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Abstract. Turbulent mixing of two passive scalars is investigated in a constant-property jets using
stochastic one-dimensional turbulence (ODT). Scalars are separately injected by a central round and
a surrounding annular jet that issue into a uniform co-flow of low velocity. These scalars are transported
downstream and dispersed in radial direction by turbulent advection and molecular diffusion. The jet as
well as the turbulent inflow are numerically simulated with ODT as stand-alone tool using a temporal
(T-ODT) and spatial (S-ODT) formulation. We show that ODT captures key properties of the turbulent
mixing for one scalar by performing individual scalar statistics and for two scalars by computation of
joint probabilities. Some limitations of the one-dimensional modeling approach are also discussed.

1 INTRODUCTION

Turbulent mixing is ubiquitous in flows from technical to astrophysical scales where it manifests itself
by redistribution of conserved scalars on a range of scales. Reversible advective stirring motions of the
turbulence cascade dominate down to the dissipation scales at which irreversible molecular mixing pro-
cesses will take over. The transition from inertial to diffusive dominance is given by the Kolmogorov [1],
Batchelor [2], and Obhukov–Corrsin [3] scales for the momentum, a slowly, and a fast diffusing scalar,
respectively. An accurate representation of the flow physics down to these scales is particularly relevant
whenever detailed information about the mean and fluctuations are required. This is, in particular, the
case for turbulent flows with active scalars such as turbulent thermal or moist convection, as well as
chemically reacting flows. For the latter, it is well known that the location and maximum of the heat re-
lease in a non-premixed jet flame, for example, crucially dependent on the mixing of the chemical species
in the jet (e.g. [4, 5]) which may be idealized to the mixing of one (e.g. [6, 7]) or multiple (e.g. [8, 9, 10])
passive scalars. Hence, any numerical approach that is deemed to have predictive capabilities needs to
capture the mixing of passive scalars to facilitate or inhibit chemical reactions further downstream.

Direct numerical simulation (DNS) would be the ideal tool to numerically investigate the flows men-
tioned above since no modeling is involved but it is usually too costly to be broadly applicable. Reynolds-
averaged Navier–Stokes simulation (RANS) is economical but fluctuations have been filtered and only
some effects are statistically modeled which strongly limits the predictive capabilities. Large-eddy sim-
ulation (LES) aims to capture a large fraction of relevant turbulent fluctuations. However, once small-
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scale processes are crucial for the application resolution requirements for LES tend toward those of
DNS. Hence, we seek accurate but economical modeling approaches that allow for self-contained flow
simulations by respecting fundamental physical principles.

The considerations above are addressed by lower-order stochastic modeling such as one-dimensional tur-
bulence (ODT) [11]. ODT aims to represent all relevant scales of a turbulent flow for a one-dimensional
computational domain. Deterministic molecular diffusion is directly resolved along this domain, whereas
effects of turbulent advection are modeled by an ensemble of discrete mapping events (eddy events). This
ensemble of eddy events covers a range of scales and is obtained by sampling individual eddy events
from a stochastic process that depends on the evolving flow state. Notice that the latter distinguishes
ODT from the linear eddy model (LEM) [12], in which scalars are mixed by a prescribed turbulence
field (see also [13] for one and [10, 14] for multiple scalar mixing in jets). For single passive scalar mix-
ing it was previously shown that ODT is able to capture relevant scalar statistics for various canonical
flows (e.g. [15, 16, 17]). By contrast, for three scalar mixing in isotropic turbulence some limitations
related to the purely one-dimensional representation have been observed that manifest themselves by de-
graded joint probability density functions of the scalar state space [16]. The goal of this study therefore
is to further investigate multiple scalar mixing but for nonhomogeneous, nonisotropic turbulence, which
is somewhat closer to applications like jet flames (e.g. [4, 5]). Here we specifically consider two scalar
mixing in a round jet as canonical case by utilizing ODT as stand-alone tool.

