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International Center for Numerical Methods in Engineering (CIMNE), Edificio C1, Gran Capitán s/n, 08034 Barcelona, Spain
a r t i c l e i n f o

Available online 29 April 2008

PACS:

84.35.+i

02.30.Xx

Keywords:

Multilayer perceptron

Independent parameters

Boundary conditions

Lower and upper bounds
12/$ - see front matter & 2008 Elsevier B.V. A

016/j.neucom.2007.12.037

esponding author. Tel.: +34 934017399; fax:

ail addresses: rlopez@cimne.upc.edu (R. Lope

e).
a b s t r a c t

In this work an extended class of multilayer perceptron is presented. This includes independent

parameters, boundary conditions and lower and upper bounds. In some cases, such extensions contain a

priori information of the problem. On some other situations they are necessary in order to define a

correct representation for the solution.

The use of this augmented class of neural network is illustrated through a case study in the optimal

control theory. The numerical results are compared against the analytical solution.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

Variational problems arise in numerous applications. The
theories of function regression and pattern recognition [2], for
instance, concern specific kinds of problems in the calculus of
variations. Other types include optimal control [8], inverse
analysis [9] or optimal shape design [3].

Mathematically, the aim of a variational problem is to find a
function which is the optimal (minimal or maximal) value of a
specified functional [5]. A functional means a correspondence
which assigns a number to each function belonging to some class.

However, most variational problems cannot be solved analy-
tically, and the only practical technique to approach their solution
is to approximate them by using a direct method [1]. The
fundamental idea underlying the so-called direct methods is to
reduce the variational problem at hand into a function optimiza-
tion problem in many dimensions.

The solving approach of a direct method consists of three steps
[1]. The first step is to choose a suitable function space in which
the solution to the problem is to be approximated. The elements
of this family of functions are parameterized by a set of real
numbers. In the second step the variational problem is formulated
by selecting an appropriate objective functional, defined on the
function space chosen before. The third step is to solve the
reduced function optimization problem. This is performed with
some algorithm capable of finding an optimal set of parameters.

A variational formulation for the multilayer perceptron
provides a direct method for the solution of variational problems
ll rights reserved.
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[11]. Indeed, any learning task for that neural network can be
stated in terms of minimizing some objective functional. The
reduced function optimization problem is then solved by the
training algorithm. Multilayer perceptron neural networks are
able to span a function space with universal approximation
properties [6]. They hereby cause neural computation to be a very
appropriate paradigm for the solution of variational problems.

This work presents a class of multilayer perceptron which is
extended with independent parameters, boundary conditions and
lower and upper bounds. From these, an adoption of independent
parameters is a novel subject in the field of neural networks.
Incorporating boundary conditions is not new [14], although it has
not been discussed too often in the community. Finally, inclusion
of lower and upper bounds is a trivial but also an essential issue.

In some situations these extensions can improve the perfor-
mance by the numerical method. In other cases they allow to deal
with applications which would be untractable otherwise. In
summary, this augmented class of neural network might be able
to span a more suited function space for some variational
problems.

The use of a variational formulation for the multilayer
perceptron with an extended class of that neural network is
investigated through the solution of a classical example in the
optimal control theory. In particular the car problem is solved
here [8], and the approximated results by this direct method are
compared against the exact ones by the analytical solution.
2. Motivation

Consider a car which is to be driven along the x-axis from some
position xi at velocity vi and acceleration ai to some desired
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Fig. 1. The car problem statement.
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Fig. 2. State diagram for the learning problem in the multilayer perceptron.
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position xf at desired velocity vf and desired acceleration af in a
minimum time tf , see Fig. 1 [8].

