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Abstract. A stabilized semi-implicit frictional step finite element method for solving
coupled fluid-structure interaction problems involving free surface waves is presented. The
stabilized equations are derived at a differential level via a finite element calculus procedure.
A new mesh updating technique based on solving a fictitious elastic problem on the moving
mesh 1s described. One example of the efficiency of the stabilized semi-implicit algorithm
for the coupled solution of fluid-structure interaction problems is presented.

1 Introduction

Accurate prediction of the fluid-structure interaction effects for a totally or partially
submerged body in a flowing liquid including a free surface is a problem if great relevance
in offshore engineering and naval architecture among many other fields.

The difficulties in accurately solving the coupled fluid-structure interaction problem in
this case are mainly due to the following reasons:

1. The difficulty of solving numerically the incompressible fluid dynamic equations
which typically include intrinsic non linearities except for the simplest and limited
potential flow model.

2. The obstacles in solving the constraint equation stating that at the free surface
boundary the fluid particles remain on that surface which position is in turn un-
known.

3. The difficulties in solving the problem of motion of the submerged body due to the
interaction forces while minimizing the distorsion of the finite elements discretizing
the fluid domain thus reducing the need of remeshing.

This paper extends recent work of the authors [1] to derive a stabilized finite element
method which allows to overcome above three obstacles. The starting point are the modi-
fied governing differential equations for the incompressible viscous flow and the free surface
condition incorporating the necessary stabilization terms via a finite increment calculus
(FIC) procedure developed by the authors [2-6]. The FIC approach has been success-
fully applied to the finite element and meshless solution of a range of advective-diffusive
transport and fluid flow problems [1-6].

The modified governing equations are written in an arbitrary lagrangian-eulerian (ALE)
form to account for the effect of relative movement between the mesh and the fluid points.
These equations are solved in space-time using a semi-implicit fractional step approach
and the finite element method (FEM). Free surface wave effects are accounted for via the
introduction of a prescribed pressure at the free surface computed from the wave height.

The movement of the submerged body within the fluid due to the interaction forces is
treated by solving a structural dynamic problem using the fluid forces as input loads. A
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method to update the mesh for the fluid domain following the movement of the submerged
body which minimizes element distorsion is presented. The mesh update procedure is
based on the iterative finite element solution of a linear elastic problem on the mesh
domain where fictitions elastic properties are assigned so that elements suffering higher
movements are stiffer [8].

The content of the paper is structured as follows. First details of the stabilized semi-
implicit fractional step approach using the FEM is described. Next the mesh updating
procedure is presented. Finally some examples of a coupled fluid-interaction problem are
given.

2 Stabilized finite element formulation for the fluid flow equa-
tions

We consider the motion around a body of a viscous incompressible fluid including a free
surface.

The stabilized form of the governing differential equations for the three dimensional (3D)
problem can be written in ALE form as

Momentum i 5
T
P — ~—m1 = Q . ] = 1 2
T 2hmJ 7z 0 on i, ] ,2,3 (1)
Mass balance
1 a’f‘d
— ~hgy— = Q 7=1,2
T4 2hdj 72 0 on J , 2,3 (2)
Free surface
al aT‘ﬂ .
Tﬁ_ihﬂjaT’jzo on Fg ]:1,2 (3)
where
8’U,i 0 8}) 37‘1'_7'
T — (v;u; - — —b 4
P P l: ot + axj (’U 'U:]):| + 6:132 83:j ( )
Ou; .
re = pg  i=1,23 (5)
0 0 .
re = 8_f+vi8—£—u3 1=1,2 (6)
and
Vi = U; — U:n (7)



E. Onate and J. Garcia

In above u; is the velocity along the i-th global reference axis, u* is the mesh velocity
and v; is the relative velocity between the moving mesh and the fluid point i, p is the
(constant) density of the fluid, p is the pressure, 3 is the wave elevation, b; are the body
forces acting in the fluid and 7;; are the viscous stresses related to the viscosity u by the
standard expression

. aui ('3uj 2 (’)uk
i = H (axj * am %ga—m) (8)

The underlined terms in eqs.(1)—(3) introduce the necessary stabilization for the approx-
imated numerical solution.