The rest of this paper is organized as follows. In section 2 we describe the model formulation for flows
with mean cylindrical geometry. In section 3 we describe the selected round jet configuration and the
model application. In section 4 we present and discuss first ODT results for two passive scalar mixing in
the round jets. At last, in section 5 we close with some concluding remarks.

2 OVERVIEW OF THE CYLINDRICAL ODT FORMULATION

Kerstein’s [11] one-dimensional turbulence (ODT) model aims to resolve all relevant scales of a turbu-
lent flow which is made feasible by a dimensional model reduction. The effects of turbulent stirring
motions are modeled by a stochastic process acting on a quasi-one-dimensional domain, the so-called
ODT domain, which is shown in figure 1 for the present application. Deterministic molecular diffusion
is, hence, directly resolved along this domain.

The purpose of the cylindrical ODT formulation [18] is self-contained lower-order modeling of turbulent
flows with axial symmetry of the mean like round jets and pipe flows. This model formulation is based
on an adaptive Lagrangian finite-volume discretization [19] and is technically documented in [20]. We
added passive scalars to the latter code as described in [17]. Below, some aspects of the model formula-
tion are discussed, which are relevant for the model application to the mixing of passive scalars in round
jets. We note that a complete model description is beyond the scope of this paper so that we defer the
reader to [18] (and references therein) for details.

2.1 Governing equations: T-ODT and S-ODT

We distinguish two types of lower-order stochastic ODT equations describing momentum and scalar
conservation in constant-property flows. In a temporal (T-ODT) model formulation, the ODT domain
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aims to resolve the temporal evolution of flow properties along the resolved direction. The lower-order
equations are a set of 1-D partial differential equations (PDEs),
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where t denotes the time, ~u = (ux,ur,uθ)
T the velocity vector with its conventional cylindrical compo-

nents in axial (x), radial (r), and azimuthal (θ) direction, respectively, ρ and ν the fluid’s constant mass
density and kinematic viscosity, respectively~ex (dP/dx) a streamwise mean pressure gradient acting as a
momentum source that is nonzero only for the generation of turbulent inflow, Yi is the mass fraction, and
Γi the molecular diffusivity of the ith (i = 1,2, . . .) conserved scalar due to division by ρ. In the equa-
tions above, E~u and EYi represents the effects of turbulent eddies for the velocity vector and a conserved
scalar. Both terms are coupled together and formulated with the aid of discrete stochastic mappings, de-
noted as ‘eddy events’ that are described below. We only note here that E~u and EYi vanish between two
subsequent eddy events which yields piecewise continuous advancement of parabolic PDEs representing
deterministic molecular processes [11].

For T-ODT simulations of confined flows (like pipe flow), the ODT domain is located at a fixed position
whereas, for jets, the domain is advected downstream as a whole. This is achieved by a global time-to-
space transformation [4],
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where x is now the streamwise location of the ODT domain, Ub a bulk velocity, and u∞
x the co-flow

velocity far from the jet.

In a spatial (S-ODT) formulation, the ODT domain is advected by the fluctuating flow field in streamwise
direction during a simulation run removing the need for an ad hoc time-to-space transformation. This
formulation assumes a statistically stationary 2-D turbulent flow that will have a parabolic character
in the model solution due to which it is determined by initial conditions, here to be taken as inflow.
For S-ODT, the temporal rates of change of ~u and Yi in equations (1) and (2) are formally replaced by
streamwise and radial advection terms. The mean radial advection occurs in jets as secondary flow due
to streamwise mass flux conservation and momentum diffusion. Solutions of the S-ODT equations are
parabolic yielding evolution along the streamwise coordinate x instead of time t during a simulation run,
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where the subscript LCF (‘Lagrangian cell faces’) reminds us of the Lagrangian treatment of the radial
advection term. The associated radial velocity ur is resolved by displacement of cell faces in the semi-
discrete finite volume discretization of the governing equations (see figure 1 for a sketch of the quasi-1-D
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finite volume grid). Therefore, the Lagrangian treatment effectively decouples the PDEs by an exploit of
the parabolic nature of the lower-order equations.

