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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS\ast 

PRASHANTH NADUKANDI\dagger AND NICHOLAS J. HIGHAM\dagger 

Abstract. We derive an algorithm for computing the wave-kernel functions cosh
\surd 
A and

sinhc
\surd 
A for an arbitrary square matrix A, where sinhcz = sinh(z)/z. The algorithm is based

on Pad\'e approximation and the use of double angle formulas. We show that the backward error of
any approximation to cosh

\surd 
A can be explicitly expressed in terms of a hypergeometric function.

To bound the backward error we derive and exploit a new bound for \| Ak\| 1/k that is sharper than
one previously obtained by Al-Mohy and Higham [SIAM J. Matrix Anal. Appl., 31 (2009), pp. 970--
989]. The amount of scaling and the degree of the Pad\'e approximant are chosen to minimize the
computational cost subject to achieving backward stability for cosh

\surd 
A in exact arithmetic. Nu-

merical experiments show that the algorithm behaves in a forward stable manner in floating-point
arithmetic and is superior in this respect to the general purpose Schur--Parlett algorithm applied to
these functions.

Key words. wave kernel, matrix function, Pad\'e approximation, backward stability, hypergeo-
metric function, matrix norm estimation
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1. Introduction. The general solution of the scalar wave equation

\partial 2

\partial t2
u(x, t) - \Delta u(x, t) = b(x, t),(1.1a)

u(x, 0) = f(x),
\partial 

\partial t
u(x, 0) = g(x),(1.1b)

where \Delta is the Laplacian operator in x, has the formal expression [13, p. 119], [14],
[32, p. x],

(1.2) u(x, t) = cos(t
\surd 
 - \Delta )f + t sinc(t

\surd 
 - \Delta )g+

\int t

0

(t - s) sinc
\bigl( 
(t - s)

\surd 
 - \Delta 

\bigr) 
b(\cdot , s) ds.

Here, cos(t
\surd 
 - \Delta ) = cosh t

\surd 
\Delta , sinc(t

\surd 
 - \Delta ) = sinhc t

\surd 
\Delta , and sinhc z = sinh(z)/z,

with sinhc 0 := 1.
The two fundamental solutions to (1.1) are obtained by applying the operators

cosh t
\surd 
\Delta and t sinhc t

\surd 
\Delta to the Dirac delta function. These solutions are the kernels

of the linear (integral) transformation that maps the external input b(x, t) and the
initial data f(x) and g(x) to the general solution of (1.1). Greiner, Holcman, and
Kannai [14] have explicitly computed the wave kernels for several subelliptic second-
order operators.
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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS A4061

We will focus on the algebraic second-order Cauchy problem where f , g, b, and
u are vectors in \BbbC n independent of x and A \in \BbbC n\times n is an arbitrary square matrix:

(1.3) u\prime \prime (t) - Au(t) = b(t), u(0) = u0, u\prime (0) = u\prime 
0.

Such linear second-order ODE systems are obtained (for instance) from a semidis-
cretization of (1.1) by the finite element method. For this algebraic system the wave
kernels are the matrix functions cosh t

\surd 
A and t sinhc t

\surd 
A.

In view of these connections we will call the functions cosh
\surd 
z and sinhc

\surd 
z

the wave-kernel functions. In this paper we derive a new algorithm for computing the
wave-kernel matrix functions cosh

\surd 
A and sinhc

\surd 
A for an arbitrary square matrix A.

We emphasize that A in (1.3) is the given matrix. Typically (for example, in [6], [19]),
the matrix in (1.3) is assumed to be given in the form A2. Treating general A presents
new challenges for the backward error analysis, as we will see.

The wave-kernel functions have the power series representations

(1.4) cosh
\surd 
z =

\infty \sum 
n=0

zn

(2n)!
, sinhc

\surd 
z =

\infty \sum 
n=0

zn

(2n+ 1)!
.

Both series have an infinite radius of convergence and hence both are entire functions
(analytic in the whole complex plane). Since cosh and sinhc are even functions there
are no square root terms in (1.4) and so in the matrix case there are no questions
about the existence of the matrix square root or of which square root to take.

In many applications A is symmetric, but nonsymmetric A arise in stability
and position feedback control of circulatory systems [33, Chap. 5], constrained ex-
ternal damping in rotatory shafts [23, p. 43], frictional contact stability and control
of robot grasping arrangements [29, Chap. 4], [30], and semi-Lagrangian formulation
of flows [25].

The stability analysis of second-order ODE systems is done in the frequency
domain assuming a time periodic external input b(t). In applications where b(t) is a
nonperiodic function of time we have to work in the time domain. The time integration
of stiff ODE systems is a challenging task. The wave-kernel matrix functions are useful
for deriving accurate time integrators suitable for stiff second-order ODE systems.

When A is a large, possibly sparse matrix there are various approaches to com-
puting the action of a matrix function f(A) on a vector b [18, Chap. 13]. One is to
generate approximations to f(A)b from a Krylov subspace \scrK (A, b) [16]. Krylov sub-
space methods reduce the approximation of f(A)b to the computation of f(H)e1 for a
much smaller upper Hessenberg matrix H, where e1 is the first unit vector. Another
approach is to apply a series approximation along with a suitable scaling strategy [4].

In this work we develop algorithms for computing the wave-kernel matrix func-
tions based on Pad\'e approximation. The algorithms scale the matrix (A \leftarrow 4 - sA),
evaluate a Pad\'e approximant, then undo the effect of the scaling via recurrences. The
amount of scaling and the Pad\'e degree are based on the backward error of the Pad\'e
approximant to cosh

\surd 
4 - sA. We obtain an explicit expression for the backward error,

valid for any rational approximation, involving a hypergeometric function. For Pad\'e
approximants we expand this expression in a power series and bound it in terms of
quantities \| Ak\| 1/k. Our technique for exploiting these quantities is a refinement of
that introduced by Al-Mohy and Higham [3] and yields bounds never larger and possi-
bly much smaller. The resulting algorithm is backward stable for computing cosh

\surd 
A

and mixed forward--backward stable for computing sinhc
\surd 
A, where stability is with

respect to truncation error in exact arithmetic.
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A4062 PRASHANTH NADUKANDI AND NICHOLAS J. HIGHAM

Prior work on computing the wave-kernel matrix functions and their action on
vectors has mainly been restricted to the case where the matrixA is symmetric positive
definite [11], [12], [15], [31]. An exception is Al-Mohy's recent work [2], wherein
algorithms to compute the action of trigonometric and hyperbolic matrix functions
are derived for any square matrix A. The wave-kernel matrix functions are included
as a special case. The approach taken therein is to bound the absolute forward
error of approximations based on truncated Taylor series of the matrix functions
evaluated at a scaled value of the matrix A. Extending Al-Mohy's analysis to bound
the relative forward error is desirable but appears difficult, because it would require
a tight lower bound on the norm of the matrix function. Our approach of bounding
the (relative) backward error provides a scale-independent measure and it avoids any
need for consideration of condition numbers when assessing bounds.

To obtain the backward error result needed to derive our algorithm we need to
understand the behavior of the inverse of the function cosh

\surd 
z. The necessary results

are given in section 2.
In section 3 we derive a new bound for the norm of a general matrix power series

in terms of bounds for the quantities maxk\geq 2m \| Ak\| 1/k. The backward error analysis,
and its application to Pad\'e approximants, is given in section 4. Our algorithm for
computing the wave-kernel matrix functions is presented in section 5, where careful
attention is given to the choice of the parameter s (the amount of scaling) and m (the
Pad\'e degree).

The Schur--Parlett algorithm [10], [18, Chap. 9], designed for general matrix func-
tions, can also be used to compute the wave-kernel matrix functions. This algorithm
requires the ability to compute the derivatives at scalar arguments of the wave-kernel
functions, which are given by

d
k

dzk
cosh

\surd 
z =

\sum 
n\geq 0

(n+ 1)k
(2k + 2n)!

zn =
1

(k + 1)k
0F1

\biggl( 
; k +

1

2
;
z

4

\biggr) 
,(1.5a)

d
k

dzk
sinhc

\surd 
z =

\sum 
n\geq 0

(n+ 1)k
(2k + 2n+ 1)!

zn =
1

(k + 1)k+1
0F1

\biggl( 
; k +

3

2
;
z

4

\biggr) 
,(1.5b)

where (a)n is the Pochhammer symbol and 0F1(; a; z) is a hypergeometric function,
both of which are defined in Appendix A.2. Numerical experiments are given in
section 6 to test the practical behavior of our algorithm and to compare it with the
Schur--Parlett algorithm.

2. Fundamental regions and principal inverse of cosh
\surd 
\bfitz . We begin by

developing understanding of the inverse of cosh
\surd 
z that will be needed for the back-

ward error analysis.
A region that is mapped by a function in a one-to-one manner onto the whole

complex plane, except for one or more cuts, is called a fundamental region of that
function [1, p. 98].

