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Abstract. This paper is focused on a new optimization variant of the shear strength
reduction (OPT-SSR) in non-associated Mohr-Coulomb plasticity. The OPT-SSR method
mimics the limit analysis problem and enables to compute the factor of safety without
performing an elasto-plastic analysis. It is shown that this optimization problem is well-
defined and closely related to recently developed Davis approaches used in combination
with the standard SSR method. Next, the duality between the static and kinematic
principles of OPT-SSR is introduced. For the numerical solution, a regularization method
is suggested.

1 INTRODUCTION

The SSR method [22, 1, 5, 6] has been suggested mainly for the slope stability assess-
ment. It is a conventional method arising from elastic-perfectly plastic models containing
(mainly) the Mohr-Coulomb yield criterion. For the numerical solution, a displacement
variant of the finite element method (FEM) is mostly used and its implementation is a
part of some commercial softwares like Plaxis [2].

The non-associated plastic flow rule is frequently used in geotechnical practice to con-
trol the inelastic volume changes of soils subjected to shearing. On the other hand,
mathematical theory of non-associated elastic-plastic problems is not fully completed and
numerical oscillations depending on mesh density are sometimes observed, especially if
the problem is discretized in time by the standard implicit Euler method. In [14, 19, 20], a
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modified Davis approach has been suggested within the SSR method in order to compute
the factor of safety (FoS) more rigorously. The modification leads to the approximation
of the non-associated plastic flow rule by the associated one and is based on the limit
analysis approach. We also refer to recent papers [21, 10] for comparison of the standard
and the modified SSR method.

This paper summarizes selected results presented in [18] and arises from the ideas
suggested in [19, 20]. The aim is to introduce an optimization variant of the SSR method,
the so-called OPT-SSR method. The OPT-SSR method mimics the limit analysis problem
and enables to compute the factor of safety without performing an elasto-plastic analysis.
It can be completed by rigorous theory and variational principles.

2 THE MODIFIED STRENTGH REDUCTION TECHNIQUE

The Mohr-Coulomb linear elastic-perfectly plastic model contains the following strength
parameters: the effective cohesion (c′), the effective friction angle (ϕ′), and the dilatancy
angle (ψ′). It is assumed that ψ′ ≤ ϕ′. In case of ψ′ = ϕ′, we arrive at the associated
model, otherwise the non-associated model is considered. The SSR method is based on
the reduction of c′, ϕ′ and ψ′:

cλ :=
c′

λ
, tanϕλ :=

tanϕ′

λ
, tanψλ :=

tanψ′

λ
, (1)

where λ > 0 is the reduction parameter. Alternatively, one can use the following formula
for ψλ (see also [20]):

ψλ := ψ′ until ψ′ < ϕλ, then ψλ := ϕλ. (2)

FoS for the SSR method is defined as a maximum of λ for which the elastic-perfectly
plastic problem has a solution with respect to the parameters cλ, ϕλ, and ψλ.

We propose to approximate the SSR for the non-associated model with the associated
model and the following reduction of the parameter c′ and ϕ′:

c̃λ :=
c′

q(λ;ϕ′, ψ′)
, tan ϕ̃λ :=

tanϕ′

q(λ;ϕ′, ψ′)
, (3)

where q is a function with the following general properties:

(A1) q is positive for any λ > 0, continuous and q(λ;ϕ′, ψ′) ≥ λ;

(A2) q is increasing with respect to the variable λ ≥ 0;

(A3) q is non-increasing with respect to the variable ψ′ ≥ 0;

(A4) if ψ′ = ϕ′ then q(λ;ϕ′, ψ′) = λ.

FoS for the approximated SSR method is defined as a maximum of λ for which the
associatied elastic-perfectly plastic problem has a solution with respect to the parameters
c̃λ and ϕ̃λ.
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If ψ′ = ϕ′ then the factors of safety for the SSR method and its approximation coincides
as follows from the assumption (A4). The assumptions (A1) and (A2) ensure that the
strength parameters are reduced. The assumption (A3) enables to include the influence
of the difference ϕ′ − ψ′ on FoS. The larger the difference is, the lower the values of FoS
are expected.

