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Abstract. A full understanding of the non-linear mechanical response of the polymer
is essential for fibre-reinforced polymer composite design because an explicit definition
of constitutive material models for the constituents (fibres, matrix, and interface) are
prerequisite in micromechanical simulation. Unlike metals, the material behaviour of the
polymer matrix is modelled by plasticity theories using a combination of distortional and
spherical energy dissipation. In this respect, an elastoplastic thermodynamic continuum
model derivation is proposed using the paraboloidal yield criterion under isothermal con-
ditions. A non-iterative scheme is developed for the numerical computation of the plastic
strain increment multiplier. Both associated and non-associated flow rules are investi-
gated following classical plasticity loading-unloading conditions. It thereby, evades the
conventional computationally demanding iterative process by replacing it with an exact
determination of plastic strain increment. This novel approach highly improves the com-
putational efficiency algorithmically. Coupon-sized numerical models are investigated
and the comparison between simulated and experimental results shows the reliability and
unprecedented accuracy of the proposed elastoplastic mathematical model.

1 INTRODUCTION
The approach to improve the mechanical performance of fibre-reinforced polymer com-

posites at lower scales relies on micromechanical modelling of the representative volume
elements combined with homogenisation techniques so that a detailed expression of the
mechanical response can be provided. Besides the fibres, the mechanical response of the
polymer matrix plays a crucial role in the overall composite performance. Due to the
highly non-linear nature of polymers, a robust and consistent numerical treatment of its
material model is needed.
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The pressure-dependent plastic behaviour is an inherent feature in polymer matri-
ces. The paraboloidal yield criterion propounded by Tschoegl [1] is adopted to describe
pressure-dependent plasticity, which represents a paraboloid surface in the triaxial prin-
cipal stress coordinates system. It meets the requirement for a closed surface avoiding
angular apex in pure tensile and an open surface in pure compressive octants. The elasto-
plastic computational implementation developed by Melro et al. [2] computes plastic
strain increment using a computationally demanding iterative approximation technique
based on Newton-Raphson’s method that does not always succeed under very large de-
formations.

This research aims at developing an efficient and exact implementation of the elasto-
plastic constitutive model with the paraboloidal plasticity theory. With this novel imple-
mentation, the evolution of plastic strain is computed by using a non-iterative scheme with
high accuracy. This is achieved by solving the quadratic equation of the yield criterion
described as a function of plastic strain increment, obtained using the update of trial stress
from radial return mapping algorithm. This procedure diminishes the computational time
and avoids the risk of aggregating approximation errors that lead to convergence solver
issues. For verification, the proposed implementation is numerically investigated in two
levels of benchmark examples: (i) simple single-element test to observe its functionality,
(ii) cylinder compression test to analyse convergence and mesh sensitivity.

2 CONTINUUM MECHANICS
To determine the elastoplastic constitutive relationship of the polymer material the

Claussius-Dunhem’s entropy inequality for isothermal process is employed given by
σ : ε̇− Ψ̇ > 0, (2.1)

where σ and ε are the stress and strain tensors, respectively and Ψ is the Helmholtz
energy function considering isotropic hardening.

2.1 Yield Criterion
The paraboloidal yield criterion as a function of stress tensor and yield stresses in

tension (σt), and compression (σc) is given by
ϕ(σ) = σ2 − (σt − σc) I1 − σt σc, (2.2)

where σ =
√

3
2
σ′ : σ′ is the equivalent (von Mises) stress and the pressure-dependent

term, I1 = σ : I = −3p is the first invariant of stress tensor.

2.2 Constitutive modelling
Owing to the associative split of strain (ε = εe + εp) and applying the Coleman-Noll

statement for thermodynamic equilibrium of the process variable εe [3] on the inequality
eq. (2.1), the 2nd order linear elastic initiation is given by

σ =
∂Ψe

∂εe
= 2µ εe′ + κ(εe : I) I. (2.3)
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The superscripts, “e” and “p” denotes the elastic and plastic parts, respectively. The
elastic tangent modulus, Ce is a 4th order tensor is thus, defined as

Ce =
∂2Ψe

∂εe ∂εe
= 2µP+ κĪ, (2.4)

where Ī is the hydrostatic operator, and P is the projection tensor.
Reformulation of the reduced internal dissipation of inequality as an optimisation prob-

lem yields the Kuhn-Tucker’s loading-unloading consistency conditions that demands

∆γ > 0; ϕ 6 0; ∆γ ϕ = 0. (2.5)

The plastic strain increment, ∆γ and flow direction tensor, η at yield are governed by
the gradient of the plastic flow potential.