Lemma 2.1 (fundamental regions of cosh
\surd 

). As n runs over positive integers,
the parametric curves

\Gamma n(t) := t2  - n2\pi 2 + i (2n\pi t)

divide the complex plane into fundamental regions of cosh
\surd 
z.

Proof. The parametric curves \Gamma n are motivated by the identity

(2.1) cosh
\sqrt{} 
(\rho 2  - \lambda 2) + i2\lambda \rho = cosh \rho cos\lambda + i sinh \rho sin\lambda ,
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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS A4063
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(a) Domain (z-plane).
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(b) Range (w-plane).

Fig. 2.1. The fundamental regions \Omega 0 (pink solid fill) and \Omega 1 (green dotted pattern) are shaded
in the z-plane. The function cosh

\surd 
z maps regions labelled Qi in the domain (z-plane) to regions

labelled Q\prime 
i in the range (w-plane). The curve \scrS \rho (t) defined in (2.2), with \rho = \pi /

\surd 
2, is shown as

a dashed line in the z-plane. Points on \scrS \rho (t) map to the elliptic curve (cosh \rho cos t) + i(sinh \rho sin t)
shown as a dashed line in the w-plane. Some salient points in the w-plane are shown by uniquely
shaded markers: , , , , , , , and their preimages are shown in the z-plane. With the aid of
these marker points we can associate every curve shown in the z-plane with a corresponding curve
in the w-plane. (Figure is in color online.)

where \lambda , \rho \in \BbbR . The segments of the parametric curve

(2.2) \scrS \rho (t) := \rho 2  - t2 + i (2\rho t)

that lie in the strict interior of the region bounded by \Gamma n(t) and \Gamma n+1(t) are \{ \scrS \rho (t) :
n\pi < t < (n+1)\pi \} and \{ \scrS \rho (t) :  - (n+1)\pi < t <  - n\pi \} . To fix ideas we show \Gamma 1(t),
\Gamma 2(t), and \scrS \rho (t) with \rho = \pi /

\surd 
2 in Figure 2.1a.

Using (2.1), we find that when \rho > 0, cosh
\surd 

maps the \scrS \rho curve segments to the
strict upper and strict lower segments of the elliptic curve cosh \rho cos t + i sinh \rho sin t
in a bijective manner. As \rho \rightarrow 0, the \scrS \rho curve segments converge to the line segment
S0, and cosh

\surd 
maps the corresponding \scrS 0 line segment to the line  - 1 < w < 1 in

a bijective manner. By varying \rho from 0 to \infty the \scrS \rho curve segments will sweep out
the strict interior of the region bounded by \Gamma n(t) and \Gamma n+1(t). The image of the \scrS \rho 
curve segments sweep out the entire w-plane except for two cuts ( - \infty , - 1) and (1,\infty )
along the real axis. Here w =  - 1 and w = 1 are branch points.

The proof that the convex region of \Gamma 1(t) is a fundamental region of cosh
\surd 

proceeds in a similar fashion by considering the curve segment \{ \scrS \rho (t) :  - \pi < t < \pi \} .
The image of this \scrS \rho curve segment sweeps out the entire w-plane except for a cut
( - \infty , - 1). Here only w =  - 1 is a branch point.

We denote by \Omega n the fundamental region bounded by \Gamma n(t) and \Gamma n+1(t), and
by \Omega 0 the convex region of \Gamma 1(t). In Figure 2.1a we show \Omega 0 (pink shading) and \Omega 1

(green dotted shading).
The curve \Gamma n(t) corresponds to both edges of the positive cut if n is even, and

to the edges of the negative cut if n is odd. To maintain a bijective mapping, we will
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A4064 PRASHANTH NADUKANDI AND NICHOLAS J. HIGHAM

include the curve segments \Gamma n(t < 0) and \Gamma n+1(t < 0) in \Omega n if n is odd. If n is even
then the curve segments \Gamma n(t \geq 0) and \Gamma n+1(t \geq 0) are included in \Omega n. The curve
segment \Gamma 1(t \geq 0) is included in \Omega 0.

Definition 2.2 (principal domain of cosh
\surd 

). We call the fundamental region
\Omega 0 the principal domain. It contains the origin (marked in Figure 2.1a), whose
image in the w-plane is not a branch point.

The fundamental regions of cosh
\surd 

are the branches of its compositional inverse.

Definition 2.3 (principal inverse of cosh
\surd 

). Let w belong to the complex
plane with a cut along the real axis from  - \infty to  - 1, and let z belong to the principal
domain \Omega 0. The principal inverse (cosh

\surd 
) - 1 is the bijective mapping w \rightarrow z such

that w = cosh
\surd 
z.

Lemma 2.4. The principal inverse (cosh
\surd 

) - 1 is analytic at all points other than
those on the branch cut along the real axis from  - \infty to  - 1.

Proof. Since cosh
\surd 

is entire and its derivative is nonzero1 for any interior point
a \in \Omega 0, we can use the Lagrange inversion theorem (see Appendix A.1) to express
(cosh

\surd 
) - 1 as a power series that converges in some neighborhood of cosh

\surd 
a. Thus

(cosh
\surd 

) - 1 is analytic at cosh
\surd 
a. Hence (cosh

\surd 
) - 1 is analytic at all points other

than those on the branch cut.

A consequence of Lemma 2.4 is that the radius of convergence of the power series
of (cosh

\surd 
) - 1 about cosh

\surd 
a is equal to | 1+cosh

\surd 
a| which is the distance of cosh

\surd 
a

to the nearest branch point w =  - 1.
The sum of a convergent power series of a multivalued function might fall in a

branch different from the principal branch. Should this be the case, the equality of
the function to its power series will not hold. For the equality to hold the disc of
convergence should not touch or cross the specified branch cut. We will use the power
series of (cosh

\surd 
) - 1 about the point w = 1 and the largest disc centered at this

point touches the branch cut at the branch point w =  - 1. Hence, the equality of
(cosh

\surd 
) - 1 with its power series about w = 1 holds inside the disc | w  - 1| < 2.

The power series of (cosh
\surd 

) - 1 about the point w = cosh
\surd 
0 = 1 can be shown,

using the Lagrange inversion theorem, to be

(cosh
\surd 

) - 1w =

\infty \sum 
n=1

(w  - 1)n

n!
lim
x\rightarrow 0

\left[  d
n - 1

dxn - 1

\Biggl( \infty \sum 
m=0

xm

(2m+ 2)!

\Biggr)  - n
\right]  

= 2(w  - 1) - 1

3
(w  - 1)2 +

4

45
(w  - 1)3  - 1

35
(w  - 1)4 +

16

1575
(w  - 1)5

 - 8

2079
(w  - 1)6 +

32

21021
(w  - 1)7  - 4

6435
(w  - 1)8 + \cdot \cdot \cdot , | w  - 1| < 2.(2.3)

The preimage of the disc | w  - 1| \leq 2 in the principal domain is shown in Fig-
ure 2.2a. Note that it includes the origin and contains the disc | z| \leq 3 (dashed line).
In the next lemma we show that the power series (2.3) has a succinct hypergeometric
representation. This representation is invaluable because for some rational function
h(z) we will later want to evaluate partial sums of the power series of (cosh

\surd 
) - 1h(z)

about z = 0 and we can delegate the change in expansion point to the computer al-
gebra package Maple, which has knowledge of the hypergeometric function.

1The derivative of (cosh
\surd 
z)\prime is zero only at points of the form z =  - n2\pi 2 for integer n \geq 1,

which do not belong to the interior of the principal domain \Omega 0.
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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS A4065
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(b)

Fig. 2.2. (a) Preimage of the disc \{ w : | w  - 1| \leq 2 \} in the principal domain, along with the
disc | z| \leq 3 (dashed line). (b) The disc \{ w : | w  - 1| \leq 2 \} and the branch cut ( - \infty , - 1) in the
range.

Lemma 2.5. The principal inverse (cosh
\surd 

) - 1 has the hypergeometric represen-
tation

(2.4) (cosh
\surd 

) - 1w = 2(w  - 1) 3F2

\biggl( 
1, 1, 1;

3

2
, 2;

1 - w

2

\biggr) 
, | w  - 1| \leq 2.

Proof. A series expansion of cosh - 1 w [26, eq. (4.38.4)] about the point w = 1 is

cosh - 1 w =
\sqrt{} 

2(w  - 1)

\Biggl[ 
1 +

\infty \sum 
n=1

1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n - 1)

22nn!(2n+ 1)
(1 - w)n

\Biggr] 
, Rew > 0, | w - 1| < 2.