Let us approximate the car by a unit point mass that can be
accelerated by using the throttle or decelerated by using the
brake. Selecting position and velocity as state variables, the
mathematical model of this system is given by two ordinary
differential equations with their corresponding initial conditions,

_xðtÞ ¼ vðtÞ, (1)

_vðtÞ ¼ aðtÞ, (2)

xð0Þ ¼ xi, (3)

vð0Þ ¼ vi, (4)

for t 2 ½0; tf �, and where the final time tf is undefined. The control
variable here is the car acceleration, which must hold

aðtiÞ ¼ ai, (5)

aðtf Þ ¼ af . (6)

The acceleration is bounded by the capability of the engine, and
the deceleration is limited by the braking system parameters. If
the maximum acceleration is maxðaÞ40, and the minimum
deceleration is minðaÞo0, such bounds on the control variable
can be written

minðaÞpaðtÞpmaxðaÞ. (7)

As the goal is to make the car reach the final point as quickly as
possible, the objective functional is given by

F½aðtÞ� ¼ tf . (8)

On the other hand, the car is to be driven to a desired position xf

and a desired velocity vf , hence xðtf Þ ¼ xf and vðtf Þ ¼ vf . Such
constraints on the state variables can be expressed as error
functionals,

Ex½aðtÞ� � xðtf Þ � xf

¼ 0, (9)

Ev½aðtÞ� � vðtf Þ � vf

¼ 0, (10)

where Ex and Ev are called the final position and velocity errors,
respectively.

For this case study the initial position, initial velocity, final
position, final velocity, initial acceleration, final acceleration,
minimum acceleration and maximum acceleration are set to
xi ¼ 0, vi ¼ 0, xf ¼ 1, vf ¼ 0, ai ¼ 0, af ¼ 0, minðaÞ ¼ �1 and
maxðaÞ ¼ 1, respectively. This particular example has an analytical
solution for the optimal control given by [8]

a�ðtÞ ¼

0; t ¼ 0;

1; 0oto1;

�1; 1oto2;

0; t ¼ 2;

8>>><
>>>:

(11)

which provides a minimum final time t�f ¼ 2.
The statement and the solution itself of this car problem points

out a number of significant issues. First, some variational
problems might require a function space with independent
parameters associated to it. Indeed, the final time is not part of
the control, but it represents the interval when it is defined.
Second, the elements of this family of functions may need to
satisfy boundary conditions. The control here must hold given
initial and final values. Third, these functions and the independent
parameters might be bounded. Certainly, the control has lower
and upper bounds, and the final time must be positive. Finally,
this kind of applications demand spaces of functions with very
good approximation properties, since they are likely to have very
nonlinear solutions. Here the optimal control even exhibits
discontinuities.

From all that, although the car problem is conceptually quite
simple, its numerical solution can be a very difficult task. Also,
this problem can be solved analytically, which makes it a very
suited example for testing the performance of direct methods.
3. Approach

As it was said in Section 1, a variational formulation for the
multilayer perceptron provides a direct method for the solution of
variational problems [11].

Fig. 2 depicts an activity diagram for the learning problem in
that neural network. The solving approach here consists of three
steps. The first step is to choose a suitable parameterized function
space in which the solution to the problem is to be approximated.
The elements of this family of functions are those spanned by a
multilayer perceptron. In the second step the variational problem
is formulated by selecting an appropriate objective functional,
defined on the function space chosen before. The third step is to
solve the reduced function optimization problem. This is
performed with a training algorithm capable of finding an optimal
set of free parameters.
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In the next subsections a more detailed explanation of these
three steps is provided.

3.1. Function space

Mathematically, a multilayer perceptron spans a family of
functions from a finite dimensional input to a finite dimensional
output [11]. These functions are parameterized by all the biases
and synaptic weights in the neural network [12]. The dimension of
the function space spanned by a multilayer perceptron is
therefore equal to the total number of biases and synaptic
weights.

The universal approximation properties state that a multi-
layer perceptron with as few as one hidden layer of
sigmoid neurons and an output layer of linear neurons provides
a general framework for approximating any function up to any
desired degree of accuracy, provided sufficiently many hidden
neurons are available [6]. Also, some extensions to the multi-
layer perceptron will, in many cases, improve the function space
it spans.

