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ABSTRACT

Classical regression can only examine the relation between response and
predictor variables based on integer order calculus theory. What happens
when non integer order calculus is considered is a field where a vast
spectrum of studies can be undertaken. The purpose of this study intro-
duces a novel fractional-order quadratic regression model grounded in the
Caputo derivative framework, addressing the limitation and the rigidity
of classical polynomial regression in adapting to the intrinsic curvature of
data. The core innovation is the use of the fractional order ν as a tunable
parameter for curvature-sensitive optimization. Our main contributions
are fourfold: First, we establish a fundamental theoretical pillar by proving
that the second-order Caputo derivative preserves the curvature direction
of quadratic functions, enabling a principled optimization framework.
Second, we rigorously demonstrate the model’s robustness by proving the
existence and uniqueness of solutions via Banach’s fixed point theorem
and establishing stability bounds through a fractional Grönwall inequal-
ity. Third, we develop a practical methodology to identify an optimal
fractional order ν that minimizes the error-to-explained-variation ratio
(SSE/SSR). Finally, we validate the framework on four diverse real-world
datasets from air quality, soil science, education, and meteorology. The
proposed model consistently outperforms classical quadratic regression,
achieving a reduction in the SSE/SSR ratio by up to 21% in specific cases.
The proposed method yields more efficient models with either lower
estimation error or higher correlation coefficients, positioning Caputo
fractional quadratic regression as a powerful and theoretically sound
alternative for modeling cases where quadratic regression is considered
appropriate.
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MSE Mean Squared Error
MAE Mean Absolute Error
R Correlation Coefficient
R2 Coefficient of Determination
NMHC Non-Methane Hydrocarbons
NO2 Nitrogen Dioxide
CO Carbon Monoxide
C6H6 Benzene
pH Potential of Hydrogen (acidity/basicity measure)
Zn Zinc
Sal Salinity
HT Highest Temperature
LT Lowest Temperature

1 Introduction

Fractional calculus, a field of mathematical analysis that extends differentiation and integration
to non-integer orders, has evolved from an early theoretical curiosity to a powerful framework for
modeling complex systems. Originating from the historical correspondence between Leibniz and
L’Hôpital on the concept of a “half derivative”, fractional calculus was long regarded as abstract.
In recent decades, however, it has gained significant prominence due to its ability to capture memory
effects and long-range dependencies inherent in natural and engineered systems [1,2]. Unlike classical
derivatives, fractional operators are intrinsically non-local, allowing them to incorporate the historical
behavior of processes into their present dynamics. This property has proven essential in diverse
domains, including biology, finance, engineering, epidemiology [3–7], pandemic studies [8], and
atmospheric pollutant dispersion [9]. Among the various definitions, the Caputo fractional derivative
has received particular attention because it permits the formulation of physically meaningful initial
conditions in a way comparable to classical differential equations [10].

To date, the majority of fractional calculus applications have focused on solving differential
equations, with successful implementations in areas such as anomalous diffusion, viscoelasticity, signal
processing [4–6], initial value problems [11], plant disease modelling [12], thermodynamics [13], and
controlling synchronization in fractional-order complex networks [14]. By contrast, its integration
into statistical modeling, and particularly regression analysis, has remained limited. Regression is one
of the most fundamental tools for describing relationships between variables, yet classical polynomial
regression, constrained by its integer-order formulation, often struggles to adapt to the multi-scale and
nonlinear patterns present in real-world data [15]. Bridging this methodological gap—by combining
the flexibility of fractional calculus with the power of regression models—represents a promising but
underexplored research frontier.

Recent pioneering efforts have begun to highlight this potential. Torres-Hernandez et al. [16]
proposed incorporating fractional operators into polynomial regression to reduce overfitting, while
Ramalho [17] presented fractional regression as a natural framework for proportional data analysis.
A comprehensive review of the geometric and physical interpretation of fractional operators, are
discussed in [18], Still, these studies lack a systematic theoretical foundation that rigorously addresses
curvature sensitivity, existence and uniqueness of solutions, and stability analysis. Moreover, empirical
validations across diverse datasets are still scarce.
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This study seeks to fill this gap by developing a fractional quadratic regression model based on
the Caputo derivative. In this framework, the fractional order (ν) is introduced as a novel, tunable
parameter that enables curvature-sensitive optimization. The classical quadratic regression model
(ν = 1) naturally emerges as a special case, serving both as a benchmark and a reference point against
which fractional models can be compared. This approach is particularly advantageous for processes
characterized by uncertainty, self-similarity, or memory effects, offering a more flexible and realistic
modeling alternative.

The main contributions of this work can be summarized as follows:

1. We prove that the second-order Caputo derivative preserves the direction of curvature, laying
the foundation for a curvature-sensitive regression optimization framework.

2. We establish the theoretical robustness of the model by demonstrating the existence, unique-
ness, and stability of its solutions via Banach’s Fixed Point Theorem [19,20] and the fractional
Grönwall inequality [21,22].

3. We propose a practical methodology for optimizing the fractional order ν and link it directly
to key regression metrics such as regression error SSE, correlation coefficient R, and the ratio
of error to explained part of regression SSE/SSR.

4. We validate the proposed approach using four diverse real-world datasets from air quality, soil
science, education, and meteorology, showing that the fractional model can outperform the
classical model by either reducing the ratio of error to explained part of regression SSE/SSR
or increasing correlation.

This extended framework not only bridges the gap between fractional calculus and regression
analysis but also provides scientists and data analysts with a more flexible, interpretable, and powerful
tool for uncovering complex relationships in data.

Following the Introduction, the paper is organized as follows: Section 2 reviews essential math-
ematical preliminaries. Section 3 introduces the formulation of the fractional quadratic regression
model. Section 4 presents the core curvature analysis and its geometric interpretation. Sections 5 and
6 are dedicated to the proofs of existence, uniqueness, and stability. The application to real world data
is in Section 7, while the discussion of the results is provided in Section 8. Finally, the conclusions and
avenues for future work are presented in Section 9.

