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Abstract
This paper deals with the numerical simulation of Friction Stir Welding (FSW)

processes. FSW techniques are used in many industrial applications and particularly
in the aeronautic and aerospace industries, where the quality of the joining is of es-
sential importance. The analysis is focused either at global level, considering the full
component to be jointed, or locally, studying more in detail the heat a¤ected zone
(HAZ).
The analysis at global (structural component) level is performed de�ning the prob-

lem in the Lagrangian setting while, at local level, an apropos kinematic framework
which makes use of an e¢ cient combination of Lagrangian (pin), Eulerian (metal sheet)
and ALE (stirring zone) descriptions for the di¤erent computational sub-domains is
introduced for the numerical modeling. As a result, the analysis can deal with complex
(non-cylindrical) pin-shapes and the extremely large deformation of the material at the
HAZ without requiring any remeshing or remapping tools.
A fully coupled thermo-mechanical framework is proposed for the computational

modeling of the FSW processes proposed both at local and global level. A staggered
algorithm based on an isothermal fractional step method is introduced.
To account for the isochoric behavior of the material when the temperature range

is close to the melting point or due to the predominant deviatoric deformations in-
duced by the visco-plastic response, a mixed �nite element technology is introduced.
The Variational Multi Scale (VMS) method is used to circumvent the LBB stability
condition allowing the use of linear/linear P1/P1 interpolations for displacement (or
velocity, ALE/Eulerian formulation) and pressure �elds, respectively. The same stabi-
lization strategy is adopted to tackle the instabilities of the temperature �eld, inherent
characteristic of convective dominated problems (thermal analysis in ALE/Eulerian
kinematic framework).
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At global level, the material behavior is characterized by a thermo-elasto-viscoplastic
constitutive model. The analysis at local level is characterized by a rigid thermo-
visco-plastic constitutive model. Di¤erent thermally coupled (non-Newtonian) �uid-
like models as Norton-Ho¤, Carreau or Sheppard-Wright, among others are tested.
To better understand the material �ow pattern in the stirring zone, a (Lagrangian

based) particle tracing is carried out while post-processing FSW results.
A coupling strategy between the analysis of the process zone nearby the pin-tool

(local level analysis) and the simulation carried out for the entire structure to be welded
(global level analysis) is implemented to accurately predict the temperature histories
and, thereby, the residual stresses in FSW.

1 Introduction

1.1 Industrial background of FSW

Friction stir welding (FSW) is a solid state joining technology in which no gross melting
of the welded material takes place. It is a relatively new technique (developed by The
Welding Institute (TWI), in Cambridge, UK, in 1991) widely used over the past decades for
joining aluminium alloys. Recently, FSW has been applied to the joining of a wide variety of
other metals and alloys such as magnesium, titanium, steel and others. FSW is considered
to be the most signi�cant development in metal joining in decades and, in addition, is a
"green" technology due to its energy e¢ ciency, environmental friendliness, and versatility.
This process o¤ers a number of advantages over conventional joining processes (such as e.g.
fusion welding). The main advantages, often mentioned, include: (a) absence of the need for
expensive consumables such as a cover gas or �ux; (b) ease of automation of the machinery
involved; (c) low distortion of the work-piece; and (d) good mechanical properties of the
resultant joint [82], [106]. Additionally, since it allows avoiding all the problems associated to
the cooling from the liquid phase, issues such as porosity, solute redistribution, solidi�cation
cracking and liquation cracking are not encountered during FSW1. In general, FSW has
been found to produce a low concentration of defects and is very tolerant to variations in
parameters and materials. Furthermore, since welding occurs by the deformation of material
at temperatures below the melting temperature, many problems commonly associated with
joining of dissimilar alloys can be avoided, thus high-quality welds are produced. Due to
this fact, it has been widely used in di¤erent industrial applications where metallurgical
characteristics should be retained, such as in aeronautic, naval and automotive industry.
During FSW, the work-piece is placed on a backup plate and it is clamped rigidly to

eliminate any degrees of freedom (Figure 1). A nonconsumable tool, rotating at a constant
speed, is inserted into the welding line between two pieces of sheet or plate material (which
are butted together) and generates heat. This heat is produced, on one hand, by the friction

1However, it must be noted that, as in the traditional fusion welds, there also exist a softened heat a¤ected
zone (HAZ) and a tensile residual stress parallel to the weld.
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Figure 1: FSW process.

between the tool shoulder and the work-pieces, and, on the other hand, by the mechanical
mixing (stirring) process in the solid state. This results in the plasti�cation of the material
close to the tool at very high strain rates and leads to the formation of the joint. In detail,
the plasticized material is stirred by the tool and the heated material is forced to �ow around
the pin tool to its backside thus �lling the hole in the tool wake as the tool moves forward.
As the material cools down, a solid continuous joint between the two plates emerges.
Usually the tool is tilted at an angle of 1� 3o away from the direction of travel, although

some tool designs allow it to be positioned orthogonally to the work-piece. The welding tool
consists of a shoulder and a pin. The length of the pin tool is slightly less than the depth of
weld and the tool shoulder is kept in close contact with the work-piece surface (see Figure
2). The tool serves three primary functions, that is, heating of the work-piece, movement of
material to produce the joint (stirring), and containment of the hot metal beneath the tool
shoulder. The function of the pin tool is to heat up the weld metal by means of friction and
plastic dissipation, and, through its shape and rotation, force the metal to move around its
form and create a weld. The function of the shoulder is to heat up the metal through friction
and to prevent it from being forced out of the weld. The tool shoulder restricts metal �ow
to a level equivalent to the shoulder position, that is, approximately to the initial work-piece
top surface.
Depending on the geometrical con�guration of the tool, material movement around the

pin can become complex, with severe gradients in temperature and strain rate. This envi-
ronment creates a challenge for modelers due to the resulting coupled thermo-mechanical
nature, the large deformation and strain rates near the pin. Since FSW is not a symmetric
process, two sides of the tool are di¤erentiated. One can see in Figure 3 that the work-pieces
being joined by the weld are either on the retreating or advancing side of the rotating tool.
The retreating side is the one where the tool rotating direction is opposite to the tool moving
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Figure 2: Schematic representation of the friction stir welding process

Figure 3: De�nition of Friction Stir Welding zones [50]
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Figure 4: Di¤erent pin shapes.

direction and parallel to the metal �ow direction. In contrast, the advancing side is the one
where the tool rotation direction is the same as the tool moving direction and opposite to
the metal �ow direction. This unsymmetric nature results in a di¤erent material �ow on
the di¤erent sides of the tool and has a large e¤ect on many applications, especially lap
joints [24]. The periodic "onion �ow" pattern that is left behind as the tool advances is
schematically illustrated in Figure 3.
During the early development of FSW, the process appeared simple, compared to many

conventional welding practices. However, as development continued, the complexity of FSW
was realized. It is now known that properties following FSW are a function of both controlled
and uncontrolled variables (response variables) as well as external boundary conditions. For
example, investigators have now illustrated that post-weld properties depend on:

� Tool travel speed: in�uences total heat, porosity and weld quality.

� Tool rotation rate: in�uences total heat and weld quality.

� Tool design: shoulder diameter, scroll or concave shoulder, features on the pin and pin
length in�uence the extent of the material (Figure 4).

� Tool tilt: It in�uences the contact pressure. There exists lower contact pressure (or
incomplete contact) on the leading edge of the shoulder due to tool tilt (typically
between 0� and 3�).

� Material thickness: in�uences cooling rate and through-thickness temperature gradi-
ents.