If some information not related to input–output relationships
is needed, then the problem is said to have independent
parameters. The independent parameters are not a part of the
neural network, but they are associated to it.

Consequently, a multilayer perceptron with associated inde-
pendent parameters spans a space of functions V from an input
space X � Rn to an output space Y � Rm, where n and m are the
number of inputs and outputs, respectively. The elements of this
family of functions are parameterized by both, the biases and
synaptic weights vector, a ¼ ða1; . . . ; apÞ, and the independent
parameters vector, b ¼ ðb1; . . . ;bqÞ. The total set of free parameters
is thus ða; bÞ ¼ ða1; . . . ; ap; b1; . . . ; bqÞ and the dimension of V is
pþ q. The functions here are of the form

y : X! Y

x7!yðx; a; bÞ.

Thus, the free parameter vector constitutes the parameterization
of the function space, and it is composed of the biases and
synaptic weights and the independent parameters. The first group
defines the output from the neural network for a given input. The
second group provides some separate sort of information. In this
way, distinct values for the free parameters cause distinct
elements in the function space which a specific multilayer
perceptron defines.

If some outputs are specified for given inputs, then the
problem is said to include boundary conditions. A boundary
condition between some input x ¼ a and some output y ¼ ya is
written yðaÞ ¼ ya. In order to deal with boundary conditions the
output signals from the neural network can be postprocessed as
follows:

yðx; a; bÞ ¼ j0ðxÞ þ j1ðxÞyðx; a; bÞ, (12)

where the function j0ðxÞ is called a particular solution term and
the function j1ðxÞ is called an homogeneous solution term. The
first must hold j0ðaÞ ¼ ya if there is a condition yðaÞ ¼ ya. The
second must hold j1ðaÞ ¼ 0 if there is a condition yðaÞ ¼ ya. It is
easy to see that this approach makes all the elements of the
function space to satisfy the boundary conditions.

The expressions of the particular and homogeneous solution
terms depend on the problem at hand. For the common situation
of one input and one output variables and two boundary
conditions yðaÞ ¼ ya and yðbÞ ¼ yb, we could have

j0ðxÞ ¼ ya þ
yb � ya

b� a
x, (13)

j1ðxÞ ¼ ðx� aÞðx� bÞ. (14)
The particular and homogeneous solution terms might be difficult
to derive if the number of input and output variables is high and
the number of boundary conditions is also high.

If some output variables are restricted to fall in some interval,
then the problem is said to have lower and upper bounds. An easy
way to treat lower and upper bounds is to postprocess the outputs
from Eq. (12) in the next way:

yðx; a; bÞ ¼

minðyÞ; yðx; a; bÞominðyÞ;

yðx; a; bÞ; minðyÞpyðx; a; bÞpmaxðyÞ;

maxðyÞ; yðx; a; bÞ4maxðyÞ;

8><
>: (15)

where minðyÞ and maxðyÞ represent the minimum and maximum
allowed values for the output variables, respectively.

Similarly, if some independent parameters are bounded they
can be postprocessed in the following manner:

b ¼

minðbÞ; bominðbÞ;

b; minðbÞpbpmaxðbÞ;

maxðbÞ; b4maxðbÞ;

8><
>: (16)

where minðbÞ and maxðbÞ represent the minimum and maximum
allowed values for the independent parameters, respectively.

3.2. Variational problem

In order to formulate the variational problem, an appropriate
objective functional must be selected. An objective functional for
the multilayer perceptron is of the form

F : V ! R

yðx; a; bÞ7!F½yðx; a; bÞ�.

The objective functional defines the task that the neural network
is required to accomplish and provides a measure of the quality of
the representation that it is required to learn. In this way, the
choice of a suitable objective functional depends on the particular
application.