2 Preliminaries and Mathematical Background

In this section, some fundamental concepts that are relevant to this study are given.

Definition 1 [3]: The Riemann-Liouville fractional integral of order q > 0 for a functiong : [0, +∞] → R

is defined as

(
RLIq

0+g
)
(t) = 1

Γ (q)

∫ t

0

(t − s)q−1 g (s) ds. (1)

Provided that the right-hand side of the integral is point-wise defined on (0, +∞) and Γ is the
gamma function [23]:

Γ (υ) =
∫ ∞

0

e−ttυ−1dt, ∀υ > 0. (2)
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Definition 2 [3,11]: The Caputo derivative of order q > 0 for a function g : [0, +∞] → R is defined as

(
CDq

0+g
)
(t) =

{∫ t

0
(t−s)n−q−1g(n)(s)

�(n−q)
ds , n − 1 < q < n, q ∈ R,

g(n) (t) , q ∈ N,
(3)

where n = [q] + 1, [q] is the integer part of q.

Definition 3 [3,11]: The two parameter Mittag-Leffler function Eα,β (z) is defined as

Eα,β (z) : =
∞∑

k=0

zk

� (αk + β)
, z ∈ C; � (α) > 0 (4)

If β = 1 it becomes the one parameter Mittag-Leffler function

Eα (z) : =
∞∑

k=0

zk

� (αk + 1)
, z ∈ C; � (α) > 0 (5)

It is an entire function of z with order [� (α)]−1.

Definition 4 [23,24]: Asymptotic behavior of the Gamma function:

Given the Gamma function, let ε ∈ R be such that ε → 0+ the following asymptotic expansion holds

near zero: Γ (ε) ∼ 1
ε

− γ + O (ε), also simply written as Γ (ε) ∼ 1
ε

, where γ = 0.5772156 . . . is the

Euler–Mascheroni constant.

Definition 5 [24]: Under the classical quadratic regression model ŷ = b2x2 +b1x+b0 based on a data set of
n tuples (xi, yi)

n
i=1, the following parameters are frequently used to assess the validity of a fitted regression

model.

i. the size of the error committed, also called the variation unexplained by the fitted regression
model and defined as

SSE =
n∑

i=1

(
yi − ŷi

)2
(6)

Eq. (6) represents the sum of the squares of the difference between the observed values and
the corresponding estimated values.

ii. variation from the mean of the observed data in the response variable explained by the fitted
model given as

SSR =
n∑

i=1

(
ŷi − y

)2
(7)

The sum of the squares of the difference between the estimated values and the mean of the
observed data is represented by Eq. (7).

iii. Total variation around the mean of the observed response variable values is given as

SST =
n∑

i=1

(yi − y)
2 = SSE + SSR

iv. Correlation coefficient between the response and a predictor variables R = √
SSR/SST .
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3 Fractional Quadratic Regression Model

The Classical quadratic regression model is based on the idea of fitting a theoretical quadratic
model Y = b2x2 + b1x + b0 for a given data set consisting of n tuples (xi, yi)

n
i=1. Due to the random

nature of data the coefficients B0, B1, B2 to be computed will be the estimators of true but unknown
coefficients b0, b1, b2. Then the estimated or fitted quadratic regression model will be Ŷ = B2x2 +
B1x + B0, yielding the corresponding estimated values

(
xi, Ŷi

)n

i=1
. The process of finding the optimal

fitted model is based on the minimization of the sum of the squares of the errors (SSE) (6).

Through the minimization process the optimal values for the coefficients B0, B1, B2 are obtained
from the following system.⎡
⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

x4
j

n∑
j=1

x3
j

n∑
j=1

x2
j

n∑
j=1

x3
j

n∑
j=1

x2
j

n∑
j=1

xj

n∑
j=1

x2
j

n∑
j=1

xj n

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣B2

B1

B0

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

x2
j yj

n∑
j=1

xjyj

n∑
j=1

yj

⎤
⎥⎥⎥⎥⎥⎥⎦

(8)

In a recent work [15], building on the classical approach of minimizing the sum of squared errors
(SSE), the derivation of quadratic regression coefficients was undertaken within the framework of
fractional calculus. The system given in Eq. (9) is developed.⎡
⎢⎢⎢⎢⎢⎢⎣

1
(2 − v)

n∑
j=1

x4
j

n∑
j=1

x3
j

n∑
j=1

x2
j

n∑
j=1

x3
j

1
(2 − v)

n∑
j=1

x2
j

n∑
j=1

xj

n∑
j=1

x2
j

n∑
j=1

xj

1
(2 − v)

n

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣B2

B1

B0

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

n∑
j=1

x2
j yj

n∑
j=1

xjyj

n∑
j=1

yj

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

Eq. (9) enables the computation of as many quadratic models as required by simply changing the
value of the order of differentiation (v). In this study, we identified the metrics SSE/SSR and R as
the most critical for assessing and comparing the performance of the fractional quadratic regression
model against the classical counterpart. As detailed in Section 7.2, these metrics effectively capture the
model’s explanatory power and residual behavior, offering a robust basis for evaluating the advantages
of the fractional approach.

Understanding the curvature sensitivity of the fractional model emerges as a crucial aspect to
be investigated. These underlying patterns in the data are initially explored through the application of
the Caputo derivative of non-integer order, as presented in Section 4 of the manuscript. This approach
enables the detection of subtle geometric variations and long-range dependencies that are not captured
by classical models.

4 Curvature Analysis of the Fractional Model

When transitioning from classical to fractional analysis of a quadratic regression model, it
becomes evident that, in theory, infinitely many models can be fitted to a dataset exhibiting quadratic
behavior. Among the many quadratic models that can be generated based on varying orders of
differentiation—as indicated by Eq. (9)—it becomes essential to identify which model most accurately
represents the data. To address this, a curvature analysis of the quadratic regression equation is
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performed using the Caputo derivative. The Caputo method of fractional differentiation is chosen
because it enables the observation of real-world phenomena through the solutions of the correspond-
ing fractional Caputo differential equations.

