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RESUMEN

Se estudia en el presente trabajo el tratamiento numérico, mediante el método de elementos
finitos (MEF), de la ecuacién aproximada de la onda para variaciones graduales de profundidad.
Es planteada una nueva aproximacién a la condicién de borde “mar afuera” basada en el método
de las caracteristicas que, ademds, permite definir, bajo los mismos criterios, las restantes
condiciones de contorno. El sistema discreto es resuelto mediante el método del gradiente
conjugado precondicionado (PCG), lo que se traduce en menores requerimientos de memoria.
Para demostrar la efectividad del modelo, se han incluido sus predicciones en diversos ejemplos
tedricos y en el andlisis de la respuesta a ondas largas de recintos portuarios.

SUMMARY

In this paper, the numerical solution by the finite element method (FEM) for the mild
slope wave equation is considered. A new approach to the “open sea” boundary condition,
based on the method of characteristics, is introduced. In the same way, the others boundary
conditions can be derived. Preconditioned Conjugate Gradients (PCG) is applied to solve the
discrete system, resulting in important storage saving. The numerical examples included show
the effectiveness of the predictions made by the model in various theoretical problems and in
the study of harbour response to long waves.

INTRODUCCION

En el proyecto de obras portuarias, se debe asegurar la correcta ejecucion de
movimientos y tareas para las cuales un puerto ha sido concebido, por lo que es preciso
conocer el efecto que las “excitaciones exteriores” provocan en él. Asi, las “ondas
largas” (con periodos que oscilan en general entre 30 segundos y 5 minutos) pueden
producir amplificaciones de movimientos horizontales® que deriven en atrasos en las
actividades y, ocasionalmente, en accidentes por roturas de amarras y colisiones entre
buques.
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El fenémeno “resonante”®? se producira cuando la respuesta del sistema, sometido
a excitaciones como las citadas, presente una amplificacién mixima. En consecuencia,
el problema depende, ademds, de la geometria del recinto, mientras que su magnitud
estd influida por los mecanismos de disipacidn energética presentes en forma simultanea
a él.

Tanto la prediccidn de la respuesta de un recinto portuario a ondas largas,
como el estudio de su agitacién debida al oleaje, son problemas que, salvo algunas
excepciones®**®*!' no poseen soluciones analiticas, por lo que en casos practicos es
necesario recurrir a la modelizacién fisica'® y numérica.

Las dos vias méds generales de establecer los principios que rigen la propagacion de
una onda superficial de gravedad, en una regién en que existen obstaculos y variaciones
de profundidad que modifican sus caracteristicas son (teniendo presente su posterior
tratamiento numérico):

- Las ecuaciones de Boussinesq', vélidas para nimeros de Ursell: U = 0(1), con
U= H-)%/h3, siendo H y ), respectivamente, medidas de la amplitud y de una
longitud horizontal caracteristica de la onda y h una medida de la profundidad.
Bajo la hipétesis de profundidades reducidas, se tratard de la ecuacion no lineal de
ondas largas**® (U >> 1), mientras que en el caso lineal, se referira a la teoria de
ondas de pequena amplitud®.

— La formulacién potencial, que es empleada en este trabajo en el caso de
aproximacién lineal, al recurrir a la ecuacién aproximada de ondas para variaciones
graduales de profundidad® (caracterizada por U << 1).

Sin estar contemplados en forma directa en estos grupos, merecen citarse los
modelos de propagacién basados en una formulacién parabdlica®® que se adaptan mejor
a problemas costeros que a portuarios, al ignorar el campo de ondas reflejado.

En la ingenieria practica suelen utilizarse los modelos de refraccién®, que, fundados
en principios de éptica geométrica, permiten efectuar una aproximacién al estudio del
oleaje en grandes extensiones en las cuales la refraccién no sea relevante.

Ahora bien, la simulacién numérica de las ecuaciones de Boussinesq y de las
ecuaciones no lineales de ondas largas lleva a modelos que frecuentemente son de elevado
costo, lo que impide su aplicacién generalizada. En esta linea se han implementado
modelos tanto por el método de diferencias finitas', como por el de elementos
finitos*®2%% existiendo esquemas explicitos de elevada economia y estabilidad®®.

La obtencién de soluciones numéricas a la variante “eliptica”, planteada en la
segunda opcién, son numerosas.

Debido a las ventajas que otorga el MEF al tratar zonas acotadas de geometrias
complejas, los modelos existentes se pueden clasificar unificadamente** en funcién de las
aproximaciones propuestas al problema “exterior”, es decir, ala condicién de radiacién,
que debe ser acoplada a la solucién interior. De esta forma, pueden enumerarse:

—~ Amortiguadores planos, cilindricos, esféricos y de orden superior®**, que presentan
la ventaja de su simplicidad de aplicacién a un modelo MEF. Sin embargo, su
limitacién se basa en que su cumplimiento, en rigor, sélo existe en infinito. La
hipétesis de profundidad exterior constante, asumida en esta opcidén, es también
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adoptada en todos los modelos de similar potencia.

— Soluciones exteriores analiticas*®**°*®, que acoplan funciones que satisfacen la
condicién de radiacién de Sommerfeld y la ecuacién de Helmholtz (profundidad
constante), destruyendo parte del caricter bandeado de la matriz de coeficientes.

- Integrales de contorno®**, donde se mantiene la simetria del problema interior,
conservando el inconveniente del método anterior.

— Elementos infinitos”*#*, que no destruyen la simetria ni el caricter de matriz banda
del sistema, afectando en cambio su condicionamiento, caracteristica que influye
sustancialmente si se utilizan métodos indirectos de resolucion.

Estas soluciones tienen, pues, como objetivo principal luego de la discretizacién
interior, salvar la dificultad de modelar la disipacién por radiacién, que es la mas
relevante en problemas de ondas largas.

En el presente estudio se formula una condicién de borde basada en conceptos del
método de las caracteristicas, extendido al problema arménico, que permite englobar
tanto la condicién de radiacién como la condicién de bordes absorbentes de energia.

Cuando el modelo es aplicado a problemas de ondas largas, la condicién propuesta
implica dividir el dominio total en dos zonas: la primera supuesta como “mar abierto”,
que no es incluida en el andlisis, y la segunda que es la que da lugar a la discretizacién.