Using the equations

1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n - 1) =
1

2

\biggl( 
1

2
+ 1

\biggr) \biggl( 
1

2
+ 2

\biggr) 
\cdot \cdot \cdot 
\biggl( 
1

2
+ n - 1

\biggr) 
2n =

\biggl( 
1

2

\biggr) 
n

2n,\biggl( 
1

2

\biggr) 
n+1

=

\biggl( 
1

2

\biggr) 
n

2n+ 1

2
=

1

2

\biggl( 
3

2

\biggr) 
n

,

we can express

1 +

\infty \sum 
n=1

1 \cdot 3 \cdot 5 \cdot \cdot \cdot (2n - 1)

22nn!(2n+ 1)
(1 - w)n = 1 +

\infty \sum 
n=1

\bigl( 
1
2

\bigr) 
n

\bigl( 
1
2

\bigr) 
n\bigl( 

3
2

\bigr) 
n
n!

\biggl( 
1 - w

2

\biggr) n

= 2F1

\biggl( 
1

2
,
1

2
;
3

2
;
1 - w

2

\biggr) 
,

and hence

(2.5) cosh - 1 w =
\sqrt{} 
2(w  - 1) 2F1

\biggl( 
1

2
,
1

2
;
3

2
;
1 - w

2

\biggr) 
, Rew > 0, | w  - 1| < 2.

Let us now write the power series of (cosh
\surd 

) - 1w given in (2.3) in the form

(2.6) (cosh
\surd 

) - 1w = 2(w  - 1)

\infty \sum 
n=0

cn(1 - w)n, | w  - 1| < 2.
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A4066 PRASHANTH NADUKANDI AND NICHOLAS J. HIGHAM

Equations (2.5) and (2.6), and Clausen's identity [8]

2F1

\biggl( 
a, b; a+ b+

1

2
; \xi 

\biggr) 2

= 3F2

\biggl( 
2a, 2b, a+ b; 2a+ 2b, a+ b+

1

2
; \xi 

\biggr) 
,

with a = b = 1/2 and \xi = (1  - w)/2, are used in the relation (cosh
\surd 

) - 1w =
(cosh - 1 w)2 to arrive at

(2.7)

\infty \sum 
n=0

cn(1 - w)n = 3F2

\biggl( 
1, 1, 1;

3

2
, 2;

1 - w

2

\biggr) 
, Rew > 0, | w  - 1| < 2.

As we have only nonnegative integer powers of 1 - w in (2.7) and 3F2(1, 1, 1; 3/2, 2; 1 - w/2)
converges for | w - 1| = 2 (see Appendix A.2), the equality holds in the disc | w - 1| \leq 2
without the restriction Rew > 0. Thus we obtain (2.4).

3. Bounding a matrix power series. In the design of our algorithm we will
need to bound the norm of a matrix power series that represents the error in an
approximation. This is a standard requirement in algorithms based on Pad\'e approx-
imants [3], [5], [6], [7], [20]. In this section we derive a new bound for the norm of an
arbitrary matrix power series

g\ell (A) =

\infty \sum 
i=\ell 

ciA
i.

We denote by \| \cdot \| any consistent matrix norm with \| I\| = 1.
Al-Mohy and Higham [3, Thm. 1.1] note that

\| g\ell (A)\| \leq 
\infty \sum 
i=\ell 

| ci| \| Ai\| =
\infty \sum 
i=\ell 

| ci| 
\Bigl( 
\| Ai\| 1/i

\Bigr) i
\leq 

\infty \sum 
i=\ell 

| ci| \beta i,

where \beta = maxi\geq \ell \| Ai\| 1/i. The motivation for this bound is that \| Ai\| 1/i satisfies
\rho (A) \leq \| Ai\| 1/i \leq \| A\| and can be much smaller than \| A\| for a nonnormal matrix,
so the bound can be much smaller than

\sum \infty 
i=\ell | ci| \| A\| i.

In seeking a more easily computed quantity than \beta , Al-Mohy and Higham [3,
Lem. 4.1] show that if a, b, i, j are nonnegative integers such that ai+ bj \geq 1 then

(3.1) \| Aai+bj\| 1/(ai+bj) \leq max
\bigl( 
\| Aa\| 1/a, \| Ab\| 1/b

\bigr) 
.

We specialize this result as follows. Denote by gcd(a, b) the greatest common
divisor of a and b.

Theorem 3.1. Let a, b, k, and m be positive integers. Then

(3.2) \alpha m(A) = min
gcd(a,b)=1,
ab - a - b<2m

max
\bigl( 
\| Aa\| 1/a, \| Ab\| 1/b

\bigr) 
satisfies

(3.3) max
k\geq 2m

\| Ak\| 1/k \leq \alpha m(A) \leq \| A\| .

Furthermore, \alpha m(A) is nonincreasing in m.
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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS A4067

Proof. Observe that as i and j run independently over the nonnegative integers
the values of ai + bj run over a certain subset of the nonnegative integers. If a and
b are co-prime, that is, gcd(a, b) = 1, it is well known that this subset includes all
positive integers greater than ab - a - b. The number ab - a - b is called2 the Frobenius
number [28] of the set \{ a, b\} . If ab  - a  - b < 2m then from (3.1) we get the bound
maxk\geq 2m \| Ak\| 1/k \leq max

\bigl( 
\| Aa\| 1/a, \| Ab\| 1/b

\bigr) 
. Taking the minimum of these bounds

over all co-prime a and b we obtain the lower bound in (3.3). That \alpha m is nonincreasing
in m is because the set of a and b in the minimum defining \alpha m grows with m.

Al-Mohy and Higham [3, Thm. 4.2] chose b = a + 1 in (3.1), for which the co-
prime condition is naturally satisfied and the condition ab - a - b < 2m simplifies to
(a - 1)a \leq 2m. However, a stronger bound is obtained by not limiting the co-primes
in Theorem 3.1, as the following example confirms.

Example 3.2. The columns of the matrix\biggl[ 
2 2 2 2 2 3 3
3 5 7 9 11 4 5

\biggr] 
represent all possible co-primes a, b satisfying ab - a - b < 2m for m = 5 (we exclude
pairs with a or b equal to 1, as this case simply gives \| Ak\| \leq \| A\| k). Using the in-
equality max

\bigl( 
\| Aa\| 1/a, \| Aa+b\| 1/(a+b)

\bigr) 
\leq max

\bigl( 
\| Aa\| 1/a, \| Ab\| 1/b

\bigr) 
the set of co-primes

needed to compute \alpha 5(A) reduces to\biggl[ 
2 3 3
11 4 5

\biggr] 
and so

\alpha 5(A) = minmax

\biggl[ 
\| A2\| 1/2 \| A3\| 1/3 \| A3\| 1/3
\| A11\| 1/11 \| A4\| 1/4 \| A5\| 1/5

\biggr] 
,

where the max operates along the columns of the matrix and produces a row vector.
Choosing A to be any involutory matrix with \| A\| > 1 we get

max
k\geq 10

\| Ak\| 1/k \leq \alpha 5(A) = minmax

\biggl[ 
1 \| A\| 1/3 \| A\| 1/3

\| A\| 1/11 1 \| A\| 1/5
\biggr] 
= \| A\| 1/11,

which is smaller than the bound obtained by Al-Mohy and Higham [3, Thm. 4.2],

min
(a - 1)a\leq 10

max
\bigl( 
\| Aa\| 1/a, \| Aa+1\| 1/(a+1)

\bigr) 
= minmax

\biggl[ 
\| A2\| 1/2 \| A3\| 1/3
\| A3\| 1/3 \| A4\| 1/4

\biggr] 
= minmax

\biggl[ 
1 \| A\| 1/3

\| A\| 1/3 1

\biggr] 
= \| A\| 1/3,

by a factor of \| A\| 8/33, which can be arbitrarily large because an involutory matrix
can have an arbitrarily large norm (for example, the matrix

\bigl[ 
1 - b b
2 - b b - 1

\bigr] 
) is involutory

for any b). This improvement can lead to a saving of several matrix multiplications
in our algorithm, and indeed other algorithms with a similar derivation, such as the
scaling and squaring algorithm for the matrix exponential [3].

2We thank Hung Bui and Sean Prendiville for pointing this out during a discussion on the
Euclidean algorithm.
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A4068 PRASHANTH NADUKANDI AND NICHOLAS J. HIGHAM

A drawback of the \alpha m, compared with the quantities used by Al-Mohy and
Higham with b = a + 1, is that they involve norms of higher powers of A, so in
principle are more expensive to compute. Two factors mitigate the expense. First, we
will estimate the norms without computing the matrix powers explicitly, making the
overall cost O(n2) flops compared with the O(n3) flops cost of the whole algorithm
when A is dense. Second, we will exploit matrix powers that are explicitly computed
within the algorithm in order to reduce the cost further.

4. Error analysis for the wave kernels.

4.1. Approximation error. Let h(z) denote an approximation to cosh
\surd 
z for

z in a disc centered at the origin such that | h(z)  - cosh
\surd 
z| \rightarrow 0 as z \rightarrow 0. The

forward error e(z) of the approximation h(z) to cosh
\surd 
z is defined by

(4.1) e(z) = h(z) - cosh
\surd 
z.

