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Abstract: This work extends a multi-phase mixing model framework designed for a
Smoothed Particle Hydrodynamics context. Specifically, we propose a higher-order vari-
ation using the first-order accurate Generalised Finite Difference differential operators to
construct an incompressible scheme for simulating fluid-solid coupled systems resolved
via a continuum mixture model. The proposed scheme incorporates inter-phase shear be-
tween phases and the viscosity dependency of the solid phase concentration. The scheme
is verified by simulating a modified lid-driven cavity case at Re = 1000. In this simula-
tion, our method was capable of treating initially discontinuous concentration fields with
a maximum solid volume concentration of 0.5 and a solid-to-fluid density ratio of 4.
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1 INTRODUCTION

The interaction between granular and fluid media is of significant interest due to its
abundance in physical and engineering processes. Particle-laden flow is one phenomenon
in this class that refers to fluid flow in which solid particles are suspended and transported
by the fluid. The interest in simulating particle-laden flow is driven by its central role in
processes such as erosion, waste transport, pollution management and process engineering
systems such as pneumatic transport and fluidised bed reactors.

As this is an inherently multi-physics phenomenon, appropriate treatment typically
is computationally expensive. However, with the rising popularity of massively paral-
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lelisable schemes such as the discrete element method (DEM) and meshless Lagrangian
methods (MLMs) as well as the rapid adoption of general-purpose GPUs as computational
hardware, these systems have become tractable to solve at an increased fidelity.

At the granular particle level, the interaction between media can be treated as a fully
coupled fluid-solid interaction (FSI) problem [1, 2, 3]. Although this approach is concep-
tually valid at any scale, from a practical standpoint, this rapidly becomes intractable as
the number of granular particles increases. Approaches have been developed to address
this by simplifying the fluid-granular interaction and solid phase representation so that the
system is tractable to resolve. Due to the inherently multi-scale and multi-physics nature
of these systems, various models have been proposed such that the dominant physics is
treated appropriately. As an example, mesoscale coupling [4, 5, 6] is appropriate for sys-
tems where granular particles can be resolved individually, but the coupling forces must
be resolved via empirical correlations. In contrast, mixture models are employed when
the number of granular particles is so large that it is not tractable to resolve individual
granular particles. Rather the granular medium is represented by a dynamic field that
interacts with a fluid phase in a volume-averaged sense [7, 8, 9, 10, 11].

First introduced in an MLM context to treat solid phases as a continuum, the multi-
phase formulation of [7] was adopted in the weakly compressible smoothed particle hydro-
dynamics (SPH) formulation of Ren et al. [8]. This work extends each SPH particle to
include concentration and diffusion velocity parameters while the particles are advected
according to the mean-field velocity. The concentration parameter resolves the composi-
tion of each phase represented by the particle. The diffusion velocity specifies the velocity
difference between the phase and the mean-field velocity. This introduces the idea of
intrinsic shear between phases, resulting in an additional shear term in the mean-field
momentum conservation equations. This formulation was later extended by Yan et al. [9]
to incorporate solid phase constitutive models into the weakly compressible SPH solver.
This allowed for the simulation of a dry solid phase interacting with the fluid phase while
being able to resolve dissolution.

As with other under-resolved models, closure is achieved through an empirical model.
For the mixture model, the closure relationship resolves the diffusion velocity, which is
used to construct its shear contribution. In [11], Jiang et al. introduced a closure model
that identically enforces mass conservation by ensuring the appropriate divergence-free
condition of the diffusion velocities. Furthermore, the particle velocity was set to the
volumetric flux rather than the mean-field velocity. This implies that the particle flow
velocity is divergence-free allowing typical incompressible MLM techniques to be applied
with little modification.

