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ABSTRACT

A constitutive model based on classical plasticity
theory for non-linear analysis of concrete structures
using finite elements is presented. The model uses
the typical parameters of non-associated plasticity
theory for frictional materials and a modified
Mohr—Coulomb yield surface is suggested. Onset
and amount of cracking at a point are controlled
by the values of the effective plastic strain and thus
it can be studied by a posteriori postprocessing of
numerical results. The accuracy and objectivity of
the model is checked out with some examples of
application. ’

INTRODUCTION

Classical models for non-linear analysis of concrete
assume elasto-plastic/viscoplastic constitutive equa-
tions for compression behaviour, whereas a
conceptually more simple elasto-brittle model is
used for defining onset and progression of cracks at
points in tension. Different versions of this model
have been successfully used by Bazant and Oh!,
Glemberg?, De Borst and Vermeer?®, Nauta et al.*,
and De Borst®, for non-linear analysis of plain and
reinforced concrete structures.

The elasto-brittle model, in spite of its popularity,
presents various controversial features such as the
need for defining uncoupled behaviour along each
principal stress (or strain) direction; the use of a
shear retention factor to ensure some shear
resistance along the crack; the lack of equilibrium
at the cracking point when more than one crack is
formed; the difficulties in defining stress paths
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following the opening and closing of cracks under
cycling loading conditions and the difficulty in
dealing with the combined effect of cracking and
plasticity at the damaged point.

It is well known that microcracking in concrete
takes place at low load levels due to either
unbonding between aggregate and mortar, or
microcracking in the mortar area. Progression of
cracking follows a non-homogeneous path which
combines these two mechanisms together with
growth and linkage of microcracks along different
directions (see Figure 1). Experiments performied
with mortar specimens® have shown that the
distribution of microcracks follows discontinuous
patterns with random orientations. This fact is
supported by many researchers®!! who agree that
microcracking at the microscopic level can be
regarded as a non-directional phenomenon and that
the propagation of microcracks at the aggregate
level follows an erratic path governed by the random
distribution of the aggregate particles. Dominant
directions of cracking can be distinguished at a
macroscopic level simply by following the trajec-
tories of the damaged points (see Figure 2).

These facts support the idea that the non-linear
behaviour of concrete can be modelled using the
unified framework of the incremental theory of
plasticity with an appropriate yield function to
account for different tension and compression
response. Cracking can then be simply interpreted
as an internal damage effect which is unambiguously

Figure 7 Mechanisms of damage"
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Figure 2 Propagation of cracks

monitored by well-defined parameters, such as the
amount of plastic strain and the evolution
(hardening/softening) of a single yield function
controlling the onset and evolution of damage.
Indeed, one of the main advantages of this approach
is the independence of the analysis from any ‘crack
directions’ which can be simply identified a
posteriori once the non-linear solution has con-
verged. This overcomes most of the problems of the
elasto-brittle models mentioned earlier, and in
particular the need for a discrete treatment of cracks
and all the detailed stress—strain transformations at
each cracked point during the solution stage.

In this paper a fully elasto-plastic model for the
non-linear analysis of concrete based in the above
concepts is presented. The model uses a modified
Mohr—Coulomb yield surface and it includes all the
important features that need to be taken into
account in the non-linear analysis of concrete, such
as the different response under tension or com-
pression states, the effect of stiffness degradation,
and the treatment of mesh objectivity based on the
concept of specific fracture energy. The model
presented here can be considered a particular class
of a more general ‘plastic damage’ model which is
currently being investigated by the authors!®-2°.

The layout of the paper is the following. In the
next section the main features characterizing the
incremental constitutive equations are described
and a modified Mohr-Coulomb yield surface is
presented. The three following sections deal with
the definition of the crushing function, the
degradation of the elastic stiffness, and the problem
of mesh objectivity, respectively. The subsequent
section describes the a posteriori determination of
cracking. Finally, some examples of application are
given in the last section.
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STRESS-STRAIN INCREMENTAL
RELATIONSHIP: YIELD AND POTENTIAL
FUNCTIONS

It is assumed that the incremental relationship
between stresses and strains for both compression
and tension states is obtained from classical
plasticity theory'®, as:

do=D*°-de 1)

where D? is the standard elasto-plastic tangent
stiffness matrix which for non-associated plasticity

is given by:
T
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where D is the stiffness matrix for linear elasticity,
F and G are the yield and plastic potential functions,
respectively and A is the hardening parameter.