The distances hy,j, hgj and hg; are termed characteristic lengths and represent the di-
mensions of the finite domain where balance of momentum, mass and transport of fluid
particles is enforced. Details of the derivation of egs. (1)-(3) can be found in [2,7].

A more convenient form of equation (2) can be written by assuming hg; = —274u; where
7, is an intrinsic time parameter. Under this assumption and using eq. (1) the stabilized
form of the mass balance equation can be written as (neglecting high order terms) [7]

OF .
Td — Td 81:1-1 =0 (9)
where
L ou; ou; Op 07y
T =P <—8_t * v 6113]) t al'l al’j (10)

The boundary conditions for the stabilized problem are written as

1
anij + tz + ihmjanmi =0 on Ft (11)

uj—u; =0 only (12)

where n; are the components of the unit normal vector to the boundary and ¢; and u?
are prescribed tractions and displacements on the boundaries I'; and I',, respectively.
The underlined stabilized terms appearing in the Neumann boundary condition (11) are
obtained via the FIC approach [2,7].

Egs.(1-12) are the starting point for deriving a variety of stabilized numerical methods
for solving the incompressible Navier-Stokes equations. It can be shown that a number
of standard stabilized finite element methods allowing equal order interpolations for the
velocity and pressure fields can be recovered from the modified form of the momentum
and mass balance equations given above [7]. A semi-implicit fractional step finite element
procedure for solution of egs. (1)-(3) and (11), (12) is presented in next section.



ECCM 99, Miinchen, Germany

Stabilized fractional step method

Let us discretize in time the stabilized momentum equation (1) as

uttl — 7 0 .| op"tt o1 1. o
P 1 U __z_bn__hm—m':()
P At u ail?]' ('U uJ) :| T aiEz arj ¢ 2 J aa:j (13)

A fractional step method (also termed “segregation” or “splitting” procedure) can be
simply derived by splitting eq. (13) as follows

) 10m; 1 1 orm 1"
= U — At |—(vjuy) — ==L — Zb — —hyy = 14
uz uz |:(91L'J (U U’J) p aa;j p 2,0 J axj ( )
At op™t!
n+1 *
. = — 1
] = (15)

Note that addition of eqs.(14) and (15) gives the original stabilized momentum equation
(13).
Substitution of eq.(15) into eq.(9) gives after some algebra [7]

ou; dgr

n+1 __ T —
(At + 74) Ap™T = E Ta 9. 0 (16)
where
8u,~ 811,1 8Tij
Ji=p <E_ T U] 837]) 8513]' B bz (17)

Standard fractional step procedures neglect the contribution from the terms involving 7,4
in eq. (16). It can be shown that these terms have an additional stabilization effect which
improves the numerical solution when the values of At are small.

The free surface wave equation (3) can be also discretized in time to give

arg

R 1 A e A e

1, ] =1,2 1
axi 3 2 %, ] ) (8)

A typical solution in time includes the following steps.

Step 1. Solve explicitely for the so called fractional velocities u} using eq. (14).

Step 2. Solve for the pressure field p"*! solving the laplacian equation (16). The pressures

at the free surface computed from step 6 below in the previous time step are used as
boundary conditions for solution of eq.(16). Alternatively a zero pressure condition at the
surface should be imposed if the mesh boundary nodes are updated and placed on the
new free surface.
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Step 3. Compute the velocity field u*! at the updated configuration for each mesh node
using eq. (15)

Step 4. Compute the new position of the free surface elevation A"*! in the fluid domain
by using eq. (18).

Step 5. Compute the movement of the submerged body by solving the dynamic equations
of motion in the body subjected to the pressure field p"*! and the viscous stresses it~

Step 6. Compute the new position of mesh nodes x;‘H in the fluid domain by using
the mesh update algorithm described in next section. The pressure in the free surface is

obtained from Benouilli equation as

"t =%+ pg(B"H - B°) (19)

where (3° and p° are reference values of the free surface elevation and the pressure respec-
tively and g is the gravity constant.

As already mentioned the effect of changes in the free surface elevation can be introduced
in the step 2 of the flow solution as a prescribed pressure acting on the free surface.