The simplest variational problems for the multilayer percep-
tron are those in which no constraints are posed on the solution
y�ðx; a�; b�Þ. In this way, the general unconstrained problem can be
formulated as follows:

Problem 1 (Unconstrained variational problem). Let V be the space

of all functions yðx; a; bÞ spanned by a multilayer perceptron, and let

pþ q be the dimension of V. Find a function y�ðx; a�; b�Þ 2 V for which

the functional

F½yðx; a; bÞ�,

defined on V, takes on a minimum value.

In other words, the unconstrained variational problem for the
multilayer perceptron is stated in terms of the minimization of the
objective functional [11].

A variational problem for the multilayer perceptron can be
specified by a set of constraints, which are equalities or inequal-
ities that the solution y�ðx; a�; b�Þ must satisfy. Such constraints
can be expressed as error functionals:

Ei : V ! R

yðx; a; bÞ7!Ei½yðx; a; bÞ�,

for i ¼ 1; . . . ; l, and where l is the number of constraints. Thus, the
general constrained problem can be formulated as follows:

Problem 2 (Constrained variational problem). Let V be the space of

all functions yðx; a; bÞ spanned by a multilayer perceptron, and let

pþ q be the dimension of V. Find a function y�ðx; a�; b�Þ 2 V such that

Ei½y
�ðx; a�;b�Þ� ¼ 0,
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R. Lopez, E. Oñate / Neurocomputing 71 (2008) 2538–2543 2541
for i ¼ 1; . . . ; l, and for which the functional

F½yðx; a; bÞ�,

defined on V, takes on a minimum value.

In other words, the constrained variational problem for the
multilayer perceptron consists of finding a function which makes
all the constraints to be satisfied and the objective functional to be
an extremum.

A possible approach for solving a constrained variational
problem is to reduce it into an unconstrained problem. This can
be done by adding a penalty term to the objective functional for
each of the constrains in the original problem. Adding a penalty
term gives a large positive or negative value to the objective
functional when infeasibility due to a constrain is encountered.
The general constrained variational problem for the multilayer
perceptron can then be reformulated as follows:

Problem 3 (Reduced unconstrained variational problem). Let V be

the space consisting of all functions yðx; a; bÞ that a given multilayer

perceptron can define, and let pþ q be the dimension of V. Find a

function y�ðx; a�; b�Þ 2 V for which the functional

F½yðx; a; bÞ� þ
Xl

i¼1

rikEi½yðx; a; bÞ�k
2,

defined on V and with ri40, for i ¼ 1; . . . ; l, takes on a minimum

value.

The parameters ri are called the penalty term weights. Note
that, while the squared norm of the error in the constraint is the
metric most used, any other suitable metric can be used.

For large values of ri, it is clear that the solution y�ðx; a�; b�Þ of
Problem 3 will be in a region where Ei½yðx; a; bÞ� are small. Thus, for
increasing values of ri, it is expected that the solution y�ðx; a�; b�Þ
of Problem 3 will approach the constraints and, subject to being
close, will minimize the objective functional F½yðx; a; bÞ�. Ideally
then, as ri !1, the solution of Problem 3 will converge to the
solution of Problem 2.

3.3. Reduced function optimization problem

The objective functional, F½yðx; a; bÞ�, has an objective function
associated to it, f ða;bÞ, which is defined as a function of the free
parameters in the neural network:

f : Rpþq ! R

ða; bÞ7!f ða; bÞ.

The minimum value of the objective functional is achieved for a
vector of free parameters at which the objective function takes on
a minimum value. Therefore, any learning task for the multilayer
perceptron, formulated as a variational problem, can be reduced
to a function optimization problem [11]:

Problem 4 (Reduced function optimization problem). Let Rpþq be

the vector space of all free parameters ða; bÞ of a multilayer

perceptron. Find a vector ða�; b�Þ 2 Rpþq for which the function

f ða; bÞ,

defined on Rpþq, takes on a minimum value.

In this sense, a variational formulation for the multilayer
perceptron provides a direct method for solving variational
problems. The universal approximation properties cause neural
computation to be a very appropriate paradigm for the solution of
these problems.