D*=D— )

Definition of the yield function

One of the disadvantages of using the classical
Mohr—Coulomb yield function for concrete is the
excessive internal friction angle ¢ associated with
the standard ratios of the tension and compression
stresses. Figure 3 shows that for a typical value of

~10 the value of ¢ is ~60°. This
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value is considerably higher than the usual dilatancy

angle for concrete (¥ =15°) which explains the
general need for non-associated plasticity theory
(see Figure 4).

Traditional models use a modified version of
Mohr—Coulomb yield-surface based on a simple
tension cut-off®. This approach, however, has some
of the same disadvantages as associated plasticity.

In this work a modified Mohr—Coulomb yield
surface is proposed, and this is shown in Figure 5.
The new yield surface is monitored by a reduction
parameter o which allows the R—¢ curve to be
shifted towards a region in which lower values of ¢
are obtained for R=~10. Thus, it is shown in Figure
3 that a=1 corresponds to the classical Mohr—
Coulomb relationship and for 3.61 <« <2.16 a value
of 25°<¢<35° is obtained for stress ratios
of the order of R~10. This, indeed, alleviates the
need for non-associated plasticity theory. The
authors have also investigated the possibility of
obtaining similar types of yield expressions for
frictional materials!®-2°. It is interesting to note that
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Figure 4 Schematic results for simple tension—
compression test using associated and non-associated
plasticity theory

for the Drucker—Prager yield function, the asymp-
totic character of the R—¢ relationship (see Figure
6) hinders its use for practical computation.

Cohesion and internal friction angle functions
Hardening and/or softening of the yield surface

is controlled by the changes in the average
intergranular cohesion. Figure 7 shows typical
cohesion function in terms of the effective plastic
strain for tension and compression tests. On the
other hand, a constant value for the internal friction
angle ¢=30° has been assumed. However, any
variation of ¢ in terms of the effective plastic strain
from zero to a maximum value, as typical in low
cohesive materials, could be used (see Figure 8).
The cohesion curves control the evolution
(hardening/softening) of the yield surface. Thus, the
onset of plasticity (i.e. microcracking) at a point
corresponds to stress values for which F=0 with
C=Cpmay and ¢ =¢,. This defines a lower limit of the
yield function F=F'=0 (see Figure 9). As damage
(cracking) progresses the yield surface changes
accordingly with the updated values of the cohesion
functions of Figure 7. This causes expansion
(hardening) or contraction (softening) of the
compression and tension zones, as schematically
shown in Figure 9. The changes of the yield surface
in the transition ‘tension—compression’ region are
unambiguously monitored by defining a single
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equivalent cohesion function in the following c
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Figure 10 Weighting function f,

with:
c= J\ gc_ . d{._;p
, de®

where ¢“M and ¢TEN are the cohesion function for

compression and tension states, respectively, chosen
from Figure 7 and B, and fB; are appropriate
weighting functions satisfying:

B.(a)+ Br(a)=1 )
In our model we have chosen:
.Zl (=0
B(o)=—5—— (5)
P |<7,-l
_Z <°'i>
Brlo)="3 (6)
P o3|

where { — x> and {x) are the Macauley functions:
(=xy=3(=x+[x),  <x>=3x+|x])

o, being the principal stress in the ith direction. The
form of B, in the o;—0y, space is shown in Figure 10.

Evolution of the yield function F' progresses up
to an upper limit F'= F"=0 (see Figure 9) for which
€=Cpeqa and ¢=a, ... The surface F'=0 indicates
the onset of softening under compression and the
appearance of macrocracks*®. For further loading
the yield surface reduces its size due to global
softening until the limit of damage to be
accumulated at a point is reached. This is controlled
by a collapse or crushing surface defined by:

Fc=[ftl [dép] 'dtjl_(gf)comp=0 (7)

4]

where deP is obtained from:

d59=/y-[<d€—8:’)2+<d€i:’l>z} 3<y<1l (®)
1 2

¢, and &, being appropriate weights for taking into
account the non-symmetry of function F, as shown
in Figure 11.

