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Summary

The atudy and prediction of [ailure is one of the most challenging issues of mechanical
and struetural engineering, In this context, an accurate analysis of strain localisation,
which typically triggers ailure in many softening materials such as steel or conerote, is of
great interast. The classical limit-state methods used to study localisation phenomena are
ingnflicient, and the finite element method appears as a proper analysis tool.

Unlortunately, the numerical simulation of strain localisation in contiunum mechanics
has to face two important difficulties: the need of a mathematically consistent constitutive
model on one side, and of a cost-effective computational strategy capable of capturing the
mnlti-seale nature of localigation problems on the other side, Several formulations have
appeared Lo overcome the first challenge, nsually known as regularisation technigues or
localisation limiters. On the other hand, adaptivity appears as the natural solation to the
computational difficulty,

In the present work, an adaptive remeshing procedure based on a residual type error
estimator s presented in the context of quasi-static localisation problems with softening
malorials, Two well-known localisation limiters have been used: rate dependence has heen
nged Lo regularise Jy softening plasticity (via Perzyna viscoplasticity) presenting shear band
localisation, and the Mazars damage model with nonlocal regularisation has heen applied
o simulate Tracture loealisation. These constitutive models simulale steel and concrete
rospectively.

Numerical examplea show the good performance of the presented procedure, that cap-
tires aecurately and costoeffectively the micre-scale of strain loealisation problems, Farther-
more, Lhis error estimator driven adaptive procedure constitules an objective alternative Lo
the usual approaches that are hased on error indicators.

Several topies of interest are also dealt with throughout the work, such as the analysis of
Lhe shear band width in quasi-static two-dimensional problems with Perzyna viscoplasticity,
the influence of pollution errors in the adaptive process. or the nse of error estimation
analysis o dediee o tesh error indicators,
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Chapter 1

INTRODUCTION

1.1 Motivation

The study and predietion of failure is one of the most challenging issues of mechanical wnd
atroctural engineering,  While the linear analysis of solids and structures is well-known,
the nonlinear response in advanced stages, which is of greal practical interest, presents
important difficulties. In particular, certaln materials exhibit a softening behaviour, that
is & negative slope in fhe experimentally measured load-displacement curve, when they
are hrought to advanced inelagtic stages, and show a very particular failure mode: strain
localisation (see [5], [6], [24], [16], [33], [30]). In these materials, [ailure is triggered by a very
intense deformation eccurring in a small part of the solid, while the rest of the solid remains
almost in the elastic regime. In fact, strain softening is noither necessary nor sufficient to
abtain atrain localisation: for instance, localisalion can occur as a consequence of a non-
associative flow rule (see [25]). Despite this, softening and strain localisation are torms very
often related in the literature, as the references given above show (see also [26]),

Two different types of sirain localisation can be distinguished, mode:l and mode-11
localisation (see [30]). Mode-1 corresponds to fractures (high tensile sirains localised in a
narrow region ). that brittle materials such as conerele and rocks present when bronght 1o
fallure, Mode-IT localisation appears when the frictional properties of the material are more
critical than the cohesive ones, and iz commonly known as shear banding, since high shear
strains are mobilised in a narow band, This localisation mode is typical of metals, soils
andl polymers,

Despite the prediction of localisation phenomena encouniered with such softening ma.
berinls is extremely important in faflure analysis, accurate calenlations are rarely found in
practical engineering applications. Indeed, the clagsical limit-state theory does not predict
the localisation pattern and only provides bounds of the ultimate carrying load, In addition,
this theory does not supply information about the deformations reached in failure. Thus,
nuinerical methods, and in particular the Finite Eloment Method, seom an appropriate tool
to study accurately the inceplion of localisation and the posi-localisation stages leading to
failure.
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The numerical sinulation of strain localisalion in continuum mechanics lias Lo fee two
important difficulties ([9]; [24], [19]). The first one is of theoretical nature, and is related to
the neod of a mathematically consistent constitntive model; when classical rate independent
local models are used, the governing equations change of type al the inception of localisation
in the localised region, and consequently do not liave proper boundary conditions. Thus,
the mathematical problem becomey ill-posed, This unproper constitutive modelling leads to
unrealistic results (Tailure takes place without energy dissipation) and has severe numerical
congequences: the numerical solution iz pathologically mesh dependent, This difficulty
it nsnally overcome using the so-called regularization technigues, that restore the well-
posedness of the problem introducing an internal length into the equationa.

The second important difficulty that arvises in the numerical simulation of strain loeal-
isation stems from the fact that these problems have two scales: the localised region (mi-
croscale) is Ly pieally very narrow in comparison to the whole bady dimensions (macroscale),
and very large variations of the material variables take place in this small zone. Therefore,
the localised zone requires a very rich discretisation in order to describe properly the phe-
nowenon and the deformation field, Unfortunately, sinee the localisation shape and stric-
ture are not known a priori, a prohibitive computational effort is needed to capture the
microscale using a uniform fine mesh. Thus, an efficient computational strategy is needed
in order to capture accurately the microscale of the problem with cost-sffectiveness, In this
context, adaptivity appears as the natural solution.

1.2 State of the art

According to what has been said in the previeus paragraphs, the two main challenges of
numerical simulation of stiain localisalion aie

e A mathematically consistent constitutive model, in agreement with the moechanical
behaviour (atrain softening)

o A costeeffective computational strategy capturing the microscale of the localisation
problem

The first subject has been widely atudied, and many references dealing with regularisation
techniques can be found. On the contrary, less work has been done on the second one, for
which adaptivity seems to be the most natural and encouraging solution.

Regularisation techniques

In the study of localisation in solids. different approaches have been devised to avercome
the difficulties enconntered in its analysis. One possible approacli is to consider the limit
problem, and consequently, accepl discontinuities of the displacement field across some
surfaces (strong discontinuity approach), As a matter of fact, discontinuities, understood ju
a diatributional sense, emanate from classical perfect plasticity (see [20]). Another possible
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approach is to regularise the problem precluding any discontinuity in the displacement field.
The present work Tocuses on the latter approach.

Many regularisation technigues or localisation limiters have been proposed to eliminate
the undesirable mesli dependence of the pumerieal solution when clasgical softening rate
independont local plasticity is used (see []()] for a review), Some ad-lioc solutions (ake
material parameters, siuch as the soltening modulus or the energy dissipation, dependent on
the element size. Nevertheless, most of the localisation limiters act at the constitutive level,
and can be seen as enhanced or enriched continua. They introdice explicitly or implicitly
an inlernal length seale into the prablem. These techniques keep the type of the governing
equations unchanged (hyperbolic in the transient case and elliptic in the static case) and
fhe numerical solutions suffer no longer (rom mesh sengitivity. The internal length seale
and its relation with the localisation zone dimensions has been widely studied and is an
important feature of strain localisation problems.

One pogsibility to obtain a well-posed problem is the nse of Cosseral micropalar contin-
num, which adds degrees of freedom corresponding to rotations (see [30]). Models including
spacial derivatives of the gtate variables, sueh as thie gradient of the internal variable in the
yield function, or introducing additional higher order terms in he strain expression (see
[13]) also lead 1o well-posed problems and mesh objective numerical results.

Lii particular, the present work focuses on viscoplastic regularisation (see [13], [16], [30]),
used in combination with Jy plasticity (leading to ModeI1 localisation). The constitutive
modal introdices & material rate dependence, which implicitly defines an internal length
scale, This localisation limiter has been siuceesslully used (o regularise transtent problems
([16], [6], [33], [30]. [9]), and quasi-static problems (see [16]. [36], [5]). The internal length
acale and the shear band width in transient problems have been widely studied, whereas
little is known abont the sealing of the shear band in quasi-static two dimensional problems
([16] and [5] analyse the shear band width only in one dimensional problems).

Nonlocal regularisation (seo [27], [23]) is also treated in this work, combined with Mazars
damage model, which simulates brittle materials presenting Mode-I localisation. This non-
local formulation consists on averaging certain state variables in a neighbourhood of every
poirit.

Adaptivity applied to strain localisation problems

In the adapiive procedures, the discretisation is successively adapted to the solution accord-
g to some information about the error, in the aim of reaching an accurate approximation
with an optimal compitational cost. This procednres are nowadays cansidered to be almast
unavoldable in any complete Pinite Element analysis.

Whereas adaptivity has been widely developed in linear elasticity and some nonlinear
problems, less experionce is available on adaptivity applied to strain localisation ([19]).
Nevertheless, several references on this topic have appeared in the reeent years: remeshing
procedures are used in [39], [20] and [37] in the context of static strain localisation problems,
while [6], [9] and [19] apply refinement procedures to transient problems. Tn [24] an ALE
formulation, which can be seen as a remeshing tool, is used in transient problems.
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Howsever, none of these anthors use adaptivity based on a posterion error estinalion;
they all use arror indicators, which ave cheap bit often lack theoretical foundations and are
baged on heuristic assumptions, As a matler of fact, most of the existing standard error
estimators can only be used in elliptic problems, and the transient problem ia hyperbolic.
On the other hand, in [39], [20] and [37]. where static problems are treated, no regularisation
technique has been used, and consequently, the governing equations lose the ellipticity in
certain Zones at Lhe ineeption ol localisation, and a standard ervor estimator cannot be nsed
either. Apart from this, the Tact that some popular error estimators have a weak theoretical
background in nonlinear problems can also explain the lack of experience i error estimaltion
analyais for localisation problems.

1.3 Scope and objectives

I this study, attention s restiicted to adaplive remeshing based on error estimation in
localisation problems. That is, the goal is Lo provide an sbjective alternative to the usual
adaptive procedures based on error indicators. Since the error estimation requires elliptic
problems, the work focuses on quasi-static regulirised problems: Pergyua softening vis
coplasticity is used to model a metal presenting shear bands, and Mazars nonlocal maodel
to simulate concrete, which is bound to show fractures when brought to failure.

Apart from this general goal, the present work has other partial abjectives summarised
below

o Pregent o general and efficient residual type error estimator, able to capture pollution
errors and applicable Lo general nonlinear problems

e Study in detail Perzyna viscoplasticity behaviour, and its regularising effect in quasi-
static problems, focusing on the shear band width

¢ Perform adaptivity based on error estimation in problems regularised via Perzyna vis-
coplasticity, presenting a computationally efficient approach that answers objectively
to the basic ssues of adaptivity

e Investigate the influence of considering the pollution errors in the adaptive process

s Present the error estimator driven adaplive procedure as a powerful tool to investigale
error indicators

s [llustrate the great banefits and the suitability of the adaplive procedure in conmiplex
localisation problems, capturing the microscale with cost-effectivencss

e Perform adaptivity based on error estimation in Mode-I localisation problems using
Mazars damage model and nonlocal regularisation
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1.4 Outline of the work

Chapter 2 presents a general and effective residual type error estimator by Diez (1996) (see
[8]), in the context of mechanical problems. This a posteriori error estimator Joans on a
salid mathematical background, captures the pollution errors and is applicable to nonlinear
problems. This chapter pays a special attention to the computational aspects invelved i
the implementation of the estimator.

ln chapter 3, viscoplastic regularisation wsing Perzyna model is analysod in problems
presenting shear banding, and mesh objective numerical results are obtained, The ineap-
tion of localisation and the post-localisation stages are also studied in detail. Finally, the
infuence of several parameters on the shear band width is investigated,

[n chapter 4. once the adaptive procedure is presented, adaptive remeshing based o
orror estimation is performed in problems regularised via Perzyna viscoplasticity. Sev-
eral numerical examples show that this procedure answers objectively to the fundamental
guestions of where to it the elements and how many elementa are needed (o oblain ae-
curate numerical solutions. Furthermore, this objective approach can be very useful to
dediice or teasl error indicators, that constitute a cheap, but often not rigorous, alternative
to error estimation. The influence of the pollution errors on the adaptive process is also
investigated. Finally, more complex and realistic examples are prosented, showing that the
adaplive procedure is a compulational strategy that capinves aceurately and cost-effectively
the microseale of the problem and the a priori unknown shear band pattern. As a maiter
of fact, a non-adaptive Finite Element analysis of these examples providing good accuracy
requires an enormons computational effort, becoming prohibitive in practical engineering
calculations.

The concluding remarks are presented in chapter 5, as well as the future developments.

[ appendixs A, Perzyna constitutive model is formulated and its gualitative behaviour
stidied in detail. Some relevant aspects, like its limit behaviour and the viscous overstress
that appear, are also dealt with. The implomentation of the model is validated with some
simple tests.

Finally, appondix B illustrates the use of the adaptive procedure Lo loealisation problems
with nonlocal regularisation. Mazars nonloeal damage model is presented, and adaptivity
i5 performed in a fracture localisation problem.
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Chapter 2

ERROR ESTIMATION AND
ADAPTIVITY

This chapter reviews error estimation, linked to adaptative procedures, i the aimn of ap-
plying these techniques to nonlinear problems in chapter 4. A detailed discussion on error
egtimation in general or remeshing strategies is beyond the seope of Lhis ehapter. Nevertle-
less, the error estimator employed in this work is deseribed in quite detail, including some
computational aspects of interest,

[n section 2.1, error estimation in Finite Floment analysis is introduced in the context of
adaptative procedures. These techniques are outlined, focusing on a particular remeshing
strategy, b remeshing.

Then, in section 2.2, the concept of error estimator is defined and the most important
error estimator families are prosented, reviewing their principal characteristics,

Section 2.3 presents an efficient and general residual Lype error estimator, in the contekxt
of mechanical linear problems. This estimator avoids the caleulation of flux jumps, which
is the main drawback of usual residual type estimators, The generalisation to the nonlinear
case occlpies section 2.4,

Finally, the pollution errors estimation and the computational aspects of the estimator
are developed in sections 2.5 and 2.6,

2.1 Introduction

Moaotivation

The practical problems encountered in engineering are frequently related with the caleu-
lation of certain magnitides of interest in real sitnations. To achieve these calculations,
three conceptual ateps can be distinguished, Firstly the real situation is identified 1o a
physical model. This physical model leads to a mathematical problem that needs Lo be
solved, exactly i possible, and approximately in maost cases.

|
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Obviously, this process introduces errors in every step, ranging from our deficient percep-
tion of reality to the simplifications made to formulate the mathematical problem. Avoiding
these errors seems difficult, and, what is more, nnreasonable when the marginal cost of aceu-
racy becomes Loo high. Nevertheless, a knowledge of the errors we are assuming is desirable,
and even necessary. In the present work, only the errors made solving the mathematical
prablem are freated.

In civil engineering, the mathematical problem that appears is very often a Partial
Differential Equation, which ¢an be solved analytically only in very particular situations,
Nowadays, the most popular method to approximate the solution of these problems is the
linite element method.

Using a discretisation of the domain, the finite clement method transforms the differen
tial equations inte an algebraic system of equations, introducing a first source of errors into
the golution, the diseretisation errors, The aceurncy of the discretisation is ruled by hotl
the geometry of the mesh (element size) and the degree of the interpolation, This system of
equations is then solved numerically. This atep brings new errors, such as round-off errors.
Nevertheless, these errors are negligible in front of the discretisation errors,

[ the recent years, much work has been done in order Lo develop procedures that
control the acenracy of the finite element method, by means of setfing the discretisation
errors Lo a preseribed level with a reasonable cost, These techniques are known as adaptative
procedires, and ertor estimation is an essential part of them.

Adaptative procedures based on error estimation

As it has been said, the finite element method approximates a continuous problem into a
discrete one, The process of discretisation leads o a problem which is easy to solve, hul
introduces discretisation ervors, The goal of adapiative procedures s to obtain a solution
with a preseribed aceuracy, using an optimal diseretisation to minimize the computational
ol

5o, [or a given discretisation. an approximate solution is found. The next step is to
estimate the error using an a posteriori error estimator, If the error is acceptable, the
current approximation ix kept. On the contrary, if it is not, the information about the
error is used to build a new discretisation adapted to the solution i an optimal manner,
according to a remeshing strategy. This process Is carried out until an acceptable solution
is obtained,

Remeshing strategies are based on-a priord error estimators. A general expression for a
priori error estimators is

le|| = Ch™, (2.1)

whera |le]| is a measure of the error, i the characteristic size of the mesh, €' an unknown
conatant and m is directly related to the degree of the interpolation of the approximation
P This expression is obtained from the theoretical analysis of the method, and is useless to
vatimate Lhe evror as long as € s not known. However, it makes elewy that Lhe apror cay be
reduced cither reducing the element size h, or increasing the degree of the interpolation p.
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One possibility is then to adapt the element size aver the domain aceording Lo Lhe error
eatimation. The element size is reduced where it ix needed, and inerensed where tlie getnal
accuracy is higher than the preseribed one. Two difforent ways of remeshing based on the
element size can be distinguished. h remeshing and r remeshing. In b remeshing, a brand
new mesh is generated once the error has been estimated, and a new calculation ix earriad
out on the new discretisation. If a powerful mesh generator is available, this remeshing s
very simple. On the other hand, r remeshing maintaing the Lopology of the mesh, and only
changes the position of the nodes to modify the element size over the domain, Therafore,
the information related with the connectivity of the mesh is identical in every step ol the
adaplative process. However, since the number of dogrees of reedom does nod change, il is
not possible to guaraniee a preseribed accuracy in all the cases.

Another possibility of changing the discrotisation is to nse different interpolation fune-
tions, Then, the mesh geometry is kept and the new degreos of fresdom correspond 1o
higher degree polynomials wsed to interpolate. This is known as p remeshing, and it is usu-
ally combined with A remeshing, However, the implementation of this kind of remeshing is
difficult and requires the use of hierarchic interpolation,

h remeshing based on error estimation

[ this work, & remeshing is used. Tt lies in three basic tools, & mesl generator, a standard
finite element code and an error estimator. In the present work, the quadrilateral mesh
generator developed by Sarrate (1006) (see [28]) is used. This mesh generator supplies
excellent unstructured meshes, both ensuring the preseribed clement size and e regularity
of the elements. The finite element code nsed is CASTEM 2000, an object oriented code
eapecially well suited to develop new procedures. Finally, the error estimator employed is
a residual type estimator by Diez (1996) (see [8]), deseribed in the following sections. The
remeshing process based on error estimation is deseribed in detail halow,

Basically, tha remeshing procedure answers in an objective way the questions of where
to remesh, and how mueh remeshing is needed. Firstly, the error of the solution in a given
discretisation is estimated. Then, the adaptive procedure requires a remeshing criterion
in order to generate the input for the mesh generator. The error estimator furnishes local
measures of the error in each element, that iy, |lelle for & = 1.... This sel of numbers
describes the spatial distribution of the error. The input of o mesh generator is a distribution
of desired element size in the computational domain. Generally, this is described by the
desired element size in each clement of the current mesh, that is, hy for k = Lyoos Thus, a
remaeshing critorion is required to Lranslate ||e||, into hy.

Different remeshing criteria have been defined (see [34], (18], [14]; [8]) leading to quite
different optimal meshes. Thig is becanse the nndetlying optimality criteria are different.
In fact, all these remeshing criteria tend to equidistribute the error in some sense (absolute
error, relative error, specific error). The eholce of the error fiunction that has to be uniform
is related with the underlying eptimality criterion.

Figure 2.1 provides illustration of the adaptive procedure used here. The erueial role of
the error estimator in the procedure is evident from the figure.
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Flgure 2,1: Adaptive procedure baged on error estimalion

2.2 Classification of error estimators

As it has been shown, the error estimation is a key feature in the adaptative procedures.
Firat of all, what is meant by an errop estimation should be clear, There is a first dis-
tinetion between a priori estimators and a posteriori estimators. The former are derived
from theoretical analysis of the finite clement method to abtain the convergence results of
the method, but are useless to estimate the error of a given approximation (see equation
2.1). This work deals with the latter, which have the practical applications described in the
previous seclion,

On the other hand, there is another distinetion between the error eatimators and the
ervor indicators. While the mathematicians consider that an ervor estimator approximating
a certain norm of the error ||e|| should behave like a norm equivalent to I| < |l; engineers
have a wider definition of error estimators. Thaey talk of error indicators when a qualitalive
information of the error is given, and of error estimators when a particular norm of the
eftor g approxXimatod.

The error indicators usnally involve straightforward computations. Therelore, they con-
gtitute a cheap alternative to error estimation in an adaptative remeshing process, whore
sevaral estimations are usually needed. However, error indicators usually lean on heuristic
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assumptions, and can lead Lo bad meshes, In addition, they supply information about where
the elements must be, but not how many elements are needed, in other words, qualitative
information.

The following soctions deal with a posteriori error estimators in the engineering sense.
Before the main two families of error estimators, the flux projection estimators (8ee [35]) and
[38]) and the residual type estimators (seo [2), [1], [3]) are presented. it is worth enunciating
the desirable properties of an error estimator, in order to judge them fairly. These properties
can be summarised as follows

# Good performance; so that the estimated error approximates woll ihe exact ervor,
s Simplicity, in the sense of a natural infegration in a standard FE code.

Theoretical basis and a solid mathematical background.

e Generality, 8o that it can be used in a wide range of situations.

Computalional economy,

Flux projection error estimators

These estimators compare the flux of the approximate solution (in mechanics, the discon-
linuows stress field) with a smoothed flux. 1t seems obvious that the smoothed solution is
better than the original one. Therefore, the error in Duxes can be estimated, This estimator
is simple and shows a good performance in many cases.

From the theoretical point of view, the estimator requires the superconvergent properties
of cartain points that are used ag sample points to smooth the solution, Nevertlieless,
superconvergence is not assured in general, and the estimator lacks theoretical basis in
most cases. In addition, the error can only bo measured with norms that ean be expressed
it terms of fluxes, Moreover, in nonlinear problems, even if superconvergent properties are
assured, this kind of error estimator does not have theoretical basis,

Thus, flux projection estimators are simple and robust, but apply only in particular
cases and often lack of theoretical basis.