These parameters must be carefully calibrated according to the welding process and the
selected material, respectively. The strong coupling between the temperature �eld and the
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mechanical behavior is the key-point in FSW and its highly non-linear relationship makes
the process setup complex. The operative range for most of the welding process parameters
is rather narrow requiring a tedious characterization and sensitivity analysis. This is why,
despite the apparent simplicity of this novel welding procedure, computational modeling is
considered a very helpful tool to understand the leading mechanisms that govern the material
behavior, attracting more and more the research interest.
Finite element modeling is an option which can help to determine process parameters that

would otherwise require further experimental testing for validation and analysis. The weld
quality depends largely on how the material is heated, cooled and deformed. Hence a prior
knowledge of the temperature evolution within the work-piece would help in designing the
process parameters for a welding application. Research in the �eld of FSW joints has been
limited possibly due to proprietary publishing restriction within industry. For this reason,
Finite Element Analysis (FEA) could be also very bene�cial. Two process parameters of
interest for FSW welds are tool travel rates and rotational tool velocities. With respect
to this, a lot of emphasis has been laid on FEA analysis, as it may broaden the scope of
application of FSW. Another important process parameter in FSW is the heat �ux. This
can be also easily included in the FEA. The heat �ux should be high enough to keep the
maximum temperature in the work-piece around 80% to 90% of the melting temperature of
the work-piece material, so that welding defects are avoided [30].
Moreover, analytical and numerical methods have a role to play, although numerical

methods dominate due to the accuracy and ease-to-use of modern workstations and software.
Numerical modeling is based on discretized representations of speci�c welds, using �nite
element, �nite di¤erence, or �nite volume techniques. These methods can capture much of
the complexity in material constitutive behavior, boundary conditions, and geometry, but
in practice, a limited range of conditions tends to be studied in depth. Therefore, it is
good modeling practice to explore simpli�cations to the problem that give useful insight
across a wider domain, for example, making valid two-dimensional (2-D) approximations to
inherently three dimensional (3-D) behavior. It is also essential to deliver a model that is
properly validated and whose sensitivity is known to uncertainty in the input material and
process data� ideals that are rarely carried through in practice.

1.2 Challenges for the simulation of FSW

Information about the shape, dimensions and residual stresses in a component after welding
and mechanical properties of the welded joint are of great interest in order to improve the
quality and to prevent failures during manufacturing or in service. The FSW process can be
analyzed either experimentally or numerically.
FSW is di¢ cult to analyze experimentally; however, process parameters and di¤erent

�xture set-ups can be evaluated without doing a large number of experiments. An experiment
can be designed to answer one or more carefully formulated questions. The goals must be
clari�ed perfectly to choose the appropriate parameters and factors. Otherwise the goal is
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not achieved and the experiment must be repeated. Di¤erent welded specimens are produced
by varying the process parameter. The properties and microstructure changes in weld are
investigated. For instance, the tensile strength of the produced joint is tested at room
temperature. Microstructure of the weld is analyzed by means of optical microscopy or
microhardness measurements.
The alternative to the experimental FSW analysis is numerical modeling and simulation.

Computer-based models provide the opportunity to improve theories of design and increase
their acceptance. Simulations are useful in designing the manufacturing process as well as the
manufactured component itself. To do an appropriate modeling, the physics of the problem
must be well-understood.

1.2.1 Physical model

FSW is a problem of complex nature; the process is highly nonlinear and coupled. Di¤erent
physical phenomena occur during the welding process, involving the thermal and mechanical
interactions. The temperature �eld is a function of many welding parameters such as welding
speed, welding sequence and environmental conditions. Formation of distortions and residual
stresses in work-pieces depend on many interrelated factors such as thermal �eld, material
properties, structural boundary conditions and welding conditions.
The challenging issues in physical modeling of the FSW process are divided into three

parts:

1.2.1.1 Complex thermal behavior Heat transfer mechanisms including convection,
radiation and conduction have a signi�cant role on the process behavior. Convection and
radiation �uxes dissipate heat signi�cantly through the work-pieces to the surrounding en-
vironment while conduction heat �ux occurs between the work-pieces and the support.

1.2.1.2 Non-linear behavior and localized nature In FSW, the mechanical behav-
ior is non-linear due to the high strain rates and visco-plastic material. The strong non-linear
region is limited to a small area and the remaining part of the model is mostly linear. How-
ever, the exact boundaries of the non-linear zone are not known a-priori. It is generally
believed that strain rate during the welding is high. Knowledge of strain rate is important
for understanding the subsequent evolution of grain structure, and it serves as a basis for
veri�cation of various models as well.

1.2.1.3 Coupled nature The thermal and mechanical problems are strongly coupled
(the thermal loads generate changes in the mechanical �eld). The mechanical e¤ects coupled
to the thermal ones include internal heat generation due to plastic deformations or viscous
e¤ects, heat transfer between contacting bodies, heat generation due to friction, etc. The
thermal e¤ects are also coupled to the mechanical ones; for instance, thermal expansion,
temperature-dependent mechanical properties, temperature gradients in work-pieces, etc.
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An adequate physical model of the welding process must account for all these phenomena
including thermal, mechanical and coupling aspects.

1.2.2 Numerical model

Among several numerical modeling techniques, the Finite Element (FE) framework is found
to be suitable for the simulation of welding and proven to be a versatile tool for predicting
a component�s response to the various thermal and mechanical loads. The FE method
also o¤ers the possibility to examine di¤erent aspects of the manufacturing process without
having a physical prototype of the product. To this end, a specialized thermo-mechanical
coupled model needs to be implemented in a �nite element program, and the predictive
capabilities of the theory and its numerical implementation must be validated.
The numerical simulation of the FSW process has many complex and challenging aspects

that are di¢ cult to deal with: the welding process is described by the equilibrium and energy
equations governing the mechanical and thermal problems and they are coupled. Addition-
ally, both of them are non-linear. This has important implications upon the complexity
of the numerical model. Consequently, a robust and e¢ cient numerical strategy is crucial
for solving such highly non-linear coupled �nite element equations. In such process, several
assumptions are commonly assumed.
It is important to distinguish between two di¤erent kinds of welding analyses carried out

at local or global level, respectively.
In local level analysis, the focus of the simulation is the heat a¤ected zone. The simula-

tion is intended to compute the heat power generated either by visco-plastic dissipation or
by friction at the contact interface. At this level, the process phenomena that can be studied
are the relationship between welding parameters, the contact mechanisms in terms of ap-
plied normal pressure and friction coe¢ cient, the setting geometry, the material �ow within
the heat a¤ected zone, its size and the corresponding consequences on the microstructure
evolution, etc.
A simulation carried out at global level studies the entire component to be welded. In

this case, a moving heat power source is applied to a control volume representing the actual
heat a¤ected zone at each time-step of the analysis. The e¤ects induced by the welding
process on the structural behavior are the target of this kind of study. These e¤ects are
distortions, residual stresses or weaknesses along the welding line, among others.
The aim of this work is to develop a robust numerical tool able to simulate the welding

process considering its complex features at local level as well as global level.

1.2.2.1 Mechanical problem A quasi-static mechanical analysis can be assumed as the
inertia e¤ects in welding processes are negligible due to the high viscosity characterization.
At local level, the volumetric changes are found to be negligible, and incompressibility can be
assumed. To deal with the incompressible behavior, a very convenient and common choice
is to describe the formulation splitting the stress tensor into its deviatoric and volumetric
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parts. Dealing with the incompressible limit requires the use of mixed velocity-pressure
interpolations. The problem su¤ers from instability if the standard Galerkin FE formula-
tion is used, unless compatible spaces for the pressure and the velocity �eld are selected
(Ladyzhenskaya-Babu�ka�Brezzi (LBB) stability condition). Due to this, pressure instabili-
ties appear if equal velocity-pressure interpolations are used. Thus, the challenging issue of
pressure stabilization rises up.
The welding process is characterized by very high strain rates as well as a wide tem-

perature range going from the environmental temperature to the melting point. Hence, the
constitutive laws adopted should depend on both variables. The constitutive theory applied
must be specialized to capture the features of the thermo-mechanically coupled strain rate
and temperature dependent large deformation. According to the split of the stress tensor,
di¤erent rate-dependent constitutive models can be used for modeling of the welding process.
At typical welding temperatures, the large strain deformation is mainly visco-plastic. De-
pending on the scope of the analysis, rigid-visco-plastic or elasto-visco-plastic constitutive
models can be used. Not only the prediction of the temperature evolution, but the accurate
residual stress evaluation �eld generated during the process is the objective of the FSW
simulation. The selected constitutive model must appropriately de�ne the material behavior
and has to be calibrated by the temperature evolution. The challenge arises from the ex-
tremely non-linear behavior of these constitutive models and, therefore, from the numerical
point of view, a special treatment is obligatory. Moreover, the localized large strain rates
usually involved in FSW processes make the problem even more complex.