The use of gradient information is of central importance in
finding training algorithms which are sufficiently fast to be of
practical use for large scale applications [2]. For a multilayer
perceptron, the gradient vector r of the objective function
f ða1; . . . ; ap; b1; . . . ; bqÞ is written as

rf ða1; . . . ; ap; b1; . . . ; bqÞ

¼
qf

qa1
; . . . ;

qf

qap
;
qf

qb1
; . . . ;

qf

qbq

 !
. (17)

When the desired output of the neural network for a given input is
known, the objective function gradient can usually be found
analytically using a backpropagation algorithm [15]. In some
other circumstances exact evaluation of the gradient is not
possible and numerical differentiation must be applied [2].

Finally, the training algorithm is entrusted to solve the reduced
function optimization problem. The training process is deter-
mined by the way in which the adjustment of the parameters in
the neural network takes place.

There are many different training algorithms, which have a
variety of different computation and storage requirements.
Moreover, there is not a training algorithm best suited to all
locations [16]. Training algorithms might require information
from the objective function only, the gradient vector of the
objective function or the Hessian matrix of the objective function
[2]. These methods, in turn, can perform either global or local
optimization. Some of the most used are gradient descent [2],
conjugate gradient [2], the quasi-Newton method [2], evolution-
ary algorithms [4] or particle swarm optimization [7].

Overall, a variational formulation for the multilayer perceptron
provides a direct method to approximate the solution of
variational problems, in any dimension and up to any desired
degree of accuracy [11]. In some cases a standard multilayer
perceptron will define a correct representation for the solution. In
some other occasions some extensions to this class of neural
network shall be required. In this regard, any lack of success in a
learning task must arise from a wrong choice of the function
space, the lack of the objective functional or inadequate training.
4. Results

Here an extended class of multilayer perceptron is trained to
find the optimal control and the corresponding optimal trajectory
for the car problem formulated in Section 2. The problem is solved
with the Flood library [10].

4.1. Function space

The first step is to choose a function space to represent the
control aðtÞ. Here a multilayer perceptron with a sigmoid hidden
layer and a linear output layer is used. The network architecture
must have one input, the time t, and one output neuron, the
acceleration a. The number of neurons in the hidden layer is set to
be six, see Fig. 3.

On the other hand information about the final time is required.
Thus, an independent parameter tf must be associated to the
multilayer perceptron.

This neural network spans a family V of functions aðt; a; tf Þ of
dimension pþ q ¼ 19þ 1, where p ¼ 19 is the number of biases
and synaptic weights and q ¼ 1 is the number of independent
parameters. Elements of V are of the form

a : ½0; tf � ! R

t 7!aðt; a; tf Þ.

Note that the final time tf is unspecified. Moreover, the goal in this
problem is to find a control signal which makes this independent
parameter to be minimum.



ARTICLE IN PRESS

0 20 40 60 80 100
100

101

102

103

ev
al

ua
tio

n

0 20 40 60 80 100
10−4

10−2

100

102

104

epoch

gr
ad

ie
nt

 n
or

m

     
∇ f(α,tf)
f(α,tf)

Fig. 4. Evaluation and gradient norm training histories for the car problem.
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Fig. 3. Network architecture for the car problem.

Table 1
Training results for the car problem

N ¼ 85

M ¼ 6563

CPU ¼ 197

f ða� ; t�f Þ ¼ 1:999

krf ða�; t�f Þk ¼ 0:001

exða�; t�f Þ ¼ 5:714� 10�4

evða� ; t�f Þ ¼ 4:444� 10�4

t�f ¼ 1:999
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Here the control values for the initial and final times are given.
More specifically, they are set to be að0Þ ¼ 0 and aðtf Þ ¼ 0. A
particular solution term for this problem can be j0 ¼ 0, and an
homogeneous solution term can be j1 ¼ tðt � tf Þ. Then the output
signals from the neural network are postprocessed so as to satisfy
the boundary conditions in the form

aðt; aÞ ¼ tðt � tf Þaðt; aÞ. (18)

Indeed, it is easy to see that all the functions defined by Eq. (18)
satisfy að0Þ ¼ 0 and aðtf Þ ¼ 0.

