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THE SMALL-GAP EQUATIONS IN ROTARY LIP SEALS

Juan C. Heinrich* and Carlos A. Vionnet
Department of Aerospace and Mechanical Engineering
University of Arizona
Tucson, Arizona 85721

SUMMARY

The study of a thin, incompressible Newtonian fluid layer trapped between two almost parallel,
sliding surfaces has been actively pursued in the last decades. This subject includes lubrication
applications such as slider bearings or the sealing of non-pressurized fluids with rubber rotary shaft
seals. In the present work we analyze the flow of lubricant fluid through the micro-gap of rotary
lip seals. This study is carried out assuming that a “small-gap” parameter § attains an extreme
value in the Navier-Stokes equations. In particular, the effect of surface roughness, excentricity and
centrifugal forces is analyzed using this technique. The precise meaning of small gap is achieved
by the particular limit § = 0 which, within the bounds of the hypotheses, predicts transport of
lubricant through the sealed area by centrifugal instabilities. Numerical results obtained with the
finite element method are presented.

INTRODUCTION

Radial lip seals are relatively simple elements widely employed in diverse types of rotary
machines. This oil resistant elastomeric component is often used to seal rotating shafts at low
oil pressures, avoiding the transport of contaminant to, or lubricant from, the rolling bearings
system it protects. The seal, bonded through a metallic case to the oil reservoir, is stationary and
presents a narrow section that slides over the moving surface of the rotary shaft (Fig. 1).

The lip is designed to have an interference with the shaft. In addition, a garter spring may be
used to link both members throughout the lifetime of the seal. Therefore, once the piece is mounted,
the compliance of the elastic body ensures a perfect fit between the lip seal and the cylindrical
surface of the shaft. Under these conditons, some of the initial seal asperities wear out after a brief
period of time, leaving an extremely thin layer of lubricant fluid that separates the seal from the
contact surface. This was first noticed by Jagger (1977) and, ever since, numerous explanations
attempted to account for two consequences of this experimental fact: the hydrodynamic force able
to sustain a gap between the two bodies and the mechanisms that prevents the fluid from leaking

through.

Jagger proposed that the surface tension of the sealed fluid controls leakage thanks to a meniscus
formed on the air side. Kawahara and Hirabayashi (1977) observed that a properly installed and
functional seal leaked when the installation was reversed. But the chosen tool by many researchers
to attempt to answer these fundamental questions has been lubrication theory, with the assumption
of a relative parallel sliding between two rough surfaces (Hirano et. al. 1961). The load-carrying
capacity of parallel sliding of rough surfaces was first studied by Davies (1961). Later on, Jagger
and Walker (1966 - 1967) assumed that the asperities of the seal act as micro-bearings pads in
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the contact area. However, Lebeck (1986 a, b) concluded that none of the existing models can
fully explain the sliding motion as commonly observed in experiments. Gabelli and Poll (1990)
studied the action of the surface microgeometry in the formation of the lubricant film. They found
that the contribution of mechanical pressure to the load-carrying capacity due to body contact is
very small and indeed negligible. Salant (1990) claimed that micro-ondulations in the lip surface
restrict leakage by virtue of a “reverse-pumping” process in which fluid is driven from the low to
the high pressure side. However, no one has really observed such micro-ondulations, either in static
or dynamic conditions. (Gabelli 1992)

Combinations of angular velocity and shaft eccentricity beyond the ability of the sealing device
to maintain contact with the shaft would cause the seal to leak profusely. It has been suggested
that an inherent pumping mechanism, sufficient to counterbalance those influences promoting
leakage, would be given by the relative motion between the sealing surfaces, Johnston (1989).
Besides all these hypotheses, at present there is a wide gap between theory and practice, and a
feasible explanation of the mechanisms involved in the sealing action is still pending, even though
elastomeric radial lip seals have been used since the 1940’s.

OIL SIDE

ng I AIR SIDE

Fig. 1 - Cross section of a typical rubber lip seal

ANALYTIC MODELS:
THE SMALL GAP EQUATIONS IN ROTARY LIP SEALS.