1.2.2.2 Thermal problem The thermal problem is de�ned by the balance of energy
equation. In FSW simulation, the plastic dissipation term appearing in the energy equation
has a critical role on the process behavior and it is the main source of heat generation.
The de�nition of the heat source is one of the key points when studying the welding

process. In global level simulations, the mesh density used to discretize the geometry is not
usually �ne enough to de�ne the welding pool shape or a non-uniform heat source. This is
only done if the simulation of the welding pool is the objective itself (local level analysis). If
the global structure is considered, the size of the heat source is of the same dimension than
the element size generally used for a thermo-mechanical analysis. Therefore, when the global
model is taken into account, the resulting mesh density is usually too coarse to represent the
actual shape of the heat source.
Depending on the framework used to describe the formulation of the coupled thermo-

mechanical problem, a convective term might appear in the thermal governing equations.
Therefore convection instabilities of the temperature appear for convection dominated prob-
lems. It is well known that in di¤usion dominated problems, the solution is stable. However,
in convection dominated problems, the stabilizing e¤ect of the di¤usion term becomes insuf-
�cient and oscillations appear in the temperature �eld. The threshold between stable and
unstable solutions is usually expressed in terms of the Peclet number.
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1.2.2.3 Kinematic framework Establishing an appropriate kinematic framework for
the simulation of welding is one of the main objectives of this paper.
If the welding process is studied at global level, a Lagrangian framework is an appropri-

ate choice for the description of the problem. Lagrangian settings, in which each individual
node of the computational mesh represents an associated material particle during motion,
are mainly used in structural mechanics. Classical applications of the Lagrangian description
in large deformation problems are the simulation of vehicle crash tests and the modeling of
metal forming operations. In these processes, the Lagrangian description is used in combi-
nation with both solid and structural (beam, plate, shell) elements. Numerical solutions are
often characterized by large displacements and deformations and history-dependent consti-
tutive relations are employed to describe elasto-plastic and visco-plastic material behavior.
The Lagrangian reference frame allows easy tracking of free surfaces and interfaces between
di¤erent materials.
In a local simulation, the main focus of the simulation is the Heat A¤ected Zone (HAZ)

where the use of a Lagrangian framework is not always advantageous. In the HAZ, the
large distortions would require continuous re-meshing. The alternative is to use Eulerian
or Arbitrary Lagrangian Eulerian (ALE) methods. Eulerian settings are widely used in
�uid mechanics. Here, the computational domain and reference mesh are �xed and the
�uid moves with respect to the grid. The Eulerian formulation facilitates the treatment of
large distortions in the �uid motion. Its handicap is the di¢ culty to follow free surfaces
and interfaces between di¤erent materials or di¤erent media (e.g., �uid-�uid and �uid-solid
interfaces).
An Arbitrary Lagrangian Eulerian (ALE) formulation which generalizes the classical La-

grangian and Eulerian descriptions is particularly useful in �ow problems involving large
distortions in the presence of mobile and deforming boundaries. Typical examples are prob-
lems describing the interaction between a �uid and a �exible structure and the simulation
of metal forming processes. The key idea in the ALE formulation is the introduction of
a computational mesh which can move with a velocity di¤erent from (but related to) the
velocity of the material particles. With this additional freedom with respect to the Eulerian
and Lagrangian descriptions, the ALE method succeeds to a certain extend in minimizing
the problems encountered in the classical kinematical descriptions, while combining their
respective advantages at best.
In the simulation of FSW, it is adroit to introduce an apropos kinematic framework for

the description of di¤erent parts of the computational domain. Despite the e¢ ciency of the
idea, the mesh moving strategy and the treatment of the domains interaction are challenging.

1.2.2.4 Coupled problem The numerical solution of the coupled thermo-mechanical
problem involves the transformation of an in�nite dimensional transient system into a se-
quence of discrete non-linear algebraic problems. This is achieved by means of the FE spatial
descritization procedure, a time-marching scheme for the advancement of the primary nodal
variables, and with a time iteration algorithm to update the internal variables of the consti-
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tutive equations.
Regarding the time-stepping schemes, two types of strategies can be applied to the solu-

tion of the coupled thermo-mechanical problems:
The �rst possibility is a monolithic (simultaneous) time-stepping algorithm which solves

both the mechanical and the thermal equilibrium equations together. It advances all the
primary nodal variables of the problem simultaneously. The main advantage of this method
is that it enables stability and convergence of the whole coupled problem. However, in
simultaneous solution procedures, the time-step as well as time-stepping algorithm has to be
equal for all subproblems, which may be ine¢ cient if di¤erent time scales are involved in the
thermal and the mechanical problem. Another important disadvantage is the considerably
high computational e¤ort required to solve the monolithic algebraic system and the necessity
to develop software and solution methods speci�cally for each coupled problem.
A second possibility is a staggered algorithm (block-iterative or fractional-step), where

the two subproblems are solved sequentially. Usually, a staggered solution (arising from
an operator split and a product formula algorithm (PFA)) yields superior computational
e¢ ciency.
Staggered solutions are based on an operator split, applied to the coupled system of

non-linear ordinary di¤erential equations, and a product formula algorithm, which leads to
splitting of the original monolithic problem into two smaller and better conditioned subprob-
lems (within the framework of classical fractional step methods). This leads to the partition
of the original problem into smaller and typically symmetric (physical) subproblems. After
this, the use of di¤erent standard time-stepping algorithms developed for the uncoupled sub-
problems is straightforward, and it is possible to take advantage of the di¤erent time scales
involved. The major drawback of these methods is the possible loss of accuracy and stability.
However, it is possible to obtain unconditionally stable schemes using this approach, pro-
viding that the operator split preserves the underlying dissipative structure of the original
problem.

1.2.2.5 Particle tracing One of the main issues in the study of FSW at local level, is
the heat generation. The generated heat must be enough to allow for the material to �ow
and to obtain a deep heat a¤ected zone. Insu¢ cient heat forms voids as the material is not
softened enough to �ow properly. The visualization of the material �ow is very useful to
understand its behavior during the weld. A method approving the quality of the created
weld by visualization of the joint pattern is advantageous. It can be used to investigate the
appropriate process parameters to create a quali�ed joint. However, following the position
of the material during the welding process is not an easy task, neither experimentally or
numerically.
The experimental material visualization is di¢ cult and needs metallographic tools. This

is why establishing a numerical method for the visualization of the material trajectory in
order to gain insight to the heat a¤ected zone and the material penetration within the work-
piece thickness is one of the main objective of the work. Particle tracing is a method used
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to simulate the motion of material points, following their positions at each time-step of the
analysis. This method can be naturally applied to the study of the material �ow in the
welding process. In the Lagrangian framework, as the mesh nodes represent the material
points, the trajectories are the solution of the governing system of equations. When using
Eulerian and ALE framework the solution does not give directly information about the
material position. However, the velocity �eld obtained can be integrated to get an insight
of the extent of material mixing during the weld.
Integration of the velocity �eld is proposed at postprocess level to follow the material

motion (displacement �eld). This obliges the modeler to use an appropriate time integration
method for the solution of the ODE equation in order to track the particles. Moreover, a
search algorithm must be executed to �nd the position of the material points in the Eulerian
or ALE meshes.

1.2.2.6 Residual stresses Since FSW occurs by the deformation of material at temper-
atures below the melting point, many problems commonly associated with fusion welding
technologies can be avoided and high-quality welds are produced.
Generally, FSW yields �ne microstructures, absence of cracking, low residual distortion

and no loss of alloying elements. Nevertheless, as in the traditional fusion welds, a softened
heat a¤ected zone and a tensile residual stress �eld appear.
Although the residual stresses and distortion are smaller in comparison with those of

traditional fusion welding, they cannot be ignored, specially when welding thin plates of
large size.
In the local level analysis, the focus of the study is the HAZ and a viscoplastic model is

used to chareacterize the material behavior. Elastic stresses are neglected and the calculation
of residual stresses is not possible. However, at global level, the residual stresses are one of
the main outcomes of the process simulation using an elasto-viscoplastic constitutive model.
Therefore, in this work, a local-global coupling strategy is proposed in order to obtain the
residual stress �eld.