Equation (19) does not account for viscosity and rotational effects in the fluid. These
effects are however negligible in the free surface transport process and the pressure given
by eq. (19) is a good approximation. Note that if the mesh is deformed after each time
step so that the nodes are placed at the position defined by "*1, the use of eq. (19) is not
longer necessary and a zero pressure condition can be applied on the free surface when
solving for p"*! in step 2.

The accuracy of above transient solution process depends on the time step size which
should satisfy stability criteria for the coupled solution. Indeed larger time steps can be
used if the values at time n in above equations are computed at n + 1/2. The solution
process becomes now implicit and an iteration loop within each time step is then required.

Finite element discretization

Space discretization is carried out using the finite element method [9]. The velocity and
pressure fields are interpolated within each element in the standard finite element manner
as

pi = ZNmﬁj (21)
J

where N,; and N, are the shape functions interpolating the velocity and pressure fields,
respectively and (-) denote nodal values.
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Similarly the wave height is discretized as
B=> Ngp; (22)
J

where Ng, are shape functions defined over the nodes discretizing the free surface.

It is worth noting that the stabilized formulation described allows an equal order in-
terpolation of velocities and pressure [7]. A linear interpolation over triangles (2D) and
tetrahedra (3D) for both w; and p is chosen in the examples shown in the paper. Similarly
linear elements are chosen to interpolate # on the free surface mesh.

The discretized integral form is obtained by applying the standard Galerkin procedure
to eqs.(14),(15),(16) and (18) and the boundary conditions (11) and (12). The resulting
expressions follow the pattern given in [7].

3 Computation of the stabilization parameters

Accurate evaluation of the stabilization parameters is one of the crucial issues in stabilized
methods. Most of existing methods use expressions which are direct extensions of the
values obtained for the simplest 1D case. It is also usual to accept the so called SUPG
assumption, i.e. to admit that vector h,, has the direction of the velocity field. This
restriction leads to instabilities when sharp layers transversal to the velocity direction are
present. This additional defficiency is then corrected by adding a “shock capturing” (SC)
stabilization term [10].

Let us first assume for simplicity that the stabilization parameters for the mass balance
equations are the same than those for the momentum equations. This implies

h,, = hy (23)

The problem remains now finding the value of the characteristic length vectors h,,,. Indeed,
the components of h,, can introduce the necessary stabilization along the streamline and
transversal directions to the flow. Excellent results have been obtained by the authors
using linear triangles and tetrahedra and a different value of the characteristic length
vector for each momentum equation defined by

u V’LLZ
— + he,
ul ~ [V

where hg and h., are the “streamline” and “shock capturing” contributions given by
: g g

h,,. = h i =1,2,3 for 3D problems (24)

1

hs = max(IJu)/|ul (25)
By = max(l?Vui)/|Vui| , J=1,% (26)
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where 1; are the vectors defining the element sides (n; = 3 for triangles and n, = 6 for
tetrahedra).

An alternative method for computing vector h,, in a more consistent manner is explained
next.

3.1 Computation of the stabilization parameters via a diminishing residual
procedure

The idea of this technique first presented in [2] and tested in [2-6] for advective-diffusive
problems is the following. Let us assume that a finite element solution for the velocity and
pressure fields has been found for a given mesh. The residual of the momentum equation
corresponding to this particular solution is

. 1, Ofm,

mi = Tm; — = hm; 2
r 1 T 1 2 ) axj ( 7)
The average residual over an element can be defined as
o= L[ e g0 (28)
m; Q(e) - m;

Let us assume now that an enhanced numerical solution has been found for the same mesh
and the same approximation (i.e. neither the number of elements nor the element type have
been changed). This enhanced solution could be based, for instance, in a superconvergent
recovery of derivatives [11,12]. The element residual for the enhanced solution is denoted
2777(52. As the element residuals must tend to zero, the following condition must be satisfied
e 250 > 0 (29)
Above equation applies for 17¢) > 0. Clearly for 17 < 0 the inequality in eq. (29) should
be changed to < 0.
Eq. (29) provides a system of equations which unkowns are the characteristic length
parameters. Substituting eq. (27) into (29) and appling the identity condition in eq. (29)
gives

h(® = A7'f (30)
with
207 197)
Ay = 2 L = ’ 31
4 I:a.’L'J 8117]' ( )
(32)
fi = el (33)

The following “adaptive” algorithm can be proposed for obtaining a stabilized solution:
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1. Solve for numerical values of velocities and pressure for an initial value hld = hg,e).