Potential function: dilatancy

As previously mentioned, the behaviour of
granular materials can be improved by using a
non-associated flow rule. In our model this is
characterized by a potential function defined
identically to our modified Mohr—Coulomb yield
surface but using a more realistic angle of dilatancy
Y instead of the internal friction angle ¢. The
following expression for granular materials, pro-
posed by Rowe'”, has been used

Y= arcsin[ Sin ¢ —sin ¢, :l )

1—sin ¢-sin ¢,

with:
sin ¢max —sin l/Jmax
1—sin ¢max -sin lpmax

Typical values of iy for concrete are 8° <y < 15°.
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Figure 12 Degradation of secant modulus

DEGRADATION OF THE SECANT
STIFFNESS

Test results clearly show that near and beyond peak
strength, cemented granular materials exhibit an
increasing degradation of the initial secant stiffness
due to micro-cracking. This effect is more evident
after some unloading-reloading cycles, as shown in
Figure 12.

A simple model of stiffness degradation appro-
priate for concrete is based on the assumption that
it takes place only in the softening range and that
the stiffness is proportional to the cohesion. That
is, there is only one ‘plastic degradation’ variable
such that:

D=(1-4)-D, (11)
where D, is the elastic constitutive matrix prior to
degradation and ¢ is governed by:

1-96
dé=— (—dc) (12)
c
the initial value of § being zero. In any particular
process then:
c

d=1——"1,

cpeak

for dc<0 (13)

A more general model including elastic and
plastic degradation effects has been recently
developed by the authors and it is being currently
tested!®-2°,

MESH OBIJECTIVITY

Objectivity of results with regard to the finite
element mesh is obtained by introducing a
constitutive equation depending on the element size
and equalling the energy dissipated at each crack
with that obtained from experimental tests. Here
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we have defined an uniaxial 6—&° diagram obtained
from a tension test such that the area under the
diagram equals the specific fracture energy, g, (see
Figure 13) with:

9r=7" (14)

where G, is the fracture energy and h, is a typical
dimension (characteristic length) of the influence
zone where damage is localized. In the examples
shown in the paper we have chosen:

hy=./A4° (15)

where A€ is the area of the element. A consistent
way of obtaining the value of the ‘characteristic
length’, h,, has been recently proposed by Oliver?!
who introduces a ‘smeared crack function’ for
averaging the discontinuous displacement field due
to cracking over a single element. This allows one
to obtain a simple expression for h, in terms of the
element dimensions and the direction of cracking
within the element, which seems very adequate for
objective numerical finite element analysis of
localized cracking.

IF : compression - compression zone ==C:C'

IF : tension - tension zone = (:C?

F=f(0)-¢C =0

= [9

Figure 13 Cohesion curves for tension/compression behaviour,
and specific fracture energy
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DETERMINATION OF CRACKS BY
POSTPROCESSING THE NUMERICAL
RESULTS

The amount and directions of cracking at a point
in the model presented is obtained a posteriori, once
convergence of the non-linear solution has been
reached, as follows:

(a) Crackinginitiates at a point when the effective
plastic strain, &P, is greater than zero. The
direction of cracking is assumed to be
orthogonal to that of the maximum principal
strain at the point (see Figure 14).

(b) The increment of plastic strains along the
directions of the crack, Ae‘’, can be obtained
as Ae“"=T-Ae®, where Ae® is the vector of
plastic strain increments expressed in global
Cartesian axes and T is a transformation
matrix given by:

[ cos26  sin? 6 sin 26
2
T= in 20 1
sin?@ cos? 0 _sm (16)
2
| _—sin20 sin20 cos 20 |

where 6 is the angle which the direction of
the maximum principal strain forms with the
global x axis (see Figure 14).

Vector Ae® is used to accumulate the
plastic strain dissipated along the crack local
axes.

(c) The energy dissipated in the structure due to
cracking in a load increment is obtained as:

AW"=J 6" AeP-dv (17)
vV

where V is the volume of the structure.

(d) The model also allows one to obtain the shear
retention factor at a crack as f=1/t° where
7 is the actual shear stress parallel to the
direction of the crack and t° is the value of
1 obtained from a linear elastic analysis.