4.1 Sign of the Second Caputo Derivative
Theorem 1: Let Ŷ (x) = B2x2 +B1x+B0 be a quadratic regression model fitted to a data set on an interval
[a, b] ∈ R.

(a) With B2 > 0 and for any fractional order v ∈ (1, 2), the Caputo fractional derivative of order
v denoted as cDv

aŶ (x) satisfies

cDv
aŶ (x) > 0, ∀x ∈ (a, b] (10)

(b) For any fractional order v ∈ (1, 2), the Caputo fractional derivative of order v satisfies
cDv

aŶ (x) < 0, ∀x ∈ (a, b] (11)

when B2 < 0.

Proof of part a: Consider the quadratic model Ŷ (x) = B2x2 + B1x + B0.

When B2 > 0, the model is concave up and Ŷ ′′
(x) = 2B2, hence Ŷ ′′

(x) is constant.

The Caputo fractional derivative of order v ∈ (1, 2) is given by

cDv
aŶ (x) = 1

� (2 − v)

∫ x

a

(x − t)1−v Ŷ
′′
(t) dt (12)

As Ŷ ′′
(x) = Ŷ ′′ (t) = 2B2 leads to

cDv
aŶ (x) = 2B2

� (2 − v)

∫ x

a

(x − t)1−v dt (13)

Evaluating the integral
∫ x

a
(x − t)1−v dt = (x − a)

2−v

2 − v
.

Thus, the Caputo fractional derivative becomes

cDv
aŶ (x) = 2B2

� (2 − v)
(x − a)

2−v

2 − v
(14)

Since B2 > 0 is given and

� (2 − v) > 0, ∀v ∈ (1, 2)

2 − v > 0,
(x − a)

2−v
> 0, ∀x > a

it follows that cDv
aŶ (x) > 0, ∀x ∈ (a, b]. �

Proof of part b follows the same logic leading to cDv
aŶ (x) < 0, ∀x ∈ (a, b].

4.2 Geometric Interpretation: Concave up/down Behavior
Based on Theorem 1 the following analytical interpretations can be made.

Case I . For concave-up models (B2 > 0)

https://www.scipedia.com/public/Tandogdu_et_al_2025 6

https://www.scipedia.com/public/Tandogdu_et_al_2025


Y. Tandogdu, S. Ilgaz, M. Awadalla and Y. Yameni,

Tuning curvature in quadratic regression via caputo fractional derivatives:

theory and applications,

Rev. int. métodos numér. cálc. diseño ing. (2025). Vol.0, (0), 0

➢ Caputo derivative is positive, increasing with (x − a), but the exponent 2 − ν governs the speed
of growth:

• If ν < 1 exponent 2 − ν > 1: indicates faster increase of the fractional derivative
function.

• If ν > 1 → exponent 2 − ν < 1: slower increase the fractional derivative function is
observed.

Case II . For concave-down models (B2 < 0)

➢ Caputo derivative is negative, and governed by the exponent 2 − ν.

➢ In this case:

➢ For ν < 1, 2 − ν > 1, fast decline in the fractional derivative

➢ For ν > 1, 2 − ν < 1, slow decline in the derivative

However, before deciding whether a fractional quadratic model offers any advantage over the
classical, one has to carefully compare the measures such as Sum of Squares of the Errors (SSE),
the sum of the squares of the explained part of variation around the mean Y (SSR), Coefficient of

determination (R2 = SSR/ (SSE + SSR)), and correlation coefficient
(

R = √
R2

)
values between

the fractional and classical methods. The ratio SSE/SSR becomes an important indicator in deciding
whether the fractional regression model performs better than the classical one. This is explored under
Section 7 in more detail.

4.3 Connection to Curvature-Sensitive Optimization
Theorem 2: Let Ŷ (x) = B2x2 + B1x + B0 be a quadratic regression model defined on [a, T ], and let CD2v

x

denote the Caputo fractional derivative of order 2v ∈ (1, 2). Then,

lim
ν→1

cD2ν

x Ŷ (x) = d2Ŷ (x)

dx2

That is, the Caputo fractional derivative of order 2v converges to the classical second derivative as
ν → 1.

Proof: Given Ŷ (x) = B2x2 + B1x + B0

⇒ d2Ŷ (x)

dx2
= 2B2 (a constant).

Now apply the Caputo defination for 1 < 2ν < 2. We obtain

CD2v
x Ŷ (x) = 1

Γ (2 − 2v)

∫ x

0

(x − t)1−2v d2Ŷ (t)
dt2

dt

= 1
Γ (2 − 2ν)

∫ x

0

(x − t)1−2ν 2B2dt

= 2B2

Γ (2 − 2ν)

∫ x

0

(x − t)1−2ν dt

= 2B2

Γ (2 − 2ν)

x2−2ν

2 − 2ν
(15)
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So we obtain

CD2v
x Ŷ (x) = 2B2

(2 − 2v) Γ (2 − 2v)
x2−2v (16)

Now consider the limit as ν → 1

Let ε = 2 − 2ν ⇒ ε → 0+

Keeping in mind the asymptotic expansion of Γ (ε) as ε → 0+ and using the identity:

Γ (ε) ∼ 1
ε

as ε → 0+

⇒ ε · Γ (ε) → 1

so that (2 − 2v) Γ (2 − 2v) = εΓ (ε) → 1 and x2−2v → x0 = 1

Hence

lim
ν→1

cD2ν

x Ŷ (x) = 2B2 = d2Ŷ (x)

dx2
. �

5 Existence and Uniqueness of Solutions

Existence and uniqueness of the fractional quadratic regression model is shown using the Caputo
fractional derivative. This is necessary to ensure that the developed model converges to a unique
solution and therefore it is reliable for implementation. The proof is developed using Banach’s Fixed
Point Theorem within an appropriate function space, under standard continuity [19,20] and Lipschitz
conditions on the regression kernel.

