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Abstract. It is beneficial to understand damage conditions of RC structural members by non-destructive 
methods. In this study, K-means clustering method was applied to the AE wave data in order to develop 
a damage detection method. From the result of this study, the damaged area had the relatively large 
number of AE hits and AE energy. In addition, from the result of the K-means clustering of the power 
spectral density of AE waves, the data could be separated into the obviously damaged area and other 
areas.  
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1 Introduction 
It is beneficial to understand damage conditions of RC structural members by non-destructive 
methods for long term use of RC structures. Capturing AE signals is one of the effective 
methods to detect the damaged position and area in the structural member.  

In the previous research, Nishida et al. (2019) developed an aggregation detector. The 
detector is equipped AE sensors to capture AE waves generated by the internal damage of the 
RC bridge deck. Nishida et al. focused on the AE energy in order to detect the damaged area 
and they proposed the method to decide the threshold value of AE energy to judge the damaged 
area. 

In this study, authors applied a clustering method to the AE wave data that was obtained in 
previous research. The aim of this study is to develop a damage detecting method for RC slabs 
with machine learning. 
 

2 Analysis of AE Waves 

2.1 The Outline of Analysis of AE Waves 
In this study, the AE wave data obtained in the previous research (Nishida et al., 2019) was 
analyzed. In the previous research, Nishida et al. focused on the total AE energy and did not 
focus on the number of AE hits. In general, the number of AE hits in damaged area is larger 
than that in sound area because the damaged area has a lot of AE source. Therefore, authors 
focused on not only the AE energy but also the number of AE hits. The AE wave data was 
separated into a group by 1.0 m for each measurement line, and then, the number of AE hits 
was counted in each group, and the average of AE energies was calculated in each group.  

Authors also focused on the frequency domain of AE waves. The power spectral density 
(PSD) of each AE wave was calculated and averaged in each group. In this study, the averaged 
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PSDs were regarded as the representative values of each group and selected as the input data 
for the clustering method. 

The K-means clustering method (MacQueen, 1967; Arthur and Vassilvitskii, 2007) was 
applied in this study. This method is a non-hierarchical clustering method and an unsupervised 
machine learning method. This method is used to divide automatically a data into k groups. The 
objective function of the K-means clustering that should be minimized is; 
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where N is the number of a data set, K is the number of the cluster, xi is the i-th data in a data 

set, ck is the centroid of the k-th cluster, wik = 1 if the data xi belongs to cluster k, otherwise wik 
= 0 and ‖+‖2 is the Euclidean norm of a vector v. 
The algorithm of the K-means is shown as follows. 

1. Choose k initial centroids C = {c1, ..., ck}. 
2. For each i ∈ {1, ..., k}, set the cluster Ci to be the set of points in X that are closer to ci 

than they are to cj for all i � j. 
3. For each i ∈ {1, ..., k}, set ci to be the center of mass of all points in Ci. 
4. Repeat Steps 2 and 3 until C no longer changes. 

In this study, the number of the cluster k was changed to be from 2 to 5 due to find the 
optimal k for the clustering of the data. 

The calculation of the K-means clustering and the power spectral density was conducted 
with Python, and the Scikit-learn (Pedregosa et al., 2011) was used for the K-means clustering 
and the SciPy (Virtanen et al., 2019) was used to calculate the power spectral density of the AE 
wave data. 
 

3 Results and Discussions 
Figure 1 shows the damaged area that was the result of the visual and the hammering inspection 
in the previous research. The red colored area is the damaged area where the crack or the 
delamination were observed. 
 

3.1 The Number of AE Hits and the Average of AE Energies 
Figure 2 and Figure 3 show contour maps of the number of AE hits and the average of AE 
energies in each group respectively. In Figure 2, the number of AE hits may have a close relation 
with the damaged area as shown in Figure 1, and the average of AE energies also have a relation 
with the damaged area.  

In general, the defect such as the crack and the delamination become the source of AE signal. 
Therefore, the area where the number of AE hits is larger than the other areas has potential to 
be the damaged area. 
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Figure 1. The result of the visual and the hammering inspection. 

 
 

 
Figure 2. The number of AE hits in whole groups. 

 
 

 
Figure 3. The average of AE energies in whole groups. 
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3.2 Clustering the PSD Data 
Figure 4 (a) shows the PSD of the centroid of each cluster when the number of clusters was 2. 
The peak frequency and value of each PSD were different. Figure 4 (b) shows the scatter plot 
of each group. The number located beside each plot is the line number. In this figure, the all 
data belong to the cluster 2 was in the line 6 where a lot of defects were observed. From this 
result, the data was separated into the obviously damaged group and the other group, and the 
peak frequency of the PSD in the damaged area became lower than that in the other area. 