From now on, we will not emphasize the dependence of q on ϕ′ and ψ′, for the sake
of simplicity, and write simply q := q(λ). We introduce three examples of the function q
which are related to the DAVIS A, DAVIS B and DAVIS C approaches presented in [20].
These functions will be denoted as qA, qB, and qC , respectively, and are defined as follows:

qA(λ) = λ
1− sinψ′ sinϕ′

cosψ′ cosϕ′ , (4)

qB(λ) = λ
1− sinψλ sinϕλ
cosψλ cosϕλ

, (5)

qC(λ) =

{
λ 1−sinψ′ sinϕλ

cosψ′ cosϕλ
, if ϕλ ≥ ψ′,

λ, if ϕλ ≤ ψ′,
(6)

where

tanϕλ :=
tanϕ′

λ
, tanψλ :=

tanψ′

λ
. (7)

In [18], it is shown that the assumptions (A1)–(A4) are satisfied for qA, qB, and qC . In
addition, the following statements have been proven:

(S1) qA(λ) = qB(λ) = qC(λ) for λ = 1;

(S2) qA(λ) ≥ qB(λ) ≥ qC(λ) for any λ ≥ 1;

(S3) qC(λ) ≥ qB(λ) ≥ qA(λ) for any λ ≤ 1.

It is also important to note that the choice of the function q can differ from the Davis
approaches and be optimized, for example, by inverse analysis.

3 THE OPT-SSR METHOD

One can solve the approximated SSR problem based on the formula (3) similarly as
the standard SSR method. Nevertheless, due to the fact that the approximated problem
is built on the associated plasticity one can consider several simplifications. In particular,
it suffices to work with the rigid plastic model and eliminate the plastic multiplier as it
is usual in limit analysis, see for example [11]. The corresponding optimization problem
(OPT-SSR) reads as follows:

ω∗ = supremum of λ ≥ 0 subject to

−divσ = F in Ω, σn = f on ∂Ωf ,

Φ
(
q(λ);σ

)
≤ 0 in Ω,

}
(8)
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Here, ω∗ denotes FoS and the function Φ represents the Mohr-Coulomb yield criterion for
the parameters c̃λ and ϕ̃λ defined by (3). This function can be arranged to the following
form [18]:

Φ(q(λ);σ) := (σ1 − σ3)
√
q2(λ) + tan2 ϕ′ + (σ1 + σ3) tanϕ

′ − 2c′, (9)

where σ is the effective Cauchy stress tensor and σ1, σ3 are its maximal and minimal
principle stresses (in current mechanical sign convention). Next, Ω is a bounded domain
in 2D or 3D representing an investigated body, F is a volume force (e.g. the weight of
the body), f is a prescribed surface force acting on the part ∂Ωf of the boundary ∂Ω, n
denotes the outward unit normal to the boundary ∂Ω.

From the assumptions (A1)–(A2), it follows that if the constraints (8) are satisfied for
some λ := λ > 0 then (8) holds for any λ < λ, see [18]. Hence, (8) holds for any λ < ω∗.
Without this basic but crucial property, it would be very difficult to find ω∗.

The OPT-SSR method enables to compare safety factors for the Davis A-C models.
Let λ∗A, λ

∗
B, and λ∗C denote FoS for the functions qA, qB, and qC , respectively, and let

λ∗ass denote denote FoS for the associated model with q(λ) = λ. From the statements
(S1)–(S3), we have the following results (see [18]) which are in accordance with numerical
observations presented in [20, 10]:

1. λ∗A ≤ λ∗ass, λ
∗
B ≤ λ∗ass, λ

∗
C ≤ λ∗ass;

2. either 1 ≤ λ∗A ≤ λ∗B ≤ λ∗C or 1 ≥ λ∗A ≥ λ∗B ≥ λ∗C .

3. If one of the values λ∗A, λ
∗
B, λ

∗
C is equal to one then the same holds for the remaining

values.

4 DUALITY FOR THE OPT-SSR PROBLEM

We introduce the following functional spaces:

V = {v ∈ [H1(Ω)]3 | v = 0 on ∂Ωu}, (10)

Σ = {σ ∈ [L2(Ω)]3×3 | σij = σji in Ω}, (11)

where the space V represents admissible velocity fields and Σ is used for stress and strain
fields. L2(Ω) and H1(Ω) denote the Lebesgue and Sobolev spaces, respectively.

