
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-–9 June 2022, Oslo, Norway

AN ENERGY-PRESERVING UNCONDITIONALLY STABLE
FRACTIONAL STEP METHOD ON COLLOCATED GRIDS

D. SANTOS, F. X. TRIAS, G. COLOMER, C. D. PÉREZ-SEGARRA
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Abstract. Preservation of energy is fundamental in order to avoid the introduction of unphysi-
cal energy that can lead to unstable simulations. In this work, an energy-preserving uncondition-
ally stable fractional step method on collocated grids is presented as a method which guarantees
both preservation of energy and stability of our simulation. Using an algebraic (matrix-vector)
representation of the classical incompressible Navier-Stokes equations mimicking the continuous
properties of the differential operators, conservation of energy is formally proven. Furthermore,
the appearence of unphysical velocities in highly distorted meshes is also adressed. This problem
comes from the interpolation of the pressure gradient from faces to cells in the velocity correction
equation, and can be corrected by using a proper interpolation.

1 INTRODUCTION

The Navier-Stokes equations are the basic equations that describe mass and momentum con-
servation in fluid dynamics. A general solution for these equations is not known, so many
different numerical methods were developed in order to obtain numerical approximations. A
widely used family of numerical methods applied to fluid dynamics are the Finite Volume Meth-
ods. Many general purpose CFD codes, such as OpenFOAM or ANSYS-Fluent, use a finite
volume method in order to discretise the equations and obtain numerical solutions over unstruc-
tured meshes. A collocated arrangement is used by these codes due to its simplicity and its
computational cost[1, 2], in spite of a staggered configuration seems to be the natural arrange-
ment of the discrete unknowns of our discretised equations [3, 4, 5].

Furthermore, these codes use stencil formulations, that is, once the equations are discretized, an
algorithm run cell by cell computing the desired quantities. In contrast, algebraic formulations
maintain the equations in matrix-vector form, and compute the required quantities by using
these matrices and vectors.

One possible method to solve the velocity-pressure coupling is the classical fractional step
method [6, 7, 8]. However, using a collocated framework and a wide stencil Poisson equa-
tion in such a method lead us to the well-known checkerboard problem. This problem can be
solved by means of working with a compact stencil Poisson equation [9, 10] or by regularizing
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of the convective term such as [1].

Many problems or unstabilities can be found in the numerical solution of these equations.
Namely, conservation of energy is fundamental in order to obtain numerical solutions, because
introduction of unphysical energy can lead us to unstable simulations. Furthermore, from our
point of view, it is crucial to respect the physical structure of the equations in order to obtain
reliable solutions. Respecting the (continuous) symmetries of the differential operators will al-
low us to conserve energy. This conservation is naturally achieved by means of mimicking the
continuous properties, and it is no longer imposed by conservation arguments.

Another common problem is the appearence of unphysical velocities in highly distorted meshes.
These spurious velocities come from the interpolation from faces to cells of the discrete pressure
gradient. Many reconstructions of the discrete gradient have been proposed [11, 12, 13, 14].
However, they do not usually respect the underlying symmetries of the continuos gradient and
divergence operator. In this work, stability of the solution is guaranteed by means of respectig
the symmetries of the continuous gradient and divergence operator, which give us a particular
construction of the discrete gradient operator, in terms of the discrete divergence.

Finally, it is worth to mention that some popular open-source codes such as OpenFOAM intro-
duces a large amount of numerical dissipation to the simulations [15]. In our opinion, this is not
appropiate since this artificial dissipation interferes with the subtle balance between convective
transport and physical dissipation, in addition to distort the effect of the model in LES simu-
lations. Hence, reliable numerical methods for DNS/LES must be free of numerical dissipation
(or, at least, have an small amount), and, of course, unconditionally stable, i.e. simulations
must be stable regardless of the mesh quality and resolution.

The paper is arranged as follows. A symmetry-preserving finite volume discretization on collo-
cated grids of the Navier-Stokes equations is presented in section 2, where conservation of energy
is also discussed. Section 3 addresses the stability of the pressure gradient interpolation in the
velocity correction equation. Finally, section 4 presents a numerical example in order to show
the stability of the method.