The choice to use classic SPH operators in computer graphics is sensible due to their
relatively inexpensive computational cost. However, accuracy is often more desirable
than speed in a scientific and engineering context. Kernel renormalisation [12, 13] is a
modification that raises the order of SPH operators from zeroth- to first-order accurate.
As a trade-off for the increased accuracy, this significantly increases the computational
cost. Alternatively, the generalised finite difference (GFD) method [14, 15, 16] makes
use of first-order accurate operators that result in similar behaviour to renormalised SPH
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while being more computationally efficient [17].
To make progress toward a meshless mixture model formulation for engineering con-

texts, this paper proposes an incompressible GFD-based scheme based on the mathemat-
ical model described in [11]. The scheme is verified by simulating a lid-driven cavity at
Re = 1000 and comparing the results against finite volume method (FVM) and SPH
results. Furthermore, the evolution of the concentration field is presented and quantified,
allowing for comparison with other mixing models and schemes.

2 MATHEMATICAL MODEL

Like other MLMs, the GFD method operates by dynamically building a neighbour list
of local particles that it then uses to construct the appropriate differential operators. The
discretised partial differential equations (PDEs) are constructed at a particle level from
these differential operators. Since the PDEs are cast in a Lagrangian frame, advection is
directly treated by updating the particle positions. At the same time, the evolution of the
material state is resolved from the evolution equations. In this work, the solid phase is
incorporated by assigning each particle with a solid volume concentration, indicating the
composition of the continuum at the particle location. As such, in addition to the mean-
field Navier-Stokes equations (NSE), an evolution equation for the solid concentration
must also be solved.

The notion adopted in this work makes use of bold characters to indicate tensors. Bold
lowercase Latin symbols are use to indicate rank-1 tensors while bold Greek and uppercase
Latin symbols are used to indicate rank-2 tensors. Inner products are indicated by (•) ·(•)
while outer products are indicated by (•)⊗ (•).

This work uses the MLM framework proposed in [11], where SPH was used to discretise
the mixing model. When considering each phase as an incompressible material, the mass
conservation of each phase can be written as:

∂tαk +∇ · (αkuk) = 0, (1)

where αk is the concentration, uk is the velocity and k ∈ {s, f} is a subscript used to
indicate either the solid or the fluid phase, respectively. By adding the fluid and solid mass
conservation equations and considering αs + αf = 1, the mean-phase mass conservation
can be written as:

∇ · um = 0, (2)

where um =
∑

k (αkuk). It should be mentioned that this is not the mean-phase velocity
as described in [7], but rather the volumetric flux.

As motivated in [11], the reason for choosing the volumetric flux over the mean-phase
velocity is due to the divergence-free condition allowing for a single-phase incompressible
solver to be applied to this system. From a numerical perspective, the divergence-free
condition also suggests that particles are less inclined to separate or cluster when flowing
between dilute and dense solid clusters. However, clustering due to converging stream-
lines must still be addressed. For this, the anti-clustering algorithm of Xu et al. [18]
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is employed. With the volumetric flux being used as the particle velocity, the material
derivative is now defined as Dt = ∂t + um · ∇.

Since αf can be fully described by αs, only the solid phase concentration is explicitly
tracked. Writing (1) for the solid phase in terms of the volumetric flux:

Dtαs = −∇ · (αsums), (3)

introduces the diffusion velocity ums = us − um.
Similarly, the mean-phase momentum conservation equation is constructed by adding

the volume-averaged equations of motion of each phase:

Dtum = −γ∇pm +
1

ρm
∇ · τm +∇ ·

(
τ d

ρm

)
+ g, (4)

where pm is the mean-field pressure, τm is the mean-field shear stress, τ d is the inter-phase
shear stress, g is the body force and γ =

∑
k αk/ρk with ρk the phase density.

