
1 

 

 

 

 

ON A DIRECT PROCEDURE TO CONSTRUCT A BASIS FOR THE 

DIVERGENCE FREE POLYNOMIAL STRESS FIELD SPACE IN 3D 

EDWARD. A. W. MAUNDER
*

 

*
 Ramsay Maunder Associates 

Handel House 

Teignmouth, TQ14 8EP, UK  

e-mail: e.a.w.maunder@exeter.ac.uk, web page: http://www.ramsay-maunder.co.uk 

 

Key words: Polynomial stress fields, Three-dimensional, Divergence free. 

Summary. A procedure is proposed for the direct construction of a basis of a space of 

symmetric divergence free polynomial stress fields in 3D. Such a basis may be used in the 

formulation of equilibrium finite elements.  
 

 

1 INTRODUCTION 

   It appears to be common practice to form a divergence free basis for polynomial stress fields 

in  a 3D domain, either by exploiting the Maxwell1 or Morera2 stress functions, or by forming 

a basis for the complete stress space and then applying a reduction process. Such a basis is 

referred to here as “hyperstatic” since the domain may be without limit and boundary traction 

conditions are not relevant.  
 

   The use of the stress functions is complicated by the fact that the dimension of a basis of 

stress functions is greater than the dimension of the hyperstatic space, so that zero and 

dependent stress fields need to be discarded3. On the other hand, reduction from a complete 

basis of the stress space requires a transformation that zeroes the body forces, and this could 

become quite complicated4. 

 

   In this paper an alternative simpler procedure is proposed which directly constructs a 

hyperstatic basis S of polynomial stress fields in 3D. The stresses are considered in terms of 

their six contravariant components related to skew references axes x, y, z. The construction of 

the basis relies on considering two subspaces comprised of two types of stress field: type (1) 

where each of the three direct stress components ( ,  ,  or xx yy zzσ σ σ  ) is defined by the 
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monomial i j kx y z , and the condition for zero body force is enforced by including components 

of shear stress defined by appropriate monomials; and type (2) where each of the three shear 

stress components ( ),  ,  xy yz zxσ σ σ   is defined by a monomial, e.g. i jx y , and is balanced with 

zero body forces by one of the other components of shear stress defined by another monomial. 

 

 

2 EQUILIBRIUM CONDITIONS WITHIN A 3D DOMAIN 

Infinitesimal quasi-static displacements are assumed so we use Cauchy stresses σσσσ   

assuming an undeformed body. The equilibrium condition can be succinctly expressed as  

 
 ∇ + =bσσσσ 0                                                                       (1) 

 

where ∇  is the divergence operator, and b represents the vector of body force intensities which 

do not change with time. 

3 DIVERGENCE-FREE STRESS FIELDS 

   Rotational equilibrium of the infinitesimal parallelepiped element in Figure 1 implies that the 

shear stresses are symmetric, and so  
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and the general equation of equilibrium with zero body forces has the form: 
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Note that the form of these equations applies equally when the reference axes (x,y,z) are 

orthogonal Cartesian or more generally oblique. 

 

   Two types of stress field are generated as bases of complementary subspaces 

 

 
1 2

= ⊕S S S .                                                                 (4) 

 

Stress components are defined by monomials in x, y, and z. 
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3.1 Type 1 

    Consider the typical stress field: 

T =σσσσ  0 0xx xy yz zxσ σ σ σ     with xx i j k
x y zσ =                              (5) 

 and 
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  (6) 

These expressions for shear stresses apply for all i > 1, so to complete the definitions when i 

< 2, consider: 

 

When 

 

 i = 1, xx j k
xy zσ = , and the body force j k

xb y z= − .                                     (7)  

 To counterbalance this force we only require 
( )

( )11
 to be 

1
σ
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+

jxy k
y z

j
; 

When 

i = 0, xxσ  is not a function of x,                                                         (8) 

 

 and so is self-equilibrated without the need for shear stress fields. 

   Hence when the Type 1 stress fields are driven by xxσ , ( )( )( )1 2 3 6n n n+ + + admissible 

stress fields are defined for all values of i, j, and k. By appealing to cyclic symmetry when 

stress fields are driven by  or yy zzσ σ , the total number of independent stress fields of type 1 is 

( )( )( )3 1 2 3 6n n n+ + + . 

 

 

 

 

 

 

 

 

 

 

 

 
               Components of a Type 1 stress field                Components of a Type 2 stress field 

Figure 1: Stress components on an infinitesimal parallelepiped. 
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3.2 Type 2 

    Consider the typical stress field: 

T =σσσσ  0 0 0 0xy zxσ σ                                                      (9) 

with 
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   The first field holds for all values of indices j and k since, when  

j = 1, 
( )

( )

1)

 and 
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k

xy k zx z
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k
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,                                         (11) 

and when 

 

 j = 0,   and 0
xy k zx

zσ σ= = .                                                   (12) 

 

   Hence, the number of combinations of j and k with j,k in the range 0 to n and ( )j k n+ ≤  is 

( ) ( )1 2 / 2n n+ + . Thus, by again appealing to cyclic symmetry with alternative pairs of shear 

stress fields, the total number of independent stress fields of type 2 is ( )( )3 1 2 / 2n n+ + . 

 

   The total number of independent stress fields of types 1 and 2 is thus: 

 

3[ ( )( )( )1 2 3 6n n n+ + +  + ( )( )1 2 / 2n n+ + ] = (((( )))) (((( )))) (((( ))))1 2 6 2
s

n n n n= + + += + + += + + += + + + ,               (13) 

and this number agrees with that derived in reference3. 

 

4 CONCLUDING REMARKS 

 

• The proposed procedure defines directly a basis for the space of  polynomial stress fields 

with zero divergence up to any desired degree; 

• Each component of stress is defined as a monomial; 

• The directness of the definitions should simplify computations and hence is expected to 

improve computational efficiency; 

• The procedure should be of particular benefit in the implementation of hybrid equilibrium 

solid finite elements in computational models that complement displacement based 

conforming models in the context of adaptive procedures.   
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