1.3 State of the art on the numerical modeling of FSW

The FSW simulation typically involves studies of the transient temperature and its depen-
dence on the rotation and advancing speed, residual stresses in the work-piece, etc. This
simulation is not an easy task since it involves the interaction of thermal, mechanical and
metallurgical phenomena. Up to now several researchers have carried out computational
modeling of FSW.

1.3.1 Thermal modeling

To date, most of the research interest devoted to the topic was focused on the heat transfer
and thermal analysis in FSW while the mechanical aspects were neglected. Among others,
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Gould and Feng [59] proposed a simple heat transfer model to predict the temperature
distribution in the work-piece. Chao and Qi [28], [29] developed a moving heat source model
in a �nite element analysis and simulated the transient evolution of the temperature �eld,
residual stresses and residual distortions induced by the FSW process. Their model was
based on the assumption that the heat generation came from sliding friction between the
tool and material. This was done by using Coulomb�s law to estimate the friction force.
Moreover, the pressure at the tool surface was set constant and thereby enabled a radially
dependent surface heat �ux distribution generated by the tool shoulder. In this model the
heat generated by the pin was neglected.
Nguyen and Weckman [79] demonstrated a transient thermal FEM model for friction

welding which was used to predict the microstructure of 1045 steel. Measured power data
was used to calculate the heat input and a constant temperature boundary condition at the
welding interface was invoked. In another FEM thermal model by Mitelea and Radu [76]
friction welding of dissimilar materials was modeled. The paper compared di¤erent heat
�ux distributions to determine which gave the best agreement with experimental results.
To conclude both analytical and numerical techniques were used to describe the heat �ow
in friction welding, with a more accurate solution being obtained with the latter. Because
friction welding is a short duration process, a transient model was more appropriate than
one that used a steady state solution.
Colegrove et al. [41], [42] and Frigaard et al. [56] developed 3D heat �ow models for the

prediction of the temperature �eld. They used the CFD commercial software FLUENT for a
2D and 3D numerical investigation on the in�uence of pin geometry, comparing di¤erent pin
shapes in terms of their in�uence upon the material �ow and welding forces on the basis of
both stick and slip conditions at the tool/work-piece interface. It was only the tool pin that
was modeled. Several di¤erent tool shapes were considered. The modeling result showed
that the di¤erence between the result corresponding to slip and stick conditions was small
and the pressure and forces were similar. In spite of the good obtained results, the accuracy
of the analysis was limited by the assumption of isothermal conditions. Midling [75] and
Russell and Sheercli¤ [88] investigated the e¤ect of tool shoulder of the pin tool on the heat
generation during the FSW operation. Generally, those early �ow models and others (e.g.
Askari et al. [8]) were uncoupled or sequentially coupled to the heat solvers, and limited by
the computational power and software capabilities of that time.

1.3.2 Thermo-mechanical modeling

More recently, a coupled thermomechanical modeling and simulation of the FSW process
can be found in Zhu and Chao [108], Jorge Jr. and Balancín [67] or De Vuyst et al. [46],
[45]. Zhu et. al [108] used a 3D nonlinear thermal and thermo-mechanical numerical model
using the �nite element analysis code WELDSIM. The objective was to study the variation
of transient temperature and residual stress in a friction stir welded plate of 304L stainless
steel. Based on the experimental records of transient temperatures, an inverse analysis
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method for thermal numerical simulation was developed. After the transient temperature
�eld was determined, the residual stresses in the welded plate were calculated using a three-
dimensional elasto-plastic thermo-mechanical model. In this model the plastic deformation
of the material was assumed to follow the Von Mises yield criterion and the associated �ow
rule.
In a more sophisticated way, De Vuyst et al. [46], [45] used the coupled thermo-mechanical

FE code MORFEO to simulate the �ow around tools of simpli�ed geometry. The rotation
and advancing speed of the tool were modeled using prescribed velocity �elds. An attempt to
consider features associated to the geometrical details of the probe and shoulder, which had
not been discretized in the FE model in order to avoid very large meshes, was taken into ac-
count using additional velocity boundary conditions. In spite of that, the mesh used resulted
to be large: a mesh of roughly 250,000 nodes and almost 1.5 million of linear tetrahedral
elements was used. A Norton-Ho¤ rigid-visco-plastic constitutive equation was considered,
with averaged values of the consistency and strain rate sensitivity constitutive parameters
determined from hot torsion tests performed over a range of temperatures and strain rates.
The computed streamlines were compared with the �ow visualization experimental results
obtained using copper marker material sheets inserted transversally or longitudinally to the
weld line. The simulation results correlated well when compared to markers inserted trans-
versely to the welding direction. However, when compared to a marker inserted along the
weld center line only qualitative match could be obtained. The correlation could have been
improved by modeling the e¤ective weld thickness of the experiment, using a more realistic
material model, for instance, by incorporating a yield stress or temperature dependent prop-
erties, more exact prescription of the velocity boundary conditions or re�ning the mesh in
speci�c zones, for instance, under the probe. The authors concluded that it was essential to
take into account the e¤ects of the probe thread and shoulder thread in order to get realistic
�ow �elds.
Fourment [53] performed the simulation of transient phases of FSW with FEM using an

ALE formulation, in order to take the large deformation of a 3D coupled thermo-mechanical
model into account. This method permitted both transient and steady state analysis. The
formulation was developed in [54] and [60] to simulate the di¤erent stages of the FSW
process. Assidi [10] presented a 3D FSW simulation based on friction models calibration
using Eulerian and ALE formulation. An interesting comparison of the heat energy generated
by the FSW between numerical methods and experimental data was presented in Dong et
al. [51] and Chao et al. [30].
In [30], Chao used a FE formulation to model the heat transfer of the FSW process in

two boundary values problems: a steady state problem for the tool and transient one for
the work-piece. To validate the result, the temperature evolution was recorded in the tool
and in the work-piece. The heat input from the tool shoulder was assumed to be linearly
proportional to the distance from the center of the tool due to heat generation by friction.
To model the work-piece the code WELDSIM was used. It was a transient, nonlinear, 3D
FE code. In this model only half of the work-piece was modeled due to symmetry meaning
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that the advancing and retreating sides of the weld were not di¤erentiated. The conclusions
from this work indicated that 95 % of the heat generated goes into the work-piece and only
5% goes to the tool. It gave a very high heat e¢ ciency estimate.
As the model predictions are not always in agreement with experimental results. In [84],

the Levenberg-Marquardt (LM) method is used in order to perform a non-linear estimation of
the unknown parameters present in the heat transfer and �uid �ow models, by adjusting the
temperatures results obtained with the models to temperature experimental measurements.
The unknown parameters are: the friction coe¢ cient and the amount of adhesion of material
to the surface of the tool, the heat transfer coe¢ cient on the bottom surface and the amount
of viscous dissipation converted into heat.

1.3.3 Global level modeling

Most of the above-mentioned works were performed at global level. These studies typically
analyzed the e¤ect of the welding process on the structural behavior in terms of distortions,
residual stresses or weakness along the welding line, among others. As the simulations carried
out at global level consider the generated heat as input parameter, several techniques were
used to determine the heat input to the model. One way was to measure the temperature
experimentally, and adjust the heat input of the model till the numerical and experimental
temperature pro�les match [96], [97], [98], [28], [29], [41]. Another technique involved esti-
mating the power input analytically and then arti�cially limiting the peak temperature [96],
[56] or introducing latent heat e¤ects [96], [97] to avoid over-predicting the weld temper-
ature. The most satisfactory approach involved measuring the weld power experimentally
and using this as an input to the model [72], [95], [68], [69], [70].
Khandkar et al. [69] used a �nite element method based on a 3D thermal model to study

the temperature distributions during the FSW process. The moving heat source generated by
the rotation and linear traverse of the pin-tool was correlated to input torque data obtained
from experimental investigation of butt-welding. The moving heat source included heat
generation due to torques at the interface between the tool shoulder and the work-piece, the
horizontal interface between the pin bottom and the work-piece, and the vertical interface
between the cylindrical pin surface and the work-piece. Temperature-dependent properties
of the weld-material were used for the numerical modeling.
In Khandkar et al. [70] and Hamilton et al. [61] a torque-based heat input was used.