2 SYMMETRY-PRESERVING FINITE VOLUME DISCRETIZATION ON COL-
LOCATED GRIDS

The dimensionless Navier-Stokes equations for Newtonian and incompressible flows in prim-
itive variables are

∂u

∂t
+ (u · ∇)u =

1

Re
∆u−∇p, (1a)

∇ · u = 0, (1b)
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where Re is the dimensionless Reynolds number. A fully-conservative finite-volume discretiza-
tion respecting the symmetries of the differential operators for structured and unstructured
meshes on collocated grids was presented in [1]. Assuming n control volumes and m faces:

Ω
duc

dt
+ C (us)uc + Duc + ΩGcpc = 0c, (2a)

Mus = 0c, (2b)

where pc = (p1, p2, . . . , pn)
T ∈ Rn and uc ∈ R3n are the cell-centered pressure and velocity

fields. The subindices c and s refer to whether the variables are cell-centered or staggered at the
faces. For simplicity uc is defined as a column vector and arranged as uc = (u1,u2,u3)

T , where

ui =
(
(ui)1, (ui)2, . . . , (ui)n

)T
are the vectors containing the velocity components corresponding

to the xi-spatial direction. In order to assure mass conservation in the control volumes, a

secondary velocity field is defined at the faces us =
(
(us)1, (us)2, (us)3, . . . , (us)m

)T
∈ Rm.

Variables defined at cells and at faces are related via a linear shift interpolator from cells to
faces Γc→s ∈ Rm×3n. Both velocities can be related as follows

us ≡ Γc→suc. (3)

The matrices Ω ∈ R3n×3n, C (us) ∈ R3n×3n and D ∈ R3n×3n are block diagonal matrices given
by

Ω = I3 ⊗ Ωc, C (us) = I3 ⊗ Cc (us) , D = I3 ⊗ Dc, (4)

where I3 ∈ R3×3 is the identity matrix and Ωc ∈ Rn×n is a diagonal matrix with the cell-centered
control volumes. Cc (us) ∈ Rn×n and Dc ∈ Rn×n are the cell-centered convective and diffusive
operators for a discrete scalar field, respectively. Finally, Gc ∈ R3n×n represents the discrete
gradient operator and the matrix M ∈ Rn×m is the face-to-center discrete divergence operator.

The volumetric interpolator from cells to faces Γc→s can be constructed by means of two
matrices: the scalar cell-to-face interpolator, Πc→s ∈ Rm×n, and N = (Ns,xNs,yNs,z) ∈ R3m×m,
where Ns,i ∈ Rm×m is a diagonal matrix containing the xi spatial components of the face normal
vectors:

Γc→s = N(I3 ⊗Πc→s). (5)

In this formulation, all the operators needed to write the equations can be constructed using
only five discrete ones: the cell-centered and staggered control volumes (diagonal matrices), Ωc

and Ωs, the face normal vectors, Ns, the scalar cell-to-face interpolation, Πc→s and the cell-
to-face divergence operator, M. Notice that Ωc, Ωs and Ns are given by the geometry of the
mesh, while Πc→s can be freely chosen. Due to its simplicity, it makes a code build within this
framework to be easily portable [16, 17].
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2.1 Conservation of energy and constraint on the shift operator

The discrete inner-product is defined as follows:

< vc,uc >= vT
c Ωuc, (6)

so the global discrete kinetic energy can be computed as ||uc||2 ≡ uT
c Ωuc. Its temporal evolu-

tion equation can be obtained by left-multiplying Eq. (2a) by uT
c and summing the resulting

expression with its transpose

d

dt
||uc||2 = −uT

c

(
C (us) + C (us)

T
)
uc − uT

c

(
D+ DT

)
uc

−uT
c ΩGcpc − pT

c G
T
c Ω

Tuc. (7)

In absence of diffusion (D = 0) the global kinetic energy ||uc||2 is conserved if:

C (us) = −C (us)
T , (8a)

− (ΩGc)
T = MΓc→s. (8b)

One can impose these restrictions from a physical point of view, in purpose of conservation
of energy. However, there are mathematical reasons in order to fulfill these restrictions. Given
two vectorial spaces, A and B, a continuous operator T , a discretization operator πh, we can
construct the diagram shown in Figure 1, being Ah, Bh and Th the discrete counterparts of the
continuous spaces and operator:

Figure 1: Diagram between vectorial spaces and their discrete counterparts. We will require this diagram
to be commutative.

