

standard deviation equal to 0.18 

Therefore, it can be concluded that the original theoretical contribution herein presented, is 

significant because it provides a comprehensive approach that evaluate with a good accuracy 

the local buckling resistance of aluminium members in compression by considering the 

variability of the Poisson ratio, the interaction between the plates composing the cross-section 

and the strain hardening behaviour of aluminium material.  
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