Residual {ype error estimators

These estimators solve local problems in which the residual is a source term. Although the
general idea is very simple, the detailed definition of a residual type estimator encounters a
major difficulty, The boundary conditions of these local problems need to be approximated
from the Hux jumps. To do this, elementary equilibrinm conditions are imposed. AL the end,
the eatimation becomes an annoying and expensive task, Because of this, these estimators
do not perform well and are not very popular in commercial cades, despite their strong
thearatical basis and wide generaljty.

T'he ervor estimator by Diez (1996) maintains the theoretical basis and the generality
of the estimators of this kind aveiding the approximation of the local boundary conditions
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from the Mux jumps. An efficient and low-eost eatimalion resulta, Lhal can be uplpljud in a
wide range of situations, such ag noulinear problems or meshes involving different kinds of
clements.

This error estimator is presented in sections 2.3, 2. and 2.5 in the environment of
mechanical problems, although it ean be used for any boundary value elliptic problem. For
thig reason, the general mathematical formulation is maintained making it easy to genaralise
the estimator Lo other kind of problams.

2.3 Error estimation for linear problems

2.3.1 'The error equation: a residual problem

The governing equations of the mechauical problem are presented below. [ is a second ovder
Partial Differential Equation. and represents the strong form of the problem. Depending
on the constitutive model, that is the relation between siraing and stresses, and the strain-
displacement velation, the problem is linear or not. Oun the other hand, the problem is
elliptic for a wide range of constitutive models, and therefore Lhe error estimation can be
used in these cases. The unknown is a displacement field u defined in the domain @ thai
verifies

Vea(w)+b = 0 in §
o= gy only (2:2)
aluw):n = ¢, onl,

where a(u) stands for the stress tensor associated with the displacements u, b is the body
force term and gy and g, are the prescribed values of Divichlet and Neumann boundary
conditions respectively, In eguation 2.2, the stress tensor er(u) plays the role of the fnx in
a general problem.

By means of the Virtual Work Principle or any other variational principle, a weak lorm
of the problem can be formulated, Thus, the solution to the problem poesed in equation 2.2
can also be characterized as (he solution of a wesk problem, The solution w that has to
be approximated lieg in & space V that accounts for the Dirichlet boundary conditions, and
verifies the following integral equation

a{uw.v) = {{v) lor all v &V, (2.3)

where Lhe forms a-, ) and [(-) are defined in V=V and V, respectively, and can be expressed
a8

i, v) = f“ a(u):e(v) d and [(v)= '/“ bew ) + / i - o dl, (2.4)

L L]

In particular, linear elasticity leads 1o lincar selladjoint elliptic problems, and consequently
1o bilinear symmetric positive definite forms, hence, sealar products. In this case, er(-) and
e(+) (see equation 2.4) are linear functions of their arguments,
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The Galerkin finite element method provides an approximation wy, o w, lying in a
finte-dimensional space Vi, © V and verilying

aluy, vy) = (o) for all v, € V. (2.5)
[ linear problems, equation 2.5 leads to the linear system of equations

Ky = G, (2.6)

wliere Ky, is the atiffness matrix, £§*' is the external foree term and the unknown uy, is the

vector of nodal displacements of wy,. The matrix Ky is the discrete version of the form a(-, )
and the vector I',‘I"’“ discrotizes [(-). In linear elasticity, K is a symmetric positive definite
matrix, and owing to this, a sealar product in the space V).
In more physical terms, equation 2.6 can also be exprossed as a balance between internal
and external nodal forces _
f;lur.(““ = ﬁ:“: (27)

f}l‘“( uy) can be seen as the vector discretization of a(uy,-) in V).

The finite-dimensional space V), is generated by a linite slement mesl of characteriatic
aige b, If al-, ) is a scalar product, wy, can be geen as the projection of w on ¥V, (following
the orthogonality defined by a(-,-)). In this case, the error ¢ := u = wy, is orthogonal to
Vi, This error ean also be caracterised in terms of a weak problem, rearranging equation
2.3 and using the bilinearity of the form a(., ). Thus, the error e is the element in ¥V (hat
vorifies

a(e, v) = l{w) = aluy, ») for all vV, (2.8)

Note that the right hand side of equation 2.8 is a residual term which accounts for the
non-vertfication of equation 2.3,

As previously sald, the objective of this error estimator s to provide both a global value
al the error and its spatial distribution, So, il an approximation of the arror is found in a
subspace of ¥V, a norm to measnre il must be defined. One of the most popular options is
to use Lhe energy norm, induced by the scalar product af-.-)

llel i= [afe.e)]'/? . (2.9)

This is becanse || - || has a precise physical meaning and ean be easily restricted in order
to obiain associated local norms. In addition, this norm can be easily computed discretely
using the stiffuess matix, the matrix of the sealar product, for @ certain diseratisation. In
the following. the restiction of || ; || to the element £ (k= 1,2,...) of the mesh iz denoted
by |[ - [[&- The value of ||#||x in each element must be estimated in order (o describe the
spatial distribution of e

2.3.2 The reference error

The error e is the unknown of the residual problem defined by equation 2.8. Of course, it
18 as difhicnlt to solve this problem as the original one (see squation 2.3). In other words, il
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it was possible to obtain the exact error, the exact solution would be found, Therefore, tlie
only attainable goal is 1o obtain an approximation to e, say e This approximation to the
error can be easily defined from a new approximation Lo u, say u - Indeed, let u; be a finite
cloment approximalion associated with a finer mesh of characteristic size h (fa << h). Then,
ty, is nnich more precise than uy, and, therelore, e := u; ~ uy, is & good approximation of
. This is formally shown in [17] as a consequence of the a priori convergence analysis of
the finite slement method,

In fact, computing w;, and then obtaining e is equivalent to directly solving the error
equation 2.8 using the finer mesh, Denoting by V;, the interpolation space associated with
this finer mesh, ¢), 18 the element of Y thal verifies

afeg ;) = (v;) = aliy,vy) for all v; € V. (2.10)

The approximation ¢, ean be taken as o reference ervor, That is, instead of the original
goal of computing e, the goal is switcled to approximating e, Therefore, the refined mesh
of characteristic size h discretizing the whole demain €2 is denoted as the reference mesh.

Note thal, since Galerkin finite olements are used again, solving equation 2.10 i equiv-
alent to projecting the error ¢ on V. Assuming that the original projection space V), is
included in the new space V| it is obvious that to obtain a nonzero approximation to e,
the new space muat be “bigger” than V), (recall that e is orthogonal to V). That is, V;;
must be associated with a richer interpolation. “This new space can be constructed either
reducing the mesh size (as it has been presented, h << h) or increaging the degree of the
interpolation polynomials (p refinement).

Figure 2.2 shows a graphic illustration of the meaning of the reference error and its
relation with the residual. A variation of this figure provides a good understanding for
the nonlinear ease, The left hand side term of equation 2.6 is associated with the internal
forces defined in the coarse mesh characterised by #: i = Kjuy,. Internal forces are
also defined in the relerence mesh: t"" = Kju;. Recall le.i the vight hand side term of
equation 2.6 is associated with (he extornal forces: the external foree voctor discretized in
the coarse computational mesh is denoted by £** and the equivalent in the finer reforence
mesh is denoted by %%, Thus, solving the initial problem is equivalent to finding the value
of wy, Lthat makes f'"”(m,) = ™ (intersection of upper sloped line and the lower horizontal
line). The reference solution w; is computed in the same fashion. This is represented by
the intersection of lower sloped line and upper Lorizontal line, (Note that the coarse mesh
leads to a stiffer problem than the finer one). Figure 2.2 shows that the reference error o
and the residual, defined as

rj () = }I"’-(-u,,) — £, (2.11)
are related in terms of the stiffness mabrix in the reforence mesl, K. In faet, equation 2.10
leads to the linear system ol equations

Kpep = —rp{up), (2.12)

where e; is the veetor of nodal displacements of the reference error ey This exprossion
shows clearly that the residual ean be seen ag the internal forces associated to the reference
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e ror
.l‘}:lt(’e}}) = =1 (w), (2.13)

In more general terms, this residual is the column vector resulting Irom diseretizing the
residual form a(uy, ) = I(+) (soe equation 2.10) in V.

fA r’i‘nt

K;
!":L’Cl
; fir
rj(uy) {
il'i'.,', 'H.'rl }(ll
 —

Fignre 2.2 Graphie interpretation of reference error in linear problems

Nevertheless, the standard computation of e must be avoided due io its prohibitive
computational cost. In effect, the refined mesh generating V) has a number of degrees of
freedom much greater than the original mesh and, therefore, the cost of computing ¢ is
much larger than the cost of computing wy.

[ the remainder of Lhis section a niethod for approximating ¢, by low cost local compn-
Lations is presented. This method is splitted in two phases. First, asimple residual problem
is solved ingide each element and an interior estimate is obtained. Second, a new family
of simple problems is considered and the interior estimate s complomented adding a new
contribution. The first phase iz called interior estimation and the second one g nayllq_'(i pateh
eatimation,

2.3.3 Interior estimation

In ::I;‘tlm' to avoid unaflordable computations, the error estimation must be based on the
resolution of local problems. This is standard in residual type error estimators, On the
other hand, the set of clements 2 is the natural partition of the domain, Thus, it is
natural Lo solve local problems element by element.
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Following this rationale, a reference mesh is constructed by the assembly of submeshos
discretizing each element. These elementary submeshes are built from a discretization of the
relerence element mapped into the elements of the actual mesh (see lgure 2.3), Proceeding
in thiz way, the original projection space Vy, is inclided in the space V; associated to the
relerence maesh.

o \ N
. e .,

o N
\ —— b \\\ .\'\-L_I hi‘«._. =

(b) (e)

Figure 2.8: (a), reference submesh mapped into (b), an element, to get (e), an clementary
gubmesh

The, the elomentary submeshes can be used te solve the error equation 2.4 on each
elemant @2, of the original mesh, However, the solution of such problems requires proper
boundary conditions for the error. Most of residual type srror estimators (see [3], [1],
[12]), solve equation 2.8 preseribing the lux around eacli element Qy, that is, solving pure
Neumann problems. The preseribed values of error luxes are found splitting the jump of
the fluges of wy, across the elemont edges. The computation of the flux jumps across the
edges 18 expensive, The splitting procedure usually balanees the Quxes around the element
and, therefore, is generally involved.

[ this work. the elementary problems are solved in a straightlorward manner imposing
homogeneois Dirichlet conditions for the ervor, along the boundary of each element €, (see
[8]). That is, equation 2.8 is solved at element level and the error is prescribed to zero in all
the boundary nodes of the clementary submesh, This is the simplest choice for these local
boundary conditions. This discrete local problem leads to a system of equations

Kf &4 = ~rf, (2.14)

where Kf i the stiffness matrix resulting of discretizing al-,+) in the elementary submesh of
§joy and vy the the residual vp(ng) (see equation 2.13) restiicted to the elementary submesh.
The vector of nodal displacements &), represents a fanetion £, interpolated in the elementary
submesh discretizing 2. The function £4 is taken ag an approximation to e ingide Q) but
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has been forced to vanish along the boundary of Q4. The local energy norm of the interior
estimate 25 can be directly computed as

lewll* = aley, 24) = G;{'I{iek = =} v, (2.15)

Note that the squared norm of the error is simply computed as Lhe scalar product of two
vectors, the estimated digplacement ercor and the force residual. Moreover, since £k hag its
support in £2;, local and global norms are equal: |jeg|| = [|eg]|s.

Once the elementary problems are solved, the local interior estimates ean be assembled
to build up a global estimate ¢ taking values in the whole domain £,

£= E“., (2.16)

k

Note that the interdor estimates agsociated with different elements are orthogonal sinee
they hava disjoint supports. Therefore, Pythagoras theorem holds and the norm of £ ean

he casily computed as )
el = 3 leall?, (2.17)
k

Both local and global interior estimates are projections of ¢ (and ¢;) on a subzpace
mcluded in V5, The inclusion in Vi, s verified because the element boundary degrees of
frecdom are ignored, according to the homogeneos Dirichlet boundary condition, which
also preserves global continuity. Consequently the norms of the interior extimates are lowat
bounds of the actual and relernuce errors:

Hell < Megll < flell —and — Jlexlle = llelle < lleglx < [fefls- (2.18)

The choice of the artificial bonudary condition may imply that lle]] << [e]|. This is a
conseqience of forcing the approximation £ to be zero aloug the boundaries of the elements,
in the so-called hidden points, Since the reference arror ;. can take nonzero values in all
these pointa, £ may be a poor approximation to ey In other words, interior residuals are
considered but the information contained in the flux Jumps s igtored..

2.3.4  Patch estimation and complete estimate

Once the mterjor estimate is computed, it is necessary to add the contribution of the flux
jumps, that is, to improve the error estimation by adding nonzero values in the element
boundaries. T'his can be done following the same idea of the interior estimation, precluding
the direct computation of flux jumps and avoiding the flux splitting procedure.

The interior estimate is based on solving local problems in the elements, This has been
done beeause using the finite clement method. elements (S, k= 1,2,,,.) are the natural
partition of the domain 2. But other partitions can also be nsed. Let ug consider a new
family of disjoint subdomains (Ap, [ = 1,2... .] covering €. Bach one of these subdomalns
Aroverlaps a few number of elements. Morcover, these subdomains include the boundaries
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N S

Pigure 2,4: Patch submesh centered in a node of the computational mesh

of the elements. In order to simplify the exposition, in the following, the subdomaing Ay are
called patelies. Using the elementary submeshes of figure 2.3, the most natural choice for
patch subdomains is to associate them with the nodes of the mesh: cach lm*"‘\'h ia associated
with a node and ineludes a fourth of every element sharing the node(see fipgure 2.4 for an
illustration).

The idea is to use this new partition to define new local problems for the error and to
solve them. Local houndary conditions are imposed in the same fashion as in the previous
phase (interior estimate). A new approximation to the error is obtained. This new approx-
imation takes nonzero values in the boundary of the elements, where the interior estimate
£ vanishes. Thus, the number of hidden points is drastically reduced. In fact, there are still
o few. For instance, if the choice for the patches is the one shown in figure 2.4, the ervor
estimation in the centre of the element edges is forced to zero.

[n order to solve Lhese problems sach pateh Aj must be discretizad by a patch submesh.
The diseretization of equation 2.8 using this patch submesh leads to a system of equations
analogous Lo equation 2.14:

Kf m= 1.'5', (2,15))

where 7; s nodal value vector repr Pscmtmg tlie pa.l.t_ll eatimate m. Sinee patches cover
the edges of the elements, the veetor rf, which is the restriction of the residual vj(uy)
in equation 2,13 to the patch submesh, accounts for the residual associated with the flux
jumps,

Using the patel estimate 7, local and global estimates can be computed following
equations analogous to 2.15 and 2.17. This is hecaiise patches are disjoint shibdomains
and therefore, the pateh estimates are mutnally orthogonal, exactly as interior estimates,
In addition, a paich estimate 7 can be defined over the whole domain assembling the
local estimates, similarly to what is shown in equation 2.16, However, ift an clement §2)
and a pateh A; overlap, the associated interior estimate £p and pateh estimate m, are not
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orthogonal, Thal means that if the contributions of these two estimates are added, the lower
bound properties of equation 2.18 are lost. In order to preclude Uhis problem, each patch
eatimate i is forced 1o be orthoponal (according to al-,+)) to the global interior estimate .
That is, the linear condition

almg) =0 (2.20)

must be added to the linear system of equations (2.19). Of course, this condition can be
expressed locally in the pateh aubmesh, and takes the form

nf Kje =0, (2.21)
L —
=¥

whore g; is the restriction of £ to the pateh submesh, As it can be seen, this condition
15 equivalent to forcing to gera the scalar product between the pateh estimate n, and the
residual I‘;’Ir associaled to the interior estimale £, This residnal can bo seen as the restriction
to the pateh submesh of the internal forces associated 1o 2

fi"(e) = —r.. (2.22)

Note that ¢} 1. 16 different to the residial ry of equation 2.19, which is a restriction of the
uttmnal forces associated to the actual reference orror e, and not to the estimate £ In
fact, v .r accounts for the reactions caused by the artificial boundary conditions of zero error
imposed in the element boundaries during the interior estimation of &.

The linear condition ean be implemented using the Lagrange multipliers techuique (aee
[36]) and modifying the system of equations (2.19). Therefore, a complete estimate basged
on local computations can be siniply defined as ¢, = =47, and thanks to the orthogonality
of £ and 1, its norm can be easily computed from the interior and the pateh estimation

1 o o ] (2.23)

Of course, this equation is also verified at the element, level, and the lower hound propertios
hold for the complete estimate ¢, too

leall = Nl = llefl - andfle, flx = \/llflli 10l = Nleglle = lelle. (2.24)

ln practice, the computation of the norm of » restricted to 24 is nol natural, since it
involves several patehes, However, the goal of the estimator is to obfain an v]mnnnt.x,zy
error distribution. For this reason, the norm of the pateh estimate y corresponding to
the pateh Apcan be equidistributed in the overlapping clements, loosing the lower bound
properties at the local level, but simplifying the computations.

2.4 Error estimation for nonlinear problems

The error equation 2.8 is obtained from equation 2.3 using the [nearity of a(., +), that is. it
is assumed that
ale A o) = ale,v) + alug, ). (2.25)
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Nevertheless, the original error equation is
iale ) = !(' ) forall v e ¥, (2.26)

and, if the problem s nonlinear, equation 2.25 does not hold and, consequently. the error
doed not verily equation 2.8. However, equation 2.26 still holds, and the reforanee srror can
be charactorised as the solution of the following discrete nonlinear problem

ale; + wyyvy) = lvy) far all vp € V), (2.27)
This equation can be expressed as a balance between internal and external nodal forces
B w4 €)= £ (2.28)

This is a general nonlinear equation and musl be golved using any standard nonlinear
salver. In fact, this problem is equivalent to finding the velerence solution uy (recall that
uy = up + eg ). However, here, the inknown eg, is small compared with uy, and wy, ¢an be
taken as a fairly pood initial approximation to wy . Consequently, this nonlinear problem is
miich easier than the original one.

Following the idea of figure 2.2, figure 2.5 illustrates how the initial stress method is
uged to solve the problem of equation 2.28. In this ease internal forces are nonlinear and
therefore wy, and uy are found intersecting the respeclive external force lines (horizontal)
with the lines representing the internal force versus the displacement (which are not straight
lines becaude of the nonlinearity ). During the whole iteration process, the “slope” (iteration
matrix) is kept constant. Due to the tolerance in the convergence of the nonlinear solver,
the reference error e; and the estimated error are slightly different .

The main idea of the generalisation of the error estimator to noulinear cases is to re-
produce the same structure of the linear case with a different equation for the error. Thus,
in this ease the previous idea is used again, and the estimation of the error is aplitted in
two steps. Pirstly, elementary problems are solved with zero error boundary conditions,
and an interior estimate s computed. Secondly, the resiriction of equation 2.26 to every
pateh is solved. Tn this case, the orthogonality condition hetween the pateh estimate and
the interior estimate cannot be expressed in forms of the stiffuess matrix as in equation
2.21. Nevertheless, it can still be expressed as

ni v, =0, (2.29)

being !'f‘! the restriction Lo the pateh of the internal forees associated to the Interior sstimate,

Here, the energy cannot be measured using a standard norm related with the problem.
Howaver, following the idea of the previous case, an energelic guantity is defined that allows
Lo measure Lhe crror, Recall that the discrete expression of the local error norm given in
equation 2,15 is the scalar product of the displacement error vector and the residual force
varior

lleall? = =eixf and [jn[[* = ~nfr]. (2.30)
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estimated error

Figure 2.5: Graphic interpretation of reference error in nonlinear problems and fully non-
linear error estimation

Note that, sinee 1'}:= # v, the norm of 9, s not zerp (see equalion 2.29). This expression is
general and ¢an also be used in the nonlinenr casge,

This error estimator for nonlinear problems can be applied to mechanical problems in
which Mazars nonlocal damage modal is used. This is detailed in appendix B,

2.4.1 Tangent estimation

The error is assumed Lo be small compared with the solution. This stands alge foi tha
reference error, that is, |l << [jusll. Under this assumption, the nonlinear problems
should converge easily. Moreover, if this assumption is true, the nonlinearity of the first
argument of a(-,-) can be properly approximated using a tangent expangion around uy, (see
[71)

af e+, v) = aluy, v) + ay(ui e, v). (2.31)
where @, (w,;-,+) is the linear approximation to a(-, ) around . Replacing equation 2.31
in equation 2.26, a new ervor equation is found

ty (i€, m) = 1(0) = alug, v) for all v eV, (2.32)

Note that equation 2.32 is linear, which allows (o characterize the reference orror ey, ag the
salution of a linear prohlem

dalUpy e, 0p) = ”.'”f. ) — aluy, v;) for all v, € Vp, (2.33)
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which is analogous to equation 2.10. Therelore, the reference error ean be oblained solving
Lhe following linear systen

K, & = —vplun) = 57 = % (w), (2.3)
where K7 is the tangent matrix associated with the finer reference mesh. Again, this
equation ia linear, and has exactly the same structure of equation 2.12.

Following the idea of the graphic illustration of figures 2.2 and 2.5, figure 2.6 shows
how the nonlinear ease ean be treated using a tangent approximation. The relerence error
is approximated uging a tangent approximation of the ¢nrve representing the behaviour
arrociated with the finer mesh,

A

estimated error

m iy, :iu
e

f.".jl

Figure 2.6: Graphic intarpretation of reference error in nonlinear problems and error eshi-
mation using tangent approximation

Again, the computation of ¢; solving the linear system of eguations 2.34 is unaflordable,
and the reference error is approximated uging local computations. Therefore, the philosophy
of the linear approximation can be fully respected, splitting the approximaltion in two phases,
the interior eatimation and the patel estimation. Thus. the computation involves small and
linear local problems with trivial boundary conditions and the nonlinear genoralisation
inherits all the properties of the linear counterpart.