The initial value problem for a nonlinear Caputo fractional differential equation of order v ∈ (0, 1)

CDv
xŶ (x) = f

(
x, Ŷ (x)

)
, Ŷ (0) = Ŷ0, 0 < v < 1 (17)

is considered. Here CDv
x denotes the Caputo fractional derivative of order v, and f is a nonlinear

function representing the structure of the fractional regression model. Our goal is to show that the
model admits a unique continuous solution on a finite interval [0, X ], under suitable assumptions
on f .

Theorem 3: Let f : [0, X ] × R → R be continuous function that satisfies a Lipschitz condition. That is,
there exists a constant L > 0 such that

|f (x, y1) − f (x, y2)| ≤ L |y1 − y2| , ∀x ∈ [0, X ] , y1, y2 ∈ R

Then the initial value problem from Eq. (17)

CDv
xŶ (x) = f

(
x, Ŷ (x)

)
, Ŷ (0) = Ŷ0, 0 < v < 1

has a unique solution on [0, X ], provided that

LX ν

Γ (ν + 1)
< 1
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Proof: Beginning with the Caputo fractional differential Eq. (17) in its equivalent Volterra integral
form

Ŷ (x) = Ŷ0 + 1
Γ (v)

∫ x

0

(x − t)v−1 f
(

t, Ŷ (t)
)

dt (18)

Define the operator T on the Banach Space C [0, X ] of continuous functions by(
TŶ

)
(x) := Ŷ0 + 1

Γ (v)

∫ x

0

(x − t)v−1 f
(

t, Ŷ (t)
)

dt (19)

By applying Banach’s fixed point theorem [19,20]:

Let M > 0, and define the closed ball centered at Ŷ0 by

BM :=
{

Ŷ ∈ C [0, X ] :
∥∥∥Ŷ − Ŷ0

∥∥∥
∞

≤ M
}

(20)

where Ŷ1, Ŷ2 ∈ BM , then∥∥∥TŶ1 − TŶ2

∥∥∥∞ ≤ L
Γ (ν)

∫ x

0

(x − t)ν−1
∥∥∥Ŷ1 − Ŷ2

∥∥∥
∞

dt

=
L

∥∥∥Ŷ1 − Ŷ2

∥∥∥
Γ (ν)

∫ x

0

(x − t)ν−1 dt

= Lxν

Γ (ν + 1)

∥∥∥Ŷ1 − Ŷ2

∥∥∥
∞

(21)

But it is a assumed that
Lxν

Γ (ν + 1)
< 1, implying

∥∥∥TŶ1 − TŶ2

∥∥∥
∞

≤
∥∥∥Ŷ1 − Ŷ2

∥∥∥
∞

. That is the

operator T is a contraction mapping on BM . By Banach’s fixed point theorem, T has a unique fixed
point in BM , which is a unique continuous function Ŷ (x) satisfying the integral equation, and thus
also the orginal differential Eq. (17). �

6 Stability Analysis

In a developed model it is desired that for minor variations in initial conditions, input data and/or
model parmeters does not cause large or unacceptable deviations in the output. Therefore, the stability
of the developed model is essential [25]. Through the stability analysis of the quadratic regression
model, its robustness and reliability of the solutions is ensured. This, in turn, provides theoretical
confidence in the constructed model.

In this section, we investigate the stability properties of the Caputo fractional regression model.
Stability, in this context, refers to the continuous dependence of the solution on the initial condition.
This is an essential theoretical property, ensuring that the regression model remains robust under small
perturbations in data.

We consider the fractional differential equation:

CDv
xŶ (x) = f

(
x, Ŷ (x)

)
, Ŷ (0) = Ŷ0, 0 < v < 1 (22)

where CDv
x denotes the Caputo fractional derivative of order ν, and f is a nonlinear function

representing the structure of the fractional regression model.
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The following theorem establishes a stability estimate for solutions of the above equation under
standard Lipschitz assumptions.

Theorem 4: Stability Estimate for Caputo Fractional Regression.

Let Ŷ (x) and Ỹ (x) be two solutions of the fractional regression problem

CDv
xŶ (x) = f

(
x, Ŷ (x)

)
, and CDv

xỸ (x) = f
(

x, Ỹ (x)
)

(23)

with different initial conditions

Ŷ (0) = Ŷ0 and Ỹ (0) = Ỹ0

Assume,

1. f is a continuous on [0, X ] × R

2. f is Lipschitz the second variable

|f (x, y1) − f (x, y2)| ≤ L |y1 − y2| , ∀x ∈ [0, X ] , ∀y1, y2 ∈ R

Then, the difference E (x) : =
∣∣∣Ŷ (x) − Ỹ (x)

∣∣∣ satisfies the stability estimate:
∣∣∣Ŷ (x) − Ỹ (x)

∣∣∣ ≤
∣∣∣Ŷ0 − Ỹ0

∣∣∣ , Eν (Lxν) , ∀x ∈ [0, X ] (24)

where Eν (z) is the Mittag Leffler function [26] defined as Eν (z) =
∞∑

k=0

zk

� (νk + 1)
.

Proof: Since Ŷ (x) , Ỹ (x) satisfies the Caputo fractional differantial equation, we can write

Ŷ (x) = Ŷ0 + 1
� (v)

∫ x

0

(x − t)v−1 f
(

t, Ŷ (t)
)

dt (25)

Ỹ (x) = Ỹ0 + 1
� (v)

∫ x

0

(x − t)v−1 f
(

t, Ỹ (t)
)

dt (26)

subtracting Eqs. (25) from (26)

Ŷ (x) − Ỹ (x) = Ŷ0 − Ỹ0 + 1
� (v)

∫ x

0

(x − t)v−1
(
(f

(
t, Ŷ (t)

)
− f

(
t, Ỹ (t)

))
dt

∣∣∣Ŷ (x) − Ỹ (x)

∣∣∣ ≤
∣∣∣Ŷ0 − Ỹ0

∣∣∣ + 1
� (ν)

∫ x

0

(x − t)ν−1 dt

≤
∣∣∣Ŷ0 − Ỹ0

∣∣∣ + 1
� (ν)

∫ x

0

(x − t)ν−1
∣∣∣Ŷ (t) − Ỹ (t)

∣∣∣ dt (27)

Define.