If we assume this diagram to be commutative, Th is going to retain (or mimick) the continuous
properties of T . Recalling that the gradient operator is the adjoint operator of the divergence:

< ∇ · a|b >= − < a|∇b >, (9)

where < a|b >=
∫
Ω abdV represents the inner product of functions, we can now discretise these

quantities by means of πh:
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< Ω−1
1 Mah|bh >Ω1= − < ah|Gbh >Ω2 . (10)

If Ω1 = Ω and Ω2 = Ωs, which is the case in the collocated formulation, then:

G = −Ω−1
s MT . (11)

In contrast, if all the variables are located in the cell-center, Ω1 = Ω and Ω2 = Ω and defining
Γs→c ∈ R3n×m as the (volumetric) interpolator from faces to cells:

< Ω−1
1 MΓc→sah|bh >Ω= − < ah|Γs→cGbh >Ω, (12)

and developing this expression we obtain the desired result:

− (ΩGc)
T = MΓc→s. (13)

Furthermore, combining (11) and (13) we obtain a constraint for the shift operators:(
ΩΓs→cΩ

−1
s MT

)T
= MΓc→s −→ Γs→c = Ω−1ΓT

c→sΩs, (14)

Finally, from the skew-symmetry of the continuos convective operator follows that C (us)
should be a skew-symmetric matrix.

In our opinion, mathematical arguments are preferred over physical impositions, since con-
servation of energy is obtained in a natural way by mimicking the underlying symmetries of
the continuous operators, but the conversely is not true, and as it has been proven here, all
the constraints presented in [1] follow from the simpler assumption that the previous diagram
should be commutative.

2.2 Solving the pressure-velocity coupling. Checkerboard problem

Semidiscretized momentum equation (2a) can be rewritten as follows

duc

dt
= R (uc)− Gcpc, (15)

where R (uc) ≡ −Ω−1 (C (us)uc + Duc). For the temporal discretization, a fully explicit scheme
is assumed whereas the incompressibility constraint is treated implicitly. Introducing the func-
tions f and R, which represent a general fully explicit discretization, the fully-discretized NS
equations read

Mun+1
s = 0c, (16a)

f(un+1
c , ...,u0

c)

∆t
= R(un

c , ...,u
0
c)− Gcp

n+1
c .

The simplest case would be a first-order forward Euler: f(un+1
c , ...,u0

c) = un+1
c − un

c .
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To solve the velocity-pressure coupling, a classical fractional step method [6, 7, 8] is used.
For the staggered velocity field, us, this projection is derived from the Helmholtz-Hodge vector
decomposition theorem [18], whereby a velocity up

s can be uniquely decomposed into a solenoidal
vector, un+1

s , and a curl-free vector, expressed as the gradient of a scalar field, Gp̃c
′. This

decomposition is written as

up
s = un+1

s + Gp̃c
′. (17)

Then, taking the divergence of Eq.(17) yields a discrete Poisson equation for p̃c
′

Mup
s = Mun+1

s +MGp̃c
′ −→ MGp̃c

′ = Mup
s. (18)

Finally, using the definition of G given in Eq.(11) the previous equation becomes

Lp̃c
′ = Mup

s with L ≡ −MΩ−1
s MT , (19)

where the discrete compact Laplacian operator L ∈ Rn×n is, by construction, a symmetric
negative-definite matrix. Once the solution is obtained, un+1

s results from the correction (17)

un+1
s = up

s − Gp̃c
′. (20)

3 STABILITY OF THE PRESSURE GRADIENT INTERPOLATION

In order to illustrate the procedure, let us assume a first-order forward Euler temporal scheme.
The cell-centered velocity at time step n can be computed recursively as follows:

un
c = up

c − Gcp̃c
′ = un−1

c +∆tnR
(
un−1
c

)
− Gc(p̃c

p + p̃c
′) =

=
(
un−2
c +∆tn−1R

(
un−2
c

)
− Gcp̃c

n−1
)
+∆tnR

(
un−1
c

)
− Gcp̃c

n = ... =

= u0
c +

n∑
i=1

∆tiR
(
ui−1
c

)
− Gc

n∑
i=0

p̃c
i. (21)

Introducing it in the Poisson equation leads to:

Lp̃c
n+1 = Mcu

n
c +∆tn+1McR

n − (L− Lc)p̃c
p =

= Mcu
0
c +Mc

n+1∑
i=1

∆tiR
(
ui−1
c

)
− Lc

n∑
i=0

p̃c
i + (L− Lc)p̃c

p. (22)

Here, Lc = McGc ∈ Rn×n is the wide-stencil collocated Laplacian. Now, we can define
p̄c

n =
∑n

i=0 p̃c
i. Observe that p̃c

n+1 = p̄c
n+1 − p̄c

n. This allows us to rearrange the previous
equation as:

Lp̄c
n+1 = Mcu

0
c +Mc

n+1∑
i=1

∆tiR
(
ui−1
c

)
+ (L− Lc)p̄c

n + (L− Lc)p̃c
p. (23)

6



D. SANTOS, F. X. TRIAS, G. COLOMER, C. D. PÉREZ-SEGARRA

This can be viewed as a stationary iterative solver. The stability of this process will depend
on the eigenvalues of L−1Lc and (L− Lc).

