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Abstract. The goal of this study is to introduce a coupling process between a novel
meshless scheme for non-Newtonian flows and an arbitrary FEM structural solver. The
flow-solving method named Lagrangian Differencing Dynamics (LDD) is based on Lag-
rangian differences, volume–conservative advection, and direct interaction with triangu-
lated geometry. The flow solver implementation named Rhoxyz is coupled with CalculiX
solver for the structure through a bidirectional coupling tool named preCICE. The non-
Newtonian solver is validated on a skewed lid-driven cavity experiment, and the coupling
scheme is validated on a dam-break problem with an elastic gate.

1 INTRODUCTION

Myriad of problems include violent and strongly nonlinear fluid-structure interaction
(FSI), where such loading arises that causes structural deformations. Eulerian methods
that solve partial differential equations (PDEs) on a mesh have been successfully employed
for various problems, but generating a topologically clean and adequate mesh for the
investigated problem is time-consuming work and often requires user intervening. An
Eulerian solver that simulates large mesh deformations has difficulties to remain stable
for problems with high geometrical complexity. Moving mesh nodes within this process
can even require remeshing of areas with large deformation in order to avoid tangling
of mesh elements, loss of the orthogonality, etc. On the contrary, overset-mesh schemes
and Lagrangian mesh-free methods and hybrid methods have been developed for the
purpose of avoiding these problems that are encountered in conventional mesh–based
methods. Lagrangian and meshless methods are often employed to simulate violent flows
with complex free surface evolution. Therefore, they are naturally capable of coupling
with structural solvers to simulate nonlinear FSI with large deformations. An example of
mesh-free discretisation compared to the mesh equivalent is shown in Figure 1.

Recently a novel meshless Lagrangian method was proposed for numerical simulation of
incompressible flows and estimation of hydrodynamic loads wave-ship interaction [1, 2].
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Figure 1: Mesh-free concept of space discretisation.

It was shown that the method accurately reproduces complex free surface patterns, as
well as pressure distributions. Furthermore, the fluid is adjusting to moving boundar-
ies represented by triangulated meshes while freely advecting about the boundaries by
Lagrangian motion. The flow solver is volume–conservative, second–order accurate, and
works directly on triangulated geometry. This property allows the method to directly use
structural surface mesh as bounding geometry, and therefore to directly transfer loads
between the flow solver and any structural solver [3].

Non-Newtonian fluids and granular flows may be simulated as continuum with large
time steps by extending the above introduced method named Lagrangian Differencing
Dynamics (LDD) [4]. In this paper non-Newtonian flow is simulated using the Power Law
model, which is most commonly used model for purely viscous fluids. Viscous fluids are
distinguished by the lack of the linear dependence of shear stress and shear strain rate
that characterizes Newtonian fluids. Shear-thinning and shear-thickening fluids are the
two main types of purely viscous fluids. These fluids are modelled in the Power Law model
through the use of the flow-behaviour index n. The index can mathematically model three
types of fluids. For n < 1, the effective viscosity decreases with increase of shear rate,
i.e. it describes shear-thinning fluid. For n > 1, the model describes a shear-thickening
fluid, and n = 1 describes a Newtonian fluid. Shear-thinning fluids are common in food,
biological fluids, modern paints, nearly all polymer melts, polymer solutions, and other
materials, whereas shear-thickening fluids can be found in body armours due to their
impact hardening abilities.

Since the novel flow solver is ready to be coupled to a structural or a rigid-body solver
due to the direct use of discrete geometry in fluid simulations, this study deals with
establishing a bidirectional FSI scheme. The main aim is to investigate the coupling
process between the non-Newtonian meshless Lagrangian method and Finite Element
Method (FEM) solvers. The coupling process is validated using the LDD flow solver
named Rhoxyz, but it should be extendable to any mesh-free Lagrangian solver. The
solver is implemented in a way that points adjacent to walls are projected onto them,
and boundary conditions for the pressure and velocity are imposed on those projections,

2



Martina Basic, Branko Blagojevic, Branko Klarin and Josip Basic

Figure 2: A schematic of the numerical domain with imposed no–slip (red) and free–surface (white)
boundary conditions.

as shown in Figure 2. This makes transferring of deformations from the structural solver
straightforward. preCICE, an open-source coupling library, is used to set-up partitioned
bidirectional coupling of flow and the open-source FEM solver, named CalculiX. During
the simulation the structure motion is imposed, the fluid stresses on the structure are
applied in the structural equations-of-motion, and the deformations are brought back to
the fluid solver. The coupling scheme is validated by simulating dam breaking with elastic
gate clamped at one end.

