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Nonlinear Mechanical Response and Rippling of Thick Multiwalled Carbon Nanotubes
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The measured drop of the effective bending stiffness of multiwalled carbon nanotubes (MWCNTs)
with increasing diameter is investigated by a generalized local quasicontinuum method. The previous
hypothesis that this reduction is due to a rippling mode is confirmed by the calculations. The observed
ripples result from a complex three-dimensional deformation similar to the Yoshimura buckling pattern.
It is found that thick MWCNTs exhibit a well-defined nonlinear moment-curvature relation, even for
small deformations, governed by the interplay of strain energy relaxation and intertube interactions.
Rippling deformations are also predicted for MWCNTSs subject to torsion, resulting in an effective
torsional modulus much smaller than that predicted by linear elasticity.
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A number of experiments have suggested that multi-
walled carbon nanotubes (MWCNTSs) can be used as
basic elements of nanoelectromechanical systems
(NEMS). In particular, nano-oscillators and actuators
with MWCNTs in bending [1] and torsion [2,3] have
been experimentally studied. In [1], the resonant frequen-
cies of cantilevered MWCNTs excited electrically are
reported. From these frequencies, the effective Young’s
modulus for the tubes was obtained by linear elasticity
formulas. It was observed that, while small tubes exhib-
ited a modulus of around 1 TPa, larger tubes were much
more compliant with a modulus around 0.1 TPa. This
dramatic reduction of the stiffness was attributed to the
so-called rippling effect. Transmission electron micro-
graphs (TEM) of bent thick MWCNTs were reported,
in which a nonuniform deformation mode consisting of
nearly periodic wavelike distortions in the compressed
section of the tube was observed. A similar rippling
deformation has been observed in other experiments
[4,5]. Rippling is generally associated with elastic, re-
versible deformations [1,6]. The apparent contradiction
between the widespread analysis of the mechanics of
CNTs by linear elasticity, and complex nonlinear elastic
phenomena such as rippling has been noted in [6]. In
[6,7], the observations of [1] were analyzed qualitatively
by 2D finite element models of anisotropic elasticity
which developed rippling deformations.

In this Letter, we characterize the three-dimensional
structure of rippling deformations and the associated
energetics, by calculations of thick MWCNTs of realistic
dimensions. The complex deformation morphologies we
obtain, consistent with the experimental observations,
are related to the Yoshimura pattern. We rationalize the
emergence of rippling by the inextensional character of
this pattern. The energetics of the rippling deformation
mode depend on an interplay of the relaxation of the
strain energy through the geometric instability and the
van der Waals energy that keeps the ripples in place. This
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results in a substantially reduced effective modulus that
changes with deformation. We predict an analogous rip-
pling behavior for MWCNTs subject to torsion. To over-
come the prohibitive number of degrees of freedom, the
atomistic models were coarse grained by a method based
on the finite element implementation of a recently pro-
posed finite deformation continuum theory for crystalline
monolayers [8]. In this method, a generalization of the
local quasicontinuum method [9-11] to curved crystal-
line sheets, the continuum constitutive law is explicitly
constructed in terms of the interatomic potential. This
nonstandard continuum theory reproduces both the small
and large deformation mechanical response of atomistic
models of CNTs [12]. In the simulations below, Brenner’s
potential [13] has been used for the bonded interactions,
while a Lennard-Jones potential models the van der Waals
interactions, with the parameter set proposed in [14].
These nonbonded interactions are the only interlayer
mechanical coupling in our simulations. Although it has
been suggested that stronger coupling may occur [2],
there is solid evidence of a weak interaction with very
low sliding resistance like the one we adopt [3,15,16].
Equilibrium configurations are obtained by minimization
of the total energy, i.e., the strain (bonded) energy plus
the van der Waals energy.

A 34-walled (5,5),...,(170-170) nanotube about
23 nm in diameter and 124 nm in length is considered,
similar to the nanotube reported in [4]. This system
consists of about 5.9 X 10° atoms, that is 17.6 X 10°
degrees of freedom. The finite element model used in
these calculations has 300 000 degrees of freedom, which
is 60 times less than the atomistic system. By considering
several finite element meshes, it is concluded that this
model provides a ‘“‘converged” solution (the errors intro-
duced by the finite element approximation are compa-
rable to the minimization tolerances). The rippled
nanotube reported in [1] is thicker, with a diameter of
31 nm (about 45 walls). The simulation is performed as
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follows. First, the structure is fully relaxed. Then, it is
bent with uniform curvature (the cylinder is mapped
into a section of a torus). The radius of curvature is
165 nm. Finally, the ends are fixed and the structure is
relaxed [17].

Figure 1(a) shows a longitudinal cross section of the
equilibrium configuration. This image is the computa-
tional analog of the TEM slices of rippled thick nano-
tubes reported in the literature [1,4]. The simulations
reproduce very well the general features of the observed
rippled nanotubes: nearly periodic wavelike distortions,
whose amplitudes vanish for the inner tubes and
smoothly increase towards the outer layer. The rippled
MWCNT reported in [4] is subjected to a nonuniform
curvature, which results in sharper ripples in the more
severely bent portion. In the absence of detailed informa-
tion about the loading in the experiments, the nanotubes
are subjected to uniform bending in the simulations. For
this reason, the periodicity of the simulated ripples is
very regular, as in the observations in [1]. The wavelength
of the ripples is well predicted (around 10 nm).