It is worth noting that, in the pateh estimation phase, the orthogonality condition ol
equation 2.20 must be replaced by ity tangent version

aplupsmng) =0 or g Kb, e =0, (2.35)
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belng £¢ the restriction of £ to the pateh Ay, Tn Fict, this equation is a particular case of
oguation 2.29.

Once interior and patch estimates are computed, they must be measured and added.
Thus, » nonlinear energy norm must be defined. If the tangent form a0y, -) is symn-
metric positive definite, which holds for elliptic sell-adjoint problems, the reference errar
ey, computed using equation 2.33 is the projection of the actual error e on Y, following
the sealar produet a,(uy; - ). Moreover, assuming that, for small enongh displacemenis,
the behaviour of the system is lnear and it is ruled by a,.(uy; -, ), the norm induced by
iy un; -5 +) 18 analogons Lo the linear energy norm defined in equation 2.9. Thus, the norm
induced by a,(uy; -, ) is taken to measure the error,

This tangent version of the nonlinear ervor esthmator can be used in problems with
Perzyna softening viscoplasticity, as it is justified in section 3.3.

2.5 Evaluation of the pollution error (global estimation)

2.5.1 Linear case

Until now, the method presented approximates a releronce error e, defined from a refined
mesh. Sinee the solution of the global problem in the refined mesh is unaffordable, the error
is approximated solving local problems. Nevertheless, the errors transmitted from one zone
of the demain to another cannot be taken into account by using purely local compntations.
Therelore, the so-called polhition ervors are not detected by Lhe error estimator.

Mucli attention is being paid to the pollution errors (see [32]), cansed by singularities of
the problem that “pollute’ the solution in the rest of the domain. In the current section, a
strategy to capture the error missed by the local computations is presented. This method
uges one global ealeulation with the original mesh, and leans on the fact that the local evror
estimator nol only provides measures of the error, but also the error as a function {or vector
of nodal displacemenis),

Characterisation of the global error

The previous sections deseribe a method 1o approximate the error ¢ of a finite element
solution wpy. delined in an interpolation space V. To do this, a reference mesh generating
a richer interpolation space ']"‘L ig conaiderad, The error of the solution in thiz referenee
mesh wy, is assumed 1o be negligible, and the estimated error is then an approximation of
the reference error defined as e; = w; — w),. An estimate ¢, Is then obtained from loeal
compiitations, and consequently contains only local information.

The global error is defined as the part of the reference error ¢; that the local estimate ¢,
[ails to caplure; e, 1= & = By Since ¢, is a projection of e, on o subspace of the reference
space Vi, e, and e are orthogonal according fo a(-, -}, and the following expression holds

|“ + ”Cu”“‘ (2.36)

e * = lle,
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According to egnation 2.10 and nsing the linearity of the first argument of a(-,-) and
the definition of the global error, ¢, can be characterised as the only element of ¥y that
varifies

ey v) = Hug) = i, 0y) = ale,, ) for all v €V, (2.7)
Again, the resolution of equation 2.37 is unaffordable, as it is 4 global problem in the
reference discretisation. Nevertheless, this equation can provide a simplified problem in
order to approximate e,

Approximation of the global error

In the previous cases in which a global problem in the reference mesh was encountered, the
excessive computational cost was precluded solving loeal problems. This cannot be done in
this case, as loug as global information about the error is required. Equation 2.37 allows
lo project e, on any subspace of Vi, in particular on V. By doing so, a low cost global
problem is obtained and ean be used to approximate the global error e,

Let e be the projection of £, on Vy, and consequently, an approximation of ¢ . The

ql-]J]')I"l‘Jx?.ll.h.l.i-Ld global ervor €7, is the only element of ¥, that verilies the integral equation

aler o) = (vy) = aluy, vy) = ale,,w) for all v, € V. (2.38)

Note that this projeciion on the original space cannot be used Lo approximate the reforence
arror ¢, which is orthogonal to Vy, that is

aleg, v,) = Loy ) — aluy, vy) = 0 for all v, € V. (2.39)

S0, according to equations 2.38 and 2,39, e can be characterised ag the only element of V),
that verifies
alel  vp) = —ale,,vy) Tor all vy € Vy. (2.10)

I practical terms, ¢, is identified to the vector of nodal displacements e, in Lhe computa-
tional mesh. Thus, equation 2.0 is equivalent Lo the lnear systom of equations

Kueq = -1y, (2.41)

where Ky s the stiffuess matrix associated Lo the computational mesh, which has already
been used to compute uy. The force term ), is associated to ale,, vy), and its computation
shows technical diffienlties that are discussed in section 2.6.

Ounee Ty, 15 oblained, Lhe system can be solved without additional cost provided that K,
has been factorised to solve the original problem. Furthermore, since er i a projection ol
¢ according to equation 2,36 a lower bound property of the global approximation holds

e 1?4 e 1P = el (2.42)

The contribution of ¢, can also be nccounted for locally, approximating the squared local
norm of the reference ervor by e, |7 + ||r”|[,,. Nevertheless, this local estimate may loose
the lower bound property, as long as the restrictions to an element of the patch estimation
7 and of €7, are not orthogonal in general,
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2.5.2 Nonlinear case

The main ideas of the pollution error estimation in finear problems can be easily exteqdad
to the nonlinear caze, If the first argumaent of af-, ] 15 nanlinear, equation 2,37 is not valid,
and a nonlinear problem characterizes the global error

alty + e, e, 0 ) = o) forall v € V). (2.4%)

Again, due 1o (he cosi of this problem (it is expressed in the reference mesl ), this equation
i approximated projecting ¢, in the space Vj,. Therefore, the problem actually solved is

atty + ¢+ ey op) = I{v,) for all € V). (2.44)

This nonlinear problem is much casier to solve than the original problem as long as the error
e is small in front of uy. Therefore, w, + €, can be taken as a good initial approximation.

As balore, if a tangent approximation of the nonlinear problem is available, the nonlinear
problem of equation 2.44 can be precluded solving the linear system

ap(up;el, o) = —ap(upie,, v) for all v, € Yy, (2.45)

which is analogous 1o equation 2.40. Therefore, (he global error £ can be obtained golving
a linear system of equations involving the tangent stiflness matrix, which may liave been
already factorised, depending on the nonlinear solver employed.

2.6 Computational aspects

In this section, several aspects related with the residual problems solved in the interior,
the pateh and the global estimation are discussed. The main diffieulty that appears is that
computations involving linctions interpolated in the coarse mesh and funetions interpolated
in the fine mesh must be carvied ouf. For nstance, f}""’[ iy ) involves hoth the reference mosh
(iﬂ and the coarse mesh (uy ). Therefore, functions in one discretization must be expressed
in the other one.

Firatly, the computational aspects related to the local prablems (interior and patch
esbimation) are developed, distingnishing the lnear and the nonlinear cases, Then, the
diffieultios encountored in the global estimation are presented for the linoar and the nonlinear
Cases in o unilied way.

2.6,1 Solution of the loecal problems

Linear case

Az it has been seen in the linesr estimation, the interior and pateh estimales are computed
solving local prablems in which the souree term is the residual rjl(u;,j restricted to the
clement (r]) or patch (r) submesh (see equations 2.14 and 2.19). Recall that ri(uy) is the
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diseretisation of the residual form a(wuy,, ) = 1{+) in the relerence mesh, and ean be exprosaed
ag
w(un) = " (ur) — £ (246)

While the computation of f';l”"' is abzolutely standard, fjl""{ml] i5 much more difficult to
compite; the internal forees associated 1o a solution in the coarse mesh must be expressed
as nodal forces in the fine mesh,

In this section, the shape functions that form a base of Vy, are denoted as Nj.@ =
Ly viesm, and those corresponding to the reference mesh, i, as Nj,j = | .oy 7. Note that any
element of these spaces can he expressed as a linear combination of the correaponding shape
functions. On the other hand, the shape fuctions of the coarse mesh can be expressed in
terms of the shape foctions of the reference mesh as follows

i
N = wa Ny for j = 1,...,n, (2.47)
;

and a transformation matrix can be defined
N = [n], (2.48)

being ni; the value of Njin the node associated to N;
In this case, according Lo equations 2,10 and 2,11, the kih component of fi’“‘[‘w.) takes
the form

(6" (o)) = aeny Ni), (2.49)

This computation is not straightforward because wy, belongs to V), and hl-’;e bo V. Making,
use of the bilinearity of a(-, ), and expressing wy in the base of V) (u), = 32" a; N;) and N
in the base of V; | this equation ean be rewritien as

it

(f‘}i“t(“h))# = H(Z: a; N Ny = Z et N, Ni) = E E u';u;_iu(ﬂj, Ni). (2.50)

o

Since alNj, Ny) = {Kjptpp and Ky is assumed symmetric, this equation can be casily
expressed in matrix form, obtaining a compact expression for f}““(u;.)

fi‘"’{uh) = K; N7y, (2.51)

Of course, since the reference mesh may havo an excessive number of degrees of freadom, the
gtorage of N and of K may be unreasonable. In addition, since the loen] stiffmess matrices

i must be computed in the interior estimation, computing Kj apart is redundant, Thus,
tha calculation of f}""(uh) mist be done element by element during the interior estimation,
mterpolating wy, in the elementary submesh to compute r'j;, locally, Then, the interpolated
digplacenients in each slement submesh must be assembled to obtain a global interpolation
of uy in the reference mesh, Therelore, in the pateh estimation, rf can be easily computed
from the lecal stiffness matrix and from the restriction of the assembled displacement vector
o the patch submesh. Thos, w), is mterpolated in the reference mesh once, during the
mterior eatimation, and stored to be used in the pateh estimation.
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Nonlinear cazse

In this case, a general nonlinear problem must be solved (see equation 2,28). In usual
nonlinear models, the nonlinearity is controlled by the so-called internal variables {equivalent
viscoplastic strain in Perzyna model and damage in Mazars model) that are expressed in
the same points that the stresses. As it has been said, the global nonlinear problem is
approximated by compitations in local submeshes, ‘'he difficulty here is that the initial
approximation for the nonlinear problem is wy,, which is expressed in the eoarse mesh. In
fact, what is really needed as an initial approximation of the nonlinear local prablem are the
stresses ay, and the internal variables ), associated to u,, expressed in the reforence mesh.
Again, Lhese variables ean be extended to the reference mesh element by element dusing
the interior estimation, and assembled and stored to be used later in the pateh estimalion,

Note thal, as long as Lhe base points of o, and dy, are interior to the element (typically,
the Gauss points), these variables are expressed in interior points of the local submesh in
which they must be extended, Therefore, the values of oy, and d; must be extrapolated in
the outer elements of the snbmesh. Thiz can lead to violations of the constitutive model
of Lo meaningless values thal must be corrected accordingly, For instance, in elastoplastic
maoilels, the extrapolated stresses can be higher than the original values of oy, and go outside
the yield surface, which is forbidden by the constitutive model. In this case, these values
can be corrected and gent back to the yield sutface, The extrapolation of the internal
variables also needs corrections, depending on the constitutive model. For example, the
damage variable of Mazars model must take values between zero and one, which ean be
violated ay a result of the extrapolation, Therefore, if values greater that one are obtained,
they arve set to one. The process is analogous when negative values are found.

['inally, it is worth noting that to measure the error in the nonlinear eatimation the
local residuals are sfill needed (see equation 2.30). These local residuals are the restrietion
al l';l(u),) to the local submeshes. As it hag been gaid, the difficulty of computing these
pesiduals stema from the computation of f},"'(‘i!h.)- [n this case, owing to the fact that the
stresses o), have already been expressed in the local submeshos Lo solve the local problems,
the internal forces in the fine mesh associated to the solution wy, can be easily computed
infegrating e, into equivalent nodal forces of the local submesh.

Storage or recalculation ?

According to what has been gaid in Lhis section, information lying on the course compula-
tianal mesh must be translated to the fine veference mesh, in order Lo compute some Lerins
in the estimation. This transfer of information requires a computational effort,

On the other hand, the information expressed in the reference mesh is needed twice,
firatly in the interior estimation and later in the patel estimation, Therefore, o first idea
pointed out in the previous paragraphs is to translate the information of the coarse mesh
into the fine mesh once, during the interior estimation, then store it, and use it later for
the pateh estimation. Nevertheless, when very large problems are attempted, the memaory
reguirements of storing several variables i the reference mesh may turn out to be anafford:
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able. In this case, the transfer of variables should be done twice, firstly element by element
in the interior estimation, aund then for every pateh, without any storage,

Thus, the ehiolee beiween one single ealenlation and a large storage, or loeal storage but
two calculations is a matter of memory and CPU availability,

2.6.2 Computation of the source term in global estimation

The computation of the vector f;, also involves technieal difficultios, Recall that £y, resnlis
from discretizing the form ale; .-) in the space Vy. Again, since ¢, belongs to V;, this
computation is nol straightlforward, In this case, the k-th companent of £ is of the form

(ff.i)k — “‘.E;_-n an‘]m (l .512)

which can be written, using equation 2.47 and the linearity of the second argument of (-, +)
(even in nonlinear problems), as

[If;,,)k = rlfﬂ“E g N.‘f) — ZH;‘-J'H.{CM NJ) (2.53)
J i

Rewritting in matrix form, ihe following equation is obtained
{7, = NE"(e,), (2.54)

The computation of ff"‘"(e . ) does not present difficulties as long as it is expressed in the same
discretization that e, . Again, this equation is formally interesting, bul not very practical
as long as global computations involving the reference mesh are required. In Lhis case, there
is also a local way of computing) each component of £, involves only one node of the coarse
maesh, and eonsequently the elements sharing this node, Therefore, f, can be computed
comiponent by component using local computations involving a few elements, However,
since one colement has more than one node, this local computation forces to recaleulate,
with an additional computational effort.



Chapter 3

VISCOPLASTIC
REGULARISATION

The current chapter presents the use of Perzyna viscoplasticity in the aim af abtaining a
regular quasi-static problem presenting strain localisation with a softening material. To do
this, several numerieal examples are presented and analysed,

section 3.1 illustrates the neod of a well-posed problem, reviewing some relevant aspecty
of viscoplastic regularisation. Then, the governing equations are presented, and the numer-
ical reference example is described in wection 3.2, Section 3.3 describes and analyses the
strain localisation phenomenon under quasi-static conditions, studying its ineeption and
further evolution. The well-posedness of the problem has its numerical translation in mash
abjective approximated solutions, which is shown in section 3.4. Finally, section 3.5 deals
with the shear band width and the influence of several parameters,

3.1 Introduction

Rate indLHPU|1dul'|i: softening plasticity: an ill-posed problem

Az it has been said in chapter 1, the pumerical simulation of strain localisation caused
by softening fails when clagsical rate independent models are used, leading Lo ill-posed
boundary or initial value problems, In the localised zones, there is a change of ype in
the govening equations: in the quasi-static case bhoy lose ellipticity and in dynamics they
change from hyperbolic to elliptic. Therefore, they do not have proper boundary conditions
i these zones and the uniqueness of the solution is Jost. Thus, the localisation size or band
width, whicl is a very important physical featire in localisation problems, is inherently nof
unique; infinite bifurcation modes exist with arbitrarily narrow localised zones (see [16]).
The numerical consequences of these mathematieal problems are severe, In the first
place, the numerical solution of the ill-posed problem is unstable and requires a great com-
putational eflort (see [16]). Moroover, the solution found is not reliable, sines a difforent
mesh would give different results: the solution is pathologically mesh dependent. As the

29
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mathematical problem has not wnique solution, the numerical method switehes Lo the so-
lution presenting narrower band thal the diseretisation ¢an describe. In other words, the
hand width (the solution) is set by the mesh size. Other important features of the solution,
such as the energy dissipation or the global stiffuess, also depend on the mesh. In certain
problems, completely different shear bauds are oblained depending on the elements orlen
tation (see [39]). Of course, the results are meaningless, resulting from an inherently bad
constitutive modelling,

Fignre 3.1 illustrates the mesh dependence of the numerical resulis. A cerbain strain
localisation problem (described later) of imposed displacenient is modelled nsing classical
rate independent J; plasticity with a softening modulus of one hundredth of the elastic
Young modulus. The computations are earried out for two different meshes, 1t can be
naticed that the shear band is as narrow as the mesh allows ity the finer mesh (b) shows a
narrower band and its reaction-displacement relation drops faster than the one of example
(a): Thus, the global stiffness and the energy dissipation during failure (the arca comprised
under the nonlinear branch of the curve), which ave important physical fealures of the
problem, are mesh dependent. On the other hand, due to the numerical instability referred
to in the previous paragraph, example (b) diverges very soon.
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Figure 3.1: Mesh dependence of rate independent softening plasticity

Of course, this unproper modelling makes it impossible Lo perform adaptivity, as long as
a change in the discretisation leads to a different solution. In addition, as the mesh is refined,
the errors in the band increase unboundly. To make things worse, as the boundary value
problenm looses ellipticity, usual error estimators, and in particular Hhe estimator presented
in chapter 2, cannol be used,
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Viscoplastic regularisation

Several localisation limiters or regularisation techniques have been proposed to remedy this
undesirable situation, among which is the regularisation via viseoplasticity. It is well known
thal the introduction of rate dependence into Lthe constitilive model progerved Lhe well-
posedness al the problem once strain localisation has ocenrred, maintaining the type of the
governing equations nnchanged (see [16], [13], [33]).

[n statie problems with rate independent nonlinear models, the resulting nonlinear sys-
Lem is solved by means of an incremental iterative method, in which the loading process is
parametrized by a pseudotime. This psendotime is physically meaningless and a change of
its units does not alter the result, On the confrary, in rate dependent models, this parameter
lias a physical meaning. Therefore, despite the fact that when inertial forces ara nogloctad
with rate dependent solids time does not appear explicitly in the momentum balance, it is
still an indopendent variable because it is present in the constitutive relations, Thus, it is
more proper to talk of quasi-static loading conditions rather than static loading conditions.

Many authors use the viscous effects to regularise fully transient problems and maintain
the governing equations hyperbolic ([16], [6], [33], [30], [9]). The results obtained are mesh
objective, with finite band widths, When it comes to quasi-statics, owing to the fact that
the quasi-static problem is simply a dynamic problem in which inertia terms are below the
ihreshold of computational accuracy, viscoplasticity is still a sound regularization techuique,
From a physical point of view, since the viscons effects are still present, the viscoplastic
i,11IH.HI-|HI.h1l.itt j)t‘nhheln 15 |‘t°'.\|‘_{ll|:t.'l‘ as well. Tndoeed, Viscuplastic 1':-1gulurisn,l,im1 hasg also bean
used Lo regularise quasi-static problems (see [16]; [36], [5]).

In the current work, the Perzyna viscoplastic model (seo [22]) has been nsed to obtain a
regular quasi-statie problem with softening. Other anthors have also used (his localisation
limiter (see [33] and [30]). This model, formulated and studied in detail in appendix A,
decomposes the strain into its elastic and inclastic part, as in usual plasticity, and uses
the Von Mises yield function, An Internal variable or equivalent viscoplastic strain that
controls the plastification is also defined. which rules the softening behaviour; the vield
stress is reduced as the internal variable increases. AL this stage, the model is identical to
rate independent plagticity. However, the How mules are different, and in viscoplasticity the
stress states can be oulside the yield function as there ia no consistency condition. Thus. a
viscons oversiress caised by the strain rate appears, carrying part of the load.

Note that, as long as J; plasticily is considered, the material plastifies depending on
the deviatorie stross tensor, Therelore, the frictional properties are more eritical than the
cohesive ones and Mode 1 localisation (shear banding) is more likely to appear. In fact. Js
plasticity is usually used to model metals, such as steel, in which failure is often precedod
by shear band localisation. Nevertheless, viscous effects can also be dsed to regularizse
constitutive models that lead to fracture localisation, such as damage models (see [23]).
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Length seale

The nse ol localisation limiters is associated with the introduction of an internal legth
acale, also called mtrinsic characieristic length, into the problem (see [24], [5], [13], etc).
This internal length scales the probleny, bounding the minimum shear band width. In the
viscoplastic models, the internal length does not appear explicitly in the formulation, This
internal length and its relation with the band widih has been widely studied, specially in
transient problems.

In the dynamic ease, things seem 1o be quite clear, The characteristic length can be
deduced from a dimensional analysis of the governing equations ([16]), and depends only
on material parameters. This internal length is related with the size of the localised region.
A theoretical analysis of the apatial propagation and attenuation of waves in the soften-
ing region provides a precise expression for the internal length scale in terms of material
parameters (see [30] and [33]). This expression is contiastod suceesshully by numerical ex-
periments, and allows to prediet the shear band witdh with precision. A simple physical
interpretation to the fact that the band width can be expressed in terms of the material can
be made, i dynwmic problems, localisation is triggered by the reflection and propagation
of stress waves in the solid traveling at a celerity which depends on the material. When twa
stress waves meet and the yleld stress is reached, localization occurs mobilising the viscons
effects, These effects, that obviously depend on the material, ean be seen as a time delay in
the response of the material. Thus, combining the wave celerity and the time of response
of the viscoplastic material, the internal length appears naturally.

On the contrary, the internal length seale in quasi-static case is not so evident, and
does not seem to depend uniquely on material parameters ag in the dynamic case. In
fact, the mechaniam triggering localization in dynamics deseribed above does not rule the
quagi-static rosponse, In section 3.3, the quasi-stalic case is analysed in detail. According
to [5], & lengih scale does not emanate from the governing differential equations for the
quasi-static response of a viscoplastic material, which does not possess a parameter of the
dimension of length. Nevortheless, the problem has a characteristic length that emanates
from the whole boundary value prablem (equations, domain and boundary conditions) and
the rosults obtained under quast-static loading conditions are also mesh objective.