2.3 Associated flow rule
Associated flow rule implies that the plastic flow develops along the normal to the

predicted yield surface, denoted by “tr” and expressed as

η =
∂ϕtr

∂σtr
= 3σtr ′ − (σt − σc) I. (2.6)

Using radial return mapping algorithm to determine ∆γ, we get

σn+1 = σtr
n+1 −∆γ

[
6µσtr ′ − 3κ (σt − σc) I

]
. (2.7)

Upon rearranging the relations of stress invariants, the yielding can be represented as
a function of ∆γ. Its quadratic solution yields the values of ∆γ as follows

ϕ(∆γ) = ϕtr + 4σtr2
(
9µ2 − h2

)
∆γ2 −

[
12µσtr2 + 2h (σt + σc) σ

tr + 9κ (σt − σc)
2
]
∆γ.(2.8)

The consistent elastoplastic tangent modulus is the tensorial differentiation of updated
stress (refer equation 2.7) derived as

Cep =
∂ σ

∂εe
= Ce − {Ce : η} ⊗ ∂∆γ

∂εe,tr
−∆γ

∂ {Ce : η}
∂εe,tr

. (2.9)

2.4 Non-associated flow rule
Following the deductions of Kolling et al. [4] the flow potential function is given by

g = σ2 +
α0

9
I21 , (2.10)

where α0 is the coefficient associating to the volumetric part of plastic flow dependent upon
the plastic Poisson’s ratio, νp. Duncan et al. [5] showed that as an indicator to volume
increase during plastic yielding, νp ranges between 0.3 and 0.5. The pressure-dependent
coefficient α0 as a function of νp is defined as

α0 (ν
p) =

9

2

(
1− 2νp

1 + νp

)
. (2.11)
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The flow normal is tangential to the predicted flow potential, gtr redefined as

η =
∂gtr

∂σtr
= 3σtr ′ +

2

9
α0 I

tr
1 I. (2.12)

Using the stress update using radial return mapping algorithm, we get

σn+1 = σtr
n+1 −∆γ

(
6µσtr ′ +

2

3
κα0 I1 I

)
. (2.13)

The yield surface function is also redefined for the quadratic solutions of ∆γ as

ϕ(∆γ) =ϕtr + 4σtr2
(
9µ2 − h2

)
∆γ2 −

[
12µσtr2 + 2h (σt + σc) σ

tr − 2κα0 (σt − σc) I
tr
1

]
∆γ.

(2.14)

The consistent elastoplastic tangent modulus is expressed similarly as in (2.9). The
partial differentiations of the terms in elastoplastic tangent operator however, differs.

3 NUMERICAL IMPLEMENTATION
The elastic predictor approach ensuing radial return algorithm is an empirically heuris-

tic method for numerical modelling of elastoplasticity. Implementation of the finite ele-
ment computation is manoeuvred to determine and eliminate the plastic part from the
total strain, resulting in the overall elastic effect.

Algorithm 1: ∆γ computation using proposed model.
1 ◃ Get ∆γn ← state variable
2 ◃ Initialise: ∆γn+1 ← ∆γn // back-up value
3 ◃ Discriminant: △ = b2 − 4ac
I Determine if △ is positive, for real roots:

4 if (△ > 0) then

5 ◃ Compute roots: ∆γ1,2 =
−b±

√
△

2a
6 ◃ Compute function values: ϕ1,2 = a∆γ2

1,2 + b∆γ1,2 + ϕtr

I Determine the root following Kuhn-Tucker’s loading-unloading conditions:
7 if (∆γ1 > 0 and ϕ1 6 0 and ∆γ1 · ϕ1 = 0) then

Result: ∆γn+1 ← ∆γ1

8 else if (∆γ2 > 0 and ϕ2 6 0 and ∆γ2 · ϕ2 = 0) then
Result: ∆γn+1 ← ∆γ2

9 return: ∆γn+1

A school of thought [7, 6, 8, 9, 10, 11, 12, 13, 14, 15] following the works of Melro et
al. [2], employs Newton-Raphson’s iterative numerical approach to solve the non-linear
system of equations to determine an approximate value of ∆γ. The convergence rate of
the iterative approximation approach is quadratic and inexact, causing accumulation of
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error for stress and tangent modulus computation. The order of magnitude of the ini-
tial guess, ∆γ0 and iterative computation of the associated residual function, ∂ϕ/∂∆γ
forms a decisive factor for the rate of convergent solution determination. If the results
are divergent in an arbitrarily limited number of iterations, niter, the computation pro-
cess demands improving ∆γ(0) algorithmically and repeating the iterative scheme. The
iterative steps geometrically progress to niter × nfail, where nfail are the number of failed
attempts.

With the mathematical model proposed in this work, the algorithm 1 follows a direct
computation as the root of a quadratic equations (2.8) and (2.14).

The proposed algorithm qualifies to eliminate the iterative scheme thereby making it
computationally frugal. The proposed model is also computationally robust as the solu-
tion of non-linear equation of ∆γ is absolute and algorithmically efficient with no iterative
looping. The approach straightforwardly processes on the classical loading-unloading con-
ditions (2.5) to accurately determine a unique ∆γ.

4 NUMERICAL INVESTIGATIONS
For numerical validation, the proposed non-iterative scheme of the constitutive elasto-

plastic models (refer section 2) is implemented as a user material subroutine UMAT in
a commercial finite element software. For elastoplastic response of epoxy polymer, the
reference material parameters of a typical thermosetting plastic are used.