Various aluminium alloys were included into the model and the maximum welding temper-
ature could be predicted from tool geometry, welding parameters and material parameters.
The thermal model involved an energy-slip factor which was developed by a relationship
between the solidus temperature and the energy per unit length of the weld. In Khandkar
et al. latest models, the thermal models were coupled with the mechanical behavior and
thereby not only the heat transport was modeled, the residual stress was also an outcome of
the model [71].Khandkar et al. [71] used a coupled thermo-mechanical FE model based on
torque input for calculating temperature and residual stresses in aluminium alloys and 304L
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stainless steel.
Reynolds et al. used two models in [87] to explain the FSW process. The �rst was a

thermal model to simulate temperature pro�les in friction stir welds. The total torque at
the shoulder was divided into shoulder, pin bottom and vertical pin surface. The required
inputs for the model were total input power, tool geometry, thermo-physical properties of
the material being welded, welding speed and boundary conditions. The output from the
model could be used to rationalize observed hardness and microstructure distributions. The
second model was a fully coupled, two-dimensional �uid dynamics based model that was
used to make parametric studies of variations in properties of the material to be welded
(mechanical and thermo-physical) and variations in welding parameters. This was done by
a non slip boundary condition at the tool work-piece interface. The deformation behavior
was based on deviatoric �ow stress using the Zener-Hollomon parameter. Results from this
model provided insight regarding the e¤ect of material properties on friction stir weldability
and on potential mechanisms of defect formation.
Some other authors presented thermo-mechanical models for the prediction of the distrib-

ution of the residual stresses in the process of friction stir welding. A steady-state simulation
of FSW was carried out by Bastier et al. [12]. The simulation included two main steps. The
�rst one uses an Eulerian description of the thermo-mechanical problem together with a
steady-state algorithm detailed in [44], in order to avoid remeshing due to the pin motion.
In the second step, a steady-state algorithm based on an elasto-visco-plastic constitutive law
was used to estimate the residual state induced by the process.
Some other authors used both experimental and numerical methods for computing the

residual stresses. McCune et al. [74] studied computationally and experimentally the e¤ect
of FSW improvements in terms of panel weight and manufacturing cost on the prediction of
residual stress and distortion in order to determine the minimum required modeling �delity
for airframe assembly simulations. They proved the importance of accurately representing
the welding forging force and the process speed.
Paulo et al. [83] used a numerical-experimental procedure (contour method) to predict

the residual stresses arising from FSW operations on sti¤ened panels. The contour method
allowed for the evaluation of the normal residual stress distribution on a specimen section.
The residual stress distribution was evaluated by means of an elastic �nite element model of
a cut sample, using the measured and digitalized out-of-plane displacements as input nodal
boundary conditions.
Yan et al. [104] adopted a general method with several sti¤eners designed on the sheet

before welding. Based on the numerical simulation of the process for sheet with sti¤eners,
the residual distortion of the structure was predicted and the e¤ect of the sti¤eners was
investigated. They veri�ed �rst the numerical model experimentally and then applied the
veri�ed model on the structure to compute the residual stresses.
Fratini and Pasta [55] used the cut-compliance and the inverse weight-function method-

ologies for skin stringer FSW geometries via �nite element analysis to measure residual
stresses.
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Rahmati Darvazi and Iranmanesh [86] presented a thermo-mechanical model to predict
the longitudinal residual stress applying a so-called advancing retreating factor. The uncou-
pled thermo-mechanically equations were solved using ABAQUS.

1.3.4 Local level modeling

Since the temperature is crucial in the FSW simulation, the heat source needs to be modeled
accurately. This consideration obliges the researchers to study the process at the local level
where the simulation is concentrated on the stirring zone. For this type of simulation, the
heat power is assumed to be generated either by the visco-plastic dissipation or by the
friction at the contact interface. At this level the majority of the process phenomena can be
analyzed: the relationship between rotation and advancing speed, the contact mechanisms,
the e¤ect of pin shape, the material �ow within stir zone, the size of the stir zone and the
corresponding consequences on the microstructure evolution, etc.
Most models of FSW consider the FEM in a Lagrangian mesh [73], [58] and [57], which

is used to study the process globally and to predict the weld temperature and deformation
structure. However, the number of simulations using other numerical methods such as �nite
volume or other kinematic frameworks such as Eulerian or ALE is also considerable.
In the model by Maol and Massoni [73] (FEM with a Lagrangian mesh), the material was

assumed to be visco-plastic, with temperature-dependent properties. A frictional interface
was used between the two parts and its value was determined experimentally from the
pressure and velocity between the two parts. Bendzsak and North [15] used the �nite volume
method to predict the �ow �eld in the fully plasticized region of a friction weld. Similar and
dissimilar welds were analyzed. In the similar welds the viscosity was found from a heuristic
relationship, which was independent of temperature. The dissimilar welds used a transient
thermal model, a complex viscosity relationship and an Eulerian-Lagrangian mesh.
A thermo-mechanical model for FSW was proposed by Dong et al. [50]. There, an

axis-symmetrical FE Lagrangian formulation was used. Ulysse in [99] modeled 3D FSW
for aluminium thick plates. Forces acting on the tool were studied for various welding and
rotational speeds. The deviatoric stress tensor was used by Ulysse to model the stir-welding
process using 3D visco-plastic modeling. Parametric studies were conducted to determine the
e¤ect of tool speed on plate temperatures and to validate the model predictions by comparing
with available measurements. In addition, forces acting on the tool were computed for various
welding and rotational speeds. It was found that pin forces increased with increasing welding
speeds, but the opposite e¤ect was observed for increasing rotational speeds.
Askari et al. [9] used the CTH �nite volume hydrocode coupled to an advection-di¤usion

solver for the energy balance equation. This model predicts important �elds like strain, strain
rate and temperature distribution. The elastic response was taken into account in this case.
The results proved encouraging with respect to gaining an understanding of the material
�ow around the tool. However, simpli�ed friction conditions were used. They used particle
tracking and the mixing fraction to visualize the �ow. The mixing fraction determines the
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ratio of advancing to retreating side material in the welded joint. These techniques enabled
very impressive �ow visualization, with the large dispersion of material that occurs with an
advancing side marker being correctly predicted. The work also predicted that material,
particularly that starting on the advancing side, �ows more than one revolution around the
tool.
Xu et al. [101] used �nite element models to describe the material �ow around the

pin. This was done by using a solid mechanical 2D FE model. It included heat transfer,
material �ow, and continuum mechanics. The pin was included but not the threads of the
pin. Xu and Deng [102], [103] developed a 3D �nite element procedure to simulate the
FSW process using the commercial FEM code ABAQUS, focusing on the velocity �eld, the
material �ow characteristics and the equivalent plastic strain distribution. The authors used
an ALE formulation with adaptive meshing and considered large elasto-plastic deformations
and temperature dependent material properties. However, the authors did not perform a
fully coupled thermo-mechanical simulation, super imposing the temperature map obtained
from the experiments as a prescribed temperature �eld to perform the mechanical analysis.
The numerical results were compared to experimental data available, showing a reasonably
good correlation between the equivalent plastic strain distributions and the distribution of
the microstructure zones in the weld. They examined the velocity gradient around the pin
and found that it was higher on the advancing than retreating side and higher in front than
behind the pin. Maps of the strain on the transverse cross section were compared against
typical weld macrosections.
Seidel and Reynolds [92] also used the CFD commercial software FLUENT to model

the 2D steady-state �ow around a cylindrical tool. The paper describes the progressive
development of a �nite volume model in FLUENT that used a visco-plastic material whose
viscous properties were based on the Sellars-Tegart relationship. Even though the model
was 2D, heat generation and conduction were included. To avoid over-predicting the weld
temperature, the viscosity was reduced by 3 orders of magnitude near the solidus. The model
correctly predicted material �ow around the retreating side of the tool.
Bendzsak et al. [13], [14] used the Eulerian code Stir3D to model the �ow around a FSW

tool, including the tool thread and tilt angle in the tool geometry and obtaining complex
�ow patterns. The temperature e¤ects on the viscosity were neglected. They used the �nite
volume method to predict the �ow �eld in the fully plasticized region of a friction weld.
Similar and dissimilar welds were analyzed. In the similar welds the viscosity was found
from a heuristic relationship, which was independent of temperature. The dissimilar welds
used a transient thermal model, a complex viscosity relationship and an Eulerian-Lagrangian
mesh.
Schmidt and Hattel [91] presented a 3D fully coupled thermo-mechanical FE model in