Imperfection size

Very often, in academical problems with regular domains, localisation is triggered by het-
erogeneities or imperfections in the geometry or the material, specially in the quasi-static
case. In one or two dimensional dynamic problems, these imperfections are not necessary
Lo obtain strain loealisation, which can be simply caused by wave propagation phenomena
(see [30], [16], [24], [33]). On the contrary, in one dimensional quasi-static homogeneois
problems, an imperfection is needed to trigger localisation. For one dimensional quasi-static
solutions, several anthors maintain that the size of the imperfoction sets the width of the
shear band, and is the governing length seale of the problem (see [16], [5]).

In two dimensional problems, the concept of imperfection has not so much sense as o
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geometrie non-regularity, such as sharp boundaries (sec [39]), can be enough to lead to a
non-homogencons state that ends up in strain localisation, Nevertheless, imperfoctions are
still nged very often to trigger localisation in regilar domaing, introducing a variation of
the material characteristics (see [6] and [33]) or simply geometric defaults in the specimen
(see [37]).

Despite this intensive use of mperfections in two dimensional problems, little atten-
tion has heen given to its influence in the solution. However, |33] studies the interaction
botween the material length seale and the mperfection size in dynamics. [ts conelusions
are discussed later in section 3.5, Note that in dynamics the material length scale is well-
known. Unfortunately, the quasi-static multi-dimensional case is not 8o erystal clear and no
roferonces have been found on the internal length seale and the influence of imperfections,

3.2 Problem statement

3.2.1 Governing equalions
Ineremental boundary value problem

Considering guasi-static loading conditions means that the inertial forces caused by accel-
erations are neglected in front of other forces. Nevertheless, the problem is not purely statie
ag long as the material response depends on strain rates. Recall that with rate dependent
materials, the loading process ia parametrised by the physical time. Therefore, in essence,
the quasi-static problem is an initial value problem. However, neglecting the inertial forcos
simplifies the equations, and, similarly to o rale independent case, the problem can be for-
mulated as a boundary value problem at every instant, or an incremental boundary value
problem.

Thus, the governing equations presented are those of the static case, which must be
verified at every instant of the loading process. Apart from that, the fact that the load is
parametrized by the physical time in the incremental fterative process must be taken into
account, So, the unknown of the problem is the displacement field » defined in the domain
{2 verifving

Veia(u)+b = 00 infl
u o= ga only (4.1)
a(u)y:n = g, ouly

whare a(u) is the stress tensor assoeintod with the displacements. u, b the body forea term
and gy and g, the preseribed values of Dirichlet and Nenmann boundary conditions re-
apectively. The firat equation represents the quasi-glatic equilibrium neglecting the inartial
forces pii. Hore, no bhe body forees are considered, that s b = 0. The incremental boundary
value problem ¢an be formulated rewriting the equations 3.1 in terms of rate quantities asnd
gtarting lrom an equilibrated mitial configuration.
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Constitutive model

The constitutive model deseribes the material behaviour, relating strains and siresses. As
it has been said, the model considered here, Perzyna viscoplasticity, provides a proper
modelling of the quasi-static problem, reproducing the softening behaviour that leads to
strain localisation, and being mathematically consistent. Thus, the boundary value problem,
or incremental boundary value problem, is wall posed and has unique solution, that is, the
incremental equilibrinm equations remain elliptic (see [16]). According to this, the tangent
form of the wenk problem (see chapter 2) is symmetric positive definite, This property is
very important because it justifies the use of the error estimator for nonlinear problems in
it Langent version. Moreover, gsince the model s formulated in terms of rmate quantities (see
appendix A), the tangent stiffness matrix is easily obiained at every instant.

Large strains

It is important to point out that large strains have been taken into acconnt, In shear band
localisation problems, where very high shear straing are reached, important rotations take
place and the inclusion of this effect can be erucial to model properly the phenomenon, Large
atraing are represented by the rate-ol-deformation tensor. which is additively decomposed
into an elastic part and a viscoplastic part, The elastic rate of deformation is related, by
means of an hypoelastic constitutive law, to the Truesdell objective stress rate (see [31]).
The viscoplastic rate-of-deformation is given by the equations of Perzyna viscoplasticity.
For the numerical time-integration, the midpoint algorithm proposed in [25] is employed.

3.2.2  Description of the reference example

The example presented in figure 3.2 reproduces the compression of a plane strain rectangular
specimen, In order Lo induce the strain localisation in such a regular specimen, imperfec-
tions must be introduced to avoid an homogeneous solution. As it has been said before,
these imperfections can be introduced by geometric heterogeneities. Here, the specimen
s weakened by a cireular opening in its centre. Consequently. the problem las two axes
ol symmetry, which allow to study only one fourth of the specimen, The computational
domain is also shown in the figure.

In this example, as well as in other similar examples prosented along the work, the load
is applied imposing a displacement at the top of the specimen of 2 8, whicl results in 8 lor
the computational domain (see figure 3.2). As long as the material is rate dependent, the
velocity at which the displacement is imposed is relevant. Here, this velocity is considered
constant, that is & = v+t, The resulting boundary conditions for the problem that is actually
solved in the cormputational domain are shown in the figure: half of the total displacement is
imposed at the uppet boundary, homogeneous Dirichlet conditions in the @ and g divections
ate imposed in the vertical and the hovizontal axes of symmetry regpectively, and the resl
of the boundary has homogeneous Neumann conditions (free boundary).
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Figure 3.2: Deagription of the example

The nonlinear algebraic system, resulting from the discretisation of the equations pre-
sented above in the computational domain, is approximated with an updated Lagrangian
finite element formulation, using quadrilateral eight-noded elements and reduced integration
(four Gauss points).

The geometric description of the specimen is given in the figure. The only dimension
Lhat changes in the following examples is the imperfection size K. The loading conditions
are characterised by the imposed displacement rate v, and by the maximum displacement
reached 6,,,,. The material parameters &, 1, N, @y, v and & define the constitutive model,
and are detailed and studied in appendix A, L is worth noting that the parameter i is the
hardening/sollening parameter, depending on its sign. A negative value, like in this case,
maodels the softening behaviour,

The values of these parameters shown in figure 3.2 define the reference example, that
allows to compare the results with other parameter sets, These material parameters simulate
a steel, '
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3.3 Strain localisation with a softening material

In the current section, the approximate solution of the reference problom i presented i
order to illustrate the soltening and strain localisation phenomena (figure 3.3). This solution
is also analysed by means of profiles across the shear band (figures 3.4 and 3.5), providing
a physical understanding of the inception of localisation, and the post-localisation stage.

Figure 3.3 illusteates qualitatively the solution of the reference example. The curve
représents the reaction at the top of the specimen (in fact, only half of the reaction cor-
responding fo the computational domain is computed) versus the displacement jmposed,
and shows clearly the global softening behaviour of the post-localisation response. Note
that, despite the softening parameter (one tenth of F) is much more pronounced here than
in the rate independent examples (see gection 3.1), no numerieal stability problems are
encountered. I'his observation agrees with the conclusions of [16], according to which the
stability problems of the rate independent approach to strain softening are eliminated by
the inclusion of rate dependency, The solution has been extended to the whole domaln o
show the shear banding phenomenon understandingly in the specimens of figure 3.3, The
deforined mesh shows how the deformation concentrates in sheur bands, and the equivalent
inelastic strain (1) contours delimitate clearly the plastified material in a localised zone,
Note that the band width is clearly finite, even il the mesh would allow narrower bands.
In the following examples, the same scale has been used to ropresent the inelastic strain
conkors,

Figure 3.4 shows profiles of the inelastic strain across the gshear band sl several moments
of the load process, describing the evolution of this variable as the shear band develops.
In the first stages, the inelastic strain distribution is very smooth, and does nob concen-
trate clearly over a certain domain. However, as il grows, it hecomes clear that the bane
width is set at the initial stages; no matter how much the inelastic strain grows, it does so
aver a localised zone. Nole that when very high fuelastic straing are reached, the elastic
straing become negligible in front of the former, that are almost aqual to the total strains.
Therefore; the profiles of the total strain arve very similar to those plotied in the figure,
and, in effect, this is a strain localisation problem. On the other hand, it is worth noting
that the computed inelastic strain is a discountinous field as long as it is expressed in Lhe
Gauss points. However, the profiles plotied here are of a smoothed field, and consequently
continuons, In lact, the interelementary jumps dre relevant, for instance, in the context
of interpolation errors. These aspects are discussed in chapter 4, in referenee 1o the arror
indicators.

The figure also shows the location of the lines (A-A7) and (B-BY) along which the profiles
are represented i Lhe figures,

In order to study the inception of localisation, the evolution of the Von Mises equivalent
stress and yield stress is represented in figure 3.5 at six load stages, The Von Mises equivalent
stress is a scalar variable that represents Lhe stress state of the nm.[,m-j.n.l, as long as Jy
plasticity is considered, Recall that the softening behaviour makes that, as the material
plasitifies, the yield stress decreases. When very high inelagtic straing are teached, the
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Figure 3.3: General results: soltening and shear banding

yield stress can become zero, so that the material only offers a residual resistance due to
the viscous overstress (see section A1), This residual resistence doos not exist with rate
imdependent malerials,

Recall alse that the difference between the Von Mises stress and tho vield stress defines
the yield function f (see section A1), The vield Tuction controls the inelastie flow. that
takes place only when [ is positive (the solid line is above (he dashed line), The |m.ﬂil.iw.-
value of [, say the distance hetween the two curves when the solid one s above the dashed
one, represents Lhe viscons overstress due to the strain vate. The inelastic abrain rale grows
with f, which tends to relax with time (the stress state tends to go back Lo the vield aurface).
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See section AL3 for illustration.

Onee these basic properties of Perzyna viscoplasticity have been reviewed, the succession
of plots in figure 3.5 can be analysed. The firat stage, with & = 0.04 mm, is still in the
elastic domain, as long as the Von Mises stress ia below the yield stress. Nevertheless, an
initial perturbation due to the imperfection can be observed: the Von Mises stress is slightly
higher i the centre of the profile. Therefore, as the load grows (6 = 0.06 mm), this part
enters the inelastic domain in the first place, and the inelastic flow results in a decrease
of the yield stress (strain softening) in this zone. The viscous averstress can be obaerved
clearly from this moment on. Then, this zone becomes weaker and consequently takes the
main part of the imposed deformation. But owing to the strain softening behaviour, this
new deformation weakens even more this region that will deform mere and more. Thus,
strain localisation is unchained. This process is smoothed by the viscous effects, which allow
that the Von Mises stress decreases with a certain delay with respect to the yield stress (on
the contrary, in rate independent plasticity, the Von Mises stress cannot be higher thau the
yield stress). All this can be observed in the following plots, reaching a point in which a
part of the shear band is fully yielded (the yield stress is zero) and resists only because of
the viscons overstress. As a matter of fact, a nearly uniform viscous flow takes place at this
zone,

Note Lhat in the process, the Von Mises siress decreases and tends Lo be uniform across
the shear band, It is clear that this localisation phenomenon is associated with intense
strains, and not with stress variations. In the decrease of the Von Mises stress, the solid
line leaves part of the dashed line above it. This means that these zones in which [ becomes
negative are no longer flowing, and the yield stress remaing upchanged. Thus, the shear
band widtl cannot grow s the shenr band develops, aud remaing bounded. Thus, the
observation made in reference to figure 3.4, that the shear band width is set at the initial
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slages of Lhe process, is confirmed hers,

Finally, figure 3.6 provides a simple scheme of the failure mechanism, distinguishing two
rigid parts, with almost no deformation, & the shear band, which absorbs all the imposed
displacement with an intense shear deformation. A reaction-displacement curve of a loading
process carried out until § = 0,19 mim is also shown. 11 is clear that, at very advanced stages,
the specimen offers a constant residual resitance due only to the viscous effects, as long as
tha central part of the band is totally vielded, '
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3.4 Mesh objectivity

To study the mesh independence of the viscoplastic solution, the reference example has
beean solved with different meshes. Figure 3.7 shows how the numerical solution of a well-
posed problem leads to mesh objeciive resulte, Thus, the uniqueness of the solution of the
boundary value problem allows to perform a remeshing process, as long as the approximated
solution with different meshes is the same, except for the diseretisation errors.

This figure shows the resulis obtaimed with three different meshes, (a), (b) and (¢), whith
different element sizes. ‘The contour plots of the equivalent inelastic strain show that the
band width is independent of the mesh size. Mesh (a) is Loo coarse Lo caplure accurately
the shear band, while the results of meshes (b) and (¢) are very similar.

It 15 obvious from the curve representing the reaction versus the imposed displacement
that, again, the results are not pathologically mesh sensitive; even if mesh (a) leads 1o
slightly different results, ag soon as the mesh ig fine enough lo deseribe the shear band
pattern correctly, the reasonable mesh sensitivity due to too coarse meshes disappears
Thus, this is not the undesirable mesh dependence thatl is encountered when the numerical
approximation of an ill-posed problem is attempted, but a natural mesh dependence cansed
by a too poor discrefisation (nole that the points defining these curves do not represent the
loading ateps, which are amaller).

The profiles of the inelastic strain across the shear band illustrate the same idea. The
profiles are taken along the normal direction to the shear band (A-A') (see figure 3.4).
Agiin, the approximations corresponding to meshes (b) and (¢) match almost exactly,
whereas mesh (a) is insufficient to agsess accurately the shear band, even if the results are
reagonable,
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Finally, o physical magnitude that is often considerd when mesh sensitivity is studied
1# the energy consumption, which can be defined as the work done over the whole domain

in the loading process
ti
Wi = / (/ T fm!z) ilfl. (3.2)
I Nty 4

Table 3.1 shows thal the energy consumption with mesh (a) is a little bit higher than
the one computed with the other two meshes, that practically coincide. Tn rate independent
soltening plasticity, as the mesh is refined, the energy consumption decreases, and at the
limit, failure takes place without energy consumption ([24]). Here, on the contrary, Chis
magnitide is mesh objective.

| mesh | elements | Wiy, (J)
(ﬂ.) Lo 492,55
() 580 | 489.28

(©) 1206 | 489.12

Table 3.1: Energy consumption
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3.5 Influence of several parameters on the band width

The current seclion analyses the influence of several parameters on the solution, focnsing
on the band width. As it has been said, the shear band width or the scale of the localised
area is a very important feature in this kind of problems. Tu this section, there are several
references to conclusions reached in Lthe appendix A, specially when the influence of the rate
effects and of the parameter of Perzyna model N is discussed.

3.5.1 Influence of the imperfection size

As it has been said, the imperfections, often used to trigger loealisation, seem to affeet the
band width in certain eases. According to [33], which deals with this topic in transient two
dimansional problems, the influenee of the imperfection size can be summarised saying that

# The imperfection size dominates the width of the shear band when the material length
acale i larger than the imperfect zona,

o The material length seale equals the width of the shear band if the imperfection size
is larger.

¢ The influence of the imperfection decreases when the shear band is some distance
awiy from the imperfect zone,

As it is shown in the following, these results are also found in the quasi-siatic case. Here,
the reference problem iz compared with two analogous problems with different imperfection
sizos, 20 and {f The results are presented in figure 3.8, The examlpe with ‘;" is alpo
presented in a further loading stage (8 = 0.19 mm).

A fiest glance at the inelastic strain contours seem to indicate that there is an influence
of the imperfection size near the imperfection, when it is small; example (b), with a large
imparfection, exhibits a shear band of constant width, while in the other examples the band
becomes narrower near the opening. This effect is slight in the reference example (a), and
much more evident in the specimen with a small opening. On the other hand, the shear
band of example (¢) is not as developped as the ones of examples (a) and (b), This is
because this specimen is nol as weak as the others, and the shoar band develops later.
Example (d) shows how lurther imposed displacaments lead to a developped shear band,

These conclusions are in agreement with the profiles of Lhe inelastic atrain along (A-A7)
and (B-B') represented for examples (a), (b) and (¢). The profile along (A-A7), lar away
from the imperfection, shows that the band width is the same for the three examples with
different impertection sizes. Recall that the localisation size is set in the initial stages of the
localisation process (see section 3.3), and consequently the valué of the maximum inelastic
shrain does not affect the band width, On the contrary, the profiles alang (B-18") show that
near the opening, the band width of example (¢) is cearly narrower than the one of the
other examples.
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The shear band width of example (), which is uniform and wot affected by the large
imperfection, can be considered as the material longth scale that sets the band width. How-
ever, the shoar band width is also affecied by the imperfection gize when the imperfection
is smaller than the material length scale and near to it. Thus, according to these results,
the conclusions reached by [33] for the dynamic case apply also in the quasi-stalic case,

On the contrary, the resulis presented show that certain conclusions of [16] and [5] for
the one dimensional quasi-static case do not hold in two dimensions. These authors reporl
that the imperfection size scales the band width and is the characteristic length scale of the
problem, in the one dimensional quasi-static case, Here, the shear band is not set by the
imperfection size, which is not the problem length scale. The imperfection just affects the
band width in cortain cases.
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Figure 3.8: Influence of the imperfaction size: pontours and profiles of the inelastic strain
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3.5.2 Influence of the rate effects

The behaviour ol Perzyna model when Lhe fate effects ate inerensed or decreased is studied
in detail in section A3, One of the conclusions pointed out is that the rate effects can be
anhanced either increasing the loading velocity or decreasing the parameter 3. At the end
ol section A2, this parameter is seen ag a fluldity parameter. Thus, decreasing 4 means
enhancing the viscosity effects, In this case, the influence of 5 has been studied, but similar
restlts are obtained varying v.

Another relevant aspoct pointed out in section A3 is that the rate independent solid
emerges ag a limit of the rate dependeni solid when rate effects are limited, for jnstance,
inereasing . Despite this, the vate independent limit is a singular one, and mumerical
atability problems due to the softening beliaviour are observed as (his limit i reached,
These numerical problems that arise for slightly rate dependent solids are also deseribod by
[16],

Figure 3.9 presents the results obtained for the reference example (a) (y = 50057 ) and
those abiained for example (b), in which the rate effects are limited (v = 5000 57" and for
example (¢}, in which they are enhanced (7 = 50 &), It is clear that example (b) tends
to the rate independent problem: the band width is narrower than that of the referenece
example, the residual reaction due 1o viscous effects is very mild and failure takes place with
almost zero energy dissipation (the reaction-displicement eirve drops almost ta zero very
sharply). Nevertheless, the problem is regular, and the resulis are mesh objective, However,
iy i inereased more and more, the band width tends to zero but being finite, and the mesh
dependence associated to the coarseness of the mesh becomes increasingly pathological.
Thus, the ill-posed problem is reached as a gingular limit of well-posed problems.

When rate effects are enhanced (example (¢)), the band width becomes so large that
it affects the whole specimen.  Therefore, the concept of localisation loses its sense and
the yielded vegion spreads all over the domain., That is why the profile of the inelastic
sirain shows an almost uniform distribution. On the other hand, ag the viscous overstress
is larger, the maximnm reaction oblained is also larger, and the softening branch of the
reaction-displacement eurve starts later, These results are also found at the eonstitutive
level in section A3, whete the elastic model is found ag a limit of viscoplasticity when rate
¢flects are enhanced.

3.5.3 Influence of the parameter N

it the previous section, narrow shear bands have heen related to mild rate effecta, that is,
to a slight regularising effect. Tlowever, in the numerieal simulation of a real experiment
with a certain material, it may be necessary to obiain a narrow shear band, keeping the
problent well-posed. The parameter N, an exponent in the viscoplastic flow rule, can be
the solution to sharpen localisation maintaining the viscous overstress that regularise the
prablem.

Section A5 studies the influence of N at the constitutive level, In order to obtain
comparable parameter sets varying N, 7 is also modified to get similar viscous overstress.
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Figure 3.9: Influence of tha rate effects

The effect of increasing N keeping the overstress equal to the reference example, is that
the transition between the elastic branch and the softening branch is much sharper (sen
figure A8). Apart from that, the overstress takes more time to relax than in the reference
example.

[n this case, the reference example is compared 1o an example in which ¥ = 3 and
¥ = 17000 5=, The value of ¥ has been fitted to obtain a similar residual reaction when he
shear band is fully yielded., Fignre 3.6 shows that this residual reaction is about L.7:10% N for
the reforence example, and the same value is obtained for the new exnmple (see reaction-
displacement eurve in figure 3.10). Thus, the regularising effect is maintained, Figure
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3.10 shows that the band of example (b) is narrower and, according to the profile of the
melastic strain, much sharper than the reference one. This is obviously related with the
observation made in section A5 reported in the previous paragraph. On the other hand, ihe
plobal soltening behaviour is mueh more pronounced, although the constitutive softening
parameter is the same. Finally, the profile of the Von Mises stress and the vield stress at
the snd of the process (6 = (.13 mm), compared (o the same plot for the reference sxample
(soe fignre 3.5), shows that the narrow shear band is much sharper. I also confirms that
the overstress relaxes more slowly when N i inereased, since the final Von Mises stross
distribution is not as uniform a8 in the reference example.

To suni up, the parameter N, combined with v, allows 1o oblain narrow shear bands
without decreasing the viscons effects that regularise the problem.