E (x) : =
∣∣∣Ŷ (x) − Ỹ (x)

∣∣∣ (28)

Then,

E (x) ≤
∣∣∣Ŷ0 − Ỹ0

∣∣∣ + 1
� (ν)

∫ x

0

(x − t)ν−1 E (t) dt (29)
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This is the standard fractional Grönwall inequality. According to fractional Grönwall lemma
[21,22]. �

E (x) ≤
∣∣∣Ŷ0 − Ỹ0

∣∣∣ · Eν (Lxν) (30)

7 Application to Different Data Sets
7.1 Data Description and Descriptive Statistics

Prior to model fitting, a descriptive analysis of each dataset was conducted to understand the scale,
central tendency, and variability of the variables under investigation. This foundational step provides
essential context for interpreting the regression results. The key descriptive statistics—including
number of observations (n), mean, standard deviation (Std. Dev.), minimum (Min), and maximum
(Max)—for the predictor (X ) and response (Y ) variables in each studied pair are summarized in
Table 1.

Table 1: Descriptive statistics for the variables used in the fractional quadratic regression analysis

Dataset Variable pair Variable Role n Mean Std. Dev. Min Max
Std
Avr

1: Air quality [27]

NO2 on CO
CO (mg/m3) Predictor (X ) 33 3.31 1.64 0.40 6.40 0.49

C6H6 on NO2
NO2 (μg/m3) Response (Y ) 33 113.85 29.10 42.00 159.00 0.25

NO2 (μg/m3) Predictor (X ) 60 171.39 53.78 48.60 264.60 0.31

NMHC on CO
C6H6 (μg/m3) Response (Y ) 60 11.31 6.19 1.53 26.81 0.55

CO (mg/m3) Predictor (X ) 169 2.42 1.29 0.3 6.3 0.53

2: Soil science [28]
pH on Zn

NMHC (mg/m3) Response (Y ) 169 295.28 239.02 23 1084 0.81

Zn (ppm) Predictor (X ) 18 20.37 6.07 9.60 31.29 0.3

Sal on Zn
pH Response (Y ) 18 4.70 0.71 3.25 5.60 0.15

Zn (ppm) Predictor (X ) 15 19.99 4.44 13.68 28.59 0.22

3: Education [29] A on M
Sal (gr/kg) Response (Y ) 15 31.00 4.47 24.00 38.00 0.14

Multiplication (M) Predictor (X ) 20 72.05 11.93 45.00 90.00 0.17

4: Meteorology [30] HT on LT
Addition (A) Response (Y ) 20 81.85 13.63 47.00 100.00 0.17

LT (°C) Predictor (X ) 15 19.00 5.90 8.00 29.00 0.31

Note: mg/m3 = milligrams per cubic meter; μg/m3 = micrograms per cubic meter; ppm = parts per million; gr/kg grams per kilogram.

The analysis reveals the diverse nature of the datasets. For instance, the Air Quality dataset
(Dataset 1) exhibits a high degree of variability in pollutant concentrations, as indicated by the large
standard deviations relative to the means except NO2. In contrast, Data sets 2, 3, and 4 do not
exhibit large variabilities around their means. The Soil Science data (Dataset 2), with a smaller sample
size (n = 15 and 18), does not shows high variability indicating less variability. The Education data
(Dataset 3) points towards a higher performance in addition compared with multiplication. Finally,
the Meteorological data (Dataset 4) shows the expected strong co-movement between daily high
and low temperatures. This descriptive overview confirms that the subsequent regression modeling
is performed on datasets with varying scales and statistical properties, which helps in demonstrating
the general applicability of the proposed fractional approach.
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7.2 Criteria to Be Used Is Assessing Fitted Regression Models
Using the Caputo fractional quadratic regression approach, models obtained as a function of

the order of derivative (v) will result in different values for the parameters given in Definition 5.
Clearly SSE is of prime importance and will always be a minimum in classical quadratic regression.
The correlation coefficient (R) between the independent and the response variables depends on both
the SSE and the SSR values as

R2 = 1 − SSE/SST = SSR/SST → R = √
R2 (31)

where R2 is the coefficient of determination.

Therefore, the ratio(SSE/SSR)v�=1 will act as an indicator for the comparison of different models
generated by the fractional approach with that obtained from the classical approach (SSE/SSR)v=1.
The following becomes evident

• If

(SSE/SSR)v�=1 < (SSE/SSR)v=1 → Rv�=1 > Rv=1 (32)

• If

(SSE/SSR)v�=1 > (SSE/SSR)v=1 → Rv�=1 < Rv=1 (33)

Obtaining an Rv�=1 > Rv=1 at any v < 1 or v > 1 does not always mean a better fit than the classical
model. The model allows for three possible scenarios⎧⎨
⎩

i. MinSSE
ii. MaxR
iii. (SSE, R)Opt

⎫⎬
⎭ (34)

i) Minimum Error Model: This model yields the lowest Sum of Squared Errors (SSE) and is
preferable when minimizing prediction error is the primary objective.

ii) Maximum Correlation Model: Characterized by the highest correlation coefficient, this model
is ideal when maximizing the strength of association between variables is the goal.

iii) Optimum Fractional Model: Identified as the optimal choice, this fractional model achieves
the lowest SSE while also surpassing the classical model in terms of correlation (R value).

It is important to note that the application of the Caputo quadratic regression method does not
always yield all three possible cases outlined in Eq. (34). In some instances, the classical model alone
may prove to be the optimal solution. Nonetheless, other combinations of the three cases may also
arise, depending on the case under study.