Bajo la hipétesis de generacién de ondas largas por transferencia de energia desde
ondas de alta frecuencia con extenso desarrollo, se supone, pues, que el proceso se
produce en la primera regién, considerada como de “generacion”, mientras que en la
segunda se admite que dicha transferencia ha cesado o es despreciable.

En ciertos casos®’?*, el origen parece mas orientado hacia fenémenos de fluctuacién
barométrica.

Por otra parte, la discretizacién de la regién interior depende de la longitud de onda
“menor”, pudiéndose verificar mediante experimentacién numérica?®, que es necesario
emplear un minimo de 8 a 12 puntos por longitud de onda para aproximar la funcién
solucién con errores relativos menores a 0.1%.

Esta condicién es critica en numerosos casos practicos, pues lleva a sistemas con
elevado nimero de grados de libertad, que limita fuertemente el uso de algoritmos de
resolucién frecuentes en el MEF, como el método frontal®.

Los métodos indirectos de resolucién se presentan como una eficaz alternativa,
debido a sus drédsticos ahorros de memoria central requerida para almacenar los
coeficientes de la matriz que surge de la discretizacién.

El presente problema tiene la particularidad de estar definido por matrices de
coeficientes no definidas positivas, por lo que muchos métodos iterativos clasicos no son
convergentes.

Asi, se presenta en este trabajo una extensién del método del gradiente conjugado
precondicionado a sistemas con matrices de coeficientes complejos no definidas
positivas.

De esta forma se consigue aplicar el modelo a problemas de elevado nimero de
grados de libertad con equipos medios e implementarlo en ordenadores personales con
facilidad, permitiendo acceder al ingeniero proyectista a una potente herramienta de
disefio.
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La forma simple y compacta de concebir las condiciones de borde del problema
otorga un mejor condicionamiento de la matriz de coeficientes en comparacién con
los métodos citados previamente, lo que influye en forma decisiva en la eficiencia del
método indirecto de solucién.

Con el fin de demostrar el correcto funcionamiento del modelo propuesto, se
han ejecutado pruebas de casos con solucién tedrica conocida o con resultados
experimentales fiables, mientras que los casos practicos incluidos tienen especial énfasis
en el estudio de problemas de ondas largas.

TEORIA DE ONDAS. FORMULACION POTENCIAL

A continuacién se consideraran ondas de gravedad superficiales que se propagan en
un medio homogéneo e isétropo. Tanto el fondo como los bordes sélidos se admitirdn
como impermeables, por lo que no existirdn corrientes netas de entrada o salida a
través de ellos, excepto cuando se especifiquen contornos absorbentes o con velocidades
normales prescritas.

El fluido es incompresible y el flujo no viscoso. Las singularidades en el campo de
velocidades, tales como las producidas en entornos de bordes agudos, no son aceptadas

" en la teoria elegida®.

La adopcién de la teoria lineal implica que las sobreelevaciones a partir del nivel
medio del agua, 7, son mucho menores que la profundidad h y, ademds, que la relacién
entre altura H y longitud de onda A debe ser pequefia, equivalente a afirmar que
quedara invalidada para peraltes de onda considerables.

La ecuacién aproximada de ondas para variaciones graduales de profundidad exige

que el pardmetro p cumpla:
= o(Z) <ex
= \kh

con k el nimero de onda. Acepta ademds cualquier rango de relacién profundidad-
longitud de onda kh, siendo valida, por lo tanto, desde ondas cortas a ondas en
profundidades reducidas.

La ecuacién aproximada, obtenida por Berkhoff®, y luego tratada por diversos
autores®®*®2®  est4 basada en la teoria del potencial de velocidades. Por lo tanto, es
asumido que el flujo es irrotacional, pudiendo definirse un potencial de velocidades ¢
tal que:

= V¢

siendo 7 el vector de velocidad y V el operador gradiente. Asi, se cumplird la ecuacién
de Laplace:

Vi = 0 (1)

El problema queda definido si a (1) se agrega la condicién de borde en el fondo
impermeable:
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3¢ Ok 8¢

dz; Oz; ' Ozs

y la condicién de contorno a superficie libre (linealizada):

9% 9 _ _10p
Y92, T o2 T Tp ot

considerando las coordenadas cartesianas (z;, ¢ = 1,2,3) o (z,y, 2) indistintamente,
siendo el plano z — y o0 21 — z, coincidente con el nivel medio del agua, g la aceleracién
de gravedad terrestre, p la densidad del agua y p, la presién atmosférica.

Si se emplean estas expresiones, sumdandose la hipétesis de periodicidad de las
variables que intervienen en el problema, es decir, que la dependencia de ellas del
tiempo puede separarse de la dependencia de las variables espaciales z;, como por
ejemplo:

=0, enzz = —h(z;) (i=1,2)

nzz =0

6(x,1) = §(x)- exp(iwt)
con w la frecuencia angular, y x el vector posicién, se obtiene la ecuacién aproximada
de ondas. Para ello se supone que con variaciones graduales de profundidad, la relacién
de dispersién:
w? = g-k-tanhkh
y la solucién al problema a profundidad constante:
—ig -n(z,y) coshlk(z + k)] 2)
w cosh kh

tienen atn validez, adoptéandose los valores locales de k¥ y h. En (2), n(z,y) satisface
la ecuacién de Helmhotz {a profundidad constante):

¢0(2:, Y, Z) =

Vi +kK-np=0

mientras que ¢g representa el potencial de velocidades tridimensional.
Luego de algunas operaciones®, la ecuacién de la onda que se obtiene es, en funcién
del potencial:

V(c-c,Ve) + wz-cci¢ ~ 0 (3)

donde ¢ es la celeridad de fase local, definida como:

mientras que ¢y es la velocidad de grupo, dada por:

6 —em:onolas 2kh)
g T ¢hs Bm=3 sinh 2kh
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En el caso de profundidades reducidas, el factor kh es pequeiio, por lo que:

sinh 2kh = 2kh, tanhkh =~ kh—c = ¢; = /gh

reduciéndose la expresién (3) a la ecuacién de Helmholtz para profundidad variable:
9 (. 99\ W
— | R — 0 =
(b ) + 9 = 0

El problema descrito es eliptico'*, por lo que deben especificarse condiciones de
borde en el contorno T’ que limita la regién 2 donde rige el mismo, las cuales son:

— Condicién de Dirichlet: cuando es considerado el valor de la sobreelevacién por,
por ejemplo, mediciones in situ.