We assume an oil-film already formed ignoring any mechanical contact between the seal and
the shaft, as well as any elastic distortion of the upper rubber seal. We consider a thin viscous
liquid layer bounded above by a seal and below by a perfectly rounded shaft, without including
edge effects such as the free surface observed on the air-side. Despite the fact that the film within
the gap is very thin, we assume it to be thick enough to conform to a continuum theory. There is
no local rupture of the film such as caviation or dry spots in the contact area, and the layer consists
of an incompressible Newtonian fluid with constant properties under isothermal conditions.



We begin with the Navier-Stokes equations written in cylindrical coordinates (Batchelor 1967),
setting the direction of the line » = 0 coincident with the shaft axis.

1 8(1‘1;,) 4 10ug Ou,

v or Trae "0 (1)
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In the absence of a free surface the gravitational body force is expressed as the gradient of a
scalar quantity and, therefore, it has been included in the pressure gradient term.

The analysis of the lubricant flow in the contact region involves, roughly speaking, three very
different length scales, namely, the radius R of the shaft (~ 0.01m), the much smaller thickness
ho of the fluid film (~ 10xm) and an intermediate length b characterizing the axial extent of the
contact region (~ 200um) (as depicted in Fig. 1).

We will consider three different mechanisms that could induce flow through the contact region
under dynamic conditions. Namely the surface roughness, shaft excentricity and centrifugal
instabilities. The length scales mentioned above will be used to simplify the Navier-Stokes equations
in the “small-gap” limit, i. e., when the parameter § = ho/R formally approaches zero.

1. Inner region: roughness action

If the contact area is formed by two flat surfaces, both rigid and in parallel relative motion,
the solution of the governing equations is a combination of a Poiseuille and a Couette flow. This is
true if we ignore edge effects, as in the lubrication approximation (seee. g. Batchelor 1967) and for
a negligible circumferential pressure gradient this flow is stable to small disturbances (Drazin and
Reid 1981). However, given the small thickness of the lubricant film, roughness of similar order in
the contact area will introduce considerable variations in the fluid layer. In order to analyze this,
consider the irregular surface observed in Fig. 2. We enforce 27 periodicity in 6 and expand the
asperity surface in a double Fourier series of the form
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h(8,z) = he + Z Z Amnsin(mb — p,,) cos (Ebzz) (5)

m=1 n=1

For a dominant frequence, and ignoring the initial phase ¢,,, a simple representation of the film
thickness is given by (Fig. 3).

h(8, z)': ho + a sin(mé) cos(k,z) (6)

Fig. 2 - Rough contact surface of a lip seal
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Fig. 3 - Gap between a shaft and a rough seal



where m is an integer, a is an asperity amplitude considered to be small in comparion with hy and
k, = Z*. Note that mf = R(RH) = kms, where k, = | = A is the wave number and s = R0 is
the area. lenght coordinate. If we assume parallel sliding motion with the upper surface moving at
constant speed U, while the shaft is held stationary, the equation reduces to

h(s,z,t) = ho + a sin[k,(s — Ut)] cos(k,z) (7)
The constant phase velocity can be written as

ds wmn
'Ta Tk, e

where w,, is the perturbation frequency induced by a roughness of wavelength A,,. Since
U=Q(R+ ho) = QR (1 - %) ~ QR for % < 1, the relationship between the two frequencies w,,
and {2 is

27 2T R
Wy = /\mU = ( o ) Q=m0 (9)

In addition to the mostly circular Couette flow set by the rotary seal, part of the fluid displaced
by an asperity crest will flow axially to the neighboring troughs in response to the incompressible
nature of the lubricant. That is, the sliding motion of the upper surface induces alternatively
thinning and expansion of the liquid layer that promotes a local flow that scales with V = w,,a.
Therefore

V =wna= /\%Ua :scale of velocity in axial plane (r, z)
U~QR :sliding velocity, scale of velocity in the # direction

Introducing the dimesionless variables

o, ) = z r—R —Vt
z,9) = hO, ho T_ho

U, U Ug * (P—Pa hO
(uyp)w):<V)T/—>F) P :_—)

into the equations of motion, and letting § = % — 0 we get

via=0 (10)



R; (0 +u.v)i=—-vp +V’E (11)

R; (0 + ©4.V)w = V2w (12)
where
U= (u)v) yV = (amaay))
N 2mwa .
R, = TRe : Modified Reynolds number

and Uhy QR

R, = ” 0 = . Reynolds number.

v

Note that the modified Reynolds number contains the four length scales involved in the problem,
a, ho, A, and R. Moreover, t was made dimensionless with respect to the inertial time scale -l%}l

2
However, it may be possible to use the viscous time scale %‘1 so that the time derivative in the
acceleration terms would be of order one.