3.6 Concluding remarks

The pl‘i.‘*ﬂﬂl'lf. 1'.hn.p|;r!|' liag i!lust.r‘n.r.ml ile ['mt',l}:\;tcil.y af a proper 1[1{'][[0]““5 uf sirain localiza-
tion due to material softening, as long as the classical vate independent models lead to
meaningless mesh dependent solutions. It has also been shown thal Perzyna softening vis-
coplasticity provides well posed localisation problems in the quasi-static case, that can be
solved numerically obtaining mesh objective results. The inception and evolution of the
strain localisation phenomenon lias alsa heen analysed in detail,

Finally, section 3.5 hag showed how ihe shear band width is affectad by several para-
maters: the imperfection size, the rate eflects (v or ») and the exponent NV combined with
7. The indfluence of the orientation angle of the band has not been studied, but it easy
to understand that also affects its width: if the same specimen is hrought to failure with
imperfections leading to a different band orientation, its width is necessarily different as
the shear defarmation that it needs to absorb to provide a kinematically admissible failure
mechanism depends on the angle,

Despite the gualitative influence of these factors has been studied, the shear band widtl
itaell iag not beon defined nor determined. As a matter of fact, it seems difficnlt to obilain
n simple expression for it, like in dynamics, as long as it depends on parameters of the
particular experiment, such ag the loading velocity or the band orientation. Thus, in quasi-
staties, the internal length emanates from the boundary value problem (governing equations,
domain and boundary conditions), and, in particular, it depends strongly on the loading
vielocity.
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Chapter 4

ADAPTIVITY IN SHEAR BAND
LOCALISATION PROBLEMS

[n the present chapter, adaplivity baged on orror estimation is performed i strain loealisa-
tion problems regularised via viscoplasticity. As it has been said in chapior 3, viscoplasticity
provides waoll-posed problems, whose numerical approximation does nol suffar from mesh
dependence. It has also been justified that the ervor estimator for nonlinear problems
presented in chapier 2 can be used in anch regular problems. Therelore, an adaptive proce-
dure can be used in order Lo solve the computational difficulties that localisation prablems
present, that is, the assessment with an affordable cost of the two seales of the problem and
the uncertainty in the location of the loealigation zone,

Seetion .1 presents the adaptive strategy used in this work, defining elearly the con-
copts of acceplability eriterion and mesh optimality eériterion, Then, in section 4.2, several
remeshing processes are performed in order to illustrate the performance of the adaptive
strategy, that provides objective information about where to pul the elements, and how
many alements are needed. The influence of the pollution errors is also diseussed, as well
a8 the |,H'1Flﬂi|lji|it.y ol deducing or testing ervor indicators using the ervor estimation. TFinally,
sechion 4.2 illustrates the snorinous benelits of the adaptive procedure wlhien more com-
plex problems are considered, capturing accurately and cost-affectively the two scales of the
problem and the shear band pattern, which is unpredictable a priori,

4.1 Adaptive strategy

4.1.1 Remeshing based on error estimation

As il has been palnted out in section 2,1, the prasent work performs an h-adaptive proce-
dure hased on error estimation. The error estimator presented in chapter 2 accounts for
the non-verification of the p;cwc:rning tft’|ll:-|.|.inuﬁ, anid r‘.nlmc‘rqlu’-!nl.ly the prt_u',q-_‘dl,n'r-_! pmauntmi
congtitutes an objective analysia. Thus, this approiel Is not based on heuristic assumptions
like other adaptive procedures based on error indicators. The goal of the adaptive remesh-

449
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ing is to obtain o solution of preseribed aceuracy with an optimal cost. The concepts of
accuracy and opiimality are precised later, Figure 2.1 represents schematically the adaptive
procedure.

Recall from chapter 1 that there are several adaptive procedures that can be applied 1o
nonlinear problems. Some of them update the discretisation several times (or even every
time step) along the process according Lo some ervor indicator, such as ALE ([24]), or the
mash refinement procedures presented in (6], [19] and [9]. 1n these procedures, the successive
meshes are buill up from the previous ones, either changing the node location, or by element,
fissions or fusions. This approach seems to be specially well suited for history dependent
processes, as long as the mesh is adapted parallely to the time integration. However,
important difficulties arize in the Lransfor of state vaviableg from one mesh to the following
one during the loading process. This transfer s generally invelved and costly, although
ALE solves it naturally. For thig reason, the refinement procedures use almost structured
meshes, simplifying the refinement and transfer of variablea, On the other hand, as long as
an ALE procedure does not alter the number of degrees of [readom of the discretisation, it
cannot ensire a prescribed accnracy in genoral,

Other authors suggest proceduves in which the domain is remeshed at the end of tlhe
loading process, which is recalenlated from serateh ([39]). In the present work, the fnite
element analysis is carried out incrementally to a preseribed load stage forevery mesh. Then,
the error is estimated. If the solution is considered acceptable according to an acceptability
eriterion; the adaptive proceduire stops. On the contrary, if the acceptability eriterion is not
verified, the error distribution is used to obtain a desired element size distribution aceording
to an optimality criterion. This clement size distribution is the input for the mesh generator
to obtain a brand new mesh, and the problem is recaleulated. It may be argued that this
ts not the optimal approach as long as the problem is history dependent and must be
recaleilated forin seratel several times (see [19]). Nevertheless, this procedure avoids the
fransfer of the state variables, and, as it is shown later, is able to capture phenomena that
look place at some point of the history, before the moment when the error s estimated.

4.1.2  Acceptability and optimality eriteria

A deep diseussion on the existing remeshing strategios is beyond the scope of this work,
Several references ([34], [18], [14] and [8]) deal with this topic. the last one presenting them in
a unified way. Nevertheless, before the remeshing procedure deseribed above is performed,
what is meant here by an acceptable solution (acceptability criterion) and an optimal mesl
(optimality criterion) must be clear.

An approximate solution w, is considered to be acceptable if the norm of the associated
error is lower than a gpecified value, Usually, this specified value is defined as a certain
raction of the norm of the selution, that s, the relative error is prescribod, Thus, the
acceplability condition can be expressed as

lell = o [jull. (1)

where u is the exact solulion, y the magimum relative error, and the error 12 defined as
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e = % gy, Note thal the solution is conaiderad acceptable if the global accuracy is helow
a certain limit, but ne requirements on the local accuracy over the domain are imposed.
Thus, a local acceptability eriterion based on a prescribed local aceuracy can be delined.
However, this loeal condition is too restrictive and leads to meshes of too many elements,
Nevertheless, this idea of local accuracy is used by the Local Optimality eriterion presented
holow.

The mesh optimality eriteria are nsually based on the equidistribution of some measure
of the ¢rror in the elements of the new mesh. In [18] for instance, this error quantity is the
density of error, that is. the error divided by the measure of the element. In this work, the
two oplimality eriteria presented below are used,

Li-Bettess optimality eriterion (LB)

According to this optimality eriterion (see [14]), the error distribution is uniform in the
optimal mesh. Thuas, if - refers to the new mesh, the quantity that must be set uniform over
(he new mesh is ||¢][¢. Combining this optimality criterion with the acceptability criterion,
a distribution of the desived element size fr.k over (he actual mesh can be obtained, providing
the input for the mesh generalor,

In [14], the anthors prove theoretically that this optimality eriterion leads to meshes
with the minimum number of elements, satisfying an acceptability criterion like the one
in equation 4.1, Therefore, aceeptable meshes based on this eriterion are better, from the
computational point of view, than any other aceeptable mesh based on another optiniality
criterion.

Loeal Optimality eriterion (LO)

I numerical analysis, the aceuracy of an approgimation is related to the relative error. In
fact, the acceptability eriterion specifies & maximum relative error of the approximation in
global terms, However, Lhe Li-Bettess optimality criterion aniformises the distribution of an
absolute errar. Therefore, a different optimality criterion based on the local relative error
can be defined (see [R]}. T'hus, the optimal mesh can be considered (o be that of uniform
relative error distribution, that is, uniform acenracy distribution. The Local Optimality
critevion tries Lo sel

el = mllullg (4.2)

in all the elements, being 7, the preseribed relative ervor, Note that, as long as aquation
4.2 i an optimality criterion, it is expressed in terms of an equality and not an inequality.
However, il equation 4.2 18 used ag the optimality eriterion, numerical problems arise
where Lhe local norm of the solution is close 1o zera, This is the usnal drawback of relative
errors (see [11]). The standard solution of this kind of problem is to add an absolute
component to the local measure of the solution. Thus, the optimal mesh can be that in
which
i

el = g lull} + Uy T (4.3)
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in all the alements, being Q}E and € the element aind the domain measures reapectively, ‘T'he
coellicients y, and 7, weigh the relative inlluence of the local and the absoluie component

of the norm of v, These coefficients must verify 4§ = Vo g in order to have comparable
aptimality and acceptability criteria. Here, the 4, and 5, have been chosen so that :—;*‘1 =

5 ) ' r Ehel v i
0.75. With this choice, the Local Optimality criterion can be rewritten as follows

dlP Ui

:
= g e (44)

- = == .
\/||-¢||g oplrn T VIR0

See [B] for more details.

4.1.3  Energetic quantities

All these eriteria are formulated in terms of norms of the error and of the solution, The
norm of the solution is needed to evaluate the acenracy comparing it to the norm of the
error. As it is showit in chapter 2, the error estimator for nonlinear problems in its tangent
version provides measures of the estimated ervor using the tangent energy norm, that is,
||r.'||2 = ap{uy;e,e). Recall that this norm can be restricted 1o each element, obtaining the
elemantary distribution of Lhe estimated error that is needed in the remeshing procedure.
This tangent norm can be used hecause the error is assumed to be small in front of ).
To measure the solution with a comparable norm, an energetic quantity is considered
generalising the energy norm of the solution in linear problems. In the linear case, the
energy norm of the solution [[uf| ean be related to the work done by the internal forces as

follows .
i I
[IMH* =2Ww=2 / (f o de) iy, (4.5)
2 Ey

Therefore, extending this measure of the solution to the nonlinear case. the global and the
local norms of the solution adopted in this work are defined as follows

& d &
alf? = 2 A (/ ’a;rzs) aQ and  fullf =2 /u ([ "o ;rs.s) d. (4.6)
e diy, e

L}

In the following sections, remeshing processes are presented for the Li-Bettess and the
Local Optimality criterin, The global aceeptability ¢riterion is defined in terms of & pre-
scribed global accuracy. For instance, a prescribed aceuracy of 1% means that ||e]| <
0.01 |jul]. Of course, since e and w are unknown, this expression is evaluated using the
estimated error and Lhe approximate solution,
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4.2 Example 1: Single opening

li this section, several remeshing processes are shown for the reference problem deseribod
I section 3.2, Recall the shear band localisation and the mesh objective results for that
problem that allow to perform a remeshing procoss (see figures 3.3 and 3.7), One example
using diflferent material parameters (N = 3 and v = 17000 471 is also considered to obtain
narrower shear bands (see figure 3.10), In following examples, different optimality criteria
have beon used, and the pollution errors (see section 2.5) have been taken into aceount in
some of them, The main goal here is to answer in an objective way to the crucial issnes
of adaptivity: where to put the clements, and low many elements are needed. Apart
[rom this, the section deals with the relovance of pollution errors in adaptive procedures
for localisation problems. Finally, the objective approach used in this work, based on error
estimation, is presented as a powerful tool 1o test the suitability and petformance of existing
error indicators, which often lack theoretical basis.

4.2.1 Remeshing process with LB criterion and pollution errors

Here, an approximate solution has been considerad Lo he aceeptable if the global norm of
the error is below the 0.5% of the norm of the solu tion, delined as it is shown in E{t“‘.'uij“."
46, A mesh is considered to be optimal acording to the Li-Bettess optimality eriterion
(nuitormity of absolute error in the clements), The pollution errors are taken into aceount
in the error estimation.

It is expectable to find large errors near the localised zoue, where the intense deformation
takes place, and consequently concentrate the elements in that zone by means of the adaptive
procedure, However, this is an heuristic assumption, that seems reasonable hut leans on
assumptions that may not be exact. On the contrary, the remeshing strategy based on error
estimation presented here answers objectively to the question of where the clements must
concentrate, '

Figure 4.1 shows the successive computational meshes and the absolute estimated error
distribution in each of them. To represent (he elementary error distribu tion, a unique scale
of greys has been used in all the casos, according to which dark grey represents large errors
and bright grey amall errors,

The solution obtained for mesh 0 is far from being acceptable, as the global accuracy
ig 4.07%. The error disteibution shows that the error is very large in the lower and right
part of the gpecimen, and the next mesh is ereated accordingly. Nevertheless, mesh 0 is
Loo eoarse Lo provide precise information for the remeshing, and the resulting mesh, mesh
L, ds still unacceptable. Thus, adaptive remeshing is an iterative process that meets its snl
after several steps. The error associated to mesh 14 atill oo high, but has beon rediesd
congiderably. The error distribution in this mesh, which presents quite uniform element
aizes around the shear band, shows a interesting aspect: the érvor concentrates on two
bands that seem 1o cover the edges ol the strain localisation zone. Consequently, mesh 2
shows a concentration of elements along these two bands. Note that the error distribution
is much more uniform for this nesh: yecall thal the optimality eriterion used tends to
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squidistribute the abgolute error all over the eloments, However, a global accuracy of 0.56%
is atill unincceptable and a new mesh is generated. Until now, the successive meshes have
had an inereasing number of elements, However, mesh 3 has 647 elements whereas mesl
2 has 713. Despite this reduction, the solution obtained with mesh 3 is acceptable: the
global accuracy of the solution is of 0.48%, below the preseribed lmit of 0.5%. Thus it ean
ba seen that the adaptive procedure allows to use cheaper meshes to obtain more aceurate
results, putting smaller elements where they are needed and larger elemonts where the error
ig amall.

Although mesh 3 is acceptable, a further mesh has heen generated in order to illustrate
the computational optimality of Li-Bettess criterion. The global error with mesh 4 is slightly
higher than the previous one, but still below the preseribed limit. In addition, mesh 4 has
less elements (601) than mesh 3, and ghows a more uniform error distribution. Therefore,
mesh 4 is better than mesh 3 from the computational point of view, both meshes being
acceptable. [ the remeshing process was repeated several times with Li-Betiess criterion,
the resulting mesh would eonverpe to the optimal-cost acceptable mesh, with uniforin error
distribution,

Thus, this remeshing process provides objective information of where the elements must
concenirate. In Lhis cage, the mesh must be finer along (he edges of the shear baud, whicl
is not obvious 4 priori. In fact, no reforences on adaptive remeshing in strain localisation
problems showing thig results have been found. For instance, in (6], a refinement proce-
dure based on error indicators is applied to transient localisation problems regularised via
viscoplasticity. In the examples presented in [6], the ervor indicator distribution seems to
he constant in the localised zone. Consequently, the refined meshes do not concentrate ole-
ments along the edges of the shear band, and the element size s uniform over the localised
Zone.

But, should the elements concentrate along the shear band edges in any circumstance?
To answer this question, another example has been considered. In section 3.5, a new
parameter set comparable Lo the reference example is presented. This new parameter sel,
cliaracterised by the material parameters N = 3 and v = 17000 5=, shows narrower
shear bands, but the viscous effects are not reduced (see figure 3.10). A remeshing process
using Li-Beltess criterion and considering pollution errors is progonted for this example,
prescribing a global accuracy of 2%, The initial mesh is mesh 0 in figure 4.1

Figure 4.2 illustrates firstly the numerical solution for this parameter set. The mesh do-
formation amplified 20 times and the contours of the equivalent inelastic sirain extended to
the whole domain show understandingly the failure mechanism and the shear band pattern
in this case. Then the succession of meshes 18 presented, ending up in mesh 4. This mesh
provides a global accuracy of 1.9%, below the prescribed limit, and is consequently aceept
able. Note that it is difficult to distingnish the elament concentration along the borders
of the shear band in the final mesh, This concentration is not even noticeable in mesh 3.
which would be acceptable if the preseribed accuracy was of 2.5%. Thus, when the band i
narrow or the solution desired is nol too accurate, the two bands of element concentration
can be missed. In any case, the procedure provides an objective analysia that tells where to
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remesh. Obviously, the resulting mesh depends on the level of accuracy prescribed by the
user.

Finally, it is also worth mentioning that in this example, the prescribed aceuracy (2%)
15 much lowar Lthan in the previous one (0.5%). Despite this, the final mesh here has
considerably more elements (842) than the final mesh for the reference example (601).
Thus, it seems that the narrow band is more difficult to capture properly, This can be
expected in advance, sinee a narvower band is also associated to a sharper solution with
very high gradients of the state variables (see the inelastic atrain profiles in figure 4.2), and
consequently, requires a richer interpolation.
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) Aa* - |
Meah 2; 713 oloments;  globsl accuacy: 0,66%

A b=
Maeuhi 43 001 slementa;  global aceniaey: DA%

Figure 4.1: Remeshing process uding Li-Bettess and considering pollution errors for a pre-
serihed aceuracy of 0.6%: succession of meshes and estimated error distributions
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Figure 4.2 Numerical solution for the example with ¥ = 3 and 5 = 17000 s~ and
remoshing process with Li-Bettess and pollution errors for a prescribed accuracy of 2%
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4.2.2 Remeshing process with LO eriterion and pollution errors

The remeshing process carried out above for the reference example can also be done using
the local optimality criterion, thal tends to uniformise the accuracy distribution all over the
mesh, Here, the same acceplability eriterion has been adopted (preseribed global accuracy
ol 0.5%) and pollution errors have also been considered.

Figure 4.3 shows the succession of meshes and distributions of the guantity

llell |
Il + (075208

Thig quantity is a relative error modified to prevent numerical problems when the solution
is very small, and should be uniform and equal to i, over the whole domain (see equation
4.4). Therefore, this quantity is representative of the accuracy, Figure 4.3 shows also the
final mesh obtained with Li-Bettess optimality criterion and its aceuracy distribution, in
order to compare the two optimality erileria.

The first thing that strikes the attention is that in this case, au aceeptable solution is
obtained in the third mesh, whereas Li-Bottess needs five meshes, In addition, the global
aceniracy in the final mesh (0.25%) is far below the prescribed limit (0.5%). Thus is seems
that the Local Optimality eriteria is more restrictive than the global acceptability condition.
As belore, the figure shows elearly that the quantity that is aimed to be uniform, here, the
accuracy, tonds to uniformity in the remeshing process, In addition, the figure shows that
the accuracy distribution in the final mesh obtained with the Li-Bettess eriterion, which
uniformises the absolute ervor, is not as uniform as that in LO mesh 2. Indeed, the Li-
Bettess final mesh leads 1o a poor acenracy near the opening,

Note thal the final meshes with the two optimality criteria concentrate the elements
along the edges of the shear band, In plain words, both remeshing processes put the elements
it the same place. Thus, the qualitative issue of where Lo remesh is readily answered. The
important issue here is of quantitative nature; how many eloments are needed? Obviously,
this depends on the preseribed global acciracy, This aspect has been discussed briefly with
regard to figure 4.2, However, the most relevant aspect is that, for a given global prescribed
accuracy, depending on the optimality criterion used the relative mesh density over the
domain is completely different. TFor instance, the final mesh for LO eriterion has bigger
clements than the LB mesh al the top of the specimen and in the bottom right corner,
where the solution is small. In the right side of the band, the clement sizes are comparable,
whereas near the opening, where the norm of the solution (internal work) is very large, the
LO maesh hat congiderably smaller elements.

Thus, the quantitative information about how many elements are needed in every pari
of the domain is also furnished objectively by the adaptive procedure presented; the precise
element size distribution depends of what the user considers an acceptable solution and what
he or she expects from the optimal mesli, either an optimal-cost solution with uniform error
distribution, or a salution of uniform relative error.

(4.7)
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Mash 1: 1208 alononis:  global aceuvacy: 0,64%
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I L
'd:’;
Li-Bettes final mesh and aecuracy disteilution

601 aloments;  global accuracy: 0.48%

Masly 2; 1077 aloments;  glebal accuracy: 0,209

Figure 4.3: Remeshing process using LO eriterion and considering pollution errors for a
preseribed accuracy of 0.5%: succession of meshes, accuracy distributions and comparison
with LD final mesh
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4.2.3 Influence of the pollution errors in the remeshing process

In the adaptive procedure, the error estimator must provide a good approximation of the
actual error, but with a rednced computational cost. In the examples presented above, the
pollution errors have heen considered, so that the total estimate e, is computed adding
properly the local estimate ¢, and the global estimate e, which accounts for the pollution
errors and obviously increases the cost of the estimation (see chapter 2). According 1o the
orthogonality of ¢, and ¢, the norm of the total estimate can be computed easily lrom the
norms of the local and the global estimates

leall® = e I 4 fe (45)

This equation is assnmed to hold at the elementary level and ||e,. |4 is computed in the same
fashion.

Thus, one question arises: is it important to take into account the pollution errors when
adaplive remeshing is performed in localisation problems? Do they have a relevant influence
on the meshes or the accuracy obtained? Tt seems obvious that i their contribution is hardly
noticcable, the computational effort that the global estimation requires is not worth being
done. The previous remeshing processes have been based on the distribution of [|e, ||y, and
it would be desirable to simply use the distribution of ||e, ||

To anawer this question, a coefficient r, expressed in percentage, is defined as the ratio
haween the locally estimated error and the total error estimation in whichi the pollition
errors are considered. This coeflicient is defined both for the eloments and the whole demain,
and is expressed as follows

"|J|' 100%. (1.9)
This coeflicient, which is obviously lower than 100, is representative of the influence of the
pollution errorg in the ervor estimate; the more cloge is its value to 100, the more negligible
are the pollution errors, as remeshing according to |[e, || or to ||le, || is practically identical,

Figure 4,4 shows the elementary distribution of rp as well as the global value #, in the
succession of meshes presenfed in the beginning of the section (Li-Bettess eriterion and a
preseribed accuracy of 0.6% for the reference example). The same scale has been nsed in
all the plots, and goes from the 87% (brighter) to the 100% (darker). First of all, it is
remarkable that the global value, », is almost constant for all the meshes, and takes values
greater Lhan 98%. Therefore, the global influence of the pollution errors in the estimation
does not vary when the mesh is refined, and is very sinall. The distribution of »; also
brings interesting results. It can be noticed that in the first plots, the presence of bright
grey is quite fimportant, This means that in a considerable part of the specimen ry is below
87%, and the inlluence of the pollution errors is noticeable. However, as the meshes are
refined, the most part of the specimen is darker, which means that vy is greater than 95%
in practically all the domain, Thus, these resulls seem to indicate that the pollution errors
become negligible as soon as the mesh is refined, which agrees with the theoretical resilts

‘:l ] L
T = "“‘{'““'&' 00%  and p = ||-:!I|
Nl llx I|e.,
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reporbed in [“12] [ conclusion, it seems that Lhe u;:mputa.l.mn of the pollution errorg can

ho avoided in an adaptive process, which indeed refines the meshes, It is expectable to find
little differences between the acceptable meshes considering pollution errors or nol,

Menh th; » = G8,00% Mesh 1: v = 082564 Mesli 21 v = 898.34%

LI
EEE ¥y = H{-?-H% < 100%

e, (i Estimate without
pollution errors

”\‘-'u'"k? Eatimate with
pollution errors

Magh 3p ¢ = p8.19% Mesh 4; ¢ =08.01%

Figure A4.4: Influence the pollution errors: distribution of vy for the sucecssion of meshes
with Li-Bottess criterion and considering pollution ervors for a preseribed accuracy of 0.5%

To illustrate these conclusions, figure 4.5 shows the suceessive meshes of a remeshing
process based on Li-Bettess criterion for a prescribed accuracy of 0.5%. In fact, the only
difference between this example and the one showed in figure 4.1 is that now pollution
errors are negliged. The final mesh obtained considering pollution errors is also presented to
provide a better comparison. Note that the initial mesh provides a glabal ace uracy of 3.00%
it this case, while its accuracy considering pollution errors is of 1.07%.. This disagreemont
can be readily understood recalling that, for this mesh, r = 98%. So, negliging ¢, implies
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a very slight underestimation of the error,

In more general terma, the tendency of the remeshing process described in figure 4.1 is
also noticed here, and the obtained meshes are very similar. Indeed, there are no major
differences belween the two final meshes, whicli are difficult to diglih]gllish. Thus, i this
kind of problems, the pbllutian orrorg can be nag;llged williout nﬁ'ﬂntiug noticeably the
resulting mesh or the level of accuracy of the final solution.