—  Condicidn de Cauchy: dentro de este tipo pueden incluirse la condicién de reflexién
perfecta:

9¢ _
on

con n la normal al contorno reflectante T',,, la condicién de velocidades normales al
contorno I'y prescritas (Neumann):

0 en I,

9 _ _
3 = 1 enT, (4)
donde g es el valor prescrito, y la condicién de absorcién (total o parcial):
% _ tkap = 0 enT, (5)
on

si se introduce un coeficiente de absorcién o definido como

energia absorbida

a =
energia total

La determinacién practica de a es complicada, debido a que los mecanismos fisicos
que pretende simular son, en realidad, altamente no lineales (como, por ejemplo,
fenémenos de rotura de oleaje). Por lo tanto su uso se restringe a la obtencién de
valores medios en una zona dada, o como filtro de ruidos.

Debe observarse, ademads, que la expresion (5) sélo se cumple cuando la incidencia
es normal al contorno. ‘

Por 1ltimo, hay que tener en cuenta que parte del dominio Q es no definido o,
a fines de su estudio, infinito. En esta zona debe imponerse la condicién de que las
ondas radiadas al exterior no retornen, tendiendo a anularse cuando la distancia tiende
a infinito.

La condicién de radiacién, propuesta por Sommerfeld (1949)"' para casos
periédicos, se puede expresar como:

r— 00

lim r(*—1)/2 [‘;—‘f —ik¢] -0
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donde r es la distancia medida a partir de un punto fijo y ¢ es solucién a la ecuacién de
la onda, mientras n es la dimensién del problema. Esta condicién supone una cantidad
positiva de flujo saliente de energia en un periodo T*!, representando la disipacién
energética mas importante en ondas de baja frecuencia.

En la siguiente seccién seran tratadas las diferentes condiciones vistas en forma
unificada, introduciendo conceptos del método de las caracteristicas.

CONDICIONES DE CONTORNO

Si en la ecuacién de ondas (3) se elimina la condicién de periodicidad, considerando,
por simplicidad, una dimensién espacial, ésta quedard expresada como

32_¢_11( ?.9) -0
0t2 ¢4 0z “gaz h

siendo una ecuacién de caracter hiperbélico de segundo orden. De esta forma, es posible
obtener la pendiente de la curva caracteristica correspondiente, dada por

dz
r = +,/ccqg

Si se considera la hipétesis de que la profundidad se mantiene constante en un
entorno a la linea caracteristica, se puede llegar a que a lo largo de ella se cumplira

9¢ ¢ _
5t + ,/ccgaz = cte (6)
En el caso de profundidades reducidas (6) se transforma en
0¢ 0¢
n + ‘5 = cte

Al introducir 7, y 73, que corresponden a cantidades que se propagan en direcciones
opuestas, la expresién (6) puede escribirse también como

0 8¢

at + cc"az - n (7)
g-(-é - Jee ?2 =T

ot 99z ~ ?

El principio aplicado para determinar las condiciones de contorno es el de tratar
las cantidades descritas prescribiendo o no su valor, obteniendo, al combinarlas, las
diferentes condiciones fisicas que se desean simular®®. De esta forma, sélo pueden ser
prescritas aquellas magnitudes “entrantes”, es decir, cuya caracteristica penetra en el
dominio.

Las ecuaciones (7) pueden expresarse en funcién de los invariantes 7, y 7, como:

0p _mtm 99 _n-m

o 2 ' 8z 2/eq ®



416 P. ORTIZ Y M. PASTOR

Si se prescribe la cantidad r;, que ingresa al recinto, como una onda progresiva
plana ¢; dada por:

é1(z,y,t) = A-exp(i(k-r— wt))

siendo r la direccién de incidencia, al escoger cualquiera de las expresiones (7) u (8) y
teniendo presente la condicién de periodicidad, se obtiene que

VIRt v = G + iy (9)

que es la expresién, en el caso unidimensional, que define el contorno “cargado”, es
decir, el que conecta el dominio en estudio con el indefinido.
Luego de algunas operaciones, (9) queda finalmente como

R0y~ e (10)

vilida para cualquier relacién longitud de onda-profundidad. Si se trata de ondas
largas, la ecuacién (10) se convierte en

—-10¢
k 0z
Para obtener una extensién a dos dimensiones, se asumira el cumplimiento de la
condicién (9) en la direccién de incidencia.
En este caso, la direccién de incidencia no coincide, en general, con la direccién
#, normal al contorno, por lo que se introduce 3 como el dngulo formado entre estas
direcciones, quedando, en consecuencia, a partir de (9):

/- colsﬂz;f v = i ke + iwdr

La expresién final es:
_;Ynos

+ ¢ = 2¢r1

O + ¢cosf = (n+1)prcosf enT, (11)
y en aguas poco profundas:
; g¢ + ¢cosP = 2¢rcosf enT,

La condicién de absorcién es simple de obtener mediante los mismos argumentos,
con la simplificacién de admitir la incidencia normal al contorno.

Para absorcién total, se cumple que: T7,: libre (saliente), 74 = 0, por lo que,
reemplazando en la segunda expresién de (8):
¢ T2

0z 2/
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luego, en la primera de ellas, queda

¢
5 ‘/Eqa B

Esta condicién, con incidencia normal, es valida para el problema bidimensional, o
sea:

¢
3 T Ve a =0 enl,
luego, si se introduce la condicién de periodicidad, se llega finalmente a

0¢ ik 6 =
bn N
para absorcién total normal que, en el caso equivalente a absorcién parcial es:
a¢ ik
— — —ad =0 12
La condicién de Neumann (4) se puede concebir mediante la prescripcién de las
componentes de velocidad de {7), que corresponden a la onda que se aleja, lo que no se
contradice con lo expuesto, ya que este caso es equivalente a conocer el comportamiento
de una de las variables en la regién exterior.
Para reflexién total, su obtencién es inmediata, ya sea anulando el coeficiente de
absorcién a en (12), o haciendo 71 = 7, y 7, =libre en (8), considerando velocidades
normales al contorno.

0

FORMULACION NUMERICA

La ecuacién (3), junto con las condiciones de borde cargado (11), de absorcién
(12), de Neumann (4) y de Dirichlet, han sido discretizadas mediante la técnica de
Boubnov-Galerkin.