Compute 7).

2. Evaluate the enhanced velocity and pressure fields. Compute 2?55?.

3. Compute the updated value of h{® using eq. (30).

4. Repeat (1)—(3) until a stable solution is found.

Above strategy can be naturally incorporated into a transient solution scheme where the

value of h'? is updated after the solution for each time step has been found.

The assumption hy = h,, can be relaxed and an independent value of the characteristic
length vector h, for the mass balance equation can be found following a similar approach
as described for computing h,,. Further details can be found in [2-6] where this technique
has been successfully tested for steady state and transient advective-diffusive problems.

4 A simple algorithm for stable updating of mesh nodes

Finite element solution of fluid-structure interaction problems usually requires the update
of the analysis mesh as described in previous section. A typical example is the study of
movement of an object within a flowing liquid where the fluid mesh needs to be continu-
ously updated accordingly to the changes in position of the object due to the interaction
forces.

Chiandussi, Bugeda and Ofiate [8] have recently proposed a simple method for movement
of mesh nodes ensuring minimum element distorsion. The method is based on the iterative
solution of a fictitions linear elastic problem on the mesh domain. In order to minimize
mesh deformation the “elastic” properties of each mesh element are appropiately selected
so that elements suffering greater movements are stiffer. The basis of the method is given
below.

Let us consider an elastic domain with homogeneous isotropic elastic properties charac-
terized by the Young modulus £ and the Poisson coefficient . Once a discretized finite
element problem has been solved using, for instance, standard C, linear triangles (in 2D)
or linear tetraedra (in 3D), the principal stresses lo; at the center of each element are
obtained as

'o; = Ele; —v(ej+er)]  4,j=1,2,3 for 3D (34)
where g; are the principal strains.

Let us assume now that a uniform strain field £; = € throughout the mesh is sougth. The
principal stresses are then given by

20; = BE(1 — 2v) i=1,2,3 for 3D (35)
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where E is the unknown Young modulus for the element.

A number of criteria can be now used to find the value of E. The most effective approach
found in [8] is to equal the element strain energies in both analysis. Thus

U = ‘o =FE[(e? +&2+e2) — 2u(e1e9 + 063 + £163)] (36)
Uy = Z%0i6; =3Ez*(1-2v) (37)

Equaling egs.(19) and (20) gives the sought Young modulus E as

E

b= san—w

[(€2 + €3 + €3) — 2u(e16 + €963 + £163)] (38)
Note that the element Young modulus is proportional to the element deformation as
desired. Also recall that both E and & are constant for all elements in the mesh.

The solution process includes the following two steps.

Step 1. Consider the finite element mesh as a linear elastic solid with homogeneous ma-
terial properties characterized by E and v. Solve the corresponding elastic problem with
imposed displacements at the mesh boundary. These displacements can be due to a pre-
scribed motion of a body within a fluid, to changes in the shape of the domain in an
optimum design problem, etc.

Step 2. Compute the principal strains and the values of the new Young modulus in each
element using eq. (38) for a given value of &. Repeat the finite element solution of the
linear elastic problem with prescribed boundary displacements using the new values of F
for each element.

The movement of the mesh nodes obtained in the second step ensures a quasi uniform
mesh distorsion. Further details on this method including other alternatives for evaluating
the Young modulus E can be found in [8].

The previous algorithm for movement of mesh nodes is able to treat the movement of
the mesh due to changes in position of fully submerged and semi-submerged bodies.
Note however that if the floating body intersects the free surface, the changes in the
analysis domain geometry can be very important. From one time step to other emersion
or inmersion of significant parts of the body can occur.

A posible solution to this problem is to remesh the analysis domain. However for most
problems, a mapping of the moving surfaces linked to mesh updating algorithm described
above can avoid remeshing (Figure 1).