Note that the mean pressure gradient term in the above S-ODT equations is only needed for generation
of turbulent inflow. Note further that the conserved scalars Yi are prescribed by the initial condition and
have no internal sources or sinks in both T-ODT and S-ODT.

2.2 ODT eddy events

This section provides an overview of some relevant aspects of the ODT eddy event formulation but does
not aim to be complete. For technical details we defer the reader to the literature cited.

In equations (1)–(5), E~u represents the effects of turbulent advection and pressure fluctuations, whereas
EYi represents only the effects of turbulent advection. In order to distinguish velocity from scalars in the
model, a mechanism for inter-component kinetic energy conversion has been introduced by [21]. This
mechanism maximizes the inter-component kinetic energy exchange due to pressure-velocity couplings
by a model parameter α that affects E~u but not EYi . For α = 0 there is no redistribution of energy among
the velocity components, for α = 1 energy redistribution is maximized, and for α = 2/3 equipartition is
achieved, which maximizes the rate at which a return to small-scale isotropy is observed.

In the following we specialize to T-ODT. ODT eddy events are implemented as a stochastic sequence
of mapping events that instantaneously manipulate property profiles of ~u(r) and Yi(r) by application of
the triplet map f (r) and kernel functions K(r) = r− f (r) and J(r) = |K(r)| for the map denoted triplet
map B (TMB) in [18]. The triplet map models the microstructure of turbulent eddies by displacing
fluid from location f (y) to mapped location y. The operation is measure preserving and continuous,
but introduces artificial discontinuous derivatives that are smoothed by molecular diffusion. Every eddy
event is characterized by the two random variables eddy location r0 and size l that, for a fixed point in time
t, are sampled from an unknown probability density function (PDF) dependent on the current state of the
flow [11]. A costly construction of this PDF is avoided in practice by using a more efficient thinning-and-
rejection algorithm in which the eddy turnover time τ = τ(r0, l; t) is used for the probabilistic sampling
of eddy events. Correspondingly, the momentary eddy rate is
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√
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)
, (6)

where V is the notional eddy volume that is associated with l at location r0, ρ the mass density, Ekin ∼
∑

3
j=1 u2

K, j/2 the shear-extractable kinetic energy due to mapping-kernel K(r) weighted velocity com-
ponents uK, j =

∫
u j K r dr, and Evp ∼ ν2/l2 a viscous penalty energy for the selected scale l. Some

constant dimensional prefactors were dropped here but these are given in [18]. The coefficients C and
Z in equation (6) denote the ODT turbulence intensity and the viscous suppression parameter, respec-
tively. C controls the mean rate of eddy events, whereas Z provides an energy criterion for the smallest
permissible eddy size. Physically plausible eddy events have real-valued τ.

Note that in the S-ODT context, energy terms in equation (6) are reinterpreted as energy fluxes, while the
eddy turnover time τ is superseded by a turnover length scale in streamwise direction. Either in T-ODT
or S-ODT, equation (6) is evaluated for stochastic rejection (acceptance) of any candidate eddy event that
has been economically obtained from guessed individual distribution functions for l and r0.
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Figure 1: Sketch of the configuration investigated. Turbulent round and coaxial jets issue into a slow co-flow at
location x = 0 yielding the mean velocity profile 〈ux〉. Each of the three inflow streams contains a passive scalar
with initially uniform mass fraction Yi or mixture fraction φi (i = 1,2,3). Numerical simulations of the jet evolution
are performed by ODT for which a quasi-one-dimensional domain spans the diameter and is advected downstream
(in x direction) with bulk velocity Ub during a simulation run that solves parabolized conservation equations. The
ODT domain is divided into Lagrangian finite volumes (∆V = r ∆r∆θ∆x) of finite radial (r) but infinitesimal axial
(x) and azimuthal (θ) size. The turbulent inflow condition at x = 0 is generated from stand-alone pipe and annular
pipe flow simulations, respectively, whereas the co-flow is uniform.