2 METHODOLOGY

2.1 Governing equations

The Navier–Stokes equations in vector form for the incompressible fluid flow are de-
scribed and solved. The conservation of momentum and mass is given as follows:

D(ρu)

Dt
= −∇p+∇ · τ + F ext, (1)

∇ · u = 0, (2)

where the advective derivative is expressed as D/Dt, the velocity vector as u, the fluid
density as ρ, the fluid pressure as p, the stress tensor as τ , and F ext as the vector of
external forces. Eqs. (1) and (2) imply temporal and spatial dependency. The stress
tensor τ is identified for an incompressible fluid as:

τ = 2µ (E) E, (3)

where µ is the variable dynamic viscosity of the fluid, which depends onE, i.e. the strain
rate that is defined as:

E =
1

2

[
∇u+ (∇u)T

]
, (4)
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where ∇u indicates the velocity-gradient tensor of the flowing material. The shear rate
is defined as:

γ̇ =
√
2E : ET , (5)

where the double-dot operator is defined as E : ET ≡ trace(EET ).
Power Law is a widely used and mathematically simple model that can approximately

simulate the behaviour of a non-Newtonian fluid. In this generalized model for purely
viscous fluids, the shear stress tensor is calculated as:

τ = k |γ̇|n−1 γ̇, (6)

the model is defined by the effective viscosity as a function of the shear rate as follows:

µ (|γ̇|) = k |γ̇|n−1 , (7)

where k represents the flow-consistency index, and n is the flow-behaviour index. De-
pending on the flow-behaviour index n, it can mathematically model three types of fluids.
n < 1 describes a shear-thinning fluid, n > 1 describes a shear-thickening fluid, and n = 1
describes a Newtonian fluid. The zero-shear viscosity is approached at very low shear
rates, while the infinite shear viscosity is approached at very high shear rates.

2.2 Solving scheme

The method for solving incompressible flows is meshless, Lagrangian, volume–conservative
and based on second–order accurate finite differences. Spatial operators, named Lagra-
gian differences (LD), are based on generalised finite differences (FDs) derived by us-
ing weighted least–squares (WLS) [5], obtained within the compact sphere of all points
shown in Figure (1). Flow is solved using the velocity–pressure decoupled scheme and the
volume–conservative Lagrangian advection, obtained by solving a set of geometrical con-
straints [1]. Due to the fully Lagrangian description of the unsteady fluid flow, the method
can handle and simulate violent FSI that includes complex free surface advection with frag-
mentation. The implementation of the method, named Rhoxyz (http://rhoxyz.com),
has been validated for various problems in ship hydrodynamics [2, 1, 3]. The fluid solver
works with geometry discretely described by triangles and quadrilaterals, and hence the
discrete model of the structure may be directly used in the fluid simulation, which makes
the transfer of loads straightforward. The method intrinsically handles violent fluid-
structure interaction with free surface fragmentation, while providing second-order accur-
ate pressure field [5, 1]. The method was recently extended to simulate non-Newtonian
flows [4] by solving Eq. (1) in the implicit context using the Laplacian formulation of
generalised Navier-Stokes equations.

2.3 Coupling scheme

The coupling scheme allows for coupling arbitrary structural solvers, which expose
an Application Programming Interface (API) that enables sharing structure deforma-
tion during solving, and imposing forces to structure elements or nodes. In this study a
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Figure 3: Peer-to-peer coupling capabilities with space and time interpolation, enabled for any parti-
cipant solvers (in this case Rhoxyz and CalculiX ).

validated open–source structural solver named CalculiX is employed, which is based on
the Finite Element Method (FEM) [6]. Moreover, an open source coupling framework
named preCICE (PREcise Code Interaction Coupling Environment) is used for bidirec-
tional partitioned coupling of the structure and flow solvers [7]. The coupling scheme is
schematically drawn in Figure 3, which renders how preCICE provides communication
tools for for multi-physics simulation. The important ingredients for enabling massively
parallel coupled simulations are: mapping of data between non-matching grids, peer-
to-peer communication between solver processes, iterative methods for solving interface
equations. In this study, the serial and explicit coupling scheme is used. At the start of
each time step the solvers synchronise (wait for each other to reach the same point), seeing
that the peer-to-peer communication channel must exchange data between the coupled
solvers. The flow solver obtains and sends fluid force for each node of the patch mesh,
while the structural solver sends deformations of the structure nodes. As implied above,
non-matching interface discretisations of two solvers do not pose any issues; forces are
conservatively interpolated from one solver to another performed by preCICE. Therefore,
during this exchange the fluid solver obtains deformations of the structure nodes, i.e.
deflections and velocity vectors of moved nodes, which are are used for imposing bound-
ary conditions in the flow solver. Meanwhile, using the same communication channel the
structural solver obtains fluid forces on each node of the structure mesh. In this study, the
structure is made of an elastic isotropic material and discretised using eight-node brick
elements (C3D8). The only thing needed for coupling from the structural solver-side is
to define a set of nodes that define an interface for two-way transfer of information (e.g.
nodes on the gate surface).