La formulacién débil del problema puede expresarse como:

—/ VN; -c-¢,VedQ + —/ 99,2 N4d0 + / N;-c-cg 9% -
) ac TatTc+Ty+T, - On

L () (b T 0

= . - ; 0¢
- (24 0preosp)ar + [ WeG-Far + [ i (gg—a) dr

donde v, €, £, p son coeficientes de proporcionalidad,  es el dominio definido,
Ta, T¢, Ty, Ty son, respectivamente, los contornos absorbente, cargado, con valores

prescritos y con velocidades prescritas y @ representa los valores prescritos de ¢.
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La funcién aproximada ¢ esta definida como:

=Y Ni¢; (14)
1

mientras que N;, Ni, Ny,

=l

: ¥ N} son, en principio, diferentes. Si éstas tltimas

cumplen que: N;, 7,', N = —N; y?,- = 0 y se eligen los valores de v, ¢, £ y p de

%
forma que se eliminen los términos en que interviene la velocidad normal, se obtiene,

reordenando, la expresién discreta final, reemplazando (14) en (13):
[/ (VN; -c-¢cg-VN; — c—ngN;Nj)dQ — / N; - /ccq - taw - N;dT'+
Q ¢ Ta ‘

+/ N;-Nj-iw,/ccgcosﬂ-dl‘]-(ﬁj:

re

=/ N,--(%-{-l)w-,/ccg-cosﬁ-i-¢1dr+/ N; - c-cgqdl
T. T,

yo= $ en Ty
Esta expresién se puede escribir como

(Kij —w’Mi;)-¢; + Rij; = f; (15)
siendo cada uno de los elementos:
K,‘j = /VN,"C-Cg-VdeQ (16)
Q
.- [ %2 NN
M /ﬂ L. Ny N0 (17)
R; = / N;N; -iw,/fccg cos BdI' — / N /ccgiawN;dT (18)
) Y
fi = / Ni(c:g+1)w-,/ccg-cosﬁ-i¢1d1‘ + / N; - cey - qdl (19)
) Tq

Los términos representados en (16) y (17) son, respectivamente, elementos de la
matriz de rigidez y de masa del sistema (discreto), mientras que R;; representa un
elemento de una matriz de “amortiguamiento”.

Las condiciones que incluye R;; son las de absorcién e, indirectamente, radiacién,
las que, como se ha comentado previamente, son formas de disipacién energética.

El vector f; adquiere el caracter de “cargas exteriores”: en él se encuentran los
términos que incluyen la onda incidente y el caudal unitario, dos formas de “excitacién”
del sistema (aunque el ltimo puede ser interpretado como una pérdida constante de
energia).
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METODOS INDIRECTOS EN LA ECUACION DE ONDAS

Los métodos directos, basados en el de eliminacién de Gauss, han tenido hasta
hoy gran preponderancia en la solucién del sistema de ecuaciones algebraicas que
proporciona el MEF, llegando a esquemas de elevada eficiencia, como el método del
perfil* o el método frontal®.

Las reducciones en las necesidades de memoria que otorgan los métodos indirectos
se contrapone tradicionalmente al defecto de su lentitud de ejecucién. Sin embargo,
experimentacién numérica representativa®®® muestra que varios métodos indirectos son
competitivos en relacién a los de eliminacién en 2D y los superan en 3D, es decir,
su eficiencia es mas acusada cuanto mayor es el nimero de grados de libertad. Las
bajas exigencias de estos métodos permiten vislumbrar su creciente implementacién en
modelos numéricos en futuro*’*:?!.

La formulacidén de los métodos indirectos otorga ademads la ventaja de no tener que
recurrir a preprocesadores de optimizacién de anchos de frente o de banda, pues su
velocidad de convergencia no depende de la numeracién nodal o de elementos.

Los métodos indirectos se caracterizan por resolver el sistema de ecuaciones lineales:

A& =f (20)

(con A de dimensiones n X n y en general de coeficientes complejos), mediante
aproximaciones sucesivas, partiendo de un vector incégnitas inicial ¢, obteniendo el
vector incégnitas en una iteracién ¢ + 1 mediante una funcién que puede depender de
A f i &, &, ...... ,®; vy de uno o mas parametros constantes o variables.

Los métodos iterativos mds sencillos provienen del método de Richardson (1910)
y el método de Jacobi, aunque los primeros cuyo uso se extendié en relacién al MEF
han sido los de Gauss-Seidel y de Gauss-Seidel con sobrerrelajacién'®, introduciéndose
posteriormente variantes tales como sobrerrelajacién sucesiva y sobrerrelajacion
sucesiva simétrica*?.

Para acelerar el proceso de convergencia, se han estudiado diversas formas de
aceleracién*?, como las ya existentes de Aitken® y Lyusternik?’. Zienkiewicz y Léhner*’
proponen el método de relajacién viscosa acelerada (AVR), en relacién directa con el
método de relajacién dindmica (RD}, donde se plantea una nueva forma de aceleracién.

El método del gradiente conjugado (CG), debido a Hestenes y Stiefel, es
posteriormente mejorado al introducirse técnicas de precondicionado (PCG), siendo
aplicado en este trabajo. Los métodos de Lanczos (1952) y de la maxima pendiente
(MP)?, con una linea similar al CG son, estrictamente, métodos iterativos?.

Una férmula recurrente para encuadrar los distintos métodos indirectos es la
propuesta por Liu?s:

®ir1 = Yigr - [6ip2(B- B+ b)+ (1 - 8i41) 8] + (1 — 7i41)B (21)
siendo

B=(I-Q'-A); b=qlf
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La matriz Q puede ser interpretada como una matriz de precondicionamiento,
mientras que § y 7 son parametros escalares que, si difieren de la unidad (ya sean
constantes o variables), definirdn un método acelerado.

De acuerdo a (21), los métodos indirectos tradicionales son descritos, a titulo
ilustrativo, en la Tabla I, donde se incluye ademas la condicién de convergencia de
cada uno de ellos.

METODOS Q bip1 Yit1 Convergencia
Richardson I 1 1 p(A) <2
Jacobi y AVR D =diag A 1 1 p(I-D"14)< 1
Gauss-Seidel (D+1L) ! 1 1 A: sim., def. pos.
SOR w I+ wL) 1 1 A: sim., def.pos.
yo<w<?2
MP I r?' . r;/r? <A-rx; 1 A: def. pos.
Tabla I. Clasificacién de los métodos indirectos®.