The inertia terms can be neglected if the modified Reynolds number is small, but for %\ﬂ of order
one, the inertia terms will have a large effect on the velocity and pressure fields for R, "é 1. This
condition can be easily attained with today’s low viscosity lubricants and fast rotatory machines,
precluding the use of the Reynolds equation. This particular scaling seems to be consistent with
the observations of Gabelli and Poll (1990), who found that the average pressure gradient in the
circumferential direction is negligible when compared with the pressure gradient across the sealing
contact, in agreement with Eq. (12).

The no-slip boundary condition at the upper and lower surfaces are, setting s = 0 in Eq.(7)
without loss of generality.

dh*
w=0 v= = —cos (:> cos(kiz), w=1 at y=1—¢€sin (Z) cos(kz)
dr € €
where
h":i, k;:mrhg’ e &
ho b ho

This particular set of boundary conditions represents a system of standing waves acting in the
axial plane. The small gap limit is equivalent to a postulate of axisymmetric flow, however, it
should be noted that the assumption that derivatives with respect to 6 are zero is not consistent
with the geometry (Fig, 3) except in the limit when § — 0. The resulting equations Figs. (10), (11)

and (12) show that when § — 0 the momentum equations decouple and give a Couette flow in the



6- direction plus boundary conditions for flow in the axial plane. They clearly show that asperities
are unlikely to produce a net flow through the gap under the present assumptions. In the rest of
this analysis roughness will be neglected. '

2. Inner region: radial oscillation

Consider a rotating seal separated a distance hy from the shaft surface and oscillating up and
down with frequency Q and amplitude e (Fig. 4). For a smooth seal rotating at constant angular
velocity €2, the film thickness h can be expressed as

h=ho+ h,

where hy is the average separation between seal and shaft and k. represents the gap displacement
induced by radial oscillations of amplitude e. This perturbation provides the simplest model to
simmlate excentricity of the shaft. The radial displacement becomes

h = ho+ h, = ho + e cos(Qt) (13)

Fig. 4 - Radial oscillations of a rotating seal

A quick computation shows that the ratio between the normal acceleration a, and the
tangential acceleration a; at any point on the seal is ~ 0 (%), which for R ~ 0.01m and e ~ 10pm
means 2+ ~ 0(1000). In consequence, tangential effects are negligible in comparison with normal
variations.

It should be pointed out that frequencies other than 2 are possible for geometric imperféctions.
Muller and Ott (1984) used a polygon profile in their experiments to generate radial oscillations.

Radial oscillations will have a stronger impact inside the gap than elsewhere since from
mass conservation the axial squeezing velocity will be of order %% ~ 0(20 x %) (see Fig. 4).



Introducing the following change of variables, for oscillations of amplitude e of the same order of

ho

z r—R
(2:}:‘/) — (h—o’ T) ) r=0t
(e U e «_ (P=pa)
(u,v,w)_ (Qho, Qho’ QR)’ p = pVQ

into Egs. (1) - (4), and letting 6 = % approach zero, holding other parameters fixed, we get

V. =0 (14)
0(0r + U.V)E — Rew?j= — v p" + V2@ (15)
o(0r + 4.7)w = 2w (16)
where .
Qhl .
o = — : squeezing Reynolds number
v

= (u,v), V=1(0:0,), j=(0,1): unit vector in radial direction

Several other scalings are possible (Krueger et. al. 1966), but this particular choice seems to be
consistent with the Gabelli and Poll observations (Gabelli and Poll 1990). They stated that the
average pressure gradient in the circumferential direction is indeed negligible when compared with
the pressure gradient across the sealing contact. Ignoring edge effects, this system of equations is
subject to the following boundary conditions

u=v=w=0_0 aty =0
u=0,v=—(sin(r),w=1 aty=1+ (cos(r)

where ( = %y - Lhe squeezing Reynolds number o is usually small and inertia terms can be neglected
and classical lubrication theory can be applied. Moreover, for small R, as it turns out to be in most
applications, the flow is stable to small disturbances (Drazin and Reid 1981). In the absence of
mechanical vibrations, no secondary flow is possible at this level, the circumferential flow is stable
and of Couette type.