Using the space V we arrive at the weak form of (8)1:∫
Ω

σ : ε(v) dx = L(v) ∀v ∈ V, (12)

where ε denotes the strain-rate tensor field,

ε(v) = 1
2
(∇v + (∇v)⊤), (13)
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and L is the load functional defined by

L(v) =

∫
Ω

F · v dx+
∫
∂Ωf

f · v ds. (14)

Let Λ denote the set of stresses σ ∈ Σ satisfying (12) and let

Pq(λ) := {σ ∈ Σ | Φ
(
q(λ);σ

)
≤ 0 in Ω}. (15)

We see that the set Pq(λ) represents the constraint (8)2 and thus we can write

ω∗ = sup{λ ≥ 0 | Pq(λ) ∩ Λ ̸= ∅}
= sup

λ≥0
sup

σ∈Pq(λ)∩Λ
{λ}. (16)

Releasing the constraint set Λ, we arrive at the following dual problem in terms of velocity
fields:

ω∗ = sup
λ≥0

inf
v∈V

[
λ+

∫
Ω

D(q(λ); ε(v)) dx− L(v)

]
, (17)

where
D(q(λ); ε) = sup

σ∈R3×3
sym

Φ(q(λ);σ)≤0

σ : ε (18)

denotes the local dissipation function depending on λ ≥ 0. The function D(q(λ); ε) is
finite-valued only for some ε ∈ R3×3

sym belonging to a convex cone. Therefore, the inner
problem in (17) can be classified as cone programming. (17) can be interpreted as the
kinematic principle of the OPT-SSR method. We expect that this duality holds without
any gap, which is partially justified by the results presented in [4, 9].

5 REGULARIZED PROBLEM AND ITS SOLUTION

For numerical solution of the SSR-OPT problem, we suggest to use the regularization
method introduced in [18]. This method has also been considered for the solution of
similar problems, see [17, 12, 9, 13, 8, 7, 16].

We arise from (16) and regularize this problem with respect to a parameter α > 0 as
follows:

ω∗
α = sup

λ≥0
sup

σ∈Pq(λ)∩Λ

[
λ− 1

2α

∫
Ω

C−1σ : σ dx

]
, (19)

where C is a positive definite fourth order tensor, for example, the elastic tensor. One
can also write

ω∗
α = max

λ≥0
[λ−Gα(λ)] = λ∗α −Gα(λ

∗
α), (20)

where λ∗α maximizes the middle term in (20) and

Gα(λ) = inf
σ∈Pq(λ)∩Λ

1

2α

∫
Ω

C−1σ : σ dx (21)
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The sequence {λ∗α}α>0 defined by (21) satisfies [18]:

ω∗
α ≤ λ∗α ≤ ω∗, lim

α→+∞
λ∗α = ω∗, (22)

Therefore, the value λ∗α is convenient for the approximation of ω∗.
Let us note that the scalar optimization problem in (20) can be solved, for example,

by sequential enlarging λ for fixed α.
Next, for the solution of (20), it is crucial to evaluate the function Gα. Using the

duality approach, we arrive at the following kinematic definition of Gα:

Gα(λ) = − inf
v∈V

[∫
Ω

Dα(q(λ); ε(v)) dx− L(v)

]
, (23)

where

Dα(q(λ); ε) = sup
σ∈R3×3

sym

Φ(q(λ);σ)≤0

[
σ : ε− 1

2α
C−1σ : σ

]
. (24)

The function Dα is finite-valued and differentiable with respect to ε unlike the original
dissipation D. Moreover, the second derivative of Dα exists almost everywhere. Let
Tα(q(λ); ε) ∈ R3×3

sym denote the derivative of Dα(q(λ); ε) with respect to ε. Then the
problem (23) is equivalent to the following nonlinear variational equation:

find vq(λ) ∈ V :

∫
Ω

Tα(q(λ); ε(vq(λ))) : ε(v) dx = L(v) ∀v ∈ V. (25)

This equation is practically the same as time-discretized elasto-plastic problem with the
Mohr-Coulomb yield criterion. For its solution, one can use the standard finite element
method and a non-smooth variant of the Newton method as in [15]. In [18], we have also
completed the solution with continuation over α and simple mesh adaptivity in order to
receive more reliable and accurate results.

The suggested numerical solution has been implemented within in-house Matlab codes
which have been systematically developed and described in [15, 3]. For particular numer-
ical examples we refer to [18]. In [18], the computed FoS have been compared with results
from the commercial softwares Plaxis and Comsol Multiphysics.

6 CONCLUSIONS

We have proposed to approximate the standard SSR method for the non-associated
model by the associated model and by a modified reduction of the strength parame-
ters. Such an approach is inspired by recently developed Davis approaches to the SSR
method [19, 20, 21]. The approximation (modification) of the SSR method has enabled
the introduction of a rigorous optimization framework and the derivation of the duality
between the static and kinematic principles as in limit analysis. For numerical solution,
we have suggested a regularization method and its combination with the finite element,
continuation and Newton-like methods. For more details, we refer to [18].
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