The surface mapping technique used in this work is based on transforming 3D curved
surfaces into reference planes. This allows to compute within each plane the local (in-
plane) coordinates of the nodes for the final surface mesh accordingly to the changes in
the floating line. The final step is to transform back the local coordinates of the surface
mesh in the reference plane to the final curved configuration which incorporates the new
floating line.

10
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STEP 2
Figure 1: Changes in the fluid interface in a floating body

5 Examples

5.1 Example 1. Movement of a submerged sphere in an open channel

Figure 2 shows the geometry of the channel and the position of the sphere of 2m diameter
with a weight of 1000 N and a rotational inertia of 1000 kgm?. A mesh of 19870 linear
tetrahedra with 4973 nodes has been used for the analysis.

Damping Area

Figure 2: Geometry of the chanel with submerged sphere

The problem has been analyzed for values of Reynolds number = 200 and Froude number
= 0.71 corresponding to a velocity of 1m/s at the inlet.

It is assumed that the sphere can only move vertically and rotate around the global y
axes due to the forces induced by the fluid. The vertical displacement is constrained by a
spring linking the sphere to the ground. An initial vertical velocity of 1m/s for the sphere
has been taken.

11
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Figure 3 shows a plot of the time evolution of the vertical displacement of the sphere.
The contours of the velocity module in the fluid on two perpendicular planes at different
times is shown in Figure 4. the deformation of the free surface at ¢ = 0.47 s. and 3.16 s.
is shown in Figure 5.
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Figure 3: Time evolution of vertical displacement of sphere

Figure 4: Contours of velocity module in the fluid on two perpendicular planes at different
times

12
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Figure 5: Deformation of the free surface amplified 10 times at times ¢ = 0.47 s. and
t=23.16 s.

5.2 Example 2. Sphere falling in a tube filled with liquid

The movement of a sphere falling by gravity in a cylindrical tube filled with liquid is
studied. The relationship between the diameters of the sphere and the tube is 1:4. The
Reynolds number for the stationary speed is 100. The mesh has 85765 element with 13946

nodes.

Figures 6 and 7 show the contours of the mesh deformation and of the velocity in the
domain for different times, respectively. The evolution of the falling speed is shown in
Figure 8. Note the good agreement with the so called Stokes velocity computed by equaling
the weight of the sphere with the resistance to the movement of the sphere expressed in
terms of the velocity. Obviously, this value is slightly greater than the actual one as
frictional effects are neglected.

Figure 6: Following sphere. Contours indicate the evolution of the mesh deformation until
stationary state is reached

13
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Velocity (mm/s)

Time (8)

Figure 8: Falling sphere. Evolution of the falling speed. Straight line indicates the Stokes
speed (1,195 m/s)

5.3 Example 3. Interactions of a rigid vertical cylinder with a moving stream

The definition of the problem is clearly seen in Figure 9. The cylinder diameter is 2
m and the stream speed is 1 m/s. The Froude and Reynolds numbers are 1.0 and 200,
respectively. The walls of the cylinder are assumed to be rigid in this case. A mesh of
35567 tetrahedra and 4670 nodes is used for the analysis.

Figure 10 shows the contours of the velocity module and the vertical displacement in the
mesh for a time ¢t = 4.57 s. Note the important deformation of the free surface in this

problem.

14
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Figure 10: Vertical cylinder. Contours of velocity module and of vertical deformation of
the mesh for ¢t = 4.57 s.

6 Conclusions

A stabilized semi-implicit fractional step finite element method for analysis of coupled
fluid-structure interaction problems involving free surface waves has been presented. The
numerical method is based on a stabilized formulation using the finite increment calculus
procedure for the Navier-Stokes equations [7] written in an ALE form. A procedure for
automatic movement of mesh nodes during the coupled solution process has been devel-
oped. The method is adequate for solving large scale fluid-structure interaction situations
in naval architecture and offshore engineering problems.
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Figure 3 shows a plot of the time evolution of the vertical displacement of the sphere.
The contours of the velocity module in the fluid on two perpendicular planes at different
times is shown in Figure 4. the deformation of the free surface at ¢ = 0.47 s. and 3.16 s.
is shown in Figure 5.
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Figure 3: Time evolution of vertical displacement of sphere

Figure 4: Contours of velocity module in the fluid on two perpendicular planes at different
times
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Figure 5: Deformation of the free surface amplified 10 times at times ¢ = 0.47 s. and
t=3.16 s.