Maosh (1 Meonls | Deal 2

110 alements B0 alomants G171 elemanis
Cllabal necuraey: 3.00%. Ulobal acouracy: I.D;E'ﬁ Cilobal acouracy: i

Meali it Masli Final miesh with pollution ervors
561 elements A4 elements (01 elements
Cllobal acenracy: 0.50% Cilobal aeeuracy: 040% Clobal asenvacy: 0A40%

Figure 4.5: Remeshing process uging Li-Bettess criterion, without pollution errors, for a
prescribed acouracy of 0.5%
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4.2.4  Tesl of error indicators

Onee the adaptive procedure presented has furnished the final mesh, the element size distri-
bution can be easily correlated to physical magnitudes of the problem, obtaining a posterior
gualitative information about the optimal diseretisation. This information can be useful to
deduce good error indicators for this kind of problem.

As it has been sald in chapter 2, the ervor indicators constitute a cheap alternative
ta error eslimators. However, these indicators offen lack theoretical basis and are purely
leuristic. References [39], [20], [6], [9], [19] and [24] provide a wide range of error indicators
baged on interpolation errors, on velocity variations, on the acoustic tensor, on internal
variable variations, on Ly-projections of the stress or gtrain fields, ete,

In this eontext, the abjective approach presented in Chiz work can be useful to dedice,
but also to test existing error indicators; their suitability (do they answer correctly to the
fquestion, where Lthe elements must be?) and performance (do they pul the correct density of
elements?) can be studied from the results obtained with the presented adaptive procedure.

The results shown in figures 4.1 and 4.3 indicate that small elements concentrate along
the edges of the shear band, instead of concentrating where the higher straing are reached,
that is in the centrve of the shear band. Therefore, it is natural to expect the small elements
Lo concentrate where large varintions of the inelastic atraing occur, thal is where the modulus
of its gradient is high (note that the inelasiic strain and the total sirain are almost equal
in the localised zone where the inelastic strain is very high). Figure 4.6 shows that, in
effect, a correlation can be made between the element size and the inelastic strain gradient,
The upper plot shows profiles of the internal energy, the inelastic strain and the inverse of
the element size across Lhe shear band. These profiles have been scaled adequately to be
represented in the same plot. It is obvious from this plot that the internal energy and ihe
inelastic strain distributions matceh alinost exactly, and do not indicate where the elements
musl be. The lower plot represents the profile of the fnverse of the element size, and
the profile of the modulus of the gradient of the inelastic strain. This ploi shows clearly
that the elements are smaller where large variations of the inelastic strain occur, ‘Thus,
i Tairly pood corvelation can be established between the element size and the derivate of
the inelastic strain, and also the derivate of the internal energy, The colour plots show
that the modulus of the pradient of these two physical variables describes very well the
clement sizes, bright grey corresponding to large elements and dark grey to small ones. As
a matter of fact, the use of the variations of the internal variable of the problem (in this
cage, Lhe equivalent inelastic strain) is nsed as the error indicator in [24], where Mazars
nonlocal model is considered, Other uuthors also consider indicators based on the energy
consumption (see [9]).

It s important to keep in mind that these correlations only apply for this particular
problem, In addition, the computation of derivates of, say, the inelastic atrain, whicl is
a discontinuons feld, shows very poor accuracy and depends stongly on the mesh size: a
finer mesh gives higher values of the gradients. In [6], an error indicator based on an Ly-
projection of the strains is presented, the Strain Projection (5P) indicator. According to
9], this indicator is an indirect measure of the strain gradients, and consequently, should
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be a suitable error indicator for the problemes studied here, The SP indicator measures the
Jumips of thestrain field comparing the discoutinuons finite alement solution for the glraing,
e, with a smoothed field, &

o = [{-/1;1.-(& —eMl(g - " }r!ﬂ} fﬂi] m. (4.10)

€ is evaluated by an usual Ly-projection vsing a lumped mass matrix. In |G{, this error
indicator ig taken as a magnitude that hasg to be get uniform in the adaptive process in a
transient localisation problem regularised via viscoplasticity.
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Figure 4.6; Correlations between physical magnitudes and the element size

To test the suitability and performance of the 5P indicator in the gquasi-static problems
considorad hore, the estimated error and the indicator distribulions have been reprarented
as surfaces in meshes | and 4 of the Li-Bettess remeshing process presented in figare 4.1,
These plots are shown in figure 4.7. T is clear that the error estimator detecls large errors
with mesh |, which is quite uniform, along the two edges of the shear band, and the mesh
is consequently refined in these zones, As expected, the ervor distribution in the final mesh,
represented in the same seale, is quite uniform and much lower. The figure shows that the
SP indicator also detects large errors along the shear band edges in mesh 1. However, this
surface shows a very important peak near the opening, and indicates very large errors whore
the error estimator does not. In mesh 4, the SP indicator distribution is quite uuiform and
small over the domain, except near the opening where the indicator still shows very high
values, In fact, this peak in the indieator, that measures indirectly the strain gradients, i
in agreament with the inelastic strain gradient distribution plotted in figure 1.6; near the
opening, betwesn Lthe two bands of small elements, very high gradients are computed (dark
groy) whereas the elements are quite large.
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Thus, it seems thal an indicator measuring the variations of the strain field would put
very small elements near (he opening, where the strain gradient is very large. However,
the actual error (the estimated error) is not very large in this zone, and larger elements
are eyough according Lo the objective approach. Therefore, the SP indieator would refine
t,'.m'mr.tly in the edges of the ghewny band, but would also refine (ar Loo much near the opening,
leading to very expensive meshes for a given accuracy. In conclusion, it can be said from
Lhese resulty that the 8P indicator is suitable (the edges of the band are refined) but shows
a poor performance (it refines too much near the opening ),

:’,' Maenh 1

Eailmiiated aiior ST indicator

Figure 4.7: Surfaces of the estimated error and of the 5P indicator in meshes | and 4 of the
Li-Bettess remeshing process

Of course, the reanlts presented liere are nol exhaustive and Lheir aim is to present
the objective error estimation analysia ag a powerful tool in the study of error indicators,
Further work can be carried out, studying other indicators, and the underlaying optimality
criterion implicit in the indicators: here, the SP indicator has been studied using a Li-
Bettess remeshing process, but the conclusions may be different If other optimality eriteria
are considered,
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4.3 Example 2: two openings

The objective of this section is to make clear that the nse of an adaptive technique is
almost unavoidable in more complex and realistic localisation problems, providing accuraie
and cost-eflective solutions, To do this, a more complex geometry with two circular openings
is considered. T'wo slightly dilferent specimens are brought to failure, and the results are
analysed.

The aim here is not to study the different remeshing strategies or Lhe error estimation,
ay has been done in section 1.2 with a simple problem. Therelore, n the two examples
shown in the present section, the same optimality criterion (Li-Bettess) is used. This choice
obeys Lo ils computational optimality, as long as more than GO0 degrees ol freedom are
reached here. A solution is considered to be aceeplable if the global relative error is below
L.6%, Finally, according to the conclusions reached in the previous section, the pollution
errors are not considered,

4.3.1 Problem description

The ouly difference between the problems considered in the current section and the reference
example decribed in figure 3.2, stems from the material parameters adopted, and from the
impaerfections introduced into the specimens. On one hand, the parameter set chosen is the
oue leading Lo narrow shear bands presented in figure 3.10, thatis, N = 3and v = 1700057,
On the other hand. two smaller civenlar openings substitute the centred one on this occasion
(see figure 4.8). 1t is worth remarking also that the maximum imposed displacement in the
present examples i 65, = L1 .

Twa slight variations of the geometry of the specimen are considered, depending on the
horizontal separation of the openings, which are closer in example 2h, As can be seen in
figure 4.8, the geometrical centre of the specimen is a centre of symmetry. Consequent|y.
only one half of the domain is analysed, reducing the computational domain, The boundary
condition to be imposed in the bottom of the computational domain is simply a linear
constrainl on the displacements of this part of the boundary. which must be symmeiric
with respect to the centre. Tu practice, this imposes a constraint also on the mesh: the
nodes of this line must also be placed symmetrically, so that the boundary condition can be
readily implemented, OF eourse, this has to be taken into account in the remeshing process,

It is worth noting that in all the figures of this section, the solution obtained in the com-
putational domain is extended to the whole domain to make the plots more nnderstanding,
However, when the number of elements is given, only the computational mesh is accounted
far.

4.3.2 Example 2a: two distant openings

The remeshing process carried out for example 2a is presented in fignre 4.9. The suceessive
computational meshes and their symmetrie are shown, as well as the abgolute error distri-
bution, which is uniformised by Li-Bettess criterion. In this case, five remeshing steps are
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Figure 4.8: Description of the two openings example: geometry and computational domain

necessary to reach the preseribed acenracy. Even if mesh 0 & far too coarse 1o be accepl-
able (global accuracy of 6.75%), it detects a zone of intense error in which the shear band is
located, In the following meshes, the localised region is detected in more detail by the error
estimation, and is progressively refined. The global velative error decroases considerably in
every atep. AL the end of the process, the error distribution s quite uniform, and although
the shear hand is very narrow. two bands of smaller eloments covering its edges can be
clearly distingnished.

This example illustrates perfectly the suitability of an adaptive procedure based on
ertor estimation in localisation problems, as well as the good performance of the presented
strategy. The remeshing process adapts the discretisation in order to capture the two
different scales of this kind of problem, the specimen sealo and the localisation seale, which
become evident from mesh 5. Thus, the strategy represents an objective, aceurate and cost-
effective methodology for localisation problems. It seems obvious that the compiitational
cost of a uniform mesh with the element size charaeteristic of mesh 5 (in the shear band
zone) ig unaffordable in practical engineering applications.
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Figure 4,10 shows the numerical sohition obtained for this problem: the reaction versus
displacement curve, the mesh deformed and the equivalent inolastic contours for meshes
0 and 5. The failure mechanism obtained is quite expectable, since the two openinggs are
almost aligned in the direction of the natural shear band orientation (see [30]). Therefore,
the three shear bands obtained (from the left side of the apecimen to one opening, between
the two openings and from the second opening to the right side) constitute practically a
unique surface along which the upper part of the specimen slides with respect to the lower
part. Note that, although mesh 0 is very coarse and scarcely accurate, it describes the
correct shear band pattern (see figure 4.10). Therefore, the remeshing process staris in
the right direction, and the successive mesles develop the same [allure mechanism with
inereaging ncenracy, This napeet is relevant to analyse example 2b,
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Figure 4.10: General solution for example 2a; Reaction versus imposed displacement, de-
formation of mesh 5 and inelastic strain contours for meshes () and 5
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4.3.3  Example 2b: two close openings
Remeshing process

In this ease, the remeshing process is performed for a slight different geometry to that of
example 2a. Figure 4.11 presents the process. Again, six meshes arve necessary. However,
note that the global relative error s hardly reduced in the first {wo steps: it is of 4.99% in
maesh 0, of 4.00% in mesh | and of 3.96% in mesh 2. Purthermore, meshes | and 2 detect
high errors in zones where small errors are assessed with mesh 0. Recall that in example 2a
the initial mesh eaptures the zone where remeshing is nesded, despite its coarseness. In the
presonl case, however, the error estimation obtained witl the initial mesh failz to indicate
where the elements must concentrate (see mesh 5),

To understand why this happens, figure 4.12 represents the mesh deformation, the inelas-
tic atrain contours and the reaction-displacenient curve obtained at the end of the loading
process, for meshes 0, 1, 2 and 3, Before the figure 15 commented, it 15 important (o poiit
oul that a ghear band is considered to be completely developed il its both ends are on
the boundary of the specimen, Indeed, a shear band is not a sliding surface of the ailure
moechanism until it starts and ends on the boundary.

The fignre shows clearly the shear band pattern obtained with mesh 0. Only two com-
pletely developed shear bands can be noticed. Two other secondary bands also appear
(the shear band that goes from one opening to the other is not considered in the explana-
tion for simplicity ). Therefore, the failure mechanism leans mainly on two sliding surfaces,
The reaction-displacement curve (in dark grey) shows a softening branch that tends to be
horizontal. Very similae results are obtained with mesh 1 for the failure mechanism (see
the deformed megh). However, the secondary shear bands are more developed and almost
reach the boundary. The medium grey curve shows that, deapite the response for mesh |
is gimilar to that of mesh 0, the final part suggests an increasingly sloped softening braneli,
Then, with mesh 2, a vory different solution is obtained, showing [our completely developed
shear bands and a more complex failure mechanism with four sliding snrfaces. Keep in
mind that all these results are obtained for the same imposed displacement. The hrighter
curve exhibits also this different failure response with an intermediate stage in the softening
hranch, and shows that this solution has less energy than the previous ones (the area under
this curve Is smaller), In fact, there is a numerical bifurcation between meshes 1 and 2: al
a certain point of the loading process, (he solution with mesh 1 follows a different path thal
the solution with mesh 2 (the medinm and the bright curves diverge). The results obtained
with the meshes 2, 3, 4 and b are very similar and approximate properly the unigue solution
of the boundary problem (recall that viscoplastie regularisation guarantees the unlqueness
of the solution). This it can be seen that the first two meshes are incapable of reproducing
the phenomenon, leading to solutions qualitatively different to the most accurate one. Al
thongh the solution ig qualitatively dependent on the mesh, the problem does not exhibit
a pathological mesh dependence: once the mesh is fine enough, the right mechanism is
correctly captured.

Going back to figure 4.11, it is casy now to understand the first steps: since the first
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mesh leads to a wrong solution, the error estimation is also biased and the resulting mesh
g not refined properly, Therefore, the rosulting mesh, mesh 1, also fails to capture the
correch response.  However, the solution obtained is closer to the correct one, which is
finally obtained with mesh 2. In plain words, it can be said that the vemeshing process
firstly captures the correct mechanism (from mesh 0 to mesh 2), and then converges to the
prescribed accuracy (1"|'Dm mesh 3 to mesh 5). In the first phase, as the mesh is relined,
new errors are detected, whorens in the gecond phase, Uthe error distribution is reduced and
aquidistributed. Recall that in example 2a the shear band pattern is much simpler, and is
described correctly by the first mesh.

Finally, note thal, as long as the energy (and the norm) of the solution with mesh 2 is
lower than the energy obtained with mesh 1. the norm of the error is divided by a smaller
quantity when the global aceuracy is compnted. This can explain partially the fact that
doubling the number of elements, the relative ervors obtained are practically the same with
mashes | and 2.

To sum up, this example not only shows that the adaptive procedure captures the iwa
scales of the problem, but also that it locates the localisation zone, which is unknown a
priori. In some cases, it is almoat unpredictable; a slight difference in the initial geometry
leads to completely different solutions in examples 2a and 2b. Farthermore, the adaptive
process has shown 1o be capable of capturing complex mechanisms, even if the initial meshes
lead to wrong solitions.
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Physical phenomenon

The complexity of this example and its enginecring interest justily a further analysis and
explanation. Figure 4.13 presents the mesh deformation and the inelastic strain contours at
two stages of the loading history for the final mesh, The first stage (6§ = 0.07 mm) belongs
to the softening branch, and is located where the curvature of the reaction-displacoment
curve changes sign. At this point, only fwo shear bands are completely developed, and
consequently, the upper part of the specimen slides with respect to the other part along
only two surfaces, However, it is clear that this failure mechaniaim mobilised at this point is
kinematically incompatible, and is not sufficient to absorbe the total imposed displacement.
Then, as the loading process goes on, the secondary shear bands fully develop, and the
final mechanism with four sliding surfaces is mobilised, This complex process is reflected
in the reaction-displacement curve with a suceesion of concavities and convexities. This
example shows clearly the necessity of considering large strains and an updated Lagrangian
formulation to capture correctly the phenomenon.

Finally, figure 4.14 presents the profiles of the nelastic strain at several moments of
the loading process along two different lines. The profiles along (C-C'") intercept two shear
bands, the left one being one of the two bands that develop completely in the first place, and
the right one being one of the secondary bands. The profiles show that in the first stages
the one of the bands develops more, but al the end, the two have reached high ineleastic
strains. On the other hand, the profiles along (D-17) show the little relevance of the shear
band that develops between the two openings. 1t can be noticed that this band starts to
show up al a certain moment of the loading history, and stops to develop after a while
remaining unchanged in the last stages, Despite this loeal phenomenon is inactive at the
end of the loading, when the error is estimated in the remeshing process, the refined meslies
do concentrate elements in this zone. Thus, this shows that the adaptive strategy presented
performs well in history depondent processes, capliring phenomena that have taken place
in the "past’, before the error is estimated.
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Chapter 5
CONCLUSIONS

5.1 Concluding remarks

This work has been mainly concerned with the Finite Element simulation of strain lo-
calisation problems in quasi-static problems, appearing as a consequence of the softening
behaviour of certain materials, Recall from the introduction that this numerical simulation
has to face two major difficulties: the need of a proper constitutive modelisation in order
to obtain mathematically well-posed problems on one side, and the need of a cost-effective
compitational strategy capable of capturing the multi-seale nature of localisation problems
accurately on the other side. In the present work, the former has been overcome using
two waell-known regolarisation techniques: rate dependence has been nsed to regularise Js
softening plasticity (via Perzyna viscoplasticity) presenting shear band localisation, and the
Mazars damage model with nonlocal regularisation hag been applied to simulate fracture
localisation. On the other hand, adaptivity has been proposed as a natural solution to the
compnlational difficulties cansed by the existence of two scales i Lhe problem.

The adaptive remeshing procedure presented in this work leans on a posteriori error
eatimation, and constitutes a theoretically sound alternative to the usual error indicator
driven adaptive procedures proposed by other authors (o solve strain localisation problems,
The residual type error estimator pr-ta-sv.-r:tnt! in the eurrent work ean he applied to elliptic
prablema, ellipticity being guaranteed in quasi-stalic regularised problems.

The examples presented throughout the work show the good performance and suitabil-
ity of the adaptive procedure in strain localisation problems, solving accurately complex
problems whose non-adaplive resolution is out of reach for the available computational ve-
sotrcos, Indeed, the intringie difficulties of localisation problems, that is the existence of
two sealos and the fact that the localisation pattern is unknown a priori, are successully
overcome by the presented adaptive methodology.

Apart from presenting a cost-effective and objective methodology to solve the multi
seale nature of localisation problemsa, other more specific conelusions have been obtained
and are summarised below:

e The pesidual type ervor estimator presented s efficient and caplires the pollution

i1
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errors. I can be used in goneral nonlinear problems, either in its fully nonlinear
version or in ifs tangenl version,

s Perzyna softening viscoplasticity loads to mesl objective numerical resulls in quasi-
static shear band localisation problems.

* In the quasi-static case, the shear band width seems to depond on the whole boundary
value probleny, and in ;ml'i icular on the loading velocity, However, this width can be
scaled conveniently without altering the viscous regularising effects, by changing the
exponent N of Perzyna model, On the other hand, the imperfection size affects the
shear band width when it is smaller than the natural width, and near the imperfoction.

s The adaptive procedire can be used in shear band localisation problems, nsing Perzyna
viscoplasticity and the tangent version of the nonlinear orror estimator.

s The adaptive procedure based on error estimation answers objectively to e basic
issues of adaptivity: where to put the elements, and how many elements are needed
to oblain aceurate solutions.

¢ Thix abjective approach reprasents a poworful tool to investigate on ervor indicators,
which are computationally cheaper than error estimators, but often lnck tlieoretical
hasis,

o According to the problems studied here, the pollution errors can be nogliged in the
adaptive process,

e The adaptive remeshing procedure is capable of capluring complex failure mecha-
nisms, which are missed when arbitrary meshes are vged.

# The arror estimator driven adaptive procedire ean also be applied to fracture locali-
aation problems in which Mazars damage model is used with nenlocal regularisation,

5.2 Contributions and future developments

According Lo what has been said before, the main contribution of the current work is the
uge of adaptivity based on error estimation in strain localisation problems with softening
materials. Other contributions are related with the implementation of Perzyna model and
the residual error estimator i an Object Oriented Code. In the implementation of the
error estimator, the work has focused on the computational aspects, The Perzvna model
gualitative behaviour has also been studied in detail, providing a pood understanding of its
principal characteristics. On the other hand, the shear band width has been studied for
Lhe quasi-static two dimensional case, Furthermore, the incidones of pollution error on the
adaptive process has been investigated, concluding that they ave negligible. Finally, it has
been seen that the error estimation aunalysis presented can be very useful in research on
error indicatlors.