For small o and neglecting centrifugal effects, these equations are similar to those governing
the squeezing of a thin film between oscillating parallel disks (Hunt 1966). In principle, the flow
would be a combination of a pure shearing motion in the azimuthal direction and a squeezing flow
in the axial plane.

3. Outer region: centrifugal effect
The changes in the geometry introduce different features in regions located away from the

gap. For a slowly-varying channel d = d(z) on the air-side, we rescale the flow field using the
nondimensionalization.
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where d is some mean value of d(z) (see Fig. 5). The equations of motion, Egs. (1) - (4), in the
limit § = % — 0, become ’

Uz + v, =0 (17)

Uy + g + vuy = —p, + Lu (18)

vy + Uvg + vUy — Taw2 = —p; + Lv (19)
W, + uw, + vwy = Lw (20)

where the subscript denotes differentiation, e. g., u, = %;— Here

Q2Rd?
T, = Z : Taylor number
v
and
52 52 .
L= 5z + a—yz : Laplacian operator in (x,y)

y, v

\ X,Z,U

s=R06,w

Fig. 5 - Global and local coordinates for centrifugal effects

The above system of equations are the so-called “small-gap” equations, widely used in the
context of the stability of Taylor-Couette flows (Hall 1975). While the curvature effects are almost
completely neglected, they are retained through the centrifugal term holding the Taylor number
fixed as § — 0, reflecting the fact that a seal separated from a rotating shaft by a thin lubricating



film is subject to centrifugal instabilities in the vicinity of the contact area. As we will see, this
mechanism can produce a significant secondary flow across the gap.

Note that had we used the scaling of section 2 in the inner region, we would have obtained

— =R’§-0as6—0

T,
R

_’Rd® _ Q’RhY _ (QRh0>2 ho

v? v2 v

outer region | inner region

and the Taylor number indicates where curvature effects must be retained, regardless of the scales
chosen.

The system of Eqs. (17) - (20) is a one-parameter model of axisymetric flow, that can be solved
numerically using the finite element method.
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PENALTY FUNCTION FORMULATION FOR THE N-S EQUATIONS

In what follows, we denote the coordinte directions as (z,y) or (z1,z2), the transverse velocity
components as (u,v) or (uy,u;), the azimuthal component as w, and the pressure as p; 6;j is the
Kronecker delta. For convenience in the treatment of the boundary conditions, we rewrite the
equations of motion as

Ou;

50 = (21)
3’11,' Bui _ 2¢ (90’,']'
or T igg; T Taw bt G (22)

ow ow 0w

ot * ”"a—z:j - dz;0z; (23)

The Taylor number 7, is defined in equation (17), and the stress in the fluid is given by

Ou;  Ou;
7= P+ G+
7 1

A weak form is obtained by taking the inner product of the transverse momentum equations (22)
with a weighting function W = (W1, W2), and multiplying the azimuthal momentum equation (23)
by a scalar function W. The penalty method is implemented introducing the pseudo-constitutive
relation (Heinrich and Marshall 1981)

_ c’)uj
P=P. 31:_7'

where p, is the hydrostatic pressure when the fluid is at rest and ) is the penalty parameter. Upon
application of Green’s theorem and substituting p by the above expression, we get

Ou; Ou; Ouj OW; Ou;  Ouj;\ OW; B
Q

ow Jw ow oW ow
P2l ) an a0 = [ wll,.
/ ( o T U a@j) dQ + 5z, 52, %" / 52, (25)
Q Q an

where the surface forces Sy and the volume V; are defined by

Ou;  Ou;

= [ [-pWin; i =4 — J

S¢ /[ pWin; + W, (amj ¥ (91:,-)”3 Jds (26)
oN
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Vi = / Tow?6;,W;dQ (27)
i

where fi = (n1,7,) is the unit vector normal to the boundary 6§ and pointing outwards. On a
vertical boundary with normal fi = (1, 0), the integral of Sy reduces to

. Ou
W= : — 2—
for normal traction, and
- Oou Ov
W = ) — + =
(O’ WZ) ay + (923

for shear traction, in a weak rather than a pointwise sense.