It is therefore essential to evaluate the fractional models Ŷv�=1 in comparison with the classical
model Ŷv=1. Table 2 presents a summary of the four cases and seven models analyzed. The values in
the final column are determined with reference to Eq. (34).
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Table 2: Summary of fractional quadratic regression analysis conducted for the 4 different cases and
7 distinct models

Data set Cases Regression
variables (Y on X )

Model concavity Min SSE When v = 1 Max R at v Optimum SSE & R
at v

Data set 1
Case 1 NO2 on CO Con. down 6967.05121,

0.8620384, v =
0.99999

6967.0611,
0.8620384, v =
0.99999

Case 2 C6H6 on NO2 Con. up 483.106 0.905
v = 0.94

556.161, 0.904
v = 0.96

Case 3 NMHC on CO Con. up 516975.9261 0.8619695
v = 1

516975.93
0.8619695
v = 1

Data set 2
Case 1 pH on Zn Con. down 2.46429

0.87123
v = 0.9995

3.70660,
0.87123
v = 0.9995

Case 2 Sal on Zn Con. up 120.6071 0.78938
v = 0.98

300.837, 0.78938 v
= 0.98

Data set 3 Case 1 Add on Mult Con. down 1020.1389 0.856858
v = 1

1062.763, 0.856858
v = 1

Data set 4 Case 1 HT on LT Con. down 34.53487 0.973399
v = 0.99999

34.53485, 0.973376,
v = 1.000001

The operational methodology for applying the Caputo fractional quadratic regression model
involves a systematic search for the optimal fractional order ν. The process involves the following
steps:

(1) For a given dataset, a range of v values centered around the classical case (ν = 1) is established.

(2) For each candidate value of ν, the system of fractional normal equations, Eq. (9) is solved to
obtain the regression coefficients b0 (v) , b1 (v) , and b2 (v).

(3) The resulting model Ŷ (v) = b0 (v) + b1 (v) X + b2 (v) X 2 is used to calculate the performance
metrics (SSE, R, SSE/SSR).

(4) The values of these metrics are then compared across all ν to identify the optimal model
according to the criteria in Eq. (34).

This process demonstrates how the model operates under different ‘working conditions’ defined
by the fractional order ν. The following case studies illustrate this process in detail.

7.3 Case Studies
Out of the four datasets from which seven cases were analyzed, as summarized in Table 3, Case

2 from Dataset 1 and Case 1 from Dataset 4—representing concave-up and concave-down behavior,
respectively—are discussed in detail to highlight the application of fractional quadratic regression.

Dataset 1 Case 2: This case involves applying the fractional quadratic regression model, as introduced
in Section 4, to urban air pollution data. The dataset comprises 15 variables associated with traffic
emissions in a specific Italian town [27]. From this, a subset of 60 data pairs focusing on benzene C6H6

and nitrogen dioxide NO2 is selected, revealing a correlation coefficient of 0.887 between the two.
Based on the scatter plot—where NO2 serves as the predictor and C6H6 as the response variable—a
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classical quadratic regression model, expressed in Eq. (35) is fitted. (Fig. 1)

ŷ = 0.0004x2 − 0.00224x + 3.01316 (35)

Table 3: Important parameters for the fractional models where Rv�=1 > Rv=1

v SSE SSR SST R2 R SSE/SSR

0.92 1130.969 4508.953 5639.922 0.799 0.894 0.251
0.94 703.604 3190.981 3894.585 0.819 0.905 0.220
0.96 556.161 2490.040 3046.201 0.817 0.904 0.223
0.98 507.602 2067.781 2575.383 0.803 0.896 0.245
1.00 483.106 1778.750 2261.856 0.786 0.887 0.272

Figure 1: Comparison of selected fractional and classical regression models for C6H6 on NO2

To implement the fractional regression approach, a grid search was conducted over the fractional
order v within the interval (0.9, 1.1) using a step size of 0.02. This resulted in 11 distinct evaluation
points. For each value of v the corresponding system of fractional normal equations, as defined in
Eq. (9), was solved to obtain the regression coefficients. The performance of each resulting model was
then assessed based on key metrics SSE, SSE/SSR, and R. Fig. 1 displays the fractional regression
models identified through our grid search that meet the criteria outlined in Eq. (32), alongside the
original data points and the classical case (v = 1). Notably, the model at ν = 0.98 is visually very close
to the classical model yet provides a statistically superior fit with a higher correlation coefficient, as
quantified in Table 3.

The curvatures of selected fractional regression models, conform to the geometric interpretation
described in Section 4.2. Representative curvature plots illustrating this behavior are presented in
Fig. 2. This figure visualizes the curvature, as defined by the sign of the second-order Caputo
derivative, for selected fractional models. It empirically validates Theorem 1, showing that all models
maintain a consistent concave-up shape regardless of the fractional order ν. Furthermore, the
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curvature for v > 1 increases at a slower rate compared to the curvature at ν = 1, whereas for
v < 1, the curvature increases more rapidly. This behavior highlights how the sharpness of the curvature
is modulated by the parameter ν, forming the foundation of our curvature-sensitive optimization
framework.

Figure 2: Curvature profiles of selected fractional regression models for the regression of C6H6 on NO2

The visualization demonstrates how tuning the fractional order ν adjusts the curvature of the
quadratic model to better fit the data distribution. Notably, the model at ν = 0.98 is visually very close
to the classical model yet provides a statistically superior fit with a higher correlation coefficient, as
quantified in Table 3.

Key parameters relevant to interpreting models that satisfy Eq. (32) are summarized in Table 3.

As shown in Table 3, the minimum SSE occurs at v = 1, while the highest correlation coefficient
(R) is observed at v = 0.94. Among the fractional models where v �= 1, the lowest SSE is achieved at
v = 0.98. Therefore, based on the criteria outlined in Eq. (34), the model at v = 0.98 is considered
optimal, as it combines a lower error amongst the v �= 1 cases and with a higher R value than the
classical case at v = 1.

Dataset 4 Case 1: Between January and July 2025, a dataset comprising 15 randomly selected daily
temperature pairs, representing the highest and lowest temperatures in degrees Celsius °C, was
collected from the MSN Weather Forecast page [30] for Monarga (Bogaztepe), Cyprus. Analysis
revealed a strong correlation of R = 0.9734 between the two variables. A classical quadratic regression
model was fitted to the scatter plot, with the highest temperature (HT) serving as the response variable
(Y ) and the lowest temperature (LT) as the predictor (X ), resulting in the regression Eq. (36).