Figure 5 (a) shows the PSD of the centroid of each cluster when the number of clusters was 
3, and Figure 5 (b) shows the scatter plot of each group. From these figures, the cluster 1 in 
Figure 4 (b) was divided into two groups based on the average AE energy. In Figure 5 (a), the 
peaks of frequency and the forms of the PSD was also almost the same, but the peak values of 
the PSD were different in clusters 1 and 3. 

Figure 6 (a) shows the PSD of the centroid of each cluster when the number of clusters was 
4, and Figure 6 (b) shows the scatter plot of each group. From these figures, the cluster 1 in 
Figure 4 (b) was divided into three groups based on the average AE energy. In Figure 6 (a), the 
peaks of frequency and the forms of the PSD was also almost the same, but the peak values of 
the PSD were different in clusters 1, 3 and 4. 

Figure 7 (a) shows the PSD of the centroid of each cluster when the number of clusters was 
5, and Figure 7 (b) shows the scatter plot of each group. From these figures, the cluster 1 in 
Figure 4 (b) was divided into three groups and the cluster 2 in Figure 4 (b) divided into two 
groups based on the average AE energy. In Figure 7 (a), clusters 2, 3 and 4 were the same as 
clusters 2, 4, and 3 in Figure 6 (a) respectively. In addition, the peaks of frequency and the 
forms of the PSD was also almost the same, but the peak values of the PSD were different in 
clusters 1 and 5. 
 
 

 
(a) PSD of each cluster centroid 

 
(b) Scatter plot of each group 

Figure 4. Clustering result of the data (k = 2). 
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(a) PSD of each cluster centroid (b) Scatter plot of each group 
Figure 5. Clustering result of the data (k = 3). 
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(a) PSD of each cluster centroid (b) Scatter plot of each group 
Figure 6. Clustering result of the data (k = 4). 
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(a) PSD of each cluster centroid (b) Scatter plot of each group 
Figure 7. Clustering result of the data (k = 5). 

 
To evaluate the optimal k for the clustering, silhouette analysis (Rousseeuw, 1987) was 

conducted. The silhouette score of the data point i is: 

Number of AE hits 
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-(#)  =  .(#)  −  /(#)0/({/(#), .(#)} (2) 

  /(#)  =  1&#  −  1 ∑ 1(#, 2)2∈3#,#≠ 2  (3) 

  .(#)  =  min$ ≠ # 1&$ ∑ 1(#, 2)2 ∈ 3$
 (4) 

 
where Ni is the number of data points in the cluster Ci, Ci is the cluster to whom the data 

point i belongs and d(i, j) is the distance between data points i and j. 
The range of the silhouette score is from -1 to +1, and a high value means that the data point is 
well matched to its cluster. From the plotting of the silhouette scores, the optimal number of 
the clusters can be determined graphically.  

Figure 8 show the plotting of the silhouette score of each data. The black dotted line means 
the average of the whole silhouette score, and the thickness of the silhouette score of each 
cluster means the number of the data. In Figure 8 (a), the number of the data that belong to 
cluster 1 was larger than that to cluster 2, therefore, k = 2 may not be the optimal value for the 
clustering of the data. In Figures 8 (b) and 8 (d), some silhouette score was negative, therefore, 
k = 3 and 5 may not be also the optimal value for the clustering of the data. In Figure 8 (c), the 
thickness of the silhouette score of the cluster 1 was slightly thicker than those of other clusters, 
however, there was no negative silhouette score and many of silhouette scores exceeded the 
average silhouette score. Thus, k = 4 may be the optimal value for the clustering of the data. 

The optimal k might be determined by the silhouette score, however, it is necessary to 
evaluate the accuracy of the clustered groups with the actual damage condition of the target 
structure. This is the future work for our study. 

4 Conclusions 
Following conclusions were derived from this study. 

- The area where the number of AE hits and the average of AE energies were relatively 
lager than other areas might be the damaged area. 

- From the result of the K-means clustering, the data was separated into the obviously 
damaged area and other areas. In addition, the characteristic of the power spectral 
density of the centroid of the damaged cluster was different from those of other clusters. 

- As the increase of the number of centroids k, the data was separated into some groups 
based on the average of the AE energies. 
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(a) k = 2 (b) k = 3 
 

(c) k = 4 (d) k = 5 
Figure 8. Silhouette score plots. 
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