For z in the principal domain \Omega 0, the backward error E(z) of the approximation
h(z) to cosh

\surd 
z is defined using the principal inverse as

(4.2) E(z) = (cosh
\surd 

) - 1h(z) - z,

so that

(4.3) cosh
\surd 
z \approx h(z) = cosh

\sqrt{} 
z + E(z) = cosh

\surd 
z + e(z).

As (cosh
\surd 

) - 1 is analytic everywhere except on its branch cut, E is analytic if h is
analytic and does not take values on this branch cut.

For a given tolerance \epsilon we wish to identify a disc centered at the origin such that
| E(z)| \leq \epsilon | z| inside that disc. In order to do this we need a representation to quantify
the backward error.

Lemma 4.1. For all z in the principal domain of cosh
\surd 

, if h(z) is any approx-
imation to cosh

\surd 
z such that | 1  - h(z)| \leq 2 then the backward error E(z) has the

hypergeometric representation

(4.4) E(z) = 2
\bigl( 
h(z) - 1

\bigr) 
3F2

\biggl( 
1, 1, 1;

3

2
, 2;

1 - h(z)

2

\biggr) 
 - z.

Proof. For any z such that | 1 - h(z)| \leq 2, the hypergeometric series

3F2

\biggl( 
1, 1, 1;

3

2
, 2;

1 - h(z)

2

\biggr) 
converges. If z belongs to the intersection of this region with the principal domain
\Omega 0 then the backward error result follows from (2.4) and (4.2).

Our attempts to identify the fundamental regions of sinhc
\surd 

were not fruitful.
Without this knowledge the backward error in the approximations to sinhc

\surd 
z cannot

be uniquely defined. So we construct approximations to sinhc
\surd 
z using h(z) and

derive mixed forward--backward error bounds.

Lemma 4.2. For all z in the principal domain of cosh
\surd 

, if h(z) is any approx-
imation to cosh

\surd 
z such that | 1 - h(z)| \leq 2 then for E(z) given in (4.4) we have

(a) sinhc
\surd 
z \approx 2h\prime (z) =

\bigl( 
1 + E\prime (z)

\bigr) 
sinhc

\sqrt{} 
z + E(z), and
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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS A4069

(b) E\prime (z) has the hypergeometric representation

E\prime (z) = 2h\prime (z) 3F2

\biggl( 
1, 1, 1;

3

2
, 2;

1 - h(z)

2

\biggr) 
(4.5)

+
1

3

\bigl( 
1 - h(z)

\bigr) 
3F2

\biggl( 
2, 2, 2;

5

2
, 3;

1 - h(z)

2

\biggr) 
h\prime (z) - 1.

Proof. Clearly, h(z) has no singularities in the region \{ z : | 1  - h(z)| \leq 2 \} and
by definition h(z) does not take values on the branch cut ( - \infty , - 1). So from Lemma
2.4 we see that E(z) is analytic in this region, which leads to the identity

(4.6) 2
d

dz
cosh

\sqrt{} 
z + E(z) =

\bigl( 
1 + E\prime (z)

\bigr) 
sinhc

\sqrt{} 
z + E(z).

The mixed error result (a) follows by taking derivatives in (4.3) and using (4.6).
The result (b) follows by taking derivatives in (4.4) and using the identity

d

dz
3F2

\biggl( 
1, 1, 1;

3

2
, 2; z

\biggr) 
=

1

3
3F2

\biggl( 
2, 2, 2;

5

2
, 3; z

\biggr) 
.

A matrix function is completely determined by the values of the function and
its derivatives on the spectrum of the matrix [18]. Since the functions cosh

\surd 
z and

sinhc
\surd 
z are entire, the matrix functions cosh

\surd 
A and sinhc

\surd 
A are defined for all A.

The approximation h(A) is defined if the set of eigenvalues of A does not contain the
singularities of h(z). Let \rho (A) denote the spectral radius of A.

Theorem 4.3. If A has eigenvalues in the principal domain of cosh
\surd 

and h(z)
is any approximation to cosh

\surd 
z such that \rho (I  - h(A)) \leq 2 then

(a) cosh
\surd 
A \approx h(A) = cosh

\sqrt{} 
A+ E(A), where E is given by (4.4), and

(b) sinhc
\surd 
A \approx 2h\prime (A) = (I + E\prime (A)) sinhc

\sqrt{} 
A+ E(A), where E\prime is given by

(4.5).

Proof. (a) and (b) follow by applying Lemmas 4.1 and 4.2 on the spectrum of
A.

4.2. Pad\'e approximants. Let rm(z) = pm(z)/qm(z) be the [m/m] (diagonal)
Pad\'e approximant to cosh

\surd 
z. Thus pm and qm are polynomials of degree at most

m, qm(0) = 1, and rm(z) - cosh
\surd 
z = O(z2m+1). We are not aware of a proof of the

existence of rm for all m. Nevertheless, rm exists for a particular m if the m \times m
Toeplitz matrix with (i, j) entry 1/

\bigl( 
2(i - j +m)

\bigr) 
! is nonsingular [24, p. 362]. Using

Maple we have verified the existence of the first 100 diagonal Pad\'e approximations.
The contours of | 1  - rm(z)| /2 are shown in Figure 4.1 for m \leq 4. Observe that

in all the subfigures the disc | z| \leq 3 (dashed line) is contained inside the contour
| 1 - rm(z)| /2 = 1; we will prove that this is the case for all m \leq 20.

Lemma 4.4. Let p(z) and q(z) be polynomials such that q(0) = 1 and the coeffi-
cients of both p(z) and q( - z) are positive real numbers. If R is a positive real number
such that q( - R) < 2 then for | z| \leq R,

2 - q( - R) \leq | q(z)| \leq q( - R),(4.7)

| p(z)| 
| q(z)| 

\leq p(R)

2 - q( - R)
.(4.8)
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(a) m = 1
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(c) m = 3
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(d) m = 4

Fig. 4.1. The contours of | w  - 1| /2, where w = rm(z) is the [m/m] Pad\'e approximant to
cosh

\surd 
z of degree m \in \{ 1, 2, 3, 4\} , along with the circle | z| = 3 (dashed line).

Proof. Given that q(0) = 1 and q( - z) has real positive coefficients, the term
q( - | z| ) - 1 is positive and the inequality | q(z) - 1| \leq q( - | z| ) - 1 \leq q( - R) - 1 holds in
the region | z| \leq R. In other words, q(z) is contained in a circle with center (1, 0) and
radius q( - R) - 1. It follows that max\{ 0, 2 - q( - R)\} \leq | q(z)| \leq q( - R). If q( - R) < 2
and p(z) has real positive coefficients then the inequality in (4.8) is obtained by taking
the ratio of the upper bound of | p(z)| with the lower bound of | q(z)| .

Lemma 4.5. For the [m/m] Pad\'e approximant rm(z) to cosh
\surd 
z the condition

| 1  - rm(z)| \leq 2 is satisfied inside the disc | z| \leq 3 for all m \leq 20. For a matrix
argument A,

(4.9) \rho (A) \leq 3\Rightarrow \rho (I  - rm(A)) < 2 for m \leq 20.

Proof. We will first prove that rm(z) is analytic in the disc | z| \leq 3 for m \leq 20.
Let pm(z) and qm(z) denote the numerator and denominator polynomials of rm.
Using Maple we have obtained symbolically the coefficients of pm(z) and qm(z) for
m \in \{ 1, 2, . . . , 20\} and found that pm(z), qm( - z), and pm(z)  - qm(z) have positive
real coefficients. Choosing R = 3, we find that the first element of the sequence
\{ 2 - qm( - R)\} is 3/4 and the next 19 elements are, to four significant digits,

\{ .8613, .9079, .9313, .9453, .9546, .9612, .9661, .9699, .9730,
.9754, .9775, .9793, .9807, .9820, .9832, .9842, .9851, .9858, .9866\} .
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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS A4071

Hence 2  - qm( - R) \geq 3/4 for m \leq 20, and it follows from the lower bound in (4.7)
that qm(z) has no zeros in the disc | z| \leq 3 for m \leq 20. Therefore, rm(z) is analytic
in the disc | z| \leq 3 for m \leq 20.

Likewise, the first element of the sequence \{ [pm(3) - qm(3)]/[2 - qm( - 3)]\} is 2
and the next 19 elements are, to five significant digits,

\{ .97443, .96533, .96182, .96017, .95928, .95874, .95840, .95816, .95799,
.95787, .95778, .95770, .95764, .95760, .95756, .95753, .95750, .95748, .95746\} \times 2.

Hence the first 20 elements of the sequence are less than or equal to 2. Substituting
p(z) with pm(z) - qm(z) in Lemma 4.4, it follows from (4.8) that

(4.10) | z| \leq 3\Rightarrow | 1 - rm(z)| = | pm(z) - qm(z)| 
| qm(z)| 

\leq pm(3) - qm(3)

2 - qm( - 3)
\leq 2 for m \leq 20.