En la Tabla I, w es el factor de sobrerrelajacién, L la matriz triangular superior
del sistema, I la matriz identidad, p(A) el radio espectral de A y r el vector residuo,
definido mas adelante.

Los aspectos a tener en cuenta en un proceso indirecto, ademas de la propia
convergencia, son el andlisis de la velocidad de convergencia y los criterios de detencién
de un proceso en funcién de una tolerancia dada.

Para el anilisis de velocidad de convergencia de distintos métodos entre si, pueden
emplearse parametros como las relaciones media y asintética de convergencia*?, siendo
el nimero de condicionamiento k(A) el mas explicito en la relacién entre convergencia
y nimero de iteraciones para una tolerancia fijada, definido, para A simétrica como

k(A) = p(A)-p(A7)

Por otra parte, el criterio de detencién més simple es en funcién del vector residuo
r o “fuerzas residuales” en la iteracidn i, relativo al vector inicial ro:

rn=f- A& (22)
|| x: |
LR
Il ro |

siendo ¢t la tolerancia y || r || 1a norma (euclidea) de r.
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Ahora bien, la ecuacién que rige la propagacién de una onda arménica en un medio
material puede escribirse, una vez discretizada, en la forma

[K 4 iwC - w™M]&; = £, (23)

andloga a (15). Las matrices K, C y M tienen en cuenta, respectivamente, las energias
potencial, disipada y cinética en el medio considerado.

Si se denomina A a la matriz que engloba el corchete en (23), ésta se reduce, si se
considera radiacién y amortiguamiento nulos, al problema de autovalores generalizado,
definido por :

A = K - v'M

Asi, es facil demostrar que la matriz A es no definida positiva si w supera la
frecuencia fundamental, mientras que existiendo disipacién, A serd definida positiva
sélo en un intervalo entre frecuencia nula y otra tal que cumpla: w < W fundamental -

Los métodos tradicionales, tales como los resumidos en la Tabla I, sélo seran
convergentes en un intervalo del espectro de frecuencias, al exigir todos ellos que la
matriz de coeficientes sea definida positiva.

En el caso del método Jacobi—AVR se propuso un algoritmo que salva el problema®,
pero la convergencia es excesivamente lenta.

El método CG es posible demostrar que es convergente para todo el rango de
frecuencias. Este método “pseudo-iterativo” (existe un nimero analiticamente definido
de iteraciones para arribar a la solucién exacta} se fundamenta en la minimizacién de
una forma cuadratica:

F(®) = %QTA§ - 3T.f

equivalente al cumplimiento de (20).

La solucién puede interpretarse geométricamente como el centro de una
hipercuadrica cuyos ejes principales representan las componentes del vector error ¢;
y su biisqueda se puede expresar como:

$.. = & + aps (24)

siendo p; un vector representativo de una direccién en el espacio definido y a; una
distancia en p;. Puede advertirse que la forma (24) puede ser empleada para definir un
método indirecto en funcién de la eleccién de a; y p;. En el caso del CG, se selecciona
un conjunto:

{Phpz;“-:pn} € Cn

con n el nimero de grados de libertad, tal que sean A—ortogonales entre si:

Pi Ap; =0 i#j (25)
La convergencia sera en n pasos, si el conjunto de p; constituye una base en C™.
Si se tiene en cuenta (22), (24) y (25), se llega a que:
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o = _pir
;=
py-A-p;

A continuacién puede establecerse una relacién entre p; y r; en cada iteracién. En
primer lugar, de (22):

Tit1 = Ty — Op41 A - Prp (26)

y, por induccién es:

Pi+1 = Tiy1 + Biy1 Pi (27)
lo que indica que tanto p; como r; generan el mismo espacio (C™). Premultiplicando
(27) por pT - A y teniendo en cuenta (25), puede obtenerse una expresién del coeficiente

B:

By = —p} - A -rip
' Pl -A-p;
Las formas habituales de a y 8 son:
T T
r; -r; —Tiyy "Tipl
R e 28)
opl-Ap ' rf-r (

Puede demostrarse ademas que el espacio generado por los p; es el mismo que el
generado por r; o sea C™**, formando el conjunto de vectores p; una base en C™.
El algoritmo original es expresado con (22), (27), (28), (24) y (26):

— Inicializacién:
e Ig= b —A. Qo
L 3 p = ro

— Iteracién (k):

Qi1 =Ty -Tk/PE - A - Pi
®pr1 = B + aky1 - Pr
Convergencia(®x.11) (29)
Tiy1 = Tk — Qkt1 - A - Pk
ﬂk+1 = I‘:;E:H 'l‘k+1/rf ‘T
Pk+1 = Tkt1 + Brt1 - Pk
Como puede observarse de la primera o de la cuarta expresién de (29), la nica
restriccién de la matriz A para que el método sea convergente es que:

det(A) # 0 (30)

ya que sino, los coeficientes a y 3 serian infinitos. La condicién (30) no se cumplird sélo
cuando el sistema no presente amortiguamiento ni radiacién de energia y la frecuencia
de excitacién coincida con la de resonancia del sistema libre.
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Cuando disminuye el periodo de la excitacién, las matrices generadas tienden a
tener un mal condicionamiento, lo que provoca que la convergencia del CG sea lenta.

Este inconveniente es mejorado mediante las técnicas de precondicionado:
premultiplicando (20) por una matriz C de “precondicionamiento”:

cCl.A8&=cC'.f (31)

la velocidad de convergencia dependera esta vez de la matriz elegida. Si esta eleccion
es tal que el nimero de condicionamiento de C™!A es mds préximo a la unidad que
el de A, la convergencia serd mas rapida. Esta estrategia puede interpretarse como un
aumento de la “esfericidad” de la hipercuddrica que representa al sistema de ecuaciones,
consiguiendo, con un precondicionado eficiente, numerosos autovalores cercanos a la
unidad.