On the other hand, the control is lower and upper bounded by
the brake and the engine performances, respectively. In particular,
the acceleration is restricted to lie in the interval aðtÞ 2 ½�1;1�. The
outputs from Eq. (18) are thus postprocessed in the form

aðt; a; tf Þ ¼

�1; aðt; a; tf Þo� 1;

aðt; a; tf Þ; 0paðt; a; tf Þp1;

1; aðt; a; tf Þ41:

8><
>: (19)

Finally, the final time must be equal or greater than zero,
tf 2 ½0;1Þ, so this independent parameter is bounded as follows:

tf ¼
0; tfo0;

tf ; tfX0:

(
(20)

Here all the free parameters in the neural network are initialized
at random. In this way, a random control with a random value for
the final time are used as an initial guess to solve the problem.

4.2. Variational problem

The second step is to select an objective functional, in order to
formulate the variational problem. From Eqs. (8)–(10), the
objective functional must be composed of three terms, the
objective itself (final time) and a penalty term for each of
the two constraints (final position and final velocity). Thus, a
possible objective functional for this case study is

F½aðt; a; tf Þ� ¼ tf þ rXðxðtf Þ � 1Þ2 þ rV ðvðtf ÞÞ
2, (21)

where rX and rV are called the error position and error velocity
penalty term weights. Both of them are set to 1000.

Note that evaluating the objective functional in Eq. (21)
requires a numerical method for integration of ordinary differ-
ential equations, in order to obtain the final position and velocity
for a given acceleration signal and a given final time. Here the
Runge–Kutta–Fehlberg method [13] is chosen, and the tolerance
set to 10�15.

On the other hand, a backpropagation algorithm for the
objective function gradient rf ða; tf Þ is not possible to be derived
here, since the target outputs from the neural network are not
known [15]. Instead, the central differences method for numerical
differentiation is to be used with � ¼ 10�6 [2].
4.3. Reduced function optimization problem

The third step is to pick out a suitable training algorithm and
solve the reduced function optimization problem. Here a quasi-
Newton method with BGFS train direction and Brent optimal train
rate methods is used [2]. The tolerance in the Brent method is set
to 10�6. This training algorithm has demonstrated fully conver-
gence to the global optimum in this application.

In this example, the training algorithm is set to stop when it
cannot perform any better. At this time, the Brent’s method gives
zero train rate for any train direction.

The evaluation and the gradient norm of the initial guess
are 992.051 and 7573.454, respectively. The quasi-Newton
method here needs 85 epochs to converge. After training, the
evaluation and the gradient norm fall to 1.999 and 0.001,
respectively. Fig. 4 depicts the training history for this two
variables. Note that a base 10 logarithmic scale is used for the y-
axis in both plots.

Table 1 shows the training results for this case study. Here N

denotes the number of epochs, M the number of evaluations, CPU

the computing time in seconds for a laptop AMD 3000, f the final
objective function value, krfk the final gradient norm, ex the final
position error, ev the final velocity error and t�f the optimal final
time. It can be seen that the final errors in the position and the
velocity of the car are very small. Also, the final time found by the
neural network matches that provided by the optimal function in
Eq. (11). More specifically, the errors made in the constraints are
less than 10�3 and the error made in the final time is around 0.1%.

The optimal control obtained by the neural network is plotted
in Fig. 5. This signal is very similar to the analytical solution in
Eq. (11).
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5. Conclusions

An extended class of multilayer perceptron with independent
parameters, boundary conditions and lower and upper bounds
might be able to span a more suited function space for some
variational problems.

The use of that class of neural network within a variational
formulation has been investigated through the solution of the car
problem, demonstrating very good agreement between the
approximate and the exact values.

Future work is focussed on using the proposed approach for
different applications in engineering. Special interest is put on the
fields of optimal control, inverse analysis and optimal shape
design.
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