The result (4.9) follows by applying (4.10) to the spectrum of A.

For m \leq 20 we can therefore replace the condition | 1  - rm(z)| \leq 2 with the
condition | z| \leq 3 in Lemmas 4.1 and 4.2. Likewise, we can replace the condition
\rho (I  - rm(A)) \leq 2 in Theorem 4.3 with the more readily verifiable condition \rho (A) \leq 3
for m \leq 20.

We make the following conjecture based on similar observations for m > 20.

Conjecture 4.6. For all m, the [m/m] Pad\'e approximant rm(z) to cosh
\surd 
z

satisfies | 1 - rm(z)| \leq 2 in the disc | z| \leq 3.

4.3. Error bounds for Pad\'e approximants. The forward error em(z) and
backward error Em(z) of the [m/m] Pad\'e approximant rm(z) to cosh

\surd 
z are defined,

as in (4.1) and (4.2), by

(4.11) em(z) = rm(z) - cosh
\surd 
z, Em(z) = (cosh

\surd 
) - 1rm(z) - z.

Recall that | cosh
\surd 
z  - 1| < 2 for | z| \leq 3 (Figure 2.2) and | rm(z) - 1| \leq 2 for | z| \leq 3

and m \leq 20 (Lemma 4.5). Therefore, from Lemma 4.1 we find that Em(z) is analytic
for | z| \leq 3 and m \leq 20. From (4.11) and the fact that cosh

\surd 
is entire, we obtain

em(z) = cosh
\sqrt{} 
z + Em(z) - cosh

\surd 
z

= Em(z)(cosh
\surd 

)\prime z +
1

2!
Em(z)2(cosh

\surd 
)\prime \prime z + \cdot \cdot \cdot .

Since em(z) is O(z2m+1), by the definition of rm, it follows that Em(z) is O(z2m+1).
Thus

(4.12) Em(z) = z
\sum 
k\geq 0

cm,kz
2m+k = z \widehat Em(z) for | z| \leq 3, m \leq 20,

for some coefficients cm,k, where \widehat Em(z) denotes the relative backward error. For a
matrix argument A it follows from (4.12) that

Em(A) = A
\sum 
k\geq 0

cm,kA
2m+k = A \widehat Em(A), for \rho (A) \leq 3, m \leq 20.

Using Theorem 3.1 we have

(4.13) \| \widehat Em(A)\| \leq 
\sum 
k\geq 0

| cm,k| \alpha m(A)
2m+k

,
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Table 4.1
Relative backward error bound | \widehat Em( - 3)| and values of \theta m in (4.15) for the [m/m] Pad\'e ap-

proximants to cosh
\surd 
z for IEEE double precision arithmetic.

m | \widehat Em( - 3)| \theta m m | \widehat Em( - 3)| \theta m

1 4.68\times 10 - 2 1.63\times 10 - 7 6 2.24\times 10 - 21 > 3
2 8.85\times 10 - 5 3.46\times 10 - 3 7 2.29\times 10 - 26 > 3
3 2.94\times 10 - 8 1.26\times 10 - 1 8 1.37\times 10 - 31 > 3
4 2.93\times 10 - 12 8.75\times 10 - 1 9 5.08\times 10 - 37 > 3
5 1.17\times 10 - 16 2.98 10 1.23\times 10 - 42 > 3

where \alpha m is defined in (3.2).
Taking derivatives in (4.12) and replacing z by A it follows that

E\prime 
m(A) =

\sum 
k\geq 0

(2m+ k + 1)cm,kA
2m+k, for \rho (A) \leq 3, m \leq 20,

and then Theorem 3.1 gives

(4.14) \| E\prime 
m(A)\| \leq 

\sum 
k\geq 0

(2m+ 1 + k)| cm,k| \alpha m(A)
2m+k

.

(Recall that E\prime 
m(z) occurs in the error expansion for sinhc

\surd 
A in Theorem 4.3 (b).)

Using Maple we have obtained symbolically the first 600 terms in the power series
of Em(z) for m \leq 20 and found that except for m = 2 the coefficients of the series have
alternating signs. For m = 2, the coefficients have a structured pattern of alternating
signs

\{  - 1, 1, - 1, 1, . . . , - 1, 1\underbrace{}  \underbrace{}  
28 terms

, 1, - 1, . . . , 1, - 1\underbrace{}  \underbrace{}  
28 terms

, - 1, 1, . . . , - 1, 1\underbrace{}  \underbrace{}  
28 terms

, . . .\} .

Note that the first 30 coefficients have alternating signs. The first term is the coeffi-
cient of z5 and it is of the order of 10 - 7. Its product with 35 is of the order of 10 - 4.
The 30th term is the coefficient of z34 and it is of the order of 10 - 37. Its product
with 334 is of the order of 10 - 21. Effectively, then, in the context of double-precision
arithmetic with | z| \leq 3, we can regard Em(z), and also \widehat Em(z), as having power series

with alternating coefficients. Then
\sum 

k\geq 0 | cm,k| \alpha m(A)
2m+k

= | \widehat Em( - \alpha m(A))| and the

bound for \| \widehat Em(A)\| in (4.13) simplifies to

\| \widehat Em(A)\| \leq | \widehat Em( - \alpha m(A))| \leq | \widehat Em( - 3)| , for m \leq 20, \alpha m(A) \leq 3.

Additionally,
\sum 

k\geq 0(2m + 1 + k)| cm,k| \alpha m(A)
2m+k

= | E\prime 
m( - \alpha m(A))| and the bound

for \| E\prime 
m(A)\| in (4.13) simplifies to

\| E\prime 
m(A)\| \leq | E\prime 

m( - \alpha m(A))| \leq | E\prime 
m( - 3)| , for m \leq 20, \alpha m(A) \leq 3.

The IEEE double precision unit roundoff u is 2 - 53. Table 4.1 contains the values
of | \widehat Em( - 3)| and the radius

(4.15) \theta m = max\{ x : | \widehat Em( - x)| = u \} .

Table 4.2 contains the values of | E\prime 
m( - 3)| and the radius

(4.16) \theta \prime m = max\{ x : | E\prime 
m( - x)| = u \} .
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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS A4073

Table 4.2
Mixed error bound | E\prime 

m( - 3)| and values of \theta \prime m in (4.16) for approximations to sinhc
\surd 
z for

IEEE double precision arithmetic.

m | E\prime 
m( - 3)| \theta \prime m m | E\prime 

m( - 3)| \theta \prime m

1 1.58\times 10 - 1 9.42\times 10 - 8 6 3.04\times 10 - 20 > 3
2 4.80\times 10 - 4 2.31\times 10 - 3 7 3.57\times 10 - 25 > 3
3 2.20\times 10 - 7 9.14\times 10 - 2 8 2.40\times 10 - 30 > 3
4 2.79\times 10 - 11 6.66\times 10 - 1 9 9.95\times 10 - 36 > 3
5 1.36\times 10 - 15 2.36 10 2.66\times 10 - 41 > 3

In these tables the values of \theta m, \theta \prime m, | \widehat Em( - 3)| , and | E\prime 
m( - 3)| are computed using

variable precision arithmetic with 100 significant digits.
Observe that for m \geq 6 we have both | \widehat Em( - 3)| < u and | E\prime 

m( - 3)| < u. Addi-
tionally, for m < 6 the values of \theta \prime m in Table 4.2 are smaller than the corresponding
values in Table 4.1. So choosing \theta \prime m from Table 4.2 we get

\| \widehat Em(A)\| \leq u, \| E\prime 
m(A)\| \leq u, for m \leq 20, \alpha m(A) \leq min

\bigl( 
3, \theta \prime m

\bigr) 
.

The double-angle formulas

(4.17) cosh 2
\surd 
A = 2

\bigl( 
cosh

\surd 
A
\bigr) 2  - I, sinhc 2

\surd 
A = sinhc

\surd 
A cosh

\surd 
A

hold for all A. When \alpha m(A) > min (3, \theta \prime m), we scale down A by a factor 4s such that
\alpha m(4 - sA) \leq min

\bigl( 
3, \theta \prime m

\bigr) 
, compute approximations to cosh

\surd 
4 - sA and sinhc

\surd 
4 - sA,

and then scale up using the double-angle recurrence

(4.18)

C0(A) = rm(4 - sA), S0(A) = 2r\prime m(4 - sA),

Ci+1(A) = 2Ci(A)2  - I, Si+1(A) = Si(A)Ci(A), i = 0, . . . , s - 1,

cosh
\surd 
A \approx Cs(A), sinhc

\surd 
A \approx Ss(A).