Inverting L , let us define T1 = L−1(L − Lc) and T2 = L−1Lc. If µT1
i and µT2

i are their

eigenvalues, the process will converge if |µT1
i | < 1 and |µT2

i | < 1.
Notice that

L−1(L− Lc) = I− L−1Lc =⇒ µT1
i = 1− µT2

i . (24)

L−1Lc is the product of two negative definite matrices so L−1Lc is a positive definite matrix.
Thus, µT1

i = 1− µT2
i < 1 (we impose it in order to reach convergence).

On the other hand, if L−Lc is negative definite, then L−1(L−Lc) is positive definite, so µT1
i > 0.

We can conclude that µT1
i ∈ (0, 1) and it implies that µT2

i ∈ (0, 1) and the process converge.
In conclusion, we have to study the definiteness of L − Lc, that depends in the geometry and
interpolator as follows:

L− Lc = −MΩ−1
s MT +MΓc→sΩ

−1ΓT
c→sM

T

= −M(Ω−1
s − Γc→sΩ

−1ΓT
c→s)M

T . (25)

So, in order to conclude that L− Lc is negative definite, we need Ω−1
s − Γc→sΩ

−1ΓT
c→s to be

negative definite.
This problem was more generally adressed in [19] for any kind of explicit scheme and it was

proven that for Cartesian meshes and their stretchings, a volume weighted interpolator will make
our system of equations to be stable. The volume weighted interpolator can be constructed as
follows:

Πc→s = ∆−1
s ∆T

sc, (26)

where ∆s ∈ Rm×m is a diagonal matrix containing the projected distances between two adjacent
control volumes, and ∆sc ∈ Rm×n is a matrix containing the projected distances between an
adjacent cell node and its corresponding face. Figure 2 shows a representation of these distances.

We have strong reasons to think that this interpolator is also stable for general unstructured
meshes. However, a formal prove has not been found yet. To illustrate this fact, next section
will present a numerical case with a highly distorted mesh.
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Figure 2: δni are the components of ∆s, while the components of ∆sc would be calculated in the same
way but taking the distance between a control volume and their corresponding face centers.

4 AIR-FILLED DIFFERENTIALLY HEATED CAVITY FOR EXTREMELY DIS-
TORTED UNSTRUCTURED MESHES

In order to check the stability of the method, some tests have been carried out with very
coarse and very bad quality meshes. Here, a differentially heated cavity test is presented:

• Air-filled (Pr = 0.71).

• Height-to-width aspect ratio 2.

• Rayleigh number (based on the cavity height) of 106.

The mesh used to run the case is shown in Figure 3:
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Figure 3: (Top) Highly distorted mesh used to run the case. (Bottom) Zoom of the top part of the
mesh.

The results for this case are shown in Figures 4, 5, 6 and 7:
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Figure 4: Pressure distribution obtained for
the test mesh shown in Figure 3.

Figure 5: Temperature distribution obtained
for the test mesh shown in Figure 3.

Figure 6: Velocity in x direction obtained for
the test mesh shown in Figure 3.

Figure 7: Velocity in y direction obtained for
the test mesh shown in Figure 3.
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It is worth to mention that interpolating the pressure gradient with other interpolation
schemes, such as a mid-point scheme, will blow up the simulation from the first iterations.

5 CONCLUSIONS AND FUTURE WORK

In this work an energy-preserving unconditionally stable fractional step method has been
presented. This work continues the one started in [1] by Trias et. al., giving mathematical
support to some relations assumed in order to preserve energy, and reducing the degree of
freedom for choosing the interpolation from faces to cells of the pressure gradient, in order to
achieve stability. With the volume weighted interpolator the stability is guaranteed for Cartesian
meshes, while for general unstructured meshes the problem remains opened. However, numerical
tests for highly distorted unstructured triangular meshes are fully stable.
The future work regarding the method goes in two lines. The first line is to prove theoretically
the stability for general unstructured meshes. The second line will be to test accuracy of the
method, and in particular, test the accuracy of the volume weighted interpolator for the pressure
gradient.
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