5.2 CONTRIBUTIONS AND FUTURE DEVELOPMENTS 79

When it comes to future developments, some have been suggested thronghout the work.
Indeed., two topics of very intense present research, adaptivity and strain localisation, have
been treated here. Therefore, selecting a few particular aspects among many interesting
topies of research represents a diflicult task. Nevertheless, some stimunlating nture devel-
opments are naturally suppestad by this work.

Firstly, ng several authors suggest ([30], [19]), a procedure adapiing the mesh all along
Lhe loading process seems more adequate for history dependent processes than an adaptive
procedure remeshing al the end of the loading history as the one used in Lhis work, Thus,
a promising research could be carried out developping a mixed ALF-remeshing adaptive
procedure based on ervor estimation, adapting the diseretisalion several times parallely to
the ineremental loading, '

A subject of further research ig also the infroduction of modificationa in the ercor esti-
mators, maintaining its philosaphy, in order Lo abtain a better performance, The research
wotld be contred in the generation of the reflerence space in which the error is projected 1o
find the estimate, using prelinement for instance. On the other hand, the parallelisation of
the estimation algorithm may resull of great interest,

Another atimulating topic is the development of performant error indicators from the
objective information supplied by adaptivity based on error estimation. The approach
preseuted in the corrent work can also be used in the design of a methodology to evaliate
existing error indicators,

Finally, ather related problems, such as adaptivity based on error estimation in transient
localisation problems or error estimation linked to different localisation limiters, also appear
as promising research topics.



B0 CHAPTER 5. CONCLUSIONS



Appendix A

THE PERZYNA MODEL

When the modelling of the softening behaviour exhibited by eertain materials 13 attempted
nsing elagtoplastic models, important mathematical and practical problems arise. They
ean be summarised in o change of type of the governing equations, leading to an ill-posed
problem. As a consequence, when this problem is solved numaerically with the finite alement
method, it shows a pathological mesh sensitivity.

This situation ean be precluded using the so-called regularisation techniques, One of
those techniques is the inclusion of material rate effects in the constitutive model via vis-
coplagticity. Perzyna model provides a viscoplastic model that can be used in order to
ablain well-posed problames. [1is especially well suitéd to model materials that gshow Maode-
IT localisation (shear-banding).

This madel considers viscous effects during the inelastic flow, or in other words, the
existanca of additional stresses nssociated to the inelastic sirain rate. A practical conse-
guence ig that the material takes time to deform when it is loaded, and also takes time to
recover when it is unloaded, This does not happen in rate independent materials, that show
instantaneous responses,

This appendix focuses on Perzyna viscoplagticity, ineluding its formulation, phenom-
enology and the validation of the implementation of the model in the finite element Ob ject
Oriented Code CASTEM 2000, In seclion A.1, the constitufive equations of Perzyna model
are presented, Then, in gection A2, Lhe general equations are simplificd to formulate simple
temsile and shear problems in terms of ordinary differential equations, These OD1Y's can be
ensily solved numerically, providing examples that illustrate the qualitative behaviour of the
maodel with respect to rale dependence, These examples are presented in soction A3, where
the relationship between viscoplasticity, elastoplasticity and elasticity is also discussed. In
seetlon A, the viscous overstress is analysed and quantified for the shear case. This resull
i used i section A5 1o study the influenee of the parameter N of the model. Finally, the
validation tests of Perzyvna model implementation are shown in section A.G. These tests
consist on comparing the resulia obtained integrating the ODE's and those obtained solving
a finite element problem which s theoretically squivalent to the original problem. Simple
tansile and shear problems are tested, with positive results in both eases.

81
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A.1 Formulation of Perzyna viscoplasticity

Before the constitutive equations are presented, let us comment how rate dependence is
introduced into the model, Although this behaviour is the most relavant aspect of Perzyna
viscoplasticity as a regularisation technigque, the model is deseribed by similar equations to
thase of rate independent plasticity, and rate dependence is not explicit in the formulation.
Nevertheless, the Peizyna flow rule introduces implicitly this behaviour that appears clearly
in the examples presented in the following sections:

Once this preliminar remark has been done, the constitutive equations of Perzyna vis-
coplasticity are presented (see [22], [33], [30]). The notation employed here is quite standard
in continuum mechanics ([15]). Nevertheless, it is worth noting that tensors are denoted in
bold, and dots denote rate quantitios.

Stress and strain rate tensors

The amall strain tensor e, defined as the symmetric part of {he gradient of the displacement
field u

g:%ﬁm+4vmh. (A1)

can be decomposed into an elastic strain tensor € and an inelastic, in this case viscoplastic,
gtrain tensor e, Therefore, the following rate-form equation holds

E= 4, (A2)

With such decomposition the stress rate tensor & can be written, following an hypoe-

lagtic law, as
o =0D":(&—&"), (A.3)
where D" ia the Hooke tensor,

Note that, although the formulation is given for amall strains, the large strain case is
vasily obtained substituting the strain rate tensor & by the rate-of-deformation tensor d,
defined as \

d = E(V't' + (Vn'}T}, (A.d)

where v is the velocity field. In this case, the straing are obtained integrating d, and in
equation A3, & must be substituted by an objective stress rate thal acconnts for rigid
rotations.

The yield function

As in plasticity, a yield fanetion [ depending on the stress tensor @ and the equivalent
inelastic strain x musi be defined, This equivalent inelastic steain is a scalar variable that
parametrises the material level of plastification and depends on the strain history. s rate

is defined as e
; & i
i = \/_‘ gV e g {A_ﬁ)
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One possible choice Tor the yield Tinetion f{er, 1) is the one given by the Von Mises
crilerion

T k) = 3Ty = a(k). (A6)

In this equation, Js stands for the second invariant of the deviatoric stress tensor ey,
which 15 defined as I

El I. (A7)
where [y is the first invariant (the trace) ol the stress tengor and 1 the identity tensor, Thus,
the second invariant Jy can be written as

Ty =a—=

I .

Jy= {éi:r,;:ﬂ‘,g. (A.R)

In equation A.G also appears the yield stress a(x) al a certain point of strain history,

which must be positive and ean be Laken as a non-negative linear fanction of Lhe equivalent
viscoplastic slrain &

a{r) =< ao+ hk =, (A.D)

h being the hardening/softening modulus and @& the initial yield stress, The function < - >
is defined ag < @ >= (|z| + ). Therefore, a(r) =ag+hn il ap+hr>0 and a(x)=10
if &g+ hos = (.

It is at this moment that strain softening behaviour can be introduced into the model,
by setting h to a negative value: It is obvious that doing so, the yield stress & decreases as
viscoplastic strain & grows, obtaining the desived behayionr,

Viscoplastic flow rule

Similarly to rate independent plastic theory, a viscoplastic potential g, is delined. Con-
sidering associative flow, the yield Tunetion and the viscoplastic potential are the same
function f = g, Consequently, the tensor m representing the direction ol the viscoplastic
flow, defined as the gradient of the viscoplastic potential gy, can be written as
!
m = -i (A.10)
e '
Until here, there are no significant differences with rate indepondent plasticity. In fact,
the only difference stems from the viscoplastic strain rate proposed by Perzyna (1966)

£ = [“‘ > ] ) (A11)

T
in which 5 is a fluidity parameter depending on the material viscosity, N is a constant and
ag is the initial yield stress. As before, the notation < [ > means that < f >=0if [ <0
and < f==fif f = 0.
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At this point, having presented all thoe model equations, it is relevant to note one essential
difference between viscoplasticity and rate independent plasticity. In rate independent
plastic theory, stress states must always remain ingide the vield surface. This condition is
implicit in the very formulation of the model, with the plasiic consigtency condition that
rules the plastic processes. On the contrary, in viscoplasticity, stress states outside the yield
surface can exist, This is the reason why viscoplastic flow rules are often called overstress
laws, Nevertheless, although in this case there is no condition forcing stress states to stay
inside the yield surface, under constant lumliug conditions Lthey tend to go back to it.
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A.2  One dimensional representation of the model

The aim of the currenl section is to define simple mechanical problems whose governing
equations can be simplified to scalar ordinary differential equations. To do this, sonie
general equations are particnlarised to the case ol plane stress, which is assumed, Then,
one dimensional problems with uniform stress and sirain felds are considered, in both
the tensile and the shear cages. In those problems kinematics and equilibrium are trivial.
Therefore, the resulting sots of ODE’s are particular expressions of the general constitutive
equations af the model. These simple problems, that can be easily solved numerically, sre
used in seetions A3 and A5 1o study the qualitative behaviour of the model, and in section
A.G to test Perzyna implementation i CASTEM. They are also nsed i section A Lo
obtain an expression of the viscoplastic overstress for the shear case, At the end of the
present section, the model is ilostrated using a simple rheologic scheme.

A.2.1 Basic equations in plane stress
The assumption of plane stress means that all the components related to the = axis are null
Ui = Tay ™ O =0y = e =0, {A.12)

[n this case, only 2 x 2 tensors can be considered
M SUp
B & g g Tpip
g = -.1?1. 'ELU Eup - -,:;, _i# o = bt ary . (A.JE]
Cpn Ew Cwe Eup Tyz Tyy

In this plane siress situation and according to equations A6, A7 and A4, the yield
funetion can be expressed as

} ) 3
.!r('fr- H) — \/dir.' 4 ”Ef;; - #;zr;""mr e ':E (ﬂ'gy f ”3.-::) - H(h"]' [-‘\-14)

Therefore, derivating this expression as is shown in equation A.10, an expanded expres-
gion of the flow dirvection tensor m is obtained in the case of plane slress

I 2005 = Ty KT

inm= = : ;
2\/5::5»: + H;fu = TynTyy H }j (Hr:‘?u + Hﬁn:) JFW AG‘W ~

: (A.15)

Note that, in the expression of the yield function of equation A.11, the symmetry of the
sbress tonsor @ (s not taken into account, and o, and o, are kept formally different, This 1=
becanse Lhe flow direction tensor m i the yield funetion derivate with reapect to the stress
tensor, Therefore, this eondition must be imposed once the devivation has been done,

Apart from that, the Poisson ratio is set to zero in order to simplify the formulation.
The condition # = 0 implies Lhat

D" = ET, (A.16)
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where D" is the Hooke tensor, £ Young's modulus and T the two dimension identity tensor,
Therefore, equation A3 can be rewriiten as

&= [ (&~ "), (A7)

in which &, & and " are the 2 x 2 lensors of equation A.13.

A.2.2 Simple tensile case

Let us consider now the problem shown in fignre A1 1i is a slab of viscoplastic material
subjected to an imposed displacement 8 in the @ divection. The loading couditions are
vonsidered quasi-slatic,

Ki
y = 0 — &(1)
¥
iy, =1 : I;
xr t {I :
i i
8(1) i >
i* b
Meclisriieal pralslom Numerival muwedel Imposod displacemmi

Figure A.1: Simple tensile teat

Governing equations

It is obvious from the boundary conditions and quasi-static equilibrium, that in this case
tyy and oy, arve null, and the stress and the strain tensors ave uniform flelds, Therefore,
according to equation A.17, the viscoplastic strain fensor is also uniform. Thus, the stress
tensor can be written as

| Ty 0 -
a—[ 0 0]‘ (A:18)

the yield function (see equation A.14) as
[ = o] = aln), (A.19)
and, according to equation A.15, the flow direction tensor as

. L [ 2” T “

L0 ,
=3 vai |l 0 —ap 0 _’.li ] LA

] = Sy,
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Thug, congidering equation A, 11, the viscoplastic strain vate tensor i of the form

£= N
T f= A B i
: "[ @ ] [ 0 —i [H8n(o), (A.21)
and tlie equivalent viscoplastic strain rate can be written, according to equation A5, as
E N =
: a [=[> , 5
Zry | i L e Y dUp 5
o = \/6 7 e s O W \/ﬁ Eghs (A.22)

Assuming that x and @78 initial values are identical, this rate-form equation can be

rew I'il.t.!,‘,l'l 5] -
5
= \/;‘E e (A.23)

and the following expression is obtained for the yield stress (see equation A.9)

r

& = g + gh. gl (A.21)

At this point, the basic equations of the model have heen simplified for this particular
case, Nevertheless, the aim of the current section is to obtain & one dimensional problem,
and Lhe equations siill invalve 2 % 2 tensors, To get to the simple tensile problem, attention
mual be paid to equation A7, Sinee @ and € are diagonal tensors (see eguations AL18
and A.21); this equation implies that £ is also & diagonal tensor. Therelore, the za and
the yy components are independent (the @y and ye components are zero), and the two
dimensional problem can be decomposed into two uncoupled one dimensional problems.
Thusg, considering only the ez components of the tensors, the simple tensile one dimensional
case is oblained,

To sum up, the governing equations of this one dimensional problem can be rewritien

using A9, A21 AT and AL24, as follows

I = om-o
i = { LM 0750
< 1" sign(aws) i £ >0 (A.25)
Ou = K (Egw — E5R)
i = e‘h-;+\/;5._flﬁf.-¥.-

[n fact, this iz a set of ODEs where the unknowria ave £27 and o,.,. It can be solved by
any standard ODE method, given the model parmmeters (N, 7,@0, F and k), and the total
strain rate £, a8 a lunetion of time, This function is oblained for (his tensile problem in
the following paragraphs.
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Preseribed total strain rale

The expression of the total strain rate imposed In the problem shown in figure Al is now
derived from the imposed displacement 8, This displacement is characterised by a constant
rate & = ¢ in the fivst halfl of the test, In the second half, (1) remaina constant, so that the
viscoplastic oversiress caused by the sirain rate can vanish with time. So, o(1) ia defined as

| oel il e () B e s |
b{&]—{ & il 1t 20 with & = v #* . (A.2G)

[b 15 gasy Lo see that this imposed displacement boundary condition canses n displace-
ment field in the @ divection of the form

ty = ﬂﬂ-r {A27)
Then, considering small strains, the @z component of the total strain tensor ig
g Y1t e [gen]
e = E"}Eﬁ;‘ = { y i {A-EH}
s it e [

which s a uniform strain field. So, according to this eguation. the total strain rate expression

is finally obtained
Y A = .
Lo ‘{ 0 ifteimer (A.29)

A.2.3 Simple shear test

The problem shown in figure A2, similarly to the previous one, can be formulated as b one
dimengional uniform problem. [n this case, the slab of viscoplastic material is subjected 1o
a quagi-static imposed displacement in the y direction, causing a simple shear atrain state,

tiy =)
ty, =0 =

Bachanival ]ll'{rl.':]hl.ll MNusnertcil pnoda) limgaemeed diaplucemil

Figure A.2: Siniple shear test
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Governing equations

Similarly to the tengile case, this problem involves also uniform fields. In addition, only @y
and ya stresses are non-null. Thus, as the stress tensor is symmeric, it can be written as

= [ 0y ] (A.30)

ary U

and the yield fupction, according to equation A.14, as
I = V3|ay,| = #x). (A.31)

Using equation A, 15, the flow divection can be written in this case as

! 0 3o, . g L
M = | | = sl o = 2 |, A32
2/ 0wy l Bo,, 0 Bl () g (A.32)

Therefore, using equation A.11, the viscoplastic strain rate can be written as
N T
- <[> 0 .

EH;‘F = ' ] ; 2 ai [l(ﬂ_-.l . A,a”
! &y [ -‘-4 0 J Bi1( ey ) ( )

and the equivalent viscoplastic strain, similarly to the tensile ease, as
i (A.34)

h‘. = EE‘:."-
It is obvions that this problem is also one dimensional. Ag has been done for the gimple

tensile case, the poverning equations of this gimple shear problem can be summarised as
lollows

f = ﬁc"rﬁ"&

o { 0 iff<o
J Ty M:} 7[{5]Nﬂigu(ﬂ;=g) irf=0 {A.35)
rﬁ'J.” = B (F.-'a.'p - E;ﬂ')

a = @+ F=hell

.

Although this new set of ODIs is very similar to the previous one, it is useful to test
CASTEM s implementation of Perzyna model for a shear problem.
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Prescribed total strain rate

Asin the tensile case, the lotal sirain rale impuﬁmi 18 needed Lo salve the equations gaverning
the simple shear problem. In this case, the expression of 4 is identical to the previous case.
It is cany o see Lhat this imposed displacement boundary condition causes a digplacement
field such that ouly the y component iz different to zero

Hy = i{;—)ﬁ (A.36)

and considering as before small strains. the total strain can be written as

| Ouy b gt i€ |0;1%] )
=gl tRITHT p . (A7)
R boirte e

Therefore, the following expression of the total strain rate is obtained
el ¥ it e [0, A4
T 0 ite ] sl
A.2.4 Rheologic representation of Perzyna model

First of all, the parameter v of Perzyna model is going to be understood in terms of usual
viscosily parameters. To do that, the simple tensile case with N = | is considered. Under
these conditions, the viscoplastic flow rule can be written, according Lo equations A.25, as

wp _ E—=F) 9
gl = = —{o—a), A9
3 T t"i‘n( ) (4 )
Defining the purameter y as .
i
= A
=< (
equation A9 can be written as follows
a—a=ngi" (A.dl)

Paying attention to this expression, it is easy to identify g as a classical viscosity para-
meter, in other words, the ratio hetween a stross and a strain rate. Thus, recalling equation
AAD, it 1s clear Ll 3 can be seen us a fluidity parameter, thinking of fluidity and viscosity
as apposile concepls,

In figure A3 is shown a graphie representation of Pergyna model in the simple tensile
case with N = 1. I illustrates the belhaviour of the model with simple rheologic elements
such as springs and dashpota. This figure is helpful to understand the examples prosented
in the following sections.
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i

1‘
p = L .
= 30 el e
an @ = Ffé—5")
#i 4 FLi
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Figure A.3: One dimensional rheologic scheme of Perzyna type viscoplastic model (N = 1),
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A.3 General and limit behaviour of the model

In order to analyse the Perzyna model qualitative belavieur, the simple shear problem
deseribed in figure A2 is solved with several parameter sets, The results of simple tensile
examples are very similar and do not bring additional information.

In first place, o relerence example is presented to illustrate the general behaviour of
the model, Then, enlancing rate effects, the elastic model is reached as a limil of Perzyna
viseoplasticity, Fiually, the rate independent limit of Persyna model is discussed.

In these examples, a fourth order Runge- Kutta method is employed 1o integrate the set
of ODEs, The integration step is selected depending on the parameter set, partieularly on
7 and o values. At the end of the current section, it ean be seen as, for certain valnes of
these paramelers, numerical convergence problems ave enconniered, and smaller integration
slops are req) nired.

Reference example

It is casy Lo see from the governing equations of the shiear case (see squations A.35) and
from the expreasion of the total strain rale imposed (see equation AL3R). that a sei of
cight parameters defines completely a problem. These parameters are the model parane-
ters (N, 5, a0 1 and &), and the three additional paramaters (v, [ aned 8%), The reference
example, that can be used to compare the results with other examples, is defined by the
parameters N = 1, £ = 200000, gy = 200, h = =10000, 6* = 0.1, { = 10, 7 = 400 and
o= 1000,

ETRT S 1T Kl @
| i i.da

(1]

(T

= it dh
(N1 1k = n.an =
s i a4
A i
L] | Biie R d d
Wa ] Gl
Ll a [ 4
A Tl
§.00 n i i i 0. b I
hoh o @AE LI biA Lk VR Bae R domn dcms Bave & ai i i i o b b 3 be 3 i
LAE S M

Flinlip-wirann an s gefeymne ssapyis Wi il b Vs eaf s enine shaigis
Figure A.d: Strain-stress and thine-stress velations for the reference example
In ligure Ad, Lhe results obtained by numerical integration are presented, In the first

plot, the strain-siress ('4‘."1.,,, - ..,L.,,} evolution during the test is plotted in solid line, The yield
surface is plotled in dashed line. 1t is the graphic reprosentation of the function Y, = k
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(@ is parametrised by 2.,). 1L representa the points of the apace Py = Epy Lhal verify the
condition f = 0.

It ean be noticed that in the elagtic zone (before the first intersection botween the two
curves), the yield stress remains constant,. When the two eurves meot, the viscoplastic
domain is reached. From this moment on, the stress state remains outside the yield surface,
as it has been said, because of the viscoplastic oversiress. This overstress, cansed by the
sirain rate, reaches a maximum, and the total siress docreases as long as the yield stress
does go. Thus the softening behaviour that forees the vield stress (o decrease during the
vigeoplastic low can be noticed. Finally, when the maximum total strain s reachod and
remaing congtant, the viscoplastic overstress vanishes and the gtress state goes back to the
yield surface,

I the second plot the tinestress evolution diring the Lest is plotted. The loading
gome and the relaxalion zone can be clearly recognized. In the loading zone, an elastic and
a softening viscoplastic zone can be distinguishoed. It is easy to see that the viscoplasiic
overstress decreases with tme in a negative exponential way.

Inereasing rate effects

As has beeu said before, the test proposed is defined by eight parameters, five concerning
the model and three the loading conditions. Buf, as long as the aim of the present section
is to study the rate effects, the attention can be focused mainly on iwo parameters, 4 (the
Muidity parameter), and o (the loading velocity).

Figure A.3 illustrates how rate elfects increase when either the velocity increases or
the fluidity decreases, which according to equation A.40, is equivalent Lo a viscosily rise.
Therafore, two possibilities appear to study the increasing rate affects.