ABAQUS/Explicit using the ALE formulation and the Johnson-Cook material law. The �ex-
ibility of the FSW machine was taken into account connecting the rigid tool to a spring. The
work-piece was modeled as a cylindrical volume with inlet and outlet boundary conditions.
A rigid back-plate was used. The contact forces were modeled using a Coulomb friction law,
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and the surface was allowed to separate. Heat generated by friction and plastic deformation
was considered. The simulation modeled the dwell and weld phases of the process. A con-
stant contact conductance was used everywhere under the sheet. They used the generated
heat from three di¤erent areas, the shoulder, pin and pin tip, and used both sticking and
sliding conditions. Despite the wealth of information that this model can provide (e.g. ma-
terial velocity, plastic strains, and temperatures across the weld), a major shortcoming for
it was the long processing time for reaching the steady-state (14 days on a 3 GHz Pentium
PC to reach only 10 seconds of model time).
The model developed by Chen and Kovacevic in [31] uses the commercial FEM software

ANSYS for a thermo-mechanically coupled Lagrangian �nite element model of aluminium
alloy AA-6061-T6. The welding tool was modeled as a heat source. The model only included
the shoulder and so the e¤ect of the pin was ignored. This simple model severely limited
the accuracy of the stress and force and the strain rate dependence was not included in the
material model. However, the authors were able to investigate the e¤ect of the heat moving
source on the work-piece material. Finally the model predicted the welding forces in the x,
y and z directions.
Nikiforakis [80] used a �nite di¤erence method to model the FSW process. Despite

the fact that he was only presenting 2D results, the model proposed had the advantage of
minimizing calibration of model parameters, taking into account a maximum of physical
e¤ects. A transient and fully coupled thermo-�uid analysis was performed. The rotation of
the tool was handled through the use of the overlapping grid method. A rigid-visco-plastic
material law was used and sticking contact at the tool work-piece interface was assumed.
Hence, heating was due to plastic deformation only.
Heurtier et al. [62] used a 3D semi-analytical coupled thermo-mechanical FE model to

simulate FSW processes. The model uses an analytical velocity �eld and considers heat
input from the tool shoulder and plastic strain of the bulk material. Trajectories, temper-
ature, strain, strain rate �elds and micro-hardness in various weld zones are computed and
compared to experimental results obtained on a AA 2024-T351 alloy FSW joint.

1.3.5 Kinematic framework

Among the distinctive local level studies, Cho et al. [40] used an Eulerian approach including
thermomechanical models without considering the transient temperature in simulation. The
strain hardening and texture evolution in the friction stir welds of stainless steel was studied
in this paper. A Lagrangian approach with intensive re-meshing was employed in [32] while
similar approaches were applied in [17] and [18], which are not numerically e¢ cient.
Bu¤a et al. [17] using the commercial FE software DEFORM-3D, proposed a 3D La-

grangian, implicit, coupled thermo-mechanical numerical model for the simulation of FSW
processes, using a rigid-visco-plastic material description and a continuum assumption for
the weld seam. The proposed model is able to predict the e¤ect of process parameters on
process variables, such as the temperature, strain and strain rate �elds, as well as mater-

19



ial �ow and forces. Reasonably good agreement between the numerically predicted results,
on forces and temperature distribution, and experimental data was obtained. The authors
found that the temperature distribution about the weld line is nearly symmetric because
the heat generation during FSW is dominated by rotating speed of the tool, which is much
higher than the advancing speed. On the other hand, the material �ow in the weld zone is
non symmetrically distributed about the weld line because the material �ow during FSW is
mainly controlled by both advancing and rotating speeds.
Nandan et al. in [77] and [78] employed a control volume approach for discretization of

the FSW domain. They investigated visco-plastic �ow and heat transfer during friction stir
welding in mild steel. The temperature, cooling rates and plastic �ows were solved by the
equations of conservation of mass, momentum and energy together with the boundary condi-
tions. In this model the non-Newtonian viscosity was determined from the computed values
of strain rate, temperature and material properties. Temperatures and total torque was
compared with experimental values showing good agreement. The computed temperatures
were in good agreement with the corresponding experimental values.
Aspects that are ignored by most authors are the e¤ect of convective heat �ow due to

material deformation and the asymmetry of heat generation due to the much higher pressure
at the back of the shoulder. The former requires a prediction of the material �ow around
the tool, which is di¢ cult to implement in most (non-�uid) solvers, which only predict weld
temperature.
Recently, Assidi et al. in [11] used an ALE formulation implemented into the Forge3 R

software with a splitting approach and an adaptive re-meshing scheme based on error estima-
tion. In [19] the residual stresses in a 3D FE model were predicted for the FSW simulation
of butt joints through a single block approach. The model was able to predict the resid-
ual stresses by considering only thermal actions. Bu¤a el al. [19] simulated the welding
process using a continuous rigid-viscoplastic �nite element model in a single block approach
through the Lagrangian implicit software, DEFORM-3DTM. Then, the temperature histo-
ries extracted at each node of the model were transferred to another �nite element model
considering elasto-plastic behavior of the material. The map of the residual stress was ex-
trapolated from the numerical model along several directions by considering thermal actions
only.
Santiago et al. [89] developed a simpli�ed computational model taking into account the

real geometry of the tool, i.e. the probe thread, and using an ALE formulation. They
considered also a simpli�ed friction model to take into account di¤erent slip/stick conditions
at the pin shoulder/work-piece interface.
The more recent works performed in this direction are those presented in this paper.

Agelet de Saracibar et al. ([3], [4]), Agelet de Saracibar et al. ([5], [6]), Chiumenti et
al. [37], and Dialami et al. ([47], [48], [49]) used a sub-grid scale �nite element stabilized
mixed velocity/pressure/temperature formulation for coupled thermo-rigid-plastic models,
using Eulerian and Arbitrary Lagrangian Eulerian (ALE) formalisms, for the numerical
simulation of FSW processes. They used ASGS and OSGS methods and quasi-static sub-
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grid scales, neglecting the sub-grid scale pressure and using the �nite element component of
the velocity in the convective term of the energy balance equation. Chiumenti et al. [37],
Dialami et al. [47], and Chiumenti et al. [38] developed an apropos kinematic framework
for the numerical simulation of FSW processes and compared with a solid approach in [20],
[21] and [22]. A combination of ALE, Eulerian and Lagrangian descriptions at di¤erent
zones of the computational domain and an e¢ cient coupling strategy was proposed. The
resulting apropos kinematic setting e¢ ciently permitted to treat arbitrary pin geometries
and facilitates the application of boundary conditions. The formulation was implemented
in an enhanced version of the �nite element code COMET [27] developed by the authors
at the International Centre for Numerical Methods in Engineering (CIMNE). Chiumenti
et al. [38] used a novel stress-accurate FE technology for highly nonlinear analysis with
incompressibility constraints typically found in the numerical simulation of FSW processes.
They used a mixed linear piece-wise interpolation for displacement, pressure and stress
�elds, respectively, resulting in an enhanced stress �eld approximation which enables for
stress accurate results in nonlinear computational mechanics.