El algoritmo CG se modifica asi definiendo un vector s como:

‘ s = Cl.r
luego, de (31):

ro =C 1. f-C 1 A& = s
Si se conserva la definicién de r dada en (22), el algoritmo PCG es:

—Inicializacién:
s ro=f—A-%
e s5o=C1.r (32)
* P=5p
—Iteracién (k):
Q1 = rZ'Sk/Pf -A - pi ]
@ry1 = B+ oy Pk
Convergencia(®r41)
Tkp1 = Th — Qgy1 - A - Pk (33)

Sk+1 ; C_1 . I'k.*.%‘
C=Tryy Sk+1/T - Sk
Pk+1 = Sk+1 + € Pk /

La inversién de C, observando (32) y (33), debe ser expeditiva. La eleccién mas
simple y eficiente®?® es la variante Jacobi (JCG):

C = diag(A)

adoptada en este trabajo. Otras variantes pueden ser la de sobrerelajacién sucesiva
simétrica (SSOR-CG)*?, factorizacién incompleta (Choleski)?*® o factorizacién elemento
por elemento'®.

Por otra parte, .en (32) y (33) queda evidenciada la economia de los métodos
indirectos: la operacién de ensamble-MEF se efectia en el producto A - 89y A - pg,
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evitando el almacenamiento de A. Las estrategias posibles son: 1) Almacenar A
ensamblada, efectuando el producto A - pg en cada iteracién, 2) Almacenar las matrices
clementales sin ensamblar A® y efectuar 3°F | A¢.p; en cada iteracién y 3) Calcular
A* en cada iteracién y efectuar el producto de la misma forma que en la opcién 2).

La primera linea es la de menor tiempo de ejecucién y maxima memoria o entrada-
salida, poseyendo escasas ventajas respecto a un método directo. La segunda alternativa
es intermedia y la tercera es la de menor almacenamiento y mayor tiempo de proceso.

Como resultado de experimentacién numérica, pueden compararse los érdenes del
nimero de coeficientes necesarios de almacenamiento en cada caso (sin contar con los
datos topoldgicos), siendo N el nimero de grados de libertad:

Caso 1): = Nv/N; Caso 2): ~ 10N; Caso 3): 0. Estos érdenes se obtienen
suponiendo que en el caso 1) ha sido optimizada la numeracién nodal, mientras que en
el segundo se adopta una relacién mimero de nodos/mimero de elementos de 3.5 (media
de todos los casos estudiados), siendo guardada sélo la matriz triangular superior.

Se ha comprobado ademds que para casos con grados de libertad entre 81 y 509 se
obtienen tiempos de proceso de alrededor de 7 veces mayores en el caso 3) respecto al
2), lo que muestra que, salvo en problemas criticos de capacidad, la opcién practica es
la segunda.

Es conveniente afiadir que si se compara cualquier método indirecto con uno directo,
en el tiempo de ejecucién de éste dltimo, estrictamente, debe tenerse en cuenta el tiempo
invertido en la optimizacién de frente o de banda.

APLICACIONES

El programa desarrollado en base a los conceptos previos emplea elementos de ocho
nodos (cuadrildteros), de la familia serendiptica y funciones de forma de continuidad
C°. Se ha optado por 16 puntos de integracién por elemento y 4 en el caso de integrales
curvilineas. La solucién del sistema proporciona sobreelevaciones y funcién potencial
en nodos, asi como agitaciones medias en el drea de estudio y velocidades en puntos de
Gauss.

La excitacién exterior es impuesta especificando el contorno en “mar abierto”, I,
la frecuencia angular de la onda incidente, su direccién y amplitud maxima.

Dentro de las distintas pruebas efectuadas al modelo, se incluyen en este trabajo
3 problemas tipicos, presentidndose posteriormente un caso real referente a puertos del
Mar Cantabrico. Los problemas referidos son los puertos rectangulares, rompeolas
circular y refraccién por variacién parabdlica de profundidad.

Puertos rectangulares

El problema del puerto rectangular, estudiado en forma tedrica, numeérica y
experimental*!?**® es analizado en esta ocasién mediante dos configuraciones diferentes,
representadas en las Figuras 1.a y 1.b, siendo en ambos casos las paredes totalmente
reflectantes. En la primera configuracidn, el ancho de la dirsena coincide con el de
la bocana, mientras que en la segunda la bocana estad parcialmente cerrada por dos
rompeolas rectos.
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Figura 1. Puertos Rectangulares.

Para incluir correctamente la influencia de la costa recta lindante a la darsena,
pueden considerarse dos opciones: 1) considerarla totalmente reflejante o ii) totalmente
absorbente. Si se elige la primera, se debe componer a la onda incidente la reflejada en
la costa exterior.

Para el primer ejemplo se empleé una malla de 88 elementos y 317 nodos, mientras
que en el segundo se recurrié a 160 elementos y 537 nodos.

A continuacién se hizo incidir una onda plana de amplitud unitaria perpendicular
a la costa recta, obteniendo resultados equivalentes en las opciones i) e ii) en ambas
darsenas, siendo resumidos en la Figura 2.

En esta Figura se representan los factores de amplificaciéon en los puntos P
representados en la Figura 1, definidos como la relacién entre la amplificacién maxima
en el punto considerado y la amplificacién de la onda incidente si no estuviese
implantado el puerto.

En el primer anélisis se intenté reproducir el primer pico resonante, que es el de
mayor interés, obteniendo resultados satisfactorios, superiores a los que se obtienen en
modelo fisico, al no contabilizar pérdidas locales y por friccién'®.

Para la segunda configuracién, se estudiaron los cuatro primeros picos de la curva
de amplificacién en funcién de la longitud de onda relativa, comparados con valores
obtenidos en modelo fisico'®, siendo esta vez los valores muy cercanos entre ambas
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Figura 2. Puertos Rectangulares. Factores de amplificacién vs. longitudes de ondas
relativas kl.

técnicas.

Rompeolas circular

Esta prueba consiste en una planta ideal formada por una costa recta infinita donde,
adyacente a ella, se emplaza un rompeolas semicircular con dos aberturas, haciendo
incidir sobre la regién por él limitada una onda unidad paralela a la costa. La malla
utilizada (Figura 3) consta de 24 elementos y 79 nodos siendo la profundidad constante.

A fe
i
=] A

Figura 3. Rompeolas Circular. T'.: Contorno “cargado”. I'y: Contorno absorbente.
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Este test, al ser usado en el modelo de elementos infinitos®, exigia contemplar una
regién exterior como transicién al ensamble de elementos infinitos, lo que implica mayor
nimero de grados de libertad.