Therefore, the elasto-plastic model pro-
posed here allows the deduction of all the
necessary information for fully defining the
state of cracking in the structure. However,
the fact that all this information is obtained
a posteriori can be considered a clear
advantage with respect to other discrete or
smeared cracking models, which involve
detailed transformations in each crack during
the non-linear numerical solution stage.

EXAMPLES

Example 1: 2-D analysis of a plain concrete
cantilever

The cantilever of Figure 15 has been analysed
under displacement-controlled conditions using the
three finite element meshes of 6, 24 and 96 standard
isoparametric two-dimensional eight-node elements
shown in the same Figure where all the relevant
material data are also given.

Numerical results obtained for the load—displace-
ment curve for the three meshes used have been
plotted in Figure 16a. It is interesting to note the
coincidence of results for the peak load for all
meshes. Figure 16b shows the value of the dissipated
energy, WP, versus the end displacement. It is
deduced from Figure 16b that the total energy
converges towards the correct input value, thus
showing the objectivity of results with respect to the
mesh size.

In Figure 16¢ the change in stress in the most
damaged integrating point is shown. Finally, in
Figure 17, the localization of cracking for the three
meshes used is clearly displayed. It is worth noting
that the failure mechanism in the real test
corresponds to a single crack.

Example 11: Prestressed cantilevel beam

The beam shown in Figure 18 has been subjected
to a numerical test consisting of (a) prestressing in
a direction parallel to the natural axis, and (b) sub-
sequent transverse loading as shown in Figure 18.
This corresponds to an experimental test numerically
studied with some modifications by Rots et al.*. The
numerical data for this example have been obtained
from Reference 4.

Eng. Comput., 1988, Vol. 5, December 315
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Figure 16 Cantilever beam: (a) load—dispiacement; (b) energy—
dissipation; {c) stress—strain in the more damaged integrating point

The material parameters and finite element mesh
used are shown in Figure 18. Four node elements
have been employed in the narrow band shown in
Figure 18, whereas eight-node elements are used in
the rest of the beam. 2 x 2 Gaussian quadrature has
been used for all elements.
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Figure 17 Cantilever beam, localization of crack-
ing for the three meshes used

The load—displacement curve obtained is plotted
in Figure 19a. Comparison of results obtained with
those presented in Reference 4 is good. It can be
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Figure 18 Prestressed beam relevant material parameters, and
finite element meshes

seen that the applied load does not reach a zero
value. This is due to the vertical component of the
prestressing load, which opposes the opening of the
two beam edges (see Figure 19d). The dissipated
energy is shown in Figure 19b, where it can be seen
that the solution stabilizes to the correct value. In
Figure 19c the stress changes in the point under
more severe damage is presented. Finally, Figure
19d clearly shows the localization of deformation.
Again it is worth noting that the cracked elements
simulate the effect of a single crack occurring in
practice. Also note in Figure 19d the small transverse
cracks due to local bending of the two beam edges.

Example 111: Simple tension test of plain concrete
specimen

The geometry of the specimen and material data
is shown in Figure 20. Experimental results for this
test were obtained by Peterson??. Two different
meshes of 12 and 30 eight-node isoparametric
elements were used in the analysis as shown in
Figure 20. The specimen was analysed under
displacement controlled conditions. Numerical
results for the load—displacement curve are shown
in Figure 21a and we can see a good coincidence of
results for different meshes used in this example.
The objectivity of the solution is evidenced in Figure
21b where the fracture energy obtained for different
displacements has been plotted for the two meshes.
It can be clearly seen that the two meshes yield the
same total fracture energy. Finally, the distribution
and localization of cracks is shown in Figure 21c.

CONCLUSIONS

An elasto-plastic model based on a modified
Mohr—Coulomb yield surface for the non-linear
analysis of concrete has been presented. The model
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seems adequate for predicting both non-linear
tension (cracking) and compression behaviour of
concrete by using the unified frame of plasticity
theory. The directions and amount of cracking are
obtained a posteriori by a simple postprocessing of
numerical results. The examples analysed show that
the model can be used for objectively reproducing
localized behaviour, load—displacement history and
distribution of cracking.

A generalization of the model to account for
elastic and plastic degradation effects is currently
investigated by the authors!®2°,
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