If the scaling up phase is done in exact arithmetic then from Theorem 4.3 we find

Cs(A) = cosh

\sqrt{} 
A
\bigl( 
I + \widehat Em(4 - sA)

\bigr) 
,(4.19a)

Ss(A) =
\bigl( 
I + E\prime 

m(4 - sA)
\bigr) 
sinhc

\sqrt{} 
A
\bigl( 
I + \widehat Em(4 - sA)

\bigr) 
,(4.19b)

with
\| \widehat Em(4 - sA)\| \leq u, \| E\prime 

m(4 - sA)\| \leq u.

Thus in exact arithmetic the approximation Cs(A) to cosh
\surd 
A is backward stable and

the approximation Ss(A) to sinhc
\surd 
A is mixed forward--backward stable.

5. Algorithm for computing the wave kernels. The matrices rm(A) and
r\prime m(A) are obtained by solving qm(A)rm(A) = pm(A) and q2m(A)r\prime m(A) = wm(A),
where

wm(A) := p\prime m(A)qm(A) - pm(A)q\prime m(A).

Using Maple we have obtained symbolically the coefficients of the polynomials pm
and qm, evaluated them using variable precision arithmetic, and stored them as IEEE
double precision floating-point numbers. To reduce cost and to avoid bringing any
finite precision cancellation errors to prominence, we also evaluated symbolically and
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A4074 PRASHANTH NADUKANDI AND NICHOLAS J. HIGHAM

Table 5.1
Parameter \sigma that minimizes the number of matrix multiplications \mu t for each degree m in the

Paterson--Stockmeyer algorithm to evaluate pm(A), qm(A), and wm(A), along with \mu \ast = \mu t - (\sigma  - 1).

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
\sigma 1 2 3 4 5 6 4 4 5 5 6 6 7 7 8 8 9 9 10 10
\mu t 0 1 3 4 5 6 7 8 9 9 10 10 11 11 12 12 13 13 14 14
\mu \ast 0 0 1 1 1 1 4 5 5 5 5 5 5 5 5 5 5 5 5 5

Table 5.2
Matrices whose columns are the co-primes required to compute \alpha m(A).

m Co-primes m Co-primes

1

\biggl[ 
2
3

\biggr] 
8

\biggl[ 
2 3 3 4
17 7 8 5

\biggr] 
2

\biggl[ 
2
5

\biggr] 
10

\biggl[ 
2 3 3 4 4 5
21 10 11 5 7 6

\biggr] 
3

\biggl[ 
2 3
7 4

\biggr] 
12

\biggl[ 
2 3 3 4 4 5 5
25 11 13 7 9 6 7

\biggr] 
4

\biggl[ 
2 3 3
9 4 5

\biggr] 
14

\biggl[ 
2 3 3 4 4 5 5 5
29 13 14 7 9 6 7 8

\biggr] 
5

\biggl[ 
2 3 3
11 4 5

\biggr] 
16

\biggl[ 
2 3 3 4 4 5 5 5 5 6
33 16 17 9 11 6 7 8 9 7

\biggr] 
6

\biggl[ 
2 3 3 4
13 5 7 5

\biggr] 
18

\biggl[ 
2 3 3 4 4 5 5 5 5 6
37 17 19 11 13 6 7 8 9 7

\biggr] 
7

\biggl[ 
2 3 3 4
15 7 8 5

\biggr] 
20

\biggl[ 
2 3 3 4 4 5 5 5 5 6
41 19 20 11 13 7 8 9 11 7

\biggr] 

stored numerically the coefficients of the degree 2m - 2 polynomial wm(A). All these
are off-line calculations, done in advance.

We will use the Paterson--Stockmeyer (PS) algorithm [18, p. 73], [27] to compute
the polynomials pm(A), qm(A), and wm(A). Let \sigma \leq m be a positive integer and
suppose we compute and store A2, A3, . . . , A\sigma , which requires \mu \sigma = \sigma  - 1 matrix
multiplications. The total number of matrix multiplications in the PS algorithm is
then

\mu t = (\sigma  - 1) + 2
\Bigl\lfloor m
\sigma 

\Bigr\rfloor 
 - 2(\sigma | m) +

\biggl\lfloor 
2m - 2

\sigma 

\biggr\rfloor 
 - 
\bigl( 
\sigma | (2m - 2)

\bigr) 
,

where \lfloor m/\sigma \rfloor is the largest integer less than or equal to m/\sigma and \sigma | m is either 1 (if
\sigma divides m) or 0 (otherwise).

For each m, the \sigma that minimizes the number of matrix multiplications in the PS
algorithm to compute pm(A), qm(A) and wm(A) is shown in Table 5.1. For m \leq 20,
this cost jumps between degree m and m+1 only for m \in \{ 1--8, 10, 12, 14, 16, 18, 20\} .
Hence we will consider only these m in our algorithm. The matrices whose columns
are the co-primes required to compute \alpha m(A), for these m are shown in Table 5.2.

The definition of \alpha m(A) involves norms of various powers of A defined in (3.2).
We will compute only those powers needed for the evaluation of the polynomials
and will use those powers to estimate the norms of the others. We use the 1-norm
and estimate norms using the block algorithm of Higham and Tisseur [22], which
estimates \| B\| 1 using a few matrix--vector products with B and BT . We denote a
call to the estimator by normest1(An1 , An2 , . . . , Ank), which means that the algo-
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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS A4075

rithm estimates \| An1+n2+\cdot \cdot \cdot +nk\| 1 by forming matrix--vector products An1+n2+\cdot \cdot \cdot +nkx
as An1(An2(. . . (Ankx))) (and similarly for the transpose).

In using normest1 we want to do as few matrix--vector products as possible. We
will use the powers of A stored in the PS algorithm to this end. For instance, con-

sider m = 1, for which only A is stored. To compute \alpha 1(A) we estimate \| A2\| 1/21

and \| A3\| 1/31 (see Table 5.2) by calling normest1(A,A) and normest1(A,A,A), re-
spectively. If we proceed to m = 2, we compute and store A2 (see Table 5.1).

To compute \alpha 2(A) we compute \| A2\| 1/21 directly and estimate \| A5\| 1/51 with the call
normest1(A,A2, A2). Note that it makes no difference to the quality of the estimate
how the matrix--vector products are factored; our aim is purely to minimize the cost.

We note that Higham and Smith [21, p. 20] analyzed the stability with respect to
rounding errors of the double angle recurrence (4.18) for their algorithm to compute
the matrix cosine. They found that the relative forward error bound is a sum of
terms comprising two factors. The first factor is a power up to the sth of an O(1)
scalar independent of A. These factors are innocuous if s is small and are likely to
be pessimistic, otherwise. The second factor is a product of terms that depend on
the norms of the intermediate Ci(A), and is difficult to bound a priori. The number
of such terms grows with s. So to mitigate the potential deterioration of accuracy in
the recurrence, our priority is to minimize s in the scaling stage. The sharper error
bounds given in (4.13) and (4.14) and choosing the pair with the larger m and smaller
s when there is a choice contribute to this objective.

Recall that \{ A : \rho (A) \leq 3\} is the set of admissible A for which the error terms

\| \widehat Em(A)\| and \| E\prime 
m(A)\| are well-defined. As \rho (A) \leq \alpha m(A), we note that \scrA m,u :=

\{ A : \alpha m(A) \leq min\{ \theta \prime m, 3\} \} is a subset of the admissible set and in this subset the

error terms \| \widehat Em(A)\| and \| E\prime 
m(A)\| are bounded by the unit roundoff. Further, as

\alpha m(A) is nonincreasing with m by Theorem 3.1, the subset \scrA m,u will grow with m
if \theta \prime m does. Observe in Tables 4.1 and 4.2 that for m \leq 5, \theta \prime m increases with m and
\theta \prime m < 3. Hence for all m \leq 5 the subset \scrA m,u will certainly grow larger with m.
Therefore, to avoid scaling in our algorithm we will compute \alpha m(A) sequentially and
check if A \in \scrA m,u.

We note that the co-primes listed in Table 5.2 are appropriate to compute each

\alpha m(A) independently. Suppose we have computed and stored \alpha 4(A) and \| Ak\| 1/k1 for

k \in \{ 2, 3, 4, 5, 9\} . Observe in Table 5.2 that form = 5 we can reuse the known \| Ak\| 1/k1

and we need only estimate \| A11\| 1/111 . By definition \alpha 5(A) \leq \alpha 4(A) and observe that

both max(\| A3\| 1/31 , \| A4\| 1/41 ) and max(\| A3\| 1/31 , \| A5\| 1/51 ) were included while comput-

ing \alpha 4(A). So to compute \alpha 5(A) we first assign \alpha 5(A) \leftarrow max(\| A2\| 1/21 , \| A11\| 1/111 )
and then update \alpha 5(A) \leftarrow min(\alpha 4(A), \alpha 5(A)). Following this line of reasoning, the
matrices whose columns are the co-primes required to compute \alpha m(A) sequentially
are shown in Table 5.3.

Taking all these aspects into account we now present our algorithm to compute
the scaling s and the order m.