Los resultados, comparados con el estudio citado y con la solucién analitica se
exponen en la Figura 4, donde se reproduce la respuesta en funcién de la longitud de
onda relativa kr, que esta vez relaciona la longitud de onda y el radio de la planta
semicircular. Por otra parte, la respuesta de la dirsena es evaluada mediante:

— _ {lnld4
[dA

siendo A el area total encerrada por el rompeolas. Luego, en la Figura 4 se representa el
cociente entre esta sobreelevacién “media” y la de la bocana orientada hacia la direccién
de incidencia de la onda.

2,6 T~ e i ———

2,4 -
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2 —
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3 1.4
o

1] 1.2
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& 14
4
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—
0,4 —
0.2
0 T T T T T L T T T T T v T T T
] 0,4 0.8 1.2 1.6 2 24 2,8
L. onda rel. KR
Figura 4. Rompeolas Circular. Respuesta. —: Solucién Analitica. o: Elementos

Infinitos. e: Modelo Actual.

La coincidencia con los valores analiticos es buena, incluso en zonas alejadas del
segundo pico, a pesar de lo gruesa de la malla. La distribucién de sobreelevaciones
también posee un buen ajuste, como puede verse en la Figura 5 (kr = 3.0).

Por las caracteristicas geométricas que presenta este ejemplo, la influencia que
puede tener el optar por un contorno absorbente recto en la bocana “no cargada” es
poca, lo que es confirmado por los buenos resultados obtenidos.

Sin embargo, el uso de la condicién de absorcién debe ser hecho con cautela,
dada sus limitaciones. Cuando la batimetria de la zona costera permite un efecto
de refraccién importante, la absorcién normal puede ser admisible, al tender los frentes
de onda a ser paralelos a las lineas batimétricas.
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Figura 5. Rompeolas Circular. Factores de Amplificacién. ka = 3, a: radio. —:
Analitico [8). - - - : Modelo Numérico.

33000m

|!|

50m

T =1720s.
Caso A. Ondas Largas.

1250 mm

20mm

145mm

T =0.48 s.
Caso B. Ondas Cortas.

Figura 6. Variacién parabdlica de profundidad.

Refraccidon por variacidén parabédlica de profundidad.

Para contemplar un caso donde pueda comprobarse la efectividad de la
aproximacién para variaciones importantes de profundidad, se ha estudiado la
refraccién de una onda plana que se propaga por una zona circular donde la profundidad
varia en forma parabdlica (Figura 6).

Se han efectuado dos casos, representados como A y B en la Figura 6,
correspondiendo el primero a un problema en que no es respetada la condicién de
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variacion gradual de la profundidad, mientras que en el segundo esta limitacién no es
transgredida.

En el caso A (Figura 7), los resultados, que se presentan como sobreelevaciones
en la direccién de incidencia, no son muy ajustados, siendo similares a los obtenidos
mediante el uso de elementos finitos®.

DIRECCION DE ONDA INCIDENTE

A A
24 2 28 30 32 34

Figura 7. Variacién parabdlica de profundidad. Amplitud relativa. Caso A. —:
Analiticas®. o: Elementos Infinitos®. e: Modelo actual.

El nimero de elementos empleados en esta ocasién fue de 168 y el de nodos 505.

El problema B (Figura 8) (ondas cortas) ha necesitado de 576 elementos y 1729
nodos, dada la reducida longitud de onda. Los resultados, esta vez, presentan una
aproximacion aceptable siendo nuevamente similares al modelo en elementos infinitos,
con un ahorro de un 10% de grados de libertad respecto al mismo.

4
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dist. def centro (cm.)

Figura 8. Variacién parabdlica de profundidad. Amplitud relativa. Caso B. - o -
Analiticas®*. +: Elementos Infinitos®. ¢: Modelo actual.
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Mar Cantabrico

Los mecanismos de generacién de ondas de periodos en la banda de 1 a 30 minutos
no estan ain completamente determinados, al contrario de otras ondas largas como por
ejemplo tsunamis.

La hipétesis antes citada de transferencia de energia desde frecuencias altas podria
interpretarse como la modificacién de un tren inicial de ondas con poca energia en la
zona de baja frecuencia que, al propagarse hacia la costa, con variaciones de profundidad
importantes y extensos desarrollos, muestra un pico en la distribucién de frecuencias
en una region de valores menores.

El pico de la nueva distribucién corresponde al periodo dominante de la onda larga.
En el Mar Cantébrico, donde se estima que las ondas son producidas por mecanismos de
este tipo, presentan un periodo preponderante cercano a los 4 minutos. Este periodo,
relacionado con el de los grupos de ondas del espectro inicial, puede ser estimado
inicialmente como el del asociado al grupo de ondas.

Una metodologia de estudio de ondas largas en un recinto portuario puede
ser, en primer lugar, la obtencién de frecuencias propias principales del sistema
no amortiguado®?, detectando asi las zonas de maximas amplitudes de movimientos
horizontales y verticales®'. El primer caso permite decidir emplazamientos de medicién
de ondas largas, mientras el segundo indica sectores de atraque desfavorables.

Los modos propios pueden calcularse mediante la ecuacién de autovalores
generalizada, optidndose por las frecuencias mds bajas. Una forma alternativa de
obtener la frecuencia propia fundamental de un recinto semicerrado de agua es mediante
la ecuacién lineal de ondas largas®, excitando el sistema con una funcién armoénica
e impomniendo condiciones iniciales nulas. En la respuesta apareceran oscilaciones
espireas, mostrando un maximo de energia en la frecuencia propia fundamental del
sistema®. Al tratar la respuesta mediante la transformada discreta de Fourier, en el
contenido en frecuencias surge el pico citado y, en consecuencia, la frecuencia buscada.

La influencia del “mar abierto” en el modelo simple no amortiguado puede asumirse
mediante dos opciones: reflexién perfecta en la bocana (lo que equivale a calcular los
periodos propios de un cuerpo de agua cerrado), o suponer amplitud vertical nula en
la bocana y, por lo tanto, una linea nodal en ella. Aunque la realidad es una situacién
intermedia, la hipétesis mas razonable es la segunda, confirmada al compararse con
modelos fisicos®?,

La parte final de un estudio es la aplicacién del modelo disipativo descrito en este
trabajo, que permite evaluar respuestas cuantitativamente mds acordes con la realidad,
limitando su uso a la zona del espectro acotada por el estudio previo.