1.4 Outline

The outline of this paper is as follows:
In section 2 the thermal problem for the simulation of the FSW process at both local and

global level is formulated. The thermal problem is governed by the enthalpy based balance
of energy equation. Heat generation via viscous dissipation as well as frictional heating due
to the contact is taken into account. Thermal convection and radiation boundary conditions
are also considered.
In section 3 the mechanical problem for the simulation of the welding process is formu-

lated. The mechanical problem is described by the balance of momentum equation.
The material behavior is either thermo-elasto-visco-plastic (global level analysis) or thermo-

rigid-visco-plastic (local level analysis).
Section 4 describes the discrete FE modeling and sub-grid scale stabilization to deal with

incompressibility and heat convection dominated problems. The multiscale stabilization
method is introduced and an approximation of the sub-grid scale variables together with the
stabilization parameters is given. Algebraic Sub-grid Scale (ASGS) and Orthogonal Sub-
grid Scale (OSGS) methods for mixed velocity, pressure and temperature linear elements are
used. It is shown how the classical GLS and SUPG methods can be recovered as a particular
case of the ASGS method.
Section 5 is devoted to the description of the proposed kinematic framework to simu-

late the FSW process. A novel numerical strategy to model FSW is presented. Using the
Arbitrary-Lagrangian-Eulerian kinematic framework, the overall computational domain is
divided into sub-domains associating an apropos kinematic framework to each one of them.
A combination of ALE, Lagrangian and Eulerian formulations for the di¤erent domain parts
is proposed. Coupling between each domain is explained in detail including the friction con-
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tact. The strategy adopted to deal with an accurate de�nition of the boundary conditions
is presented.
Section 6 deals with the visualization of material �ow during the welding process. A

particle tracing technique is used, to visualize the trajectories of any material points. This
method can be naturally applied to the simulation of the material �ow in welding simulations.
The trajectories of the material points are integrated from the velocity �eld obtained in the
simulation at the post-process level.
Section 7 is devoted to the description of the Local-global strategy for the calculation

of residual stresses in FSW process. The heat power is obtained at local level and then is
transferred to the global one in order to compute the residual stresses.
Section 8 summarizes the work and provides a critical overview of the goals achieved in the

simulation of FSW processes. Innovative features of the work are highlighted. Conclusions
are drawn with regard to the �elds of application and the intrinsic limits of the presented
methods.

2 Thermal problem

The governing equation representing the thermal problem is the balance of energy equation.
This equation controls the temperature evolution and can be stated as ([1], [25], [35]):

�oc
dT

dt
= _R�r � q (1)

where �o; c; T , _R and q are the density at the reference con�guration, the speci�c heat,
temperature, the volumetric heat source introduced into the system by plastic dissipation
and the heat �ux, respectively.
Depending on the aim of the analysis, whether it is local or global, there are di¤erent

de�nitions for the heat source, _R:

� Power dissipated through plastic deformation (i.e. local analysis ).

� Known input (i.e. global analysis ).

2.1 Thermal problem at the global level

At the global level, the Lagrangian framework is used to describe the thermal problem.
According to this framework, the energy equation reads simply

�oc
@T

@t
= _R�r � q (2)

In global level analysis, the heat source is the (known) power input for the problem,
obtained by solving the local level analysis.
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Figure 5: Temperature �eld in a FSW process (Global level)

Figure 6: Temperature evolution obtained from global level analysis compared with experi-
ment
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Figure 5 shows the temperature �eld and moving heat source in a global level simulation.
The temperature �eld obtained from a global level analysis for di¤erent lines parallel to

the weld line at the bottom surface is compared with those obtained from experiments is
depicted in �gure 6.

2.2 Thermal problem at the local level

At the local level, where the focus of the simulation is the heat a¤ected zone (�xed in the
space together with the reference frame), the Eulerian framework is considered. According
to this kinematic setting, the energy equation can be rewritten as

�oc

�
@T

@t
+ v �rT

�
= _R�r � q (3)

where v is the (spatial) velocity (see section 5 for further details).

Figure 7: Temperature contour �eld in FSW process (Local level).

In the FSW process, the heat source introduced into the system is due to the mechanical
dissipation and it is computed as a function of the plastic strain rate, _e, and the deviatoric
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Figure 8: Temperature evolution obtained from local level analysis compared with experi-
ment

stresses, s, as:
_R = s : _e (4)

where  ' 90% is the fraction of the total plastic energy converted into heat.
Application of the local level analysis in FSW process can be seen in Figure 7.
The temperature �eld obtained from a local level analysis for di¤erent lines parallel to

the weld line at the bottom surface is compared with those obtained from experiments is
depicted in �gure 8.

2.3 Boundary conditions

Let us denote by 
 an open and bounded domain. The boundary @
 can be split into @
q
and @
T such that @
 = @
q[ @
T , where �uxes (on @
q) and temperatures (on @
T ) are
prescribed for the heat transfer analysis as

q � n = �q on @
q
T = �T on @
T

(5)

In �gure 9, 
1 and 
2 represent the tool and the work-piece domains, respectively.
The initial condition for the transient thermal problem in terms of the initial temperature

�eld is: T (t = 0) = To.
On free surfaces, the heat �ux is dissipated through the boundaries to the environment

by heat convection, expressed by Newton�s law as:

qconv = hconv(T � Tenv) (6)
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Figure 9: Thermal boundary condition

where hconv is the heat transfer coe¢ cient by convection, Tenv is the surrounding environment
temperature and T is the temperature of the body surface.
Another heat dissipation mechanism is heat loss due to radiation. Heat radiation �ux is

computed using the Stefan-Boltzmann law:

qrad = �0"(T
4 � T 4env) (7)

where �0 is the Stefan�Boltzmann constant and " is the emissivity factor.

2.4 Thermal constitutive model

Heat transfer by conduction involves transfer of energy within a material without material
�ow. The thermal constitutive model for conductive heat �ux is de�ned according to the
isotropic conduction law of Fourier. It is computed in terms of the temperature gradient,
rT , and the (temperature dependent) thermal conductivity, k, as:

q = �krT (8)

2.5 Friction model

The thermal exchanges at the contact boundary (@
c in �gure 9) can also result from a
friction type dissipation process (Figure 10). The heat generated by frictional dissipation
at the contact interface is absorbed by the two bodies in contact according to their respec-
tive thermal di¤usivity. In this section the frictional contact is described by two models:
Coulomb�s law used when Lagrangian setting is considered in global studies; and Norton�s
law considered when Eulerian/ALE setting is used in local studies.
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Figure 10: Velocity (top) and temperature �elds (bottom) obtained with fully stick condition
between pin and work-piece.

2.5.1 Coulomb�s friction law

Adopting the classical friction model based on Coulomb�s law, the so called slip function is
de�ned as [7]:

� (tN ; tT ) = ktTk � � ktNk � 0 (9)

where � (T;�uc) is the friction coe¢ cient, which can result in a nonlinear function of tem-
perature and slip displacement �uc. tN and tT are the normal and tangential components
of the traction vector, tc = � � n, at the contact interface, respectively:

tN = (n
 n) � tc = (tc � n)n (10)

tT = (I� n
 n) � tc = tc � tN (11)

where n is the unit vector normal to the contact interface.
This given, both stick and slip mechanisms can be recovered using the uni�ed format:

ktTk = "T
�
k�uTk � _

@�

@ ktTk

�
= "T (k�uTk � _) (12)

together with the Kuhn-Tucker conditions de�ned in terms of the slip function, �, and the
slip multiplier, _, as:

� � 0
_ � 0
� _ = 0

(13)
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where "T is a penalty parameter (regularization of the Heaviside function).
�uT and �uN are the tangential and the normal components of the total relative dis-

placement, �uc; computed as:

�uT = (I� n
 n) ��uc (14)

�uN = �uc ��uT (15)

� The sliding condition allows for relative slip between the contact surfaces. The tan-
gential traction vector, tT , is computed from (9) assuming � = 0, as:

tT = � ktNk
�uT
k�uTk

(16)

The normal traction vector is obtained with a further penalization as:

tN = "N�uN (17)

where "N is the normal penalty parameter (not necessarily equal to "T ), which enforces
non-penetration in the normal direction.

� The stick condition is obtained for _ = 0, when the contact surfaces are sticked to each
other and there is no relative slip between them. The tangential traction vector reads:

tT = "T�uT (18)

while the normal component of the traction vector is given by Eq. (17).