3 MODEL APPLICATION TO THE ROUND JET

In this section we describe the case set-up, the application of the ODT model to the jet, and the generation
of turbulent inflow conditions. The flow configuration investigated corresponds with the one described
in [8, 9].

3.1 A three-stream round jet configuration

Figure 1 shows the flow configuration investigated together with some details of the inflow condition
and the ODT domain orientation. A central round and a coaxial annular jet of low Mach number issue
into a slow co-flow at atmospheric standard conditions at axial location x/d = 0, where d = 5.54mm is
the inner diameter of central incoming pipe that, in the following, serves as reference length scale. The
incoming jets are turbulent and obtained with T-ODT simulations as discussed below in section 3.2. We
therefore concentrate on the round-jet set-up for the rest of this section.

Following [8], the central jet has bulk velocity U1 = 34.5m/s and consists of an acetone–air mixture with
acetone mass fraction Y1 < 1 but scalar mixture fraction φ1 = 1, mass density ρ1 = 1.26kg/m3, kinematic
viscosity ν1 = 1.340×10−5 m2/s, and scalar diffusivity Γ1 = 1.039×10−5 m2/s (acetone in air) yielding
the Schmidt number Sc1 = ν1/Γ1 = 1.29. The annular jet has bulk velocity U2 = 32.5m/s and consists of
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ethylene with mass fraction Y2 = 1 and mixture fraction φ2 = 1, mass density ρ2 = 1.14kg/m3, kinematic
viscosity ν2 = 0.830×10−5 m2/s, and scalar diffusivity Γ2 = 1.469×10−5 m2/s (ethylene in air) yielding
Sc2 = ν2/Γ2 = 0.565. The co-flow has bulk velocity U3 = 0.4m/s and consists of ambient air with mass
fraction Y3 = 1 and mixture fraction φ3 = 1, mass density ρ3 = 1.17kg/m3, and kinematic viscosity
ν3 = 1.59× 10−5 m2/s. Note that co-flow air is the ‘background fluid’ and not an additional scalar so
that entrainment from the co-flow dilutes the two scalars Y1 and Y2. Note further that the small co-flow
velocity assures existence of the parabolic flow solution.

The incoming jets are separated by walls shown in figure 1. We account for the finite thickness of
the walls separating the three inflow streams. For the radially oriented ODT domain, the geometry is
fully defined by the pipe inner radius r1 = d/2 = 2.770mm, the annulus inner radius r2 = 3.175mm,
the annulus outer radius r3 = 4.190mm, the co-flow inner radius r4 = 4.75mm, and the outer radius
R� r4 of the domain. In the reference experiments [8], the co-flow is bounded by an external pipe with
radius R = 75mm that we also use for the ODT domain. This domain is radially open in contrast to the
experiments in order to facilitate radial mass, momentum, and energy exchange with the co-flow within
the parabolic ODT equations.

Stochastic ODT simulations of the turbulent jet are carried out for the quasi-one-dimensional ODT do-
main as sketched in figure 1 by dropping the mean pressure gradient term dP/dx = 0 in equations (1) and
(4). This domain moves downstream with the flow as described above in section 2. It remains aligned
with the radius at all times in T-ODT as well as S-ODT and spans the whole diameter, that is, r ∈ [−R,R].
Negative r are necessary in order to avoid an artificial transport barrier at the axis that would bias the
solution [18]. Assuming universality of the turbulent jet, we prescribe the cold jet model parameters
from [18] that were obtained by calibration of the velocity field of a canonical round jet with reference
measurements yielding C = 5.25, Z = 400, and βLS = 3.5 for S-ODT. In addition, we use βLS = 0.4 for
T-ODT based on a planar jet [17]. The difference in magnitude in the two βLS is due to temporal vs.
spatial sampling. We select α = 0 for simplicity and neglect pressure-velocity couplings for this study.