BOUNDARY CONDITIONS

The boundary conditions are the usual no-slip and no mass penetration at solid walls on the
physical boundaries. This is, v =v = 0 and w = 1 at the lower boundary y = 0, which represents
the outer surface of the rotating shaft, and u = v = w = 0 at the upper boundary, which represents
the inner surface of the stationary seal.

At the open boundaries, on both sides of the contact region we apply a free-boundary condition
(FBC). We evaluate the line integrals (26) of the weak form of the momentum equations using values
computed on the outflow elements. Then, we force the line integrals into the right-hand-side of
the discretized equations until convergence is achieved (Papanastasiou et. al. 1992). The natural
boundary condition dw/dn = 0 is used in the weak form of the transport equation (25).

FINITE ELEMENTE METHOD

The domain is discretized into M elements and N nodes, we expand the velocity components
using biliner isoparametric quadrilateral elements and the pressure with piecewise constant
elements. All terms of the weak form of the governing equations are evaluated with full Gaussian
integration, except the penalty term, where selective reduced integration is used (Carey and Oden
1986). The weighting functions are set equal to the basis functions, except in the convective terms,
where perturbed Petrov-Galerkin functions with balancing tensor diffusivity are employed (Brooks
and Hughes 1982; Heinrich and Yu 1988). The time integration is based on the theta method with
lumped mass matrices in the time derivatives.

The numerical evaluation of the weighted residuals of the momentum equations leads to a
nonlinear system of equations that is solved by a Newton iteration using a direct solver based on
Gauss elimination for unsymmetric banded matrices (Dongarra et. al. 1979). A convergence
tolerance less than 1% of the relative change |[Au”||/||u”|| in the velocity field is imposed to
terminate each v-th Newton iteration. The pressure p. over each element Q. is calculated using
the weak form

12
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pc:_Q_e][v.a o (28)
Qe

where the cross bar denotes reduced integration.

To march in time we use the velocity field u™ and pressure p™ at time ¢, to evaluate terms
of Sy and V% of the buoyancy force vector b™. Having determined b™, we compute the velocity
field using the Newton linearization algorithm. Once u™*! is known, we update the pressure by
means of the equation (28) and solve the transport equation for w™t1. The scheme is repeated
until steady state is achieved. Time integration is terminated when the relative change between
time steps is

n

wn+1 "
wn+l

un+1 —u®

< €

ey <€ and ‘
u

where

all? = > lajl*;
i

j ranges over the number of degrees of freedom for the particular vector, and €; and €, are prescribed
tolerances. All the following results are obtained with the fully implicit algorithm starting from
zero initial conditions.

Numerical examples

The geometry and the finite element mashes employed for the present calculations are shown
in Figs. 6, 7 and 8. :

RIGID SEAL PROFILE

SHAFT

Fig. 6 - Cross section of the seal-shaft configuration

13



15 i
]
T .
| I L
0 |
;
[
—4
s+ O
N
- =
o | COIOmtr14 —
1 | L : ! 1 1
20 5 0 5 10 15 20
Fig. 7 - Finite element discretization (mesh 1)
25
J0F
20
5 o
1.0
as k-
Q0
50 0 o
-25 -20 15 1.0 05 00
15 -
o
10 I
1117 T
s 1] . —— =
5+0
O - TIT £
| T e | (S S BT R R | -
-10 <5 0 5 10 15 20
X
Fig. 8 - Finite element discretization (mesh 2)

14



The two different discretizations are used to test the influence of the open boundary conditions
on the numerical solution. Both meshes contain 2035 nodes and 1864 elements, and the penalty
parameter ) is equal to 108 in all cases. The dimensions are hg = 10pum and b = d = 200um. The
pressure is adjusted at every time step in such a way that it is always zero at the first element, i.
e. the element located at ¢ = —13, y = 0 for the first mesh (Fig. 7), and z = —11, y = 0 for the
second mesh (Fig. 8). Analyses of the time history of the global kinetic energy ensures that steady
state is achieved at convergence tolerances €; = e, = 1074.

A series of four steady-state "solutions are obtained for values of the parameters

T, =2,5,10 and 15. For a lubricatn fluid of kinematic viscosity v = 2.5 x 107° "‘Tz, and a shaft
radius R = 0.0381 m., these Taylor numbers cover the following range of rotary speed.