The volumetric flux is used to resolve the mean-field shear stress as:

τm = µm

[
(∇⊗ um) + (∇⊗ um)

T
]
, (5)

where µm is the mean-phase dynamic viscosity resolved as a function of the fluid viscosity
µf and the solid concentration:

µ = µf

(
1− αs

αsm

)−2,5αsm

, (6)

where αsm ≈ 0.62 is the concentration at the maximum solid packing [7].
The inter-phase shear stress arises due to the difference between the velocities of in-

dividual phases and the volumetric flux. It so is completely determined by the diffusion
velocity and concentration:

τ d = −ρm
∑
k

αkumk ⊗ umk. (7)

2.1 GFD discretisation

The GFD operators [14, 15, 16] are a class of meshless operators that allow differential
operators to be approximated from discrete field values obtained from an unstructured
point cloud. While they take on a similar form to kernel renormalised SPH, these operators
do not rely on kernel gradient directly. Rather, they opt to weight finite difference terms
with a kernel function. This makes the operators more computationally efficient when
compared to renormalised SPH schemes while producing similar behaviour [17].

This work makes use of a quintic kernel [19]:

W (r, h) =


(3− q)5 − 6(2− q)5 + 15(1− q)5 for 0 ≤ q ≤ 1

(3− q)5 − 6(2− q)5 for 1 < q ≤ 2

(3− q)5 for 2 < q ≤ 3

0 otherwise

with q = ∥r∥/h, (8)
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where 3h is the support radius of the kernel.
For the sake of readability, the relative distance between two particles is written as

rij = ri − rj. This extends to the evaluation of the kernel function between two particles
where the notation Wij = W (rij, h) is adopted. Similarly, the notation fi = f(ri) will be
adopted for any field value at a particle location.

For a generalised field f , the GFD gradient can be written as:

⟨∇f⟩i = Bi ·
∑
j

(fi − fj)Wijrij, (9)

with:

B−1
i =

∑
j

Wijrij ⊗ rij, (10)

The GFD Laplacian operator can be written as:〈
∇2f

〉
i
= 2dLi

∑
j

(fi − fj)Wij(1− rij · oi), (11)

where d is the system dimension, oi the renormalised offset vector:

oi = Bi ·
∑
j

Wijrij, (12)

and Li is the normalisation factor:

L−1
i =

∑
j

∥rij∥2Wij(1− rij · oi), (13)

with ∥(•)∥ indicating the Euclidean norm.
Due to the large density difference possible between particles, the pressure term is

resolved with density smoothing. Specifically, the pressure term is resolved as:

⟨γ∇pm⟩i = Bi ·
∑
j

2γiγj
γi + γj

(pm,i − pm,j)Wijrij, (14)

Furthermore, the mean-phase shear term is resolved by splitting the differential oper-
ator:

⟨∇ · τm⟩i = µi

〈
∇2um

〉
+

dµi

dαs

∣∣∣∣
αs,i

⟨∇αs⟩i ·
(
⟨∇ ⊗ um⟩i + ⟨∇ ⊗ um⟩Ti

)
, (15)

where dµi/dαs is analytically determined from (6).
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2.2 Concentration model

To close the system, the diffusion velocity umk must be resolved. The closure model
of [11] is adopted in this work along with their evolution scheme for the solid phase
concentration.

To resolve the drift velocity, it is decomposed into two components umk = u0
mk + u1

mk

with u0
mk modelling the relative advection of the phase while u1

mk resolves the diffusion of
the phase.

These components are resolved as:

u0
mk = C0

m

ρk − ρm
ρm

(g −Dtum), (16)

u1
mk = −C1

m

αk

∇αk, (17)

where C0
m and C1

m are parameters that control the advection and diffusion effects. As
specified in [11], these parameters should be in the range of 0.001 to 0.01. In this work,
we use C0

m = 0.002 and C1
m = 0.001.

With this approach, (3) can now be written as:

Dtαs = −∇ · (αsu
0
ms) + C1

m∇2αs. (18)

To avoid undefined cases, umk = 0 when αk = 0. However, even in these cases, the
evolution equation is always valid regardless of the solid concentration.