4.1 Data preparation
Guild et al. [16] predicted a constant value of νp = 0.32 as the best fit for epoxy.

Table 1 encapsulates the elastoplastic material properties for a typical epoxy resin used
in the numerical simulation. Adapted from [17] are the experimentally determined elastic
moduli, Et and Ec and the yield stresses, σt and σc at the onset of plasticity in tension
and compression, respectively.

Table 1: Material properties for epoxy resin.

Material Values Units
parameters

Elastic E 3760 MPa
ν 0.39 ∼

Plastic
νp 0.32 ∼
σt 29 MPa
σc 67 MPa

Experimentally Et 3900 MPa
determined Ec 3600 MPa

The plastic strains corresponding to yield stresses are extracted by

ϵp{λ} = ϵ− σ

E{λ}
∀{λ} =

{
t : tension
c : compression (4.1)
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Figure 1: Evolution of σy with respect to ϵp.

where σ is the stress after yielding for the corresponding strain, ϵ. An equally spaced data
of plastic strain corresponding to yield stress for hardening computation is generated as
shown in the figure 1.

The data in the very large rubber-like deformation domain in compression is assumed
and extrapolated to pseudo-plastic response by adding instantaneous stiffness, Einst values
to Young’s modulus so that the plasticity model with isotropic hardening can be employed.

ϵpc = ϵ− σ

Ec + Einst

. (4.2)

4.2 Single element test
A three-dimensional single element model of 1mm length is depicted in figure 2 with

corresponding boundary conditions tabulated. It is used to numerically verify with the
experimental results obtained by Feidler et al. [17] under tensile, compressive, and shear
loading conditions employing both the flow rules. This simple geometry helps to verify
the functioning of the material model reliably.

RP

1 m
m

Stop

Sbot

Ez

Ex

Figure 2: Boundary conditions and the single element test.

The graphs in figure 3 for both the flow rules conform to the elastoplastic experimental
curves subjected to the three loading modes under small strain conditions. In compression
mode at large strain under the provision of pseudo-plastic hardening, the numerical result
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Figure 3: Stress-strain relationship from the single element test.

for the associated flow rule shows a higher degree of conformance with the experiment
compared to the associated flow rule. This deviation can be attributed to the hydrostatic
sensitivity owing to the presence of the pressure correction term applied in the non-
associated flow potential function, g (2.10). Numerical modelling in shear also uses the
constitutive relationship, predominantly relying on the tensile and compressive yield stress
regardless of the yielding properties in shear. Therefore, the numerical results in graph
show less agreement with the experiment at large strain.

4.3 Cylinder compression test
To simulate a cylinder specimen under compression, a one-eighth (1/8) symmetrical

model and corresponding boundary conditions are used, as shown in the figure 4. The
model is tested with different element sizes using the proposed non-iterative mathematical
simulation. The dimensions shown on a meshed instance with element size, ℓelem = 1mm
are H = 6mm and R = 6mm. The compression of the cylinder is assumed frictionless.
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Figure 4: Cylinder compression test specimen and boundary conditions. (Left): Symmetrical model
set-up. (Right): Finite element mesh and geometrical dimensions.
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Figure 5: Simulation results for cylinder compression test. (a): Homogenised stress-strain relationship.
(b): Time incrementation status.

Figure 5(a) show the homogenised volume-averaged stress-strain curves and the ex-
perimental result are highly concurrent to the single element test in compression. With
converging results for the mesh geometries of different element sizes, ℓelem, the mesh in-
dependence of the proposed implementation of constitutive mathematical model can be
clearly affirmed.

The time increment remains fairly consistent to the specified maximum time increment,
dt = 0.0133 s through the course of simulation in figure 5(b). A good level of mesh size
(ℓelem) independence is obtained for strain as significant as 40%. The continuity of the
incrementation process exhibited by the proposed non-iterative scheme is solid and robust.

5 CONCLUSIONS
The work introduces a rate-independent elastoplastic continuum model described by

the paraboloidal yield criterion employing a non-iterative numerical scheme for associated
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and non-associated flow rules. The consistent tangent moduli derived for both flow rules
assures convergent results. Knowledge of an exact, efficient and unambiguous computation
of plastic strain increment is the novelty of this research.

The numerical implementations yielded sound results relative to the experimental val-
idations under various loading conditions for generic epoxy polymer under large strains.
A method to extrapolate yield stress evolution with plastic strain at hyper-elastoplastic
regime was assumed and tested. The compression results for associated flow rule showed
complete conformance, while the non-associated plasticity diverged under hyper-elastoplastic
conditions.

The tests performed demonstrate efficiency and robustness of the non-iterative algo-
rithmic approach. Single element test under tension, compression and shear has been
tested and validated. Similarly, a compression test on a cylinder-shaped specimen has
been performed undergoing very large deformations with the aim of assessing mesh con-
vergence and numerical stability.

The current research work is further expanded by coupling rate-dependent and thermal
parameters of the polymer constitutive model.
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