3.2 ODT as turbulent inflow generator

The ‘natural’ approach for the preparation of turbulent inflow conditions is a self-contained one. We use
T-ODT as inflow generator and apply it separately to the turbulent pipe and annular pipe flows in order
to generate N ensembles of uncorrelated flow profiles in order to join them with the co-flow in order
to prescribe the inflow as initial flow profile in the ODT round jet simulations. For pipe flow, the ODT
domain crosses the pipe diameter similar to the jet, whereas it covers only a positive radial interval for
the annular pipe as sketched in figure 1. No-slip, zero-flux boundary conditions are prescribed for the
walls located at rk (k = 1,2,3,4). A constant mean pressure gradient is prescribed to drive the flow. In
the statistically stationary state, this forcing is eventually balanced on average by frictional losses.

In order to generate turbulent inflow conditions from pipe flow, we set the ODT model parameters to
C = 5, Z = 350, α = 0 (instead of 2/3 to be consistent with the jet), and large-eddy suppressions are
switched off by selecting βLS = 0 [18]. The largest permissible eddy size is lmax/d = 1/3, which is less
than the value of 1/2 used for channel flow [22] as a consequence of ‘geometric lensing’ that influences
large and near-axis eddy events. For annular pipe flow, the starting point is closer to moderate Re number
channel flow so that we select C = 10 and Z = 600 [19] but account for the radial asymmetry because
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Figure 2: Statistics of the inflow at x/d = 0 showing the mean (a) and root-mean-square (b) streamwise velocity
that are consistent with reference RANS results from [9].

of the radius ratio η = r2/r3 ≈ 3/4 < 1. Since lmax/L = 1/2 with L = r3− r2 for η =→ 1 (channel) and
lmax/L = 1/3 for η→ 0 (pipe), we select lmax/L = 2/3.

Figure 2 shows radial profiles of the mean 〈ux〉 and root-mean-square (r.m.s.) u′x,rms =
√
〈u2

x〉−〈ux〉2
streamwise velocity. The ODT inflow condition comprises N = 5000 samples from the statistically
stationary state. The mean velocity exhibits very good and the r.m.s. reasonable agreement with the
reference RANS results from [9]. It has in fact been shown several times (e.g. [11, 18, 19, 22]) that ODT
systematically underestimates velocity fluctuations in such internal flows. The weak local maximum
seen in the r.m.s. fluctuations is a consequence of the ‘geometric lensing’ mentioned above.

4 RESULTS

In this section we show ODT results for two passive scalars in the round jet from figure 1. We begin with
conventional statistics and then proceed with the joint probability density functions (jPDFs).

4.1 Axial profiles of the scalar mean and fluctuation variance

The following analysis is based on locally normalized scalar concentrations utilizing the dimensionless
mixture fraction φi of the ith scalar that is defined as

φi = Yi

/ 3

∑
j=1

Yj for i = 1,2,3 , (7)

where Yi = ci/ρ is the dimensionless mass fraction due to a scalar concentration ci [kg/m3]. Here we are
interested in the mixing of acetone (i = 1) and ethylene (i = 2) in air (i = 3) so that we consider only
φ1 and φ2 for the analysis. It is worth noting that the sum of the mixture fractions is conserved, i.e.,
φ1 +φ2 +φ3 = 1, which implies φi ∈ [0,1] ∀i since only two of the scalars are independent.
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Figure 3: Centerline (axial x) profiles of the mean (a,c) and fluctuation variance (b,d) of the normalized passive
scalar concentrations φ1 and φ2, respectively, from N = 5000 realizations. Simulation results for T-ODT and
S-ODT are shown together with reference measurements (EXP) from [8].