The calculations provide information not available
from the experiments. A three-dimensional image of
the deformation is presented in Fig. 1(c). This image
reveals a complex structure impossible to infer from the
TEM micrographs, with an intercalation of several fami-
lies of buckles tilted with respect to each other. Three
characteristic cross sections are depicted in Fig. 1(b),
which in principle could be obtained by TEM. These
provide a new perspective on the deformation for they
show that the structure consists of flat-top sections and

FIG. 1. Rippling of a 34-walled carbon nanotube: (a) longi-
tudinal section of the central part of the simulated nanotube
and (b) cross sections. The cross sections are marked as thick
lines in (a). (¢) Computed deformed configuration. The mor-
phology of the ripples is reminiscent of the Yoshimura pattern.
The ridges and furrows have been highlighted, as well as the
trace of the longitudinal section.

215505-2

wedgelike sections, separated by nearly circular sections.
The calculations show that the rippling deformation
closely resembles the Yoshimura pattern or diamond
buckling pattern [18], which characterizes the postbuck-
ling behavior of cylindrical elastic shells.

Early work on the mechanics of carbon nanotubes
identified the similarity of atomistic calculations to the
linear buckling response of cylindrical elastic shells [19].
Linearized stability analysis predicts the so-called square
pattern of Fourier buckling modes at the onset of buck-
ling. Our simulations suggest that one can go further in
this analogy with the classical theory of buckling of
elastic shells. Indeed, the analysis of the postbuckling
regime shows that the Fourier modes interact, giving
rise to the diamond pattern [18]. As pointed out in [18],
the Yoshimura pattern has the interesting geometric prop-
erty of being a nearly isometric mapping of the unde-
formed surface, at the expense of creating sharp ridges
and furrows. For a material like graphene, relatively
compliant to bending but very stiff to in-plane deforma-
tion, this is a very advantageous deformation mechanism,
which releases much of the membrane strain energy at the
cost of some flexural energy. Indeed, our calculations
indicate that rippled MWCNTs have a significantly lower
strain energy than uniformly bent MWCNTs, and that the
distribution of the strain energy into membrane and bend-
ing energy also differs in the two cases; while for uni-
formly bent tubes nearly 100% of the strain energy is
membrane energy, rippling increases the bending energy
to 20% of the strain energy. Obviously, rippling cannot
release the membrane energy in the part of the MWCNT
subject to tension, e.g., the lower part in Fig. 1(a).

This very regular buckling pattern seems to be a dis-
tinctive feature of thick multiwalled nanotubes without
internal hollow space, i.e., those in which the innermost
nested tube radius is of the order of the interlayer spacing.
Experimental observations and atomistic calculations
suggest that bent single-walled and multiwalled nano-
tubes with internal hollow space display sharp kinks,
where most of the deformation is localized in a small
region [16,20]. In MWCNTs without internal hollow
space, the outer walls are constrained by the inner tubes,
and deep buckles do not have space to develop. Instead,
these systems choose the Yoshimura mechanism to re-
lease in a very distributed fashion the compressive mem-
brane strain energy.

Precise information about the energetics of the rippling
deformation can be extracted from the calculations.
Figure 2(a) shows the energy of the system as a function
of the bending curvature for the 34-walled CNT. Linear
elasticity predicts a quadratic growth of the strain energy
with respect to curvature. For illustration, the strain
energy of the uniformly bent MWCNT is plotted in
Fig. 2(a) for several radii of curvature R, and indeed the
graph is perfectly fitted by Eg,, * (1/R)?. For such a
uniform bending the van der Waals energy is nearly in-
sensitive to deformation, and therefore the total energy
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FIG. 2. Bent 34-walled CNT. (a) Energy change relative to straight relaxed configuration vs curvature; strain energy (L) for
uniform bending (ideal); total energy (O) and strain energy (X) for rippled deformation (actual). (b) Variation of the effective
bending modulus with curvature (solid line) and linear elasticity modulus (dashed line). (c) Bending moment vs curvature: initial
linear regime for small curvatures, followed by the nonlinear response characteristic of rippling.

also follows the quadratic law. However, the actual be-
havior of the system greatly deviates from this ideal
linearly elastic response, as can be observed in the figure.
The mechanical relaxation through the rippling defor-
mation leads to much lower values of strain energy of
the system. The figure also shows that the highly inho-
mogeneous deformation of rippling leads to an increase
in van der Waals energy with deformation (the o and
the X curves deviate). The global response of the system
is dictated by the evolution of the total energy, which
in this range is very accurately fitted by E,, « (1/R)*
with a = 1.66.

