Computational modelling and characterization of non-Newtonian viscoplastic cementitious building materials

Mareike Thiedeitz¹, Jithender J. Timothy² and Thomas Kränkel³

Technical University Munich, Centre for Building materials, ¹ mareike.thiedeitz@tum.de, ²jithender.timothy@tum.de, ³thomas.kraenkel@tum.de

Key Words: non-Newtonian flow, cement paste, computational fluid dynamics, visco-plastic modelling, concrete rheology

Cementitious building materials like Ultra High Performance concrete (UHPC), Self-Compacting Concrete (SCC) or concrete with low clinker content (Green Concrete) possess a complex rheological behaviour due to high packing densities and the use of various additives and chemical admixtures. Existing rheological models such as the visco-plastic BINGHAM or HERSCHEL-BULKLEY model do not fit the actual flow behaviour of strongly non-Newtonian cementitious materials: Depending on the paste mix design of a concrete, a huge range of non-Newtonian flow characteristics from shear-thinning to shear-thickening and visco-elastic material behaviour can appear. Computational modelling of transient concrete flow therefore requires accurate knowledge of the rheological properties, followed by a meaningful choice of both the rheological model for computational fluid dynamics simulation (CFD) and the associated boundary conditions. The authors present a test program of four cementitious pastes with low ($\phi = 0.45$) and high ($\phi = 0.55$) solid volume fraction ϕ each with low and high flowability. A rheological analysis will serve as input for the numerical modelling of concrete flow. CFD analysis using OpenFoam is conducted for a mini-L-Box test using the yield stress function incorporating BINGHAM- and HERSCHEL-BULKLEY equations and viscosity-related Cross- and adapted shear-thickening equations. Experimental mini-L-Box tests are compared with CFD results. With increasing non-Newtonian behaviour, numerical instabilities and deviation from actual flow behaviour is shown. This is especially valid at the transition from visco-plastic to visco-elasto-plastic material behaviour. The results provide new insight into computational modelling of complex cementitious building materials and serves as basis for further advanced CFD based modelling and characterization of time-dependent non-Newtonian concrete flow.