Conventional ensemble averaging over the n = 1,2, . . . ,N members (flow realizations) is applied to the
scalar mixture fraction φi (i = 1,2) to yield the corresponding mean and fluctuation variance as

〈φi〉=
1
N

N

∑
n=1

φ
(n)
i , 〈φ′2i 〉= 〈φ2

i 〉−〈φi〉2 . (8a,b)

Figure 3 shows axial profiles of the scalar mean 〈φi〉(x/d) and fluctuation variance 〈φ′2i 〉(x/d) for the
centerline r/d = 0. T-ODT and S-ODT simulation results from N = 5000 realizations are shown together
with reference measurements (EXP) from [8]. The mean field shown in figure 3(a,c) exhibits good
agreement between the reference, T-ODT, and S-ODT results. For both T-ODT and S-ODT the onset of
mixing (x/d ≈ 5) is delayed. While 〈φ1〉 decays a bit too slowly in S-ODT, T-ODT overestimates the
maximum of 〈φ2〉. The level of agreement nevertheless shows that the modeling approach is generally
robust. It has good predictive capabilities since no model parameter was changed since the calibration
for a canonical round jet with bulk Reynolds number Re = U d/(2ν) ≈ 47,000 [18]. In the present
application, we do not only face the additional annular jet but also much smaller Reynolds numbers, that
is, Re1 =U1 r1/ν1 = 7130 for the central round and Re2 =U2 (r3− r2)/ν2 = 3974 for the annular jet.

The results discussed so far indicate only a weak sensitivity of the mean field to details of the turbulence
dynamics. We therefore turn to the fluctuations in order to investigate this further. Figure 3(b,d) shows
the fluctuation variance 〈φ′2i 〉 for i = 1,2. Quantitative agreement between the reference, T-ODT, and S-
ODT results can only be discerned for the location of the fluctuation maxima that line up roughly between
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Figure 4: Radial (r) profiles of the mean (a,c) and fluctuation variance (b,d) of the normalized passive scalar con-
centrations φ1 and φ2, respectively, from N = 5000 realizations at downstream location x/d = 6.99. Simulation
results for T-ODT and S-ODT are shown together with reference measurements (EXP) from [8]. Dotted verti-
cal lines at rk/d (k = 1,2,3,4) correspond to the stream edges in the inflow plane (x/d = 0) and are given for
orientation.

x/d ≈ 9 and 7 for i = 1 and i = 2, respectively. Otherwise, only qualitative agreement is observed among
the various results. The local fluctuation maximum is overestimated by a factor of ≈ 1.5 in T-ODT
by ≈ 2.5 in S-ODT. This is primarily due to ‘geometric lensing’ effects near the axis as described in
[18] for the velocity field but not due to implicit filtering in the measured data as discussed in [17].
Here, Schmidt numbers are O(1) so that Kolmogorov scale resolution in reference measurements [8] is
sufficient to accurately resolve the scalar fluctuations.

4.2 Radial profiles of the scalar mean and fluctuation variance

Figure 4 shows radial profiles of the scalar mean 〈φi〉(r/d) and fluctuation variance 〈φ′2i 〉(r/d) for down-
stream location x/d = 6.99 in the vicinity of the axial scalar fluctuation maximum. The mean field is
shown in figure 4(a,c) and exhibits good to reasonable agreement between reference, T-ODT, and S-ODT
results. For these radial profiles, both T-ODT and S-ODT results notably diverge from the reference re-
sults of [8] for r/d & 1, but S-ODT is able to capture the large r tails a bit better than T-ODT due to
relatively longer acting molecular diffusion in regions with low velocity.

Next, radial profiles of the fluctuation variance are shown in figure 4(b,d) in which S-ODT results are in
good agreement with reference data for r/d & 0.3, whereas T-ODT results overshoot for 〈φ′22 〉. Closer to
the axis we can discern an artificial increase of the scalar fluctuations. This is consistent with the artificial

9



M. Klein, C. Zenker, K. Hertha and H. Schmidt

Figure 5: Scatter plots (filled symbols) that estimate the scalar joint probability density functions (jPDFs) in terms
of the mixture fractions φ1 and φ2 for three radial locations r/d at fixed downstream location x/d = 6.99. T-ODT
(a–c) and S-ODT (d–f) data encompass N = 5000 flow realizations. The dashed contour (EXP) integrates to 99% of
the measured reference jPDF [8]. Open symbols denote the mean state, that is, the ‘center of mass’ of the scattered
data points. The triangular region above the diagonal is inaccessible for passive scalars in constant-property flow.

increase of the velocity variance in the vicinity of the axis as discussed in [18] for the mappings denoted
TMA, TMB (used here), and PTMB in light of the coordinate singularity at r/d = 0.