This response differs from that predicted by atomistic
simulations of SWCNTSs or small hollow MWCNTs, with
an initial nearly quadratic growth of the energy with
respect to the deformation (a = 2), followed by a
postbuckling regime characterized by a linear growth
(a = 1), which implies that a constant force is sufficient
to further deform the tube, and that the effective stiffness
is reduced to nearly zero [8,19,20]. These two regimes are
adequately explained by linear elasticity and linearized
stability analysis [19]. These theories, however, do not
explain the observed well-defined stiffened postbuckling
behavior (1 < a < 2), even if the van der Waals interac-
tions are included in the analysis, as in [21]. For the thick
MWCNT under consideration, the outer shells are very
prone to structural instabilities, even for small bending
curvatures. Consequently, the initial quadratic regime is
practically absent, and the overall response is dictated by
the nonlinear mechanics of rippling.

These observations explain the reduction of the effec-
tive modulus for thick MWCNTs. Based on the fit to the
total energy described above, Fig. 2(b) shows the bending
modulus of the 34-walled CNT as a function of curva-
ture. The usual beam theory definition of the bending
modulus (second derivative of the elastic energy per
unit length with respect to the curvature) is adopted.
Since a <2, the effective tangent bending modulus
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monotonically decreases as o (1/R)?"2. This formula is
not valid as 1/R — 0, since the quadratic regime holds in
a small neighborhood of the straight configuration, for
radii of curvature larger than about 3000 nm. It can be
observed in the figure that this modulus changes with
deformation, in contrast with linear theory. In particular,
it is found that the effective bending modulus of the
MWCNT for the largest curvature considered (1/R =
1/165 nm™!') is 8.3 times smaller than the linear elastic
modulus. For an intermediate curvature (1/R =
1/330 nm™!), the linear elastic modulus is reduced by a
factor of 6.6. Figure 2(c) shows that the bending moment
vs curvature relation obtained from the calculations is
qualitatively different from that predicted for small CNTs
[19]. An additional set of calculations for a smaller 20-
walled (5,5), ..., (100, 100) CNT leads to a very similar

(a) (b) (©

FIG. 3. Twisted 34-walled CNT 124 nm long. (a) Deformed
configuration for the last computed deformation (7yq, = 3.3%).
(b) Longitudinal and cross sections. (c) Energy change relative
to straight relaxed configuration; strain energy ([J) for uniform
twisting (ideal); total energy (O); and strain energy (X) for
rippled deformation (actual).
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behavior, although in this case a = 1.58 very accurately
describes the computed values of the total energy.

Motivated by nano-oscillators and actuators in which
thick MWCNTs act as torsional springs [2,3], we inves-
tigate whether an inhomogeneous deformation analogous
to rippling develops in torsion. The 34-walled CNT
124 nm long is considered. In [12] we showed that small
CNTs subject to torsional deformations conform with
linear elasticity predictions up to relatively large defor-
mations [a twisted (10,10) CNT buckled for a shear strain
of y = 5%]. For a uniformly twisted MWCNT of length
L, the shear strain for the ith layer can be computed as
v; = Or;/L, where O is the twisting angle and r; is the
radius of the ith tube. The highest shear strain is that of
the outer tube v,,. The linear elastic torsional spring
constant of such a tube follows x = 27G,/L)Y 1} =
6.2 X 10* aJ, where G, is the surface shear modulus
(83.5 J/m? for Brenner’s potential [12]), and the sum
runs over the 34 individual CNTs [22]. This leads to
Egin = 1/2x@2. This energetic prediction perfectly
matches calculations in which the layers of the twisted
34-walled CNT are constrained to remain cylindrical,
i.e., not allowed to buckle, shown in Fig. 3(c). However,
the unconstrained system develops a nonuniform defor-
mation far more efficient from the energetic point of view,
as shown in Fig. 3. Torsional rippling develops at a rela-
tively small shear strain of y,,; = 0.8%. The van der Waals
energy significantly increases with deformation, resulting
in a stiffened postbuckling behavior. For these calcula-
tions, the energy growth very accurately follows E, =
04 with a = 1.73 in the postbuckling regime (® = 5°).
Our simulations suggest that torsional rippling does not
reduce the rigidity of MWCNTs as much as rippling in
bending [compare Fig. 3(c) with Fig. 2(a)]; the exponent a
is closer to 2 in torsion. The experiments on torsional
oscillators in [2,3] involve quite thick MWCNTs, and
rough estimates from the data provided seem to indicate
that the deformations in the experiments would cause
torsional rippling to occur. Although to the best of our
knowledge torsional rippling has never been described in
the literature, we believe that there is experimental evi-
dence of it (see Fig. 37 in [23]) [24].

In summary, we have shown that thick MWCNTs are
very prone to develop rippling deformations in bending
and twisting. For these structures, the linear regime is
practically absent, or restricted to a small range of defor-
mations. Instead, the response is dominated by nearly
inextensional rippling deformation modes. Rippling leads
to an overall nonlinear response characterized by E,; «
[deformation]“, with 1 < a < 2. The parameter a depends
on the size [25] and the deformation mode. Linear elas-
ticity predictions (a = 2) and linearized buckling analy-
sis (a = 1) should be used with caution for these systems.
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