5.2 Example 2. Sphere falling in a tube filled with liquid

The movement of a sphere falling by gravity in a cylindrical tube filled with liquid is
studied. The relationship between the diameters of the sphere and the tube is 1:4. The
Reynolds number for the stationary speed is 100. The mesh has 85765 element with 13946
nodes.

Figures 6 and 7 show the contours of the mesh deformation and of the velocity in the
domain for different times, respectively. The evolution of the falling speed is shown in
Figure 8. Note the good agreement with the so called Stokes velocity computed by equaling
the weight of the sphere with the resistance to the movement of the sphere expressed in
terms of the velocity. Obviously, this value is slightly greater than the actual one as
frictional effects are neglected.

Figure 6: Following sphere. Contours indicate the evolution of the mesh deformation until
stationary state is reached
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Figure 7: Falling sphere. Evolution of contours of the velocity module
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Figure 8: Falling sphere. Evolution of the falling speed. Straight line indicates the Stokes
speed (1,195 m/s)

5.3 Example 3. Interactions of a rigid vertical cylinder with a moving stream

The definition of the problem is clearly seen in Figure 9. The cylinder diameter is 2
m and the stream speed is 1 m/s. The Froude and Reynolds numbers are 1.0 and 200,
respectively. The walls of the cylinder are assumed to be rigid in this case. A mesh of
35567 tetrahedra and 4670 nodes is used for the analysis.

Figure 10 shows the contours of the velocity module and the vertical displacement in the
mesh for a time ¢t = 4.57 s. Note the important deformation of the free surface in this

problem.
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Figure 9: CAD definition of the vertical cylinder problem

<

Figure 10: Vertical cylinder. Contours of velocity module and of vertical deformation of
the mesh for ¢ = 4.57 s.

6 Conclusions

A stabilized semi-implicit fractional step finite element method for analysis of coupled
fluid-structure interaction problems involving free surface waves has been presented. The
numerical method is based on a stabilized formulation using the finite increment calculus
procedure for the Navier-Stokes equations [7] written in an ALE form. A procedure for
automatic movement of mesh nodes during the coupled solution process has been devel-
oped. The method is adequate for solving large scale fluid-structure interaction situations
in naval architecture and offshore engineering problems.
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Abstract. A stabilized semi-implicit frictional step finite element method for solving
coupled fluid-structure interaction problems involving free surface waves is presented. The
stabilized equations are derived at a differential level via a finite element calculus procedure.
A new mesh updating technique based on solving a fictitious elastic problem on the moving
mesh is described. One ezample of the efficiency of the stabilized semi-implicit algorithm
for the coupled solution of flurd-structure interaction problems is presented.

1 Introduction

Accurate prediction of the fluid-structure interaction effects for a totally or partially
submerged body in a flowing liquid including a free surface is a problem if great relevance
in offshore engineering and naval architecture among many other fields.

The difficulties in accurately solving the coupled fluid-structure interaction problem in
this case are mainly due to the following reasons:

1. The difficulty of solving numerically the incompressible fluid dynamic equations
which typically include intrinsic non linearities except for the simplest and limited
potential flow model.

2. The obstacles in solving the constraint equation stating that at the free surface
boundary the fluid particles remain on that surface which position is in turn un-
known.

3. The difficulties in solving the problem of motion of the submerged body due to the
interaction forces while minimizing the distorsion of the finite elements discretizing
the fluid domain thus reducing the need of remeshing.

This paper extends recent work of the authors [1] to derive a stabilized finite element
method which allows to overcome above three obstacles. The starting point are the modi-
fied governing differential equations for the incompressible viscous flow and the free surface
condition incorporating the necessary stabilization terms via a finite increment calculus
(FIC) procedure developed by the authors [2-6]. The FIC approach has been success-
fully applied to the finite element and meshless solution of a range of advective-diffusive
transport and fluid flow problems [1-6].