Dentro de esta tltima etapa, se incluyen en este trabajo dos puertos pesqueros dé
la costa Vasca: Motrico y Ondarroa, cuyo comportamiento fue analizado junto con el
de puertos de dimensiones mayores®®. El interés de estos pequefios puertos reside en su
comportamiento totalmente opuesto frente a una excitacién similar.

Los pequefios puertos pesqueros de bajura del Mar Cantabrico, tales como
los nombrados, poseen en algunos casos caracteristicas geométricas que ocasionan
problemas resonantes ante las excitaciones de periodos cercanos a 4 minutos.

Los primeros estudios sistemdticos de estos fenémenos se deben a Iribarren'™?®,
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cuya explicacién intuitiva del fenémeno es validada por el modelo numérico.

El puerto de Motrico es el que presentaba este efecto en forma mas pronunciada,
pues era suficiente cualquier marejada exterior para que la agitacién interior fuese
elevada. Asi, en la Figura 9 se representan las lineas de igual elevacién para una
excitacién unidad en la situacién resonante (245 seg.). Puede observarse el elevado
gradiente en la zona de fondeo, indicada con A. En el modelo reducido!” se define el
factor de amplificacién como el cociente entre velocidades en A y en la zona exterior,
obteniéndose una curva de amplificacién (Figura 10) poco pronunciada. Esto puede
deberse a la “ambigua” definicién del coeficiente de amplificacidn, al ser las velocidades
exteriores elegidas poco representativas de la excitacién. Con el presente modelo se ha
optado por definir el factor comparando sobreelevaciones en el extremo de la dirsena
interior con amplitud de la excitacién, otorgando la respuesta un pico mds definido.
Puede observarse que la coincidencia de los picos entre modelo fisico y numérico es
buena.

e

SEP. ISOL.= 0.5

Figura 9. Puerto de Motrico. Lineas de igual elevacién. T = 245 s. A: Zona de
fondeo. B: Zona exterior. C: Zona eliminada.

Para el modelo se empleé una malla de 345 nodos y 92 elementos, habiéndose
incluido una zona exterior B (Figura 9) relativamente pequeiia.

Los problemas fueron parcialmente resueltos eliminando la zona C (Figura 9), y
dragando, es decir modificando la geometria del recinto.

A pocos kilémetros al oeste de Motrico se encuentra Onddarroa, cuyo puerto consta
de un antepuerto y una segunda darsena conectados por una bocana interior.

Los problemas del puerto de Motrico exigia en muchas ocasiones que los pesqueros
alli fondeados tuviesen que trasladarse a Ondarroa, con las consiguientes pérdidas
econémicas y de capacidad de ambos puertos!’. Pero jqué razdn producia la calma
en el puerto vecino al de Motrico cuando éste era impracticable para las actividades
de los pesqueros?. La contestacién a esta situacion surge de la curva de respuestas de
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Figura 10. Puerto de Motrico. Factores de amplificacién. o : Amplificacion de
velocidades'”. +: Modelo numérico {elevaciones).
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Figura 11. Puerto de Onddrroa. Curva de respuesta.

Ondérroa (Figura 11): para la banda critica de 230 a 250 seg. (0.027 a 0.025 rad/seg.
de frecuencia angular) la amplificacién es minima, hecho detectado visualmente por los
pescadores.

En la Figura 11 se representa el barrido en frecuencias realizado para el intervalo
170 s.—-600 s. El factor de amplificacién ha sido calculado por el cociente entre
sobreelevaciones en el nodo de control P (Figura 12), donde se producen méximas
elevaciones para los dos primeros picos resonantes y la onda incidente unidad exterior.
En la misma Figura 12 se representan las lineas de igual elevaciéon para T = 245 s.,
donde puede observarse las condiciones favorables del puerto para esta frecuencia.
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Figura 12. Puerto de Onddrroa. Lineas de igual elevacién. T = 245 s. A: Zona
exterior de playas.

Para realizar el estudio se construyé una malla de 509 nodos y 142 elementos,
contemplando en la discretizacién la zona exterior de playas (zona A en la Figura 12)
con contornos reflejantes a onda larga, dado que la absorcién a éstas es muy baja.

CONCLUSIONES

El tratamiento numérico de la ecuacién aproximada de difraccién y refraccién
exige resolver el problema “exterior” adecuadamente, lo que es propuesto mediante
diversas vias, de las cuales puede destacarse los modelos en elementos infinitos. En este
articulo se plantea una forma diferente de encarar el tema, en base al método de las
caracteristicas.

A efectos de la eficiencia resolutiva del modelo, se obtiene menor nimero de grados
de libertad que en caso de usar elementos infinitos, asi como un mejor condicionamiento
de la matriz de coeficientes que conserva, a su vez, el cardcter bandeado simétrico.

El modelo se presenta como un serio competidor a los de similar potencia,
poseyendo similares limitaciones, derivadas de la forma de imponer el comportamiento
de la onda radiada.

A este respecto, una variante de las condiciones aqui derivadas pueden obtenerse
en base a la direccién normal al contorno “cargado”, habiéndose conseguido resultados
mas pobres y mas dependientes de la forma del contorno.

Las limitaciones de la condicién de absorcién normal implica su uso a zonas
reducidas del dominio. Si el problema se formula en su forma hiperbdlica y se plantea
un esquema explicito de solucién, una via de mejorar el problema de absorcién es la de
corregir el médulo y direccién de la velocidad que incide en el contorno absorbente en
cada salto de tiempo. La aplicacién de estos conceptos en el caso arménico lleva a un
problema no lineal y, por lo tanto, mucho més costoso.

Para salvar el problema del elevado nimero de grados de libertad presente en ciertos
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casos, se ha extendido el método del Gradiente Conjugado Precondicionado a sistemas
con matrices no definidas positivas y con coeficientes complejos. El método PCG es el
que con mas eficacia cumple el compromiso entre velocidad de ejecucién y necesidades
de almacenamiento de informacidn, siendo en este caso usada la variante Jacobi.

El mejor condicionamiento del sistema conseguido a través de la formulacién de las
condiciones de borde influyen en forma decisiva en la utilizacién de métodos indirectos
de solucidn, logrando asi una eficiencia resolutiva 6ptima.

Por otra parte, las hipdtesis sugeridas respecto a ondas largas deben ser
corroboradas en el futuro por una toma sistematica de datos en la Costa Cantabrica.
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