ŷ = −0.0191x2 + 1.8283x − 0.5526 (36)

The curvature of the Caputo fractional quadratic regression models was examined in accordance
with Theorem 1, which addresses the concave-down case. Fig. 3 illustrates the graphical behavior of
selected models for various v values near v = 1, including the classical case. All models conform to
the geometric interpretation outlined in Section 4.2 for concave-down curvature. Specifically, relative
to the curvature observed at v = 1, the curvature becomes steeper when v < 1, and more gradual when
v > 1.
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Figure 3: Curvature analysis results of selected fractional regression models for the regression of HT
on LT

Fractional regression models based on the Caputo approach that satisfy the criteria outlined in
Eq. (32) are presented alongside the original data points and the classical model v = 1 in Fig. 4.

Figure 4: High-resolution comparison of models near the classical limit for HT on LT

This figure provides a detailed view of the fractional and classical models in the immediate vicinity
of ν = 1. Due to the scale, the curves for ν = 0.99999, 1.00, and 1.000001 are nearly indistinguishable
visually, yet their statistical metrics (SSE, SSR, and SSE/SSR) differ as shown in Table 4. This
underscores the sensitivity of our optimization process and the fact that the absolute best-fit model
can be a fractional one, even when it is extremely close to the classical solution.

Table 4 indicates that the regression model corresponding to v = 1 yields the optimal performance,
satisfying the criteria for minimum error and improved correlation as outlined in Eq. (34).
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Table 4: Important parameters for the fractional models when Rv�=1 > Rv=1, as v → 1

v SSE SSR SST R2 R SSE/SSR

0.99999 34.53596 623.3801 657.9161 0.947507 0.9734 0.055401
1 34.53487 622.6787 657.2136 0.947453 0.973372 0.055462
1.000001 34.53485 622.7735 657.3083 0.94746 0.973376 0.055453

8 Discussion

This study successfully developed and validated a novel framework for quadratic regression by
integrating the principles of Caputo fractional calculus. The results presented in Section 7 demonstrate
that the proposed fractional-order model is not merely a theoretical construct but a practical tool that
can, under specific conditions, outperform the classical integer-order approach. The discussion that
follows interprets these findings, explores their implications, and positions this work within the broader
scientific landscape.

8.1 Interpretation of Key Findings and the Curvature-Sensitivity Paradigm
The core theoretical insight of this work, established in Theorem 1, is that the second-order Caputo

derivative preserves the concavity of a quadratic function. This property is the cornerstone of our
curvature-sensitive optimization framework. It provides a rigorous mathematical justification for using
the fractional order ν as a tunable parameter to tailor the regression model to the inherent geometric
structure of the data. The empirical results confirm this theory: for a given dataset, varying ν produces
a family of models whose performance metrics (SSE, SSE/SSR, and R) change in a predictable and
continuous manner, allowing for the selection of a model that is optimal for a specific criterion (e.g.,
lowest error or highest correlation).

The performance of the fractional model relative to the classical benchmark (ν = 1) can be
interpreted through the lens of the SSE/SSR ratio. A fractional model that achieves a lower SSE/SSR
ratio for a similar R, or a higher R for a similar SSE/SSR, indicates a more efficient explanation of the
variance within the data. For instance, in the C6H6 on NO2 regression (Dataset 1-case 2), the optimum
model at ν = 0.98 achieved a significantly lower SSE/SSR ratio (0.245) compared to the classical model
(0.272), suggesting that the fractional approach captured the underlying relationship with less error
relative to the explained variation. This finding is critical as it moves beyond a simple goodness-of-fit
metric and provides a relative measure of model efficiency.

The success of the fractional model in certain cases can be attributed to the inherent properties of
fractional derivatives. Unlike integer-order derivatives, which are local operators, fractional derivatives
are non-local and capture memory effects and long-range dependencies within the data. For instance,
the better performance of the Caputo fractional model for C6H6 on NO2 regression could be inter-
preted as the system having a “memory”—where past levels of NO2 have a lingering, non-instantaneous
effect on benzene formation, a phenomenon that the classical, memoryless model cannot capture.
Conversely, in cases where the classical model was optimal (e.g., NMHC on CO), the relationships
appear to be more immediate and local, well-described by standard calculus. This provides a physical
and intuitive explanation for when and why the fractional model offers an advantage.
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8.2 Comparative Analysis with Advanced Modeling Techniques
The proposed fractional regression framework offers a distinct advantage when compared to other

advanced modelling techniques for handling complexity, such as deep neural networks (DNNs) [31]
or fractal fractional operators [32]. While DNNs are powerful black-box tools capable of modelling
extremely non-linear and high dimensional relationships, they often require large data sets and
significant computational resources, while their internal mechanisms can be opaque. In contrast our
fractional quadratic model is parsimonious and interpretable. The fractional order v provides a single,
intuitive parameter whose adjustment has a clear geometric meaning (curvature tuning), making the
model’s behavior easier to understand and justify for physical or natural systems where interpretability
is key.

Similarly, while fractal-fractional operators [32] introduce even more degrees of freedom for
capturing complex dynamics, our use of the standard Caputo derivative demonstrates that substantial
improvements can be achieved within a simpler and well established mathematical framework. This
work shows that significant value lies in enhancing foundational statistical models (like quadratic
regression) with fractional calculus, providing a middle ground between classical models and highly
complex modern techniques.

8.3 Implications and Applicability
The ability of the fractional model to outperform the classical one in specific cases (e.g., Dataset

1 Case 2 and Dataset 4 Case 1) has profound implications. It suggests that many natural and
engineered systems traditionally modeled with integer-order calculus may exhibit hidden fractional-
order dynamics. The improvement in fit could be attributed to the fractional derivative’s ability to
better capture memory effects, long-range dependencies, or anomalous diffusion processes that are
not accounted for in classical regression. This makes the framework particularly relevant for fields like
environmental science (e.g., pollutant dispersion), thermodynamics (e.g., temperature equilibration),
and physiology (e.g., growth patterns), where such phenomena are common.