The diffusion component is discretised using the standard GFD Laplacian C1
m ⟨∇2αs⟩

while the advection component is resolved directly as:〈
∇ · (αsu

0
ms)
〉
i
=
∑
j

Wij(αs,iu
0
ms,i − αs,ju

0
ms,j) ·Bi · rij. (19)

It should be noted that the particle acceleration from the previous step is used to
determine the current u0

ms.

2.3 Pressure Poisson equation

The incompressibility condition is implicitly enforced through a prediction-projection
scheme like that first proposed in the context of SPH by Xu et al. [18].

For iteration k, a predictor step maps the velocity field uk
m,i to an intermediate state

u∗
m,i by incorporating all acceleration terms except for those due to the pressure gradient:

u∗
m,i = uk

m,i +∆t

(〈
∇ · τ k

m

〉
i

ρkm,i

+

〈
∇ ·
(

τ d

ρm,i

)k
〉

i

+ gi

)
, (20)

where ∆t is the time-step size.
Using this intermediate velocity, the pressure field is obtained by solving the pressure

Poisson equation (PPE) constrained such that the resulting pressure gradient suppresses
the divergence of the intermediate velocity field:〈

∇ · (γk∇pk+1
m )

〉
i
=

1

∆t
⟨∇ · u∗

m⟩i (21)
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Figure 1: Schematic description of the initial and boundary conditions of the lid-driven
cavity case.

with: 〈
∇ · (γk∇pm)

〉
i
= 2dLi

∑
j

2γiγj
γi + γj

(pm,i − pm,j)Wij(1− rij · oi). (22)

This results in an n × n sparsely coupling linear system that must be solved to re-
cover the particle pressures. The system is solved using a bi-conjugate gradient stabilised
(BiCGSTAB) linear solver with a Jacobi preconditioner. For a detailed description of the
PPE solver, the reader is directed to [20].

3 RESULTS

The lid-driven cavity problem is explored in this work for verification of the solver.
The system is tuned such that the fully mixed state corresponds to the single-phase case
at Re = 1000 where Re = ULL/νm is the Reynolds number, L is the cavity length, UL is
the lid velocity and νm = µm/ρm is the kinematic viscosity. A schematic description of
the system can be seen in Figure 1 with L = 1m and UL = 1m/s. The initial solid volume
concentration is set to αL = 0.0 and αR = 0.5 for the left and right domains, respectively.
An initial particle spacing of 0.05m is used.

The fully mixed state should correspond to the concentration averaged over the domain
αmix = (αL+αR)/2. The material properties are based on this steady-state solution such
that νm(αmix) = 1× 10−3m2/s. The material properties can be seen in Table 1.

The results are organised into two sections. The first section investigates the behaviour
of the concentration field. Analysing the evolution of the concentration field distribution
provides context for how the the mixing model affect the material properties of the sys-
tem. Furthermore, this allows the assumption of a uniform solid volume concentration at
steady-state to be verified while also quantifying the error of this assumption.
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Table 1: Material properties for the lid-driven cavity case.

Property Symbol Value

Fluid density ρf 1.0 kg/m3

Solid density ρs 4.0 kg/m3

Fluid viscosity µf 7.862× 10−4 Pa·s

(a) (b) (c)

Figure 2: 2D concentration field snapshots at time (a) 1.0s, (b) 5.0s and (c) 100.0s.

The final section investigates the evolution and steady state response of the velocity
field. The evolution of the velocity field provides insight into how the mixing model affects
the behaviour of the continuum while the steady state response is compared against other
numerical results for verification of the scheme in a uniform concentration configuration.

3.1 Concentration evolution

The evolution of the concentration field is shown in Figure 2. This shows that the
initial evolution is strongly dictated by the advection of the fluid particles, which results
in the spiralling structure forming along the fluid streamlines. Diffusion is also most
active during this time due to the concentration gradients being largest at the start of the
simulation.