Algorithm 5.1 (parameter selection). Given A \in \BbbC n\times n this algorithm com-

putes the order m and the scaling s such that the relative errors \| \widehat Em(4 - sA)\| 1 and
\| E\prime 

m(4 - sA)\| 1 in (4.19) are bounded by the IEEE double precision unit roundoff. It
uses the quantities \theta \prime m tabulated in Table 4.2 and the co-primes listed in Table 5.3.

1 Compute and store \beta 2 = normest1(A,A)1/2, \beta 3 = normest1(A,A,A)1/3,
and \alpha 1(A) = max(\beta 2, \beta 3).
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A4076 PRASHANTH NADUKANDI AND NICHOLAS J. HIGHAM

Table 5.3
Matrices whose columns are the co-primes required to compute \alpha m(A) sequentially, that is, for

each m we update \alpha m(A)\leftarrow min(\alpha \ast (A), \alpha m(A)), where \alpha \ast (A) was computed in the previous step.

m Co-primes m Co-primes m Co-primes

1

\biggl[ 
2
3

\biggr] 
6

\biggl[ 
2 3 4
13 7 5

\biggr] 
14

\biggl[ 
2 3 5
29 14 8

\biggr] 
2

\biggl[ 
2
5

\biggr] 
7

\biggl[ 
2 3
15 8

\biggr] 
16

\biggl[ 
2 3 3 4 5 6
33 16 17 11 9 7

\biggr] 
3

\biggl[ 
2 3
7 4

\biggr] 
8

\biggl[ 
2
17

\biggr] 
18

\biggl[ 
2 3 4
37 19 13

\biggr] 
4

\biggl[ 
2 3
9 5

\biggr] 
10

\biggl[ 
2 3 3 4 5
21 10 11 7 6

\biggr] 
20

\biggl[ 
2 3 5
41 20 11

\biggr] 
5

\biggl[ 
2
11

\biggr] 
12

\biggl[ 
2 3 4 5
25 13 9 7

\biggr] 

2 if \alpha 1(A) \leq \theta \prime 1, then m = 1, s = 0, quit, end.

3 Compute and store A2, \beta 2 = \| A2\| 1/21 , \beta 5 = normest1(A,A2, A2)1/5,
and \alpha 2(A) = max(\beta 2, \beta 5).

4 if \alpha 2(A) \leq \theta \prime 2, then m = 2, s = 0, quit, end.

5 Compute and store A3, \beta 3 = \| A3\| 1/31 , \beta 4 = normest1(A,A3)1/4,

\beta 7 = normest1(A,A3, A3)1/7, and \alpha 3(A) = minmax
\Bigl[ 
\beta 2 \beta 3

\beta 7 \beta 4

\Bigr] 
.

6 if \alpha 3(A) \leq \theta \prime 3, then m = 3, s = 0, quit, end.

7 Compute and store A4, \beta 4 = \| A4\| 1/41 , \beta 9 = normest1(A,A4, A4)1/9,

and \alpha 4(A) = minmax
\Bigl[ 
\beta 2 \beta 3

\beta 9 \beta 5

\Bigr] 
.

8 Update \alpha 4(A)\leftarrow min(\alpha 3(A), \alpha 4(A)).
9 if \alpha 4(A) \leq \theta \prime 4, then m = 4, s = 0, quit, end.

10 Compute and store \beta 11 = normest1(A3, A4, A4)1/11 and
\alpha 5(A) = max(\beta 2, \beta 11).

11 Update \alpha 5(A)\leftarrow min(\alpha 4(A), \alpha 5(A)).
12 if \alpha 5(A) \leq \theta \prime 5, then m = 5, s = 0, compute and store A5, quit, end.
13 Compute and store \beta 13 = normest1(A,A4, A4, A4)1/13

and \alpha 6(A) = minmax
\Bigl[ 

\beta 2 \beta 3 \beta 4

\beta 13 \beta 7 \beta 5

\Bigr] 
.

14 Update \alpha 6(A)\leftarrow min(\alpha 5(A), \alpha 6(A)).
15 if \alpha 6(A) \leq 3, m = 6, then s = 0, compute and store A5, A6, quit, end.
16 Compute and store \beta 8 = normest1(A4, A4)1/8,

\beta 15 = normest1(A3, A4, A4, A4)1/15, and \alpha 7(A) = minmax
\Bigl[ 

\beta 2 \beta 3

\beta 15 \beta 8

\Bigr] 
.

17 Update \alpha 7(A)\leftarrow min(\alpha 6(A), \alpha 7(A)).
18 if \alpha 7(A) \leq 3, then m = 7, s = 0, quit, end.
19 Compute and store \beta 17 = normest1(A,A4, A4, A4, A4)1/17

and \alpha 8(A) = max(\beta 2, \beta 17).
20 Update \alpha 8(A)\leftarrow min(\alpha 7(A), \alpha 8(A)).
21 if \alpha 8(A) \leq 3, m = 8, then s = 0, quit, end.

22 Compute and store A5, \beta 5 = \| A5\| 1/51 , \beta 10 = normest1(A5, A5)1/10,
\beta 21 = normest1(A,A5, A5, A5, A5)1/21, and

\alpha 10(A) = minmax
\Bigl[ 

\beta 2 \beta 3 \beta 3 \beta 4 \beta 5

\beta 21 \beta 10 \beta 11 \beta 7 \beta 6

\Bigr] 
.
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COMPUTING THE WAVE-KERNEL MATRIX FUNCTIONS A4077

23 Update \alpha 10(A)\leftarrow min(\alpha 8(A), \alpha 10(A)).
24 if \alpha 10(A) \leq 3, then m = 10, s = 0, quit, end.

25 Compute and store A6, \beta 6 = \| A6\| 1/61 , \beta 25 = normest1(A,A6, A6, A6, A6)1/25,

and \alpha 12(A) = minmax
\Bigl[ 

\beta 2 \beta 3 \beta 4 \beta 5

\beta 25 \beta 13 \beta 9 \beta 7

\Bigr] 
.

26 Update \alpha 12(A)\leftarrow min(\alpha 10(A), \alpha 12(A)).
27 if \alpha 12(A) \leq 3, m = 12, then s = 0, quit, end.

28 Compute and store A7, \beta 7 = \| A7\| 1/71 , \beta 14 = normest1(A7, A7)1/14

\beta 29 = normest1(A,A7, A7, A7, A7)1/29, and \alpha 14(A) = minmax
\Bigl[ 

\beta 2 \beta 3 \beta 5

\beta 29 \beta 14 \beta 8

\Bigr] 
.

29 Update \alpha 14(A)\leftarrow min(\alpha 12(A), \alpha 14(A)).
30 if \alpha 14(A) \leq 3, then m = 14, s = 0, quit, end.

31 Compute and store A8, \beta 8 = \| A8\| 1/81 , \beta 16 = normest1(A8, A8)1/16,
\beta 33 = normest1(A,A8, A8, A8, A8)1/33, and

\alpha 16(A) = minmax
\Bigl[ 

\beta 2 \beta 3 \beta 3 \beta 4 \beta 5 \beta 6

\beta 33 \beta 16 \beta 17 \beta 11 \beta 9 \beta 7

\Bigr] 
.

32 Update \alpha 16(A)\leftarrow min(\alpha 14(A), \alpha 16(A)).
33 if \alpha 16(A) \leq 3, then m = 16, s = 0, quit, end.

34 Compute and store A9, \beta 9 = \| A9\| 1/91 , \beta 19 = normest1(A,A9, A9)1/19,

\beta 37 = normest1(A,A9, A9, A9, A9)1/37, and \alpha 18(A) = minmax
\Bigl[ 

\beta 2 \beta 3 \beta 4

\beta 37 \beta 19 \beta 13

\Bigr] 
.

35 Update \alpha 18(A)\leftarrow min(\alpha 16(A), \alpha 18(A)).
36 if \alpha 18(A) \leq 3, then m = 18, s = 0, quit, end.

37 Compute and store A10, \beta 10 = \| A10\| 1/101 , \beta 20 = normest1(A10, A10)1/20,
\beta 41 = normest1(A,A10, A10, A10, A10)1/41, and

\alpha 20(A) = minmax
\Bigl[ 

\beta 2 \beta 3 \beta 5

\beta 41 \beta 20 \beta 11

\Bigr] 
.

38 Update \alpha 20(A)\leftarrow min(\alpha 18(A), \alpha 20(A)).
39 if \alpha 20(A) \leq 3, then m = 20, s = 0, quit, end.
40 Compute sk = ceil (log4[\alpha k(A)/3]) for k = [6, 7, 20].
41 s = s20
42 m = smallest k \in [6, 7, 20] such that sk = s20.
Note that if we arrive at line 40 of Algorithm 5.1 then we have already incurred the

cost of computing and storing A2, A3, . . . , A10. At this stage of the algorithm scaling
is necessary. To minimize the scaling we choose s = s20. It might be the case that
the scaled matrix will belong to several \scrA m,u. We choose the m that minimizes the
multiplication cost \mu \ast . Observe in Table 5.1 that for m \leq 20 the matrix multiplication
count \mu \ast jumps between degree m and m + 1 only for m \in \{ 2, 6, 7, 20\} . Using the
\theta \prime m in Table 4.2 we find that ceil (log4(\theta 

\prime 
6/\theta 

\prime 
2)) = 6, which means that once we scale

down A to enter the set \scrA 6,u we need to scale down further by a factor 46 to enter
the set \scrA 2,u. Hence we exclude the choice m = 2 in the line 40 of Algorithm 5.1.