In fignre A5 a succession of examples is presented, in which vate effects are enhanced
by decreasing the value of v, Similar resulis are obtained increasing v,

In oxample 1 (v = RO), the problem presents larger viscoplastic overstresses than the
reference example. In addition, more time is taken by the overstresses to stabiliso and o
vamish when we stop loading, Apart from that, the qualitative behaviour is similar to the
reference example,

[ is also simple to jump from example | lo example 2 (5 = 10).. The oversbresses are
now even bigger, and moreover, they are not completely relaxed relaxed at the end of the
analysis. L can be seen in this figure that, at the end of the test, the stress states are still
onlzide the yvield surface.

Finally, in example 3, an elastic behaviour is reached, as a limit of Perzyna viscoplas-
Licity, An infinite viscosity (5 = 0) is taken, which means that the dashpot of igure A3 is
blocked. Therefore, viscoplastic strains are zero and ouly the elastic part of the model is
active, ‘This is confirmed by the results shown in figure A5, where the elastic beliaviour is
clearly recopgnized,



94 APPENDIX A, THE PERZYNA MODEL

L1 Lipi i 2y ATHRL
LR
T T T T
Lol L - i
boh| | -
[REL] S = -
pank 5 -
Pl —rhdaig J il
w1 ||.||-| i-lll'q;rﬁ'n" e
LILL] = . i
LAY = - -
OkimA-a
WoAE Yl . a
i, T 1|
TTRALL
LR i i i i i uide 2 i i
i AR e e 3300 Py T L EF ded@ 4 (EF B A e i e fomi (1] i i i
LI T 1 ComuEd
Wi pdiijpkpsan iy s=wwls | Wimsonryasd Ui ssdispls |
RI.WJ ETRRE Em i
1N 1,80,
T T T T T L T T
dingg 1 LR 8 u
ek
ool RCUILEL R 2 § \'h'l i
Vel i
doodl | Bowi o
ionil . [T s .
TR . al [0 . =i [
ViAdlna TR
T e R mrrEmeaaeeray e sonml, Yrisod i
ranaAL Le il
LR i A . F . b [-H 13 A i A
B NoeE ) DF Lowy Agm LR fag poer 480 §.UE Y,ED T iR 1. ] 3, 0 30
i -y £l
HEAEH i d b s e Vies il inai bin ssmmphs §
Kiomd TR i ui sTHINE
i - L
T
L . - [HLL] S -
L] g L] L
woral . [ L) A o
bl E LI L
wnf - LIETY 8 o
i =1
L] n
* ] b A .
L[] % al 1 ddd Ll 4
LRk B . LA i
U ibjses - ——— . e TEETETE NN EEEEE A N ol
ATNALY TN
4 bt " i i » L
B R bt ek 238 IV OV wWEY dam 4 &Lap W noue I g ian i 2 i
1= LI ]
WEgminnbysan by ssangls 8 Wi divaas bin snanilia |

Figure A5: Towards an clastic model
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Decreasing rate effects

Again, two oplions arise to decrease rate effects, In this case, the reference example is
modified by decreasing the value of the loading velocity, v = 50.

[t is sasy to obsorve that as the loading velocity decreases, the preseribed strain rate
decreases (thus the viscoplastic strain rate, £, decreases) and, consequently (see squation
AAT) the overstresses decreases as well, Therelore, the dashpot in figure A.3 resists almost
et stresses, and the rheologic model resulting is a rate independent plastic model with
softening. This behaviour can be seen i example 4 of fignre A6, It can be noticed that,
during the viscoplastic flow, the slress states remain almost on the yield surface, with very
small overstrosses.
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Figure A.G: ‘The elastoplastic limit of viscoplasticity

Another important aspect of this rate independent limit of Perzyna viscoplasticity, is
that the set of ODIE's s more and more difficult to solve numerically as the limit is reached.
Convergence problems appear, and smaller integration steps are required to oblaln accopt-
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able solutions. For instance, in example 4, 2000 time steps have been necessary Lo obtain
a amooth solution. Example § illusirates these numerical problems when the set of ODE's
15 infegrated, with » = 00 and 200 integration steps, which are more than enough steps to
integrate properly the reference example, Very important oseillitions are observed in Che
solution during the viseoplastic softening flow, which disappear as smaller time stops are
taken,
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A.4 The viscoplastic overstress in the shear case

A.4.1 Relevance of the viscoplastic oversiress

As it can be seen in section A3, the viscoplastic overstress is one of the most relevant
aspects of Perzyia viscoplastieity, This overstress can be defined as the difference of the
actual siress level and the actual yield stress. In fact, they are represented by the yield
function f. The examples of this section show how, under constant strain rate, the oversiress
glabilises and remaing constant. Then, if strain rate becomes null, it vanishes with time.

This overstress may appear as an abstract concept thai, being defined from the vield
stress, lias no practical relevance by itsell. Nevertheless, it sometimes plays an importani
role, for ingtanee, in soffening localisation phenomena. When a shear band develops under
a constant shear rate, very high viseoplastic strains are reached and consequently, according
to equation A9, the vield stress becomes null, This means thal the resistance offered by the
material in the localisation zone is only due to the viscous effecta. In other words, a viscous
flow takes place in the shear band. Therefore, in this situation the viscoplastic oversiress
rules the residual resistance of the body reaching failure.
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Figure A.T: Reaching failire

Figure A7 illustrates the behaviour of the model in the shear ease. The set of parameters
of the refeyence example have been modified with h = =20000 and 6% = 0.3, The overstross
can he ween graphically in the first plot as the vertical distance between the actual stress
representation (solid line) and the yield stress representation (dashed line), 11 can be seen
that, when the yield stress becomes null, the only stress that the material resists is the
viscoplastic overstress, that vanishes when the load conditions become atationary.

UL
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A.4.2 Estimation of the overstress in the shear case

The governing equations of the simple shear case can be easily extended 1o the case in
which the Poisson ratio # is not zero. The ahear problem remaing uncoupled in this case,
The resulting sel of ODIs is identical to the set of equations A.35, except for the elastic
coeflicient that relates stress vates and elastic strain rates,

Guy = 7 (duy = 42 (A42)
| v

It is also casy Lo see that these equations deduced for the plane stress case, also hold
in the plane strain case. This is becadse the shear problem is uncoupled with the tensile
response in the = direction. '

The aim of this subsection is fo obtaln the expression of the overstress [ in the soltening
branch aud in the failure branch when the yield stress is uull. The loading conditions
assuined are an imposed displacement 8(1) = vl (see figure A7), so thal the strain rate is
constant,

by = 37 (A43)

For the sake of simplicity, in the following paragraphs, the ., notation will be ommited,

and the elastic coefficient will be denoted as K

K=— (Ad4)

Overstress in the softening branch

It has boen said that, nnder constant strain rate imposed, the oversiress stabilises fn the
soltening branch (see figure A4), so that the slope of the function o — = remaing constant,
The mathematical expression of this condition can be written as follows,

d (a aE —aé
o - | = 0 i —_— =1 Ab
i (E) “ & . (A:45)

But, according to equation A43, ¢ # 0 and & = 0. Therefore, the following expression
is obtained

F=0 or K(F-i7")=0. (A46)

Again, ag long as & = 0, this equation is equivalent to
Er=0, o (fNy=Njft=o. (A7)

Obvionsly, the overstress [ is not null, and consequently the previous equation is eIy
alent Lo

f=Be=#=0. (A48)
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Avcording to equation A.35, a can be written in terms of the viscoplastic strain rate,
and the following expression holds

B3¢ =20,  ar  BK(§=£") = 2heM, (A.19)
Finally, substituting i tlis equation Llie expression of the viscoplastic strain rate "7 of

equation A.35, and the expression of the tolal strain rate (sce equation A.43, the following
expression of the overstress s oblained

1 *
, 34 o "
J = m’[(;gh‘ + 'zh) NEE 1] ' (A.50)

In addition, il is easy fo obtain the glope of the function in the soffening branch o — =
B

o 20
I A5l
> = m— (A5]
£ 34 .?E‘

Overstress in the failure branch

Whaon the yvield stress becomes null and the material has failed, the slope of the funetion

a — & 15 also null, which can be expressed as

) = U ' (Auﬁz)

This means that the total strain rate is equal to the viscoplastic strain rate. Therefore,
similarly to the previous case, the following expression of the overstress [ is obtained

o 0 » .
J=t*u[-\/—ﬁ-;] i (A.53)
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A.5 Influence of the parameter N

The parameter N of Perzyna viscoplasticity is important to adjust the model 1o the re
behaviour of certain materials, For instance, it is nseful to obtain narrow shear bands
without deercasing the rate effects and the viscous overstress. I this parameter s to he
modified, one question arises. How should other paramaoters be changed to obtain a different
but comparable behaviour? One possible eriterion is to consider that two sets of parameters
are comparable if they show similar viscous overstress under certain loading conditions.

To investigate the mfluence of the parameter N, the reference example (with & = 1) ig
considered, and compared to another example taking N = 6. In this second example, all
the parameters have been set to the referonce values, except N, of course, and 7. The value
of 4 had heen chosen so that the overstress in the softening branch is the same one to that
of the reference example, using expression AL53. It results a value of 5 = 546 109,
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Figure A8 Effect of N

The results of the reference example {(dashed line) and the modified one (solid line)

are plotted in figure A8, The figure shows how both parametor setx present the same
overstress, and are then comparable.  Apart from that, the influence of taking N = 6
mstead of N = 1 ean be summarised in two aspects. Firstly, when the material begins

Lo yield, the transition helween the increasing branch and the softening branch iz much

sharper in the new example. On the other hand, the viscous overstress relax more slowly

when the load remains stationnary. Although the right hand side of figure A8 seems 1o

indicate that the residual stress is diffevent, in fact, they both tend to the same limit.
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A.G6 Validation tests of CASTEM implementation

To test the implementation of Perzyna model in CASTEM, a comparison is carried oul
between the results obtained integrating the sets of ODEs derived in the previous sections,
and solving an equivalent finite element problem. These tests are porformed for hoth the
simple tensile and the gimple shear cages,

Figures A.l and A.2 vepresent the phyaical and the numerical models for the tensile and
the shear tests, The npumerical models arve finite element discretisations of the problem,
with only one linear finite element of four nodes.

[t is obvious that the shape functions associated to this discretisation decribe exactly
the linear displacement field to which the slab is subjected in both cases (see equations A.27
and A36). In addition, the uniform sfress slate Lhat takes place in these prablems is also
described exactly. On the other hand, the bhoundary conditions ol the numerical nodels
agsure the one dimensional behaviour in stresses, Thus il can be seen that, with an exact
time integration, the finite clement discretisation of the mechanical problem is capable of
reproducing the exact solution,

S0, Il we nsaume that the time integration errors are small, approximately the same
solution should he oblained solving the set of ODEs o1 the finite element problen,

Simple tensile test

The parameters that define the present problem are N = 1, £ = 200000, ay = 200, h =
= 10000, & = 0,1, I = 10, ¥ = 200 and » = 1000,

Fipure A.9 shows that practically identical results are obtained either integrating numer-
ically the ODE’s governing the mechanical problem or solving (he equivalent finite elemont
problem,
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Figure A.9: Tensile validation test of Perzyna implementation

Thug, it can be seen that CASTEM s implementation of the maodel solves correctly this
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tenaile cage.

Simple shear test

In this ease, the problem presented is defined by the parameters N = 3, £ = 200000, o, =
200, h = <2000, 6° = 0.1, | = 10, 5 = 500 and v = 1000. Figure A.10 shows the results
obtained for this example. As before, the two solutions are practically identical, making it
difficult to diﬂting'liinh betweon the two eurves.

Thus, the model implementation reproduces correctly the shear prablem.

ITE T CTT T T
1. 80 (T
v v T
s - i e

Lad ] - ik o
1,30 (1]
i i LB L]
L [ e
Bl [ .
1y o e
i 30 | 030 e
WAL TINE
LR i i [T
TR &% LR VAR B0E BTR OB BE iR 4o 4R Bie L= s w )i L] i i i, i
i} £hE
bt | | el G i R bl d G s CRATEN  ddaiil o Aiaaghad Laiiap Diilesas ULl sudibhun | liakel §inid sl SARTEE  sasd bd Dinai

Figure A.10: Shear validation test of Parzyna implementation



Appendix B

ADAPTIVITY WITH MAZARS
NONLOCAL DAMAGE

The aim of the present appendix is to illustrate that the error estimator driven adaptive
procedure presented in this work can also be applied {o fracture localisation problems with
noulocal regularisation, To do this, Mazars damage model is considered, and a remeshing
process is applied Lo a simple example.

B.1 Generalities about damage models and nonlocal regular-
isation

When the modelling of eracking materiala i@ attempled in continuum mechanics, a very
natural way of considering the lack of material in the eracked zones s to introduce the
concept of continuum damage, as a degradation of the Young modulus, Damage models
take the mechanical effect of eracking into aceount by means of internal variables that
aflect the elastic stiffness of the material. There are different damage models, depending
on the mathematical nature of the damage variable (sealar of tensorial) and on the damage
evolution law, These models have been applisd basically io quasi-brittle materials, suel as
concrete, in which mode-1 localisation (fracture) is predominant (see [21], [23] and [27]).

A predictible feature of these models is that they present strain-goftening. In effect, as
Lhe void density grows, the material becomes more damaged and its resistance decreases.
Unfortunately, this softening hehaviour leads to serious difficulties due to the il posedness
of the boundary value problem in statics, or the initial value problem in dynamies. In the
sone where strain localises, the governing equations of the static case lose ellipticity. The
numerical consequence is a pathological mesh dependency: localisation zones tend to be
indefinitely narrow as the mesh is refined, and energy dissipation during failure tends to
zera, Whal 14 more, the scale of the damage distribution becomes smaller than the size of
Lhe material heterogeneites, which has no physical meaning.

To remedy this situation, several methods have been proposed as localisation limiters,
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incorporating some physical length in the constitutive equations. One of these techniques
i8 nonlocal regularisation. The nonlocal damage models lead to well-posed problems by
averaging the variable that controls the softening bohaviour aver a neighbourhood of eacl
point, The size of this neighbourliood is related to the size of thie material heterogeneites,
and characteriaes the minimum gize of localisation zones. Because of the existence ol two
scales, Lhe seale of malerial hetorogencites and the scale in which the material is homoge
neous, this nonlocal averaging is also known as a multiscale approach. Using this technique,
the results obtained wsing the finite element method are mesh objective, provided that the
size of the elements is smaller that Che material length in the localisation zone,

Mazars local damage model, presented in section B.2, considers jsolropie continnim
damage using a scalar damage variable 2. This damage variable is a function of the state
of tension, which is deseribed by an equivalent strain £. Ag the model has been developped
for conerete, which shows an asymmetbric tensile response, it has different damage laws for
tension and for compression. Its nonlocal formulation is described in section B.3, It constd-
ars a nonlocal equivalent strain by averaging the loeal quantity over s domain characterised
by a length /..

B.2 Mazars damage model
B.2.1 Local formulation

As it has been said, the damage variable D represents a degradation of the elastic stiffness
of the material, and vanges from zero (non-damaged material) to one (completely damaged
material). Therefore, the strain-siress relation of the damaged material s of the form

g=(1-D)D,:e. witly D=D<1}, (B.1)

being 13, the Hooke tensgor, & the Cauchy stress tensor and & the small strain tensor. It
s he easily seen Lhal, according o equation B. 1, the stress tensor o and Lhe shrain Lengor
£ have the same principal directions. Therelore, the two tensors are expreassed in terma of
their principal values, a; and g;, in the same base,

The evolution of the damage variable is deseribed by an equivalent strain 2, which i a
norm of the positive strain tensor. This means that it measures only the extensions, tlat
ig the positive strains

£= S ()2 with & =< g >. 3.2
3 (et , i

The function < « = is delined as < 5 == 5([r| 4 ). Therefore, E;-" equals to £, 1f it is a
lension ( positive) strain and to zera if it is a4 compression (negative) atrain.

This equivalent strain € is modified by the parameter 4, which modules the response in
the case of multiaxial compression. In fact, the damage variable depends on the product
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%&£, Thia parameter ia defined as

(i )*
= @ with a7 =< —a, >, (3.3)

bl -
[n this ease, o equals to the absolute vialue of a; if it s a comproession stress, and fo
goevo AT L s & Lension stress,
The damage variable D is a combination of a tension damage Dy and a compression
damage D, and its evolution is such that it cannot decrease

D=olDitalD,  with ay+a,=1, and D=0, (B.4)

The parameter [ improves the model reaponse to shear dominated situations.

The damage functions for tension and compression 2, and £2., ave characterised by the
warameters Ay, By, A, and B, and have the following expression
f B ex|

{ () 5= 2y

D=
] - '—M:":—'l-'-l ~ AjexplBy(ga0 = 98)] i v > 2

where £, 18 the threshold strain above which damage occurs.

Finally, the tension balancing coefficient o is a ratio between a measure of the exten-
gion (positive) straing due to the tension ([mﬂil.ivu) atresses (the tension straing not due to
Poisson’s effect) and the equivalent strain

ef el : D! :
g = Z,E(q;%l-ﬁ_! with E'," - <'('m5'}' O 7 :">,'l (U‘ﬁ)

where the stress tensor o is expressed in its principal directions. The coeflicient o is
decduced from equation B.d.

The qualitative response of the model in the tension and the (:nmprdauiun cases iy pre-
gented in figure B.1. The figure shows clearly the asymmetry of the response on one side,
and the unleading response of the model with no remanent straing on the other side,

B.2.2 Nonlocal formulation

The nonlocal regularisation can be applied 1o Magars damage model. To do this, instead
of taking £ as the internal variable that controls damage evelition, a nonlocal quantity is
considered. This nonlocal variable is an averaged equivalent strain £(x) defined as

() = dnedllx - ylD) &ly) a(y)
I ol = y[l) axy)

where €2 is the whole domain and o is a weighting funetion, in order to take into account a
neighbourhiood of the point x. A Gaussian distribution can be taken as weighting lunction

: 2
afd) = exp (_. (?) ) : (I3.8)

(B.7)
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N7

Lensioln

W

COIPression

Figure B.1: Tension and compression respounse, and unloading branches

The length parameter [, determines the size of the smallest region over which damage
can localise, It can be chosen as a physical characteristic of the material (e.g. the size of
heterogeneitios in concrete), or ag a purely numerical paramaeter.

B.3 Numerical examples

This section presents an adaplive process applied to a standard example (a three-point
bending test on a notched beam, see [27]), using Mazars damage model with nonlocal
regularisation. Figure B.2 defines the numerieal experiment, indicating the beam geometry
ane the material parameters considered. The beam is simply supported,

The computations are made according Lo the plane stress assnmplions. On the other
hand, the load is applied by means of a distributed pressure, and an arc-length controlled
nonlinear solver is employed in order to caplure the softening behaviour, The fully nonlinear
version of the error ¢stimator is used, since tangent stiffness matrices are not readily available
with the Mazars nonlocal damage model,

As expected, nonlocal regularisation leads to mesh objective numerical results, Fig-
ure B4 shows a numerical solution, illustrating the Gailure responge of the notehod beam.
The damage distribution, plotted in a uniform scale going from zero (bright grey) to one
(dark grey), shows clearly the localised region, where the material is highly weakened.
Congequently, the most part of the deformation coneentrates in the notehed zection. The
localised high tensile deformations correspond to the physical phenomenon of fracture. The
boundary deformation illustrates this concentration, as well as the et that the deflection
of the beam is not distributed over its length. Finally, the load versus vertical displacement
curve shows the softening response of Lhe heam.

Figure B.A presents an adaptive remeshing process considering Li-Bettess optimality
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Figure B.2: Dese I‘:pt.mu af tho numerical example: three point lu\u([mg tost on notched
beam of 100 mm W1dl.h with masximum deflaction of 0.3 mim

eriterion and an acceptability criterion of 0,5%. On this oecasion, point supports are con-
sidered, In the two first remeshing stops the elements concentrate in the damaged region, as
expected, and the global error is considerably reduced, Thus, the process seems to run rea-
sonably well, However, from this point on, the error is no longer reduced (it remains above
0.9%) despite the number of elenents is importantly increased, Furthermore, very small
elements appear in the neighbourhood of the supports, In fact, the process cannot converge
to an acceptable error becanse of the singularities introduced by the point supports. In
these points, where infinite siresses are found theoretically, large errors are doetected. As @
consequence, Lhe mesh is refined and the numerical solution captires better the singular so-

Damnge dinbrilintion PN '

g " 5y LR [ 5] i i

u(||1'_|r|,J

Bemmeliwy defrmntion amplifived 200 fimen Lond-displacemant curvo

Figure B.3: Numerical sohition of the problem
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lution. However, the finer mesh also detects new errors, and the mesh 8 relined indefinitely
without reducing significantly the estimated error.

Thus, the adaptive remeshing requires o more realistic modellisation of the problem
in which no singularitios appear. To do this, flexible supporig digtributed over 20 mm
are considered in the remeshing process shown in ligure B.5. In this case, two steps are
enonigh o reach an acceptable approgimation, The final mesh presents amall elements in
the damaged zone, but also in the neighbourhood of the supports, These zones are not
damaged, but still present a certain concenfration of siresses whose acourate approximaltion
reepires o rich discretisation. This alko happens in the zone where the load is imposed.

In conclugion, the adaptive procedure based on error estimation can be applied (o {rac
ture localisption problems uging Mazars nonlocal damage model. However, modellisations of
the problem cansing singularitios in the solution can prevent the procednre from converging
to an aceeptable solution, and should consequently be avorded.,
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Mash 0; 122 elamunts; srvar of 2.50%

Meah 15 418 eloments; eveor of 1.81%

Menh 23 324 eleronts; srron of f.l..l-.l‘.l%‘

Meah 3; 364 olomienis; evror of 0.66%

Mol 4§ 528 olsments; ervor of D%

Mesh 6; BE2 elements; orvor of 0.01%

Figiure B.: Adaptive remeshing sequence in a problem with singularities
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Figure B.5: Adaptive remeshing sequence in o problem without singnlarities
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