The modified governing equations are written in an arbitrary lagrangian-eulerian (ALE)
form to account for the effect of relative movement between the mesh and the fluid points.
These equations are solved in space-time using a semi-implicit fractional step approach
and the finite element method (FEM). Free surface wave effects are accounted for via the
introduction of a prescribed pressure at the free surface computed from the wave height.

The movement of the submerged body within the fluid due to the interaction forces is
treated by solving a structural dynamic problem using the fluid forces as input loads. A
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In above u; is the velocity along the ¢-th global reference axis, u]* is the mesh velocity
and v; is the relative velocity between the moving mesh and the fluid point ¢, p is the
(constant) density of the fluid, p is the pressure, 3 is the wave elevation, b; are the body
forces acting in the fluid and 7;; are the viscous stresses related to the viscosity p by the
standard expression

B Ou; ~ Ouj 2 Ouy,
Tij = b (axj T o %a) (8)

The underlined terms in eqgs.(1)—(3) introduce the necessary stabilization for the approx-
imated numerical solution.

The distances h.,j, hgj and hg, are termed characteristic lengths and represent the di-
mensions of the finite domain where balance of momentum, mass and transport of fluid
particles is enforced. Details of the derivation of egs. (1)-(3) can be found in [2,7].

A more convenient form of equation (2) can be written by assuming hy = —274u; where
74 is an intrinsic time parameter. Under this assumption and using eq. (1) the stabilized
form of the mass balance equation can be written as (neglecting high order terms) [7]

o )
Td fa 8:51 N
where
—_— 8uz Buz 6]3 8Tij
iw =P < Bt + UJB?]') + 8331 8x]- (10)

The boundary conditions for the stabilized problem are written as

1
niTij + i+ 5 hmgnytm =0 on T (11)

u; —uh =0 on Iy (12)

where n; are the components of the unit normal vector to the boundary and ¢; and u?
are prescribed tractions and displacements on the boundaries I'; and I',, respectively.
The underlined stabilized terms appearing in the Neumann boundary condition (11) are
obtained via the FIC approach [2,7].

Egs.(1-12) are the starting point for deriving a variety of stabilized numerical methods
for solving the incompressible Navier-Stokes equations. It can be shown that a number
of standard stabilized finite element methods allowing equal order interpolations for the
velocity and pressure fields can be recovered from the modified form of the momentum
and mass balance equations given above [7]. A semi-implicit fractional step finite element
procedure for solution of egs. (1)-(3) and (11), (12) is presented in next section.
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n+1
)

Step 3. Compute the velocity field u
using eq. (15)

at the updated configuration for each mesh node

Step 4. Compute the new position of the free surface elevation **! in the fluid domain
by using eq. (18).

Step 5. Compute the movement of the submerged body by solving the dynamic equations
of motion in the body subjected to the pressure field p**! and the viscous stresses Tij-

Step 6. Compute the new position of mesh nodes X?_H in the fluid domain by using
the mesh update algorithm described in next section. The pressure in the free surface is

obtained from Benouilli equation as

Pt =1+ pg (B — ) (19)

where 3° and p° are reference values of the free surface elevation and the pressure respec-
tively and g is the gravity constant.

As already mentioned the effect of changes in the free surface elevation can be introduced
in the step 2 of the flow solution as a prescribed pressure acting on the free surface.

Equation (19) does not account for viscosity and rotational effects in the fluid. These
effects are however negligible in the free surface transport process and the pressure given
by eq. (19) is a good approximation. Note that if the mesh is deformed after each time
step so that the nodes are placed at the position defined by #"*!, the use of eq. (19) is not
longer necessary and a zero pressure condition can be applied on the free surface when
solving for p"*! in step 2.

The accuracy of above transient solution process depends on the time step size which
should satisfy stability criteria for the coupled solution. Indeed larger time steps can be
used if the values at time n in above equations are computed at n + 1/2. The solution
process becomes now implicit and an iteration loop within each time step is then required.