Figure 3 shows the corresponding kinematic viscosity field evolution. As a single pa-
rameter model, the viscosity directly correlates to the concentration field, albeit through

(a) (b) (c)

Figure 3: 2D kinematic viscosity field snapshots at time (a) 1.0s, (b) 5.0s and (c) 100.0s.
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Figure 4: Evolution of the solid phase concentration mean and standard deviation.

a power law scaling that serves to suppress its effects in lower concentration regions.
As advection mixes particles of dissimilar regions and diffusion smooths out local dif-

ferences, the concentration tends towards a uniform state. This is quantified in Figure 4,
where the evolution of the average particle concentration and standard deviation is shown.
As expected from a mass conservation argument, the average concentration is nearly con-
stant, with an initial average concentration of 0.249 compared to a final value of 0.244.

When considering the standard deviation trends, it can be noticed that the concentra-
tion evolution has two regimes. Between 0.0s and 20.0s, the standard deviation undergoes
linear decay. During this time, the mixing of the two regions is the primary driver. From
20.0s to 100.0s, the decay rate is noticeably slower as most of the fluid is well mixed.
Here, diffusion is the primary driver for concentration evolution. After 100.0s a standard
deviation of 0.1% relative to the average concentration was obtained. As such, the steady-
state quasi-static behaviour of the concentration field is well approximated by the final
simulation state.

3.2 Velocity field evolution

The velocity field snapshots corresponding to the concentration field snapshots can
be seen in Figure 5. The increased mass and viscosity of the high-concentration region
results in high flow resistance as can be seen by the evolution of the velocity field at the
beginning of the simulation where the boundary layer development is noticeably thicker
in the high-concentration region.

The mid-plane velocities are shown in Figure 6. As mentioned above, with the concen-
tration tending towards a uniform distribution, the steady-state results are expected to
match the classic lid-driven cavity case with Re = 1000. As such, the results at 100.0s are
compared against the FVM results of Ghia et al. [21] and the incompressible SPH results
of Xu et al. [18]. Although all results agree generally, the current results are notice-
ably more similar to the FVM results, especially at the extreme values. When compared
against the FVM results, a maximum difference of 2.2% relative to the velocity range was
found. The discrepancy is partially due to the solid concentration having a true value of
0.244 rather than the estimated 0.25 used to set the fluid material properties.
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(a) (b) (c)

Figure 5: 2D velocity magnitude field snapshots at time (a) 1.0s, (b) 5.0s and (c) 100.0s.

Figure 6: Steady-state mid-plane velocity results for the lid-driven cavity at Re = 1000.

4 CONCLUSIONS

This work describes a renormalised meshless scheme for simulating fluid-solid mixing
resolved at the continuum scale using GFD operators. The scheme was applied to the
classic lid-driven cavity problem, which was modified to incorporate multi-species flow.
The solid volume concentration field was initialised with a step discontinuity.

It was found that the concentration distribution decayed in a two-regime process. The
first regime was driven primarily by the mixing of the continuum, while the second was
primarily driven by diffusion. The combined effect resulted in uniform concentration
distribution at the final simulation time. The final average concentration of 0.244 was
compared to the expected concentration of 0.249, showing a 2.0% violation in the solid
phase mass conservation.

The velocity field was shown to be affected by the concentration field, with its evolution
responding to the increased flow resistance resulting from an increased density and viscos-
ity. Even so, as the simulation progressed towards steady-state, the results converged to
those of the classic lid-driven cavity case with a maximum error of 2.2% when compared
against FVM results.

Opportunities for further verification and validation studies are present, especially
for free surface cases. Furthermore, the development of calibration techniques for the
numerical advection and diffusion parameters must be established. Finally, multi-physics
coupling with other fluid-solid schemes such as fully- and under-resolved GFD-DEM can
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also be explored to create multi-fidelity fluid-granular coupling schemes.
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