Furthermore, the theoretical guarantees provided by Theorems 3 and 4 (existence, uniqueness and
stability) are not merely mathematical formalities. They ensure that the fractional regression model is
robust, reliable, and that its solutions are continuous and depend predictably on the initial data. This
mathematical rigor is essential for building confidence in the model’s predictions and for its future
application in sensitive domains.

8.4 On the Optimality of the Classical Model
It is important to contextualize the results where the classical model remained optimal (e.g.,

NMHC on CO in Dataset 1, Add on Mult in Dataset 3). This outcome is not a failure of the fractional
approach but rather an important result itself. It indicates that for those specific variable pairs,
the integer-order calculus sufficiently describes the relationship. The fractional framework gracefully
includes the classical model as a special case (ν = 1) and provides a systematic method to test whether
a more complex fractional description is warranted. The choice between models can thus be guided
by objective criteria (e.g., SSE/SSR, R) within the proposed framework, moving the selection process
from ad hoc to principled.

In conclusion, the Caputo fractional quadratic regression model presented herein represents
a meaningful advancement in regression analysis. It combines a solid theoretical foundation with
practical utility, offering a new, interpretable, and powerful tool for data analysts and scientists seeking
to extract the most accurate and meaningful relationships from their data.

https://www.scipedia.com/public/Tandogdu_et_al_2025 18

https://www.scipedia.com/public/Tandogdu_et_al_2025


Y. Tandogdu, S. Ilgaz, M. Awadalla and Y. Yameni,

Tuning curvature in quadratic regression via caputo fractional derivatives:

theory and applications,

Rev. int. métodos numér. cálc. diseño ing. (2025). Vol.0, (0), 0

9 Conclusion and Future Work
9.1 Conclusion

This study has successfully established a comprehensive and theoretically robust framework for
Caputo fractional quadratic regression. We have rigorously proven that the model preserves the
intrinsic curvature direction of data, providing a geometrically interpretable foundation. Furthermore,
we furnished essential theoretical guarantees by demonstrating the existence, uniqueness, and stability
of the solutions, ensuring the model’s reliability. The central innovation of this work is the introduction
of the fractional order ν as a tunable parameter for curvature-sensitive optimization, moving beyond
the rigid structure of classical integer-order calculus.

The practical efficacy of the proposed framework was empirically validated across four distinct
real-world datasets. The key results, summarizing the performance of the classical model against the
best-performing fractional model for each variable pair, are presented in Table 5 below. The percentage
improvement in the critical SSE/SSR ratio is used as the primary metric for comparison.

Table 5: Summary of key results: classical vs. optimal fractional model performance

Dataset Variable pair
(Y on X)

Classical
model (ν = 1)

Optimal
fractional
model

%
Improvement
in SSE/SSR

Best case
scenario

Air quality NO2 on CO SSE/SSR =
0.3459

v = 0.99999,
SSE/SSR =
0.3457

0.0006% Opt. fract.
model
marginally
better

Air quality C6H6 on NO2 SSE/SSR =
0.272

ν = 0.98,
SSE/SSR =
0.245

9.9% Opt. fract.
model better

Air quality NMHC on CO SSE/SSR =
0.0569

ν = 1.00,
SSE/SSR =
0.0569

0.0% Classical
Model is
Optimal

Soil science pH on Zn SSE/SSR =
0.40196

ν = 0.9995,
SSE/SSR =
0.31744

21% Opt. fract. case
better

Soil science Sal on Zn SSE/SSR =
0.7567

ν = 0.98,
SSE/SSR =
0.6048

20% Opt. fract. case
better

Education Add on Mult SSE/SSR =
0.362

ν = 1.00,
SSE/SSR =
0.362

0.0% Classical
Model is
Optimal

Meteorology HT on LT SSE/SSR =
0.05546

ν = 1.000001,
SSE/SSR =
0.05540

0.001% Opt. fract.
model
marginally
better

The results presented in Table 5 underscore the improvements the fractional framework can offer.
Notably, the pH on Zn regression exhibited a 21% reduction in the SSE/SSR ratio when v = 0.98,
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indicating a model with a stronger correlation coefficient and improved fit. Among the seven regression
models evaluated, only two cases—NMHC on CO and Add on Mult—showed no improvement,
correctly identifying the classical model as optimal with 0% gain in SSE/SSR.

These results conclusively demonstrate that the Caputo fractional quadratic regression model is
a powerful, interpretable, and theoretically sound alternative for data analysis, capable of uncovering
more efficient representations of complex relationships where classical models do not offer this facility.

9.2 Limitations and Future Work
Despite the promising results, this work has certain limitations that pave the way for future

research.

9.2.1 Computational Search

The current method for finding the optimal fractional order ν involves a grid search, which can
be computationally expensive for very large datasets. Future work will focus on developing efficient
optimization algorithms, such as gradient-based or metaheuristic methods, to automate and accelerate
this process.

9.2.2 Model Scope

The present framework is confined to bivariate quadratic regression. A significant and logical
extension is to develop a multivariate fractional polynomial regression model. This would involve
formulating and solving systems of fractional normal equations for multiple predictor variables.

9.2.3 Operator Exploration

This study focused on the Caputo derivative due to its advantageous properties for initial value
problems. Future investigations could explore the performance and theoretical implications of using
other fractional operators, such as the Riemann–Liouville, Atangana–Baleanu, or tempered fractional
derivatives, within this regression framework.

9.2.4 Theoretical Extensions

Further theoretical work could explore the asymptotic properties of the fractional regression
coefficients and develop hypothesis tests for the significance of the fractional order v.

By addressing these limitations, the potential of fractional calculus in regression analysis can be
further unlocked, leading to more sophisticated and accurate tools for statistical modeling and data
analysis.
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