Finite element discretization

Space discretization is carried out using the finite element method [9]. The velocity and
pressure fields are interpolated within each element in the standard finite element manner
as

Uy = ZNu]‘(U_“i)j (20)
pi = Zijﬁj (21)

where Ny; and N, are the shape functions interpolating the velocity and pressure fields,
respectively and (-) denote nodal values.
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where 1; are the vectors defining the element sides (n; = 3 for triangles and n, = 6 for
tetrahedra).

An alternative method for computing vector h,, in a more consistent manner is explained
next.

3.1 Computation of the stabilization parameters via a diminishing residual
procedure

The idea of this technique first presented in [2] and tested in [2-6] for advective-diffusive
problems is the following. Let us assume that a finite element solution for the velocity and
pressure fields has been found for a given mesh. The residual of the momentum equation
corresponding to this particular solution is

1. OFp,
1= — m
e = Ty — =l : 2
r i r 1 2 ] ax] ( 7)
The average residual over an element can be defined as
P / L7 dS (28)
my Q(C) Qe 1

Let us assume now that an enhanced numerical solution has been found for the same mesh
and the same approximation (i.e. neither the number of elements nor the element type have
been changed). This enhanced solution could be based, for instance, in a superconvergent
recovery of derivatives [11,12]. The element residual for the enhanced solution is denoted

27’,(,33. As the element residuals must tend to zero, the following condition must be satisfied

i~ =0 (29)

Above equation applies for 17",(52 > 0. Clearly for 1?,(,2 < 0 the inequality in eq. (29) should
be changed to < 0.

Eq. (29) provides a system of equations which unkowns are the characteristic length
parameters. Substituting eq. (27) into (29) and appling the identity condition in eq. (29)
gives

h(® = A-'f (30)
with
o LoFin)
= - — : 31
A” 2 [ 8$j 8xj ( )
(32)
f = 2_,(,? =1 Fr(r? (33)

The following “adaptive” algorithm can be proposed for obtaining a stabilized solution:
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where E is the unknown Young modulus for the element.

A number of criteria can be now used to find the value of E. The most effective approach
found in [8] is to equal the element strain energies in both analysis. Thus

U = loiei = E[(e3 + €3 + €2) — 2v(e162 + €263 + £163)] (36)
Uy = Z%0;6;=3E&*(1—2v) (37)

Equaling eqgs.(19) and (20) gives the sought Young modulus E as

E

E = m[(sf + &5+ €3) — 2u(e16y + €263 + £163)] (38)

Note that the element Young modulus is proportional to the element deformation as
desired. Also recall that both £ and & are constant for all elements in the mesh.

The solution process includes the following two steps.

Step 1. Consider the finite element mesh as a linear elastic solid with homogeneous ma-
terial properties characterized by F and v. Solve the corresponding elastic problem with
imposed displacements at the mesh boundary. These displacements can be due to a pre-
scribed motion of a body within a fluid, to changes in the shape of the domain in an
optimum design problem, etc.

Step 2. Compute the principal strains and the values of the new Young modulus in each
element using eq. (38) for a given value of &. Repeat the finite element solution of the
linear elastic problem with prescribed boundary displacements using the new values of E
for each element.

The movement of the mesh nodes obtained in the second step ensures a quasi uniform
mesh distorsion. Further details on this method including other alternatives for evaluating
the Young modulus E can be found in [8].

The previous algorithm for movement of mesh nodes is able to treat the movement of
the mesh due to changes in position of fully submerged and semi-submerged bodies.
Note however that if the floating body intersects the free surface, the changes in the
analysis domain geometry can be very important. From one time step to other emersion
or inmersion of significant parts of the body can occur.

A posible solution to this problem is to remesh the analysis domain. However for most
problems, a mapping of the moving surfaces linked to mesh updating algorithm described
above can avoid remeshing (Figure 1).

The surface mapping technique used in this work is based on transforming 3D curved
surfaces into reference planes. This allows to compute within each plane the local (in-
plane) coordinates of the nodes for the final surface mesh accordingly to the changes in
the floating line. The final step is to transform back the local coordinates of the surface
mesh in the reference plane to the final curved configuration which incorporates the new
floating line.

10
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