Table 1 - Taylor number vs. rotary speed

T, v?
£} = \[ﬁ
T

[rad/s] [rpm]

64.0 611

101.3 967

10 143.2 1367

15 175.4 1675

First we look at the influence of the domain size on the numerical solutions to determine the
effect of the location of the artificial boundaries, especially on the oilside, where the geometry
changes abruptly. Volume fluxes, computed with mesh 1 and mesh 2, are tabulated in Table 2.

Table 2
T, q - MESH 1 q - MESH 2
-3 -3
2 -0.42X10 -0.65X10 __
5 -0.11X 10 _J -0.90 x 10
10 -0.21x10 . | -0.15x10_
15 -0.29%x 10 -0.23%x10

where the volume flux q across the gap is computed as

45



Fig. 9 depicts

the velocity field computed with both meshes, results are for T, = 10. Plots of

both velocity fields are overlapped in Fig. 10 while Fig. 11 shows the overlapped results for the
azimuthal component of the velocity and for the pressure.
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Fig. 9 - Velocity fields obtained with meshes 1 and 2 (7, = 10)
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Fig. 11 - Overlapping of numerical results for w and p obtained with meshes 1 and 2

It can be seen that the overall pattern is preserved in both meshes, note that the velocity
magnitude shows very large variations over the domain. While a typical order of magnitude for the
velocity inside the ‘gap is approximately 0.1, on the oil-side it is of the order of 30. Unfortunately,
the gap geometry on its left side is not exactly the same for both meshes, which may have an effect
in the above comparison. Figs. 12, 13 and 14 show the transverse velocity field, the circumferential
component of the velocity and the pressure, respectively, at 7, = 15, using mesh 2.
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Fig. 13 - Azimuthal component w
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Fig. 14 - pressure

The steep pressure gradient developed along the gap is depicted in Fig. 15, and the resultant
volume flux in Fig. 16. Fig. 17 shows the stream function.
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Fig. 17 - Streamline contours, T, = 15

Fig. 18 shows the pressure distribution along the gap for different Taylor numbers. A linear
pressure distribution, consistent with the plane Poiseuille flow observed in Fig. 16, is established
along the gap where the bounding planes are strictly parallel.
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Fig. 18 - Piecewise-constant pressure distribution along the gap

Finally, the presence of large circulation eddies of different strenght on both sides of the gap
associated with this pressure jump are depicted in Fig. 19 for T, = 10.
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Fig. 19 - Velocity field at different locations T}, = 10

CONCLUSIONS

Flow across the microgap in a lip seal has been analyzed starting from the full Navier-Stokes
equations and using the relevant length scales to simplify them in order to obtain models that can
be more easily interpreted. The basic analytical tool used here has been to take the small gap limit
which is particularly relevant to this situation.

Three features of the system have been examined using this technique, the effect of surface
roughness, the effect of excentricity and the effect of centrifugal forces. Under the simplified
conditions stated in our model we conclude that roughness and excentricity are unlikely to produce
flow across the contact region of the seal. On the other hand, centrifugal effects appear to have
a strong role in the transport of lubricant under the microgap. The equation obtained using the
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limiting process are the well known small-gap equations, used extensively in the context of stability
of Taylor-Couette flows. It also has the great advantage that it is amenable to numerical solution,
which we have accomplished using the finite element method.

Under the simplified assumptions of this work, the flow under the lip predicted numerically
appears to be much stronger than observed in experimental setups. There are at least two clearly
identifiable effects that added to the model would make it more realistic and reduce the high flow
rates predicted in this work:

1) Capillary effects due to the formation of a meniscus at the oil-air free surface will produce a
large pressure drop across the oil-air interface, thus helping to counterbalance the high pressure
region developed in the air side.

2) The surface roughness is of the same order as the gap, but has not been taken into account in
our calculations. This can be done using a model for flow in a porous medium and will have the
effect of reducing the mass flow, due to increased resistance in the medium.

Another important addition to the model in the incorporation of a variable viscosity. Due
to temperature variations in the oil within the gap, viscosity may have a large variation across
the contact region thus strongly influencing the flow. The addition of the energy equation to the
numerical model in order to incorporate thermal effects in the physical properties is currently under
development.
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