4.3 Scalar joint probability density functions

Figure 5 shows T-ODT (upper row) and S-ODT (lower row) scatter plots of instantaneous mixture frac-
tions φ1 vs. φ2 for an ensemble of N = 5000 flow realizations. The number of data points contained
in some state-space volume serves may serve as estimator for the joint probability density which would
require larger N. The scatter plots obtained with ODT are shown in comparison to the isoline of the
99% percentile of the measured reference jPDF [8] at downstream location x/d = 6.99 for three radial
positions r/d = 0, 0.635,0.992. Additionally, the mean (‘center of mass’) of each ODT scatter plot and
corresponding reference jPDF are given by open symbols. The area above the diagonal is not accessible.

Going from the left to the right panel in each row of figure 5 we ‘move’ radially outward. For r/d = 0
(at the axis) the jPDF is localized in the vicinity of the unmixed center jet state (φ1 = 1, φ2 = 0). For
r/d = 0.635 (roughly in the middle of the incoming annular jet) the jPDF is widely spread but on average
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only weak entrainment is notable due to 〈φ1〉 ≈ 〈φ2〉 ≈ 0.35 yielding 〈φ1〉+〈φ2〉=O(1). For r/d = 0.992
(outside of the incoming annular jet) the scalars are diluted but have notably dispersed into the co-flow air
since 〈φ1〉 ≈ 〈φ2〉 ≈ 0.2 yielding 〈φ1〉+ 〈φ2〉 < O(1) Furthermore, good agreement is obtained between
the shapes of the measured jPDFs and the S-ODT simulation results shown. By contrast, present T-ODT
results seem to generally exhibit a larger variability than S-ODT and the reference data but the model
fidelity is only weakly reduced. Near the axis (r/d � 1) both T-ODT and S-ODT exhibit much larger
variability albeit the scatter plots visually overemphasize rare events. The mean values, however, are
only weakly affected by the fluctuation details.

5 CONCLUDING REMARKS

Stochastic numerical simulations of the turbulent mixing of two passive scalars in a turbulent round jet
have been performed using an adaptive cylindrical formulation of one-dimensional turbulence (ODT).
In general, ODT aims to resolve all relevant scales of a turbulent flow within a dimensionally reduced
setting. Molecular diffusion is directly resolved, whereas the effects of turbulent advection are modeled
by a stochastic process. For the coaxial round jet investigated, we have shown that the strength of ODT
lies in the economical and accurate modeling of the state-space of scalar fluctuations despite the fact
that the mean scalar profiles had some shortcomings. Fluctuation capture, however, is a more relevant
model property for model application to multiphysics turbulent flows. The fidelity of the temporal (T-
ODT) and spatial (S-ODT) model formulations was demonstrated for a moderate Reynolds and Schmidt
number regime by profiles of the scalar fluctuation variance and joint probability density functions. These
diagnostic quantities tend to be better captured by S-ODT than T-ODT by taking into account not only a
local diffusive but also a local advective scale velocity. Limitations of the quasi-1-D modeling approach
manifest themselves mainly in the vicinity of the axis which is a consequence of the polar coordinates
(see [18] for elaboration for the velocity that analogously affects conserved scalars). Altogether, the
degree of the turbulent fluctuation capture provided by ODT is beyond the scope of RANS and would
normally require high-resolution LES or DNS. This suggests that ODT may be useful for reaching into
highly turbulent flow regimes that are inaccessible to the latter two methods.
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