We now present our complete algorithm for computing the wave-kernel matrix
functions.

Algorithm 5.2 (wave-kernel matrix functions). Given A \in \BbbC n\times n this algorithm
computes the wave-kernel functions C = cosh

\surd 
A and S = sinhc

\surd 
A.

1 Obtain m and s from Algorithm 5.1 applied to A.
2 Choose \sigma for this m from Table 5.1.
3 A\leftarrow 4 - sA and Ak \leftarrow 4 - skAk for k = 1, 2, . . . , \sigma .
4 Compute the matrix polynomials pm(A), qm(A), and wm(A) using

the PS algorithm and the matrix powers computed
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A4078 PRASHANTH NADUKANDI AND NICHOLAS J. HIGHAM

on the previous steps.
5 Compute an LU factorization with partial pivoting LU = qm(A).
6 Compute C = U - 1L - 1pm(A) and S = 2U - 1L - 1U - 1L - 1wm(A) by

substitution using the LU factors.
7 for m = 1: s
8 S \leftarrow SC
9 C \leftarrow 2C2  - I

10 end
Cost. The highest order term of the total cost of Algorithm 5.2 is\biggl( 

20

3
+ 4s+ 2min

\Bigl( 
m, 4 +

\Bigl\lceil m
2

\Bigr\rceil \Bigr) 
+ 4(s \not = 0)(m \not = 20)

\Bigl\lceil m
3

\Bigr\rceil \biggr) 
n3 flops,

for m \geq 3. The first term is the cost of the LU decomposition and the substitutions.
The second term is the cost of undoing the effect of scaling via recurrences. The third
term is the cost of parameter selection and computation of the Pad\'e approximants
using the PS algorithm in the absence of scaling. The fourth term is the additional
cost for having computed A2, A3, . . . , A10 and if in line 42 of Algorithm 5.1 we obtain
either m = 6 or m = 7.

MATLAB functions to compute and test the wave-kernel matrix functions (wkm.m
and test wkm.m, respectively) are available in the GitHub repository https://github.
com/nadukandi/wkm. The raw data used to generate Figure 6.1 is also available in
this repository.

6. Numerical examples. All our experiments are performed in MATLAB
R2017b, for which the unit roundoff is u = 2 - 53 \approx 1.11 \times 10 - 16. In the first ex-
ample we consider a matrix whose wave kernels have an explicit representation. For
the rest of the test matrices we use Davies's approximate diagonalization method [9]
to compute accurate values of cosh

\surd 
A and sinhc

\surd 
A, employing the VPA arithmetic

of the Symbolic Math Toolbox at 250 digit precision. In this method we add a random
perturbation of norm 10 - 125 to A, diagonalize the result, then apply the wave-kernel
functions to the eigenvalues; the perturbation ensures the eigenvalues are distinct so
that the diagonalization is always possible.

Recall that Algorithm 5.2 is backward stable in exact arithmetic and we expect the
relative (forward) error to be bounded by a modest multiple of the condition number
cond(f,A) times the unit roundoff, where f is the function in question. This condition
number is given in [18, Chap. 3] and we estimate it using the code funm condest1

from the Matrix Function Toolbox [17].
The test suite consists of 87 mainly 15\times 15 test matrices adapted from the Matrix

Computation Toolbox [17], the MATLAB gallery function, and the matrix function
literature. The relative forward errors and the error estimates are shown in Figure 6.1,
ordered by decreasing cond(f,A) for the test matrices. Observe that the relative
errors are bounded by the estimated condition number times the unit roundoff. Thus
our algorithm behaves in a forward stable manner in floating-point arithmetic. We
compare our algorithm with the MATLAB function funm, which uses the Schur--
Parlett algorithm of Davies and Higham [10], [18, Chap. 9]. Here we supply funm

with derivatives computed from (1.5). We see that funm is generally forward stable
but behaves in an unstable manner on several matrices. Algorithm 5.2 clearly has
superior stability to funm.

In the next experiment we multiply each matrix in the test suite by a factor 60
and compute the wave kernels. The rationale of this experiment is to ensure that
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Alg. 5.2

funm

(a) f(A) = cosh
\surd 
A.
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(b) f(A) = sinhc
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A.
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(c) A\leftarrow 60A, f(A) = cosh
\surd 
A.
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(d) A\leftarrow 60A, f(A) = sinhc
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Fig. 6.1. Relative forward errors of Algorithm 5.2 and the MATLAB function funm for the
computed wave kernels cosh

\surd 
A and sinhc

\surd 
A. The solid red line is the condition number estimate

of the matrix functions times the unit roundoff. The results in (a) and (b) are ordered by decreasing
cond(f,A). These orderings are retained in (c) and (d), respectively, in which vertical bars denote
the change in the error of Algorithm 5.2 from (a) and (b). (Figure is in color online.)

some scaling will occur in Algorithm 5.2 and to study the algorithm's robustness to
changes in the approximation order and scaling. The relative forward errors and the
error estimates are shown in Figures 6.1c and 6.1d. Additionally, the change in the
forward errors for Algorithm 5.2 due to the scaling A \leftarrow 60A are shown as vertical
bars. The results are plotted in the same order: the condition number times the unit
roundoff line is no longer monotonic and in a few cases overflow was encountered
(these errors are not plotted). The general trend is that the errors increase but this
increase is not uniform. Additionally, for some test matrices the errors decrease,
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which is why we chose to illustrate these nonintutive error changes using vertical
bars. Nevertheless, we observe that the relative errors for Algorithm 5.2 are again
bounded by a modest multiple of the condition number times the unit roundoff.

7. Conclusions. We have developed the first algorithm for computing the wave
kernel cosh

\surd 
A that is backward stable in exact arithmetic and is suitable for any

square matrix A. The algorithm also computes the wave kernel sinhc
\surd 
A, for which

it is mixed forward--backward stable in exact arithmetic. Numerical experiments
show that the algorithm behaves in a forward stable manner in floating-point arith-
metic, whereas the Schur--Parlett algorithm applied to these functions displays some
instability. Several trigonometric matrix functions can be computed from this al-
gorithm by an appropriate change of variables: for instance, cosA = cosh

\surd 
 - A2,

cos
\surd 
A = cosh

\surd 
 - A, and sincA = sinhc

\surd 
 - A2.

The improved bound for \| Ak\| in section 3 merits investigation for use in existing
matrix function algorithms based on Pad\'e approximation, such as those in [3], [5], [6],
[7], [20], though it will require reworking of the underlying logic for the choice of the
amount of scaling and the Pad\'e degree.

Following the lead of Strang and MacNamara [31, p. 527] we plan to pursue the
role of wave-kernel matrix functions to consider waves on graphs and the application
to characterization and classification of directed graphs.

Appendix A. Background.

A.1. Lagrange inversion theorem. If a function f(z) is analytic at a point
z = a in its domain and the derivative f \prime (a) \not = 0 then the Lagrange inversion the-
orem [26, eq. (1.10.13)] allows us to express the inverse function of f(z) as a power
series. The theorem states that if w = f(z) then

(A.1) z = f - 1(w) = a+

\infty \sum 
n=1

[w  - f(a)]n

n!
lim
x\rightarrow a

\Biggl[ 
d
n - 1

dxn - 1

\biggl( 
x - a

f(x) - f(a)

\biggr) n
\Biggr] 
.

The theorem also guarantees that the series in (A.1) has a nonzero radius of conver-
gence, that is, f - 1(w) is an analytic function of w in a neighborhood of w = f(a).

A.2. Generalized hypergeometric function. The generalized hypergeomet-
ric function is defined by the power series

pFq(a1, . . . , ap; b1, . . . , bq; z) =
\sum 
n\geq 0

(a1)n (a2)n \cdot \cdot \cdot (ap)n
(b1)n (b2)n \cdot \cdot \cdot (bq)n

zn

n!
,

where (a)n is the Pochhammer symbol for the raising factorial:

(A.2) (a)0 = 1, (a)n = a(a+ 1)(a+ 2) \cdot \cdot \cdot (a+ n - 1).

The radius of convergence of the power series is \infty if p < q + 1, 1 if p = q + 1, and
0 if p > q + 1. When p = q + 1 and | z| = 1, the power series converges absolutely if
Re
\bigl( \sum 

i bi  - 
\sum 

j aj
\bigr) 
> 0.
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