3 NUMERICAL EXPERIMENTS

3.1 Lid-driven cavity flow

The Power Law viscosity model is tested for a fluid that is circulating in a lid-driven
skewed cavity flow. An experiment of the skewed cavity using the Power Law reported
by Thohura et al. [8], is reproduced using the LDD method. The circulation pattern
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Figure 4: Velocity magnitude and streamlines for Power Law fluid flow in the skewed cavity, for Re = 500
and n = 1.5.

and vortex formation are highly dependent on the Reynolds number for any rheological
behaviour. A relatively high Reynolds number was simulated, Re = 500, in order to
show the stability and robustness of the LDD method. The Power Law flow-behaviour
index was set to n = 1.5. The cavity in dimensionless units is 1 × 1 and the angle of
the skewed-cavity is α = 60°. The lid is moving with a steady, dimensionless velocity of
ulid = 1. The no-slip condition is applied to the lid and wall boundaries and an initial
resolution of 200× 200 points was used. The time step used for simulations is δt = 10−3,
and the calculation of a time-step took 26ms in average on a GTX 980Ti GPU. t = 20
seconds of physical time was simulated until steady state of the simulation was reached.
In the Figure 4, the plotted streamlines correspond very well to the reference data given
in [8]. The position of the vortices is correctly captured, and vortex in the lower-right
corner is more clearly represented in the LDD method than in the FVM. A good match
with the results is obtained, demonstrating that the method is capable of simulating
non-Newtonian Power Law fluids.

3.2 Dam break with elastic gate

In this section an experiment conducted by Antoci et al. [9] is reproduced. The
experiment resembles to typical dam-breaking problem, but the gate is not rigid nor
movable, but instead it is elastic and deformable. The rubber gate is clamped along its
upper side to the rigid wall, and it deforms when subjected to fluid forces behind it. The
tank space is filled with fluid column of length A = 100 mm and height H = 140 mm,
while the rubber gate is supported by an rigid obstacle and its lower end touches the
floor. The gate has thickness of s = 5 mm and height of L = 79 mm. The rubber gate is
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Figure 5: Dam break with a rubber gate; the simulation results are compared to the photographs taken
during the experiment.

modeled using a elastic isotropic material with density ρgate = 1100 kg/m3, and Young’s
modulus E = 12 MPa. Since some uncertainty occurs durting estimation of the Young
modulus for rubber, future work will include proper rubber hyper-elastic properties. For
the validation, the tank was filled with water, ρ = 1000 kg/m3 and µ = 10−3 Pa·s, made
of 56000 fluid points with initial point spacing 0.5 mm. The constant time-step was
δt = 2 · 10−4 s, and the calculation of a time-step took 40ms in average on a RTX 2080Ti
GPU. The time-step reported in [9] for 6000 fluid SPH particles was δt = 8 · 10−6, which
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Figure 6: Dam break with a rubber gate, using a Power Law fluid with n = 2 and µ0 = 10 Pa·s.

emphasises the robustness of the implicit solving [1, 4]. Moreover, larger stable time-
step values are expected for the implicit partitioned type of coupling that is available in
preCICE [7], which will be assessed in future work.

The obstacle that supports the rubber gate is suddenly removed, which allows the
hydrostatic condition to initially deform the lower end of the elastic plate, and this allows
the water to flow under it. Analysis of the experiments showed that the resulting flow
and the plate deformation can be studied as a two-dimensional phenomenon. Therefore
two-dimensional flow is simulated, while the fluid forces are imposed on the gate modeled
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by one column of 28 brick (C3D8) elements. The solution captured during the simulation
is shown in Figure 5, and compared to the photographs taken during the experiment. The
evolution of the gate deformation and water level change is similar between the compared
images. Furthermore, the free-surface shape (local elevation) evolution due to pressure
gradients from the concentrated outflow is also properly simulated. The results shown
that accurate prediction of the displacement of the elastic structure subjected to fluid
pressure and of the resulting fluid flow can be obtained using the LDD method coupled
with a FEM solver. More investigation is needed to include real rubber-like behaviour of
the gate, and to analyse the disadvantages of explicit type of coupling.

In the second numerical experiment, the tank was filled with a Power Law fluid. The
shear thickening effect of the flow was employed by setting the flow-behaviour index
n = 2 and the flow-consistency index k = 10 Pa·s2. The same initial spacing and time
step was used, as defined in the text above. The solution captured during the simulation is
shown in Figure 6, which renders the pressure field and effective-viscosity field as contour
plots. Local maxima of the effective-viscosity scalar field are adequately reproduced at
locations with high pressure gradient that generated significant velocity gradient. Some
local deficiencies may be seen at the free surface, which will be assessed in future work.

4 CONCLUSIONS

The recently introduced Lagrangian mesh-free method for the simulation of incom-
pressible fluids with a free surface, named Lagrangian Differencing Dynamics (LDD), is
extended to simulate non-Newtonian fluids. It was validated that the method can ac-
curately simulate lid-driven cavity non-Newtonian flow. The implementation of the LDD
method available in the public domain, named Rhoxyz, was coupled with Calculix solver
for the structure deformation using preCICE. The process of implementing the coupling
scheme verified that this tool enables effortless coupling of arbitrary solvers without having
to change solver algorithms and input files. The coupled scheme introduced in this paper
was successfully validated using a dam-break problem with flexible gate, using water as
fluid. By modifying the fluid properties, it was shown that the coupling scheme can handle
non-Newtonian fluids using high time steps. The time-step values could be even higher if
the implicit coupling scheme is used, which will be investigated in future work. Moreover,
more complex simulations with three-dimensional structures will be investigated in future
work.
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