2.5.2 Norton�s friction law

The relative velocity between two bodies in contact is the cause of heat generation by friction.
This is one of the key mechanisms of generating heat in the FSW process. When the driving
variable is the velocity �eld, v, it is very convenient to use a Norton type friction law.
The tangential component of the traction vector at the contact interface, tT , is de�ned

as:
tT = �eqnT = a (T ) k�vTk

q nT (19)

where �eq (T;�vT ) = a (T ) k�vTk
q is the equivalent friction coe¢ cient. a (T ) is the (tem-

perature dependent) material consistency, 0 � q � 1 is the strain rate sensitivity and

nT =
�vT
k�vTk

is the tangential unit vector, de�ned in terms of the relative tangential veloc-

ity at the contact interface.
This given, the heat �ux generated by Norton�s friction law reads:

q
(1)
frict = �&(1)tT ��vT = �&(1)a (T ) k�vTkq+1 (20)

q
(2)
frict = �&(2)tT ��vT = �&(2)a (T ) k�vTkq+1
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The total amount of heat generated by the friction dissipation is split into the fraction
absorbed by the bodies in contact. The amount of heat absorbed by the �rst body, &(1), and

by the second body, &(2), depends on the thermal di¤usivity, � =
k

�0c
, of the two materials

in contact as:

&(1) =
�(1)

�(1) + �(2)
(21)

&(2) =
�(2)

�(2) + �(1)

The more di¤usive is the material of one part in comparison with the other part, the
more heat is absorbed by it.

2.6 Weak form of the thermal problem

Considering Eqs. (2) and (8), the weak form of the thermal problem at global level is de�ned
over the integration domain 
 and its boundary @
 as:Z




��
�oc
@T

@t

�
�T

�
dV+ (22)

Z



[krT � r (�T ) ] dV = Wther 8�T

where �T is the test function of the temperature �eld, while the thermal work, Wther, is
de�ned as:

Wther =

Z



�
_R �T

�
dV �

Z
@
q

(�q�T ) dS �
Z
@
c

(qfrict�T ) dS (23)

Note that the term due to friction (qfrict) appears only at local level.
Similarly, considering Eqs. (3) and (8), the weak form of the problem at local level is

written as Z



��
�oc

�
@T

@t
+ v �rT

��
�T

�
dV+ (24)

Z



[krT � r (�T ) ] dV = Wther 8�T
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2.7 Discrete weak form of the thermal problem

In the framework of the standard Galerkin �nite element method, the discrete counterpart
of the weak form for the thermal problem can be written as

� Global form Z



��
�oc
@Th
@t

�
�Th

�
dV (25)

+

Z



krTh�r (�Th) dV = W ext
ther (�Th) 8�Th

� Local formZ



��
�oc

�
@Th
@t

+ vh �rTh
��

�Th

�
dV (26)

+

Z



krTh�r (�Th) dV = W ext
ther (�Th) 8�Th

where Th is the discrete temperature �eld.

3 Mechanical problem

In this section, the general framework for the description of the mechanical problem in FSW
processes is presented. This framework is developed both for local and global analysis. In
global level analyses, the e¤ect of a moving heat source on the entire structure is studied. The
heat source is introduced into the system and moves along the weld line while the structure
is �xed. In this case the Lagrangian framework is used for the de�nition of the problem, as
the reference frame is attached to the structure. The moving heat source generates thermal
deformation in the structure. Therefore, de�nition of the problem in terms of displacements
is a natural choice for the computation of the mechanical problem. On the other side, in
local level analysis, the focus of the study is the heat a¤ected zone. The heat source is
�xed together with the reference frame while the structure moves with the imposed velocity
(relative movement). In this case, the Eulerian model is a suitable choice and the problem
can be conveniently de�ned in terms of the velocity �eld.
In both cases, assuming quasi-static conditions, the local form of the balance of momen-

tum equation, also known as Cauchy�s equation of motion, is given by

r � � + �ob = 0 (27)
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Figure 11: Mechanical results in a FSW process (local analysis).

where � is the Cauchy�s stress tensor, b are the body forces vector per unit of volume, �o is
the density in the reference con�guration and r � (�) is the divergence operator.
In the case of metallic materials where the behavior of inelastic (plastic) strains is iso-

choric (plastic deformations are deviatoric), it is convenient to split the stress tensor, �, into
volumetric and deviatoric parts:

� = pI+ s (28)

where p = 1
3
tr (�) is the pressure and s = dev (�) is the stress deviator. Similarly, the strain

tensor, "; can be split into volumetric, evol; and the deviatoric, e; parts.

" =
1

3
evolI+ e (29)

Therefore, the local form of the mechanical problem can be stated as:

r � s+rp+ �ob = 0 (30)
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Figure 12: Velocity streamlines around a triangular pin (left) and a trivex pin (right)

Figure 13: Plastic dissipation under a FSW tool.

where p and s are de�ned according to the constitutive equations selected for the local or
global analysis, respectively.
Figure 11 shows the results of the mechanical simulation at the local level. Pressure,

velocity, strain-rate and stress �elds are presented around the rotating triangular pin. The
peaks in mechanical variables around the pin can be seen. Due to the high rotational velocity
of the pin, the asymmetry of the results are not visible.
The streamlines and velocity vectors around the triangular pin are shown in �gure 12.

One can see the strong e¤ect of rotational velocity and the di¤erences between retreating
and advancing sides.
Plastic dissipation under the FSW tool with cylindrical pin is illustrated in �gure 13. Note

that plastic dissipation is one of the main sources of heat in FSW. E¤ect of the shoulder is
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Figure 14: Longitudinal stress (XX) �eld in a global level simulation of FSW after cooling.

clearly important and cannot be neglected. This obliges modelers to perform simulation in
3D in order to obtain accurate results.
Figure 14 shows the results of the mechanical simulation at global level (residual stresses).

The �gure illustrates the e¤ect of a moving heat source on the stress XX �eld after �xture
release and cooling phase.

3.1 Constitutive model

According to the general perspective of the paper, which studies the FSW process at both
local and global level, this section is divided into two parts: the �rst part describes the
mechanical constitutive equations used at global level; the second part is devoted to the
description of the mechanical constitutive model used at the local level.

3.1.1 Mechanical constitutive model at global level

When the e¤ects induced by the process on the structural behavior are the target of the
study, the global level analysis is preferred. These e¤ects are distortions, residual stresses or
weaknesses along the welding line, among others and the displacement �eld is the driving
variable.
At global level, the stress deviator, s (u; T ), is generally de�ned through the constitutive

equation as a function of displacements u and temperature T: The heat source moves along
the welding path and the temperature range varies from room temperature to very high
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Figure 15: Temperature dependent material properties of 304L stainless steel.

temperatures close to the melting point. Consequently, the material behavior changes from
elasto-plastic (at room temperature) to pure viscous (close to the melting point). This
evolution can be de�ned by a thermo-elasto-visco-plastic constitutive model. Close to the
melting point, the viscous behavior dominates and the elastic limit gradually decreases.
To this end, it can be written:

p = K ee = K
�
e�e�

�
= K

�
r � u� e�

�
(31)

s = Gee = G ( e� evp) (32)

where K (T ) is the bulk modulus, which controls the material compressibility and G is the
shear modulus. Deformations e� ; ee; evp and ee are the volumetric thermal deformation, the
elastic volumetric strain, the viscoplastic and the elastic deviatoric strain, respectively. The
thermal deformation e� is expressed as

e� = 3 [� (T ) (T � Tref )� � (T0) (T0 � Tref )] (33)

where � (T ) is the thermal expansion coe¢ cient.
Figure 15 shows the temperature-dependent material property for 304L stainless steel.

The mechanical material parameters can be obtained by �tting the constitutive model with
uniaxial, tensile stress-strain curves obtained at di¤erent temperatures.
The viscoplastic deformation _evp is de�ned through appropriate evolution laws

_evp = vp
@�

@s
= vpn (34)

_� = vp
r
2

3
(35)
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where � (s; T ) is the viscoplastic yeild surface, n =
s

ksk is the unit normal to the yield

surface and vp =
�
�

�

�
is the visco-plastic parameter, when a rate-dependent evolution law

is assumed. � (T ) is the plastic viscosity associated to the visco-plastic model.

3.1.2 Mechanical constitutive model at local level

When the heat a¤ected zone is the focus of the study, the local level analysis in Eulerian for-
mat is preferred. The stress deviator s (v; T ) is de�ned as a function of temperature, T; and
the velocities, v; rather than displacements. The constitutive laws are typically formulated
in terms of strain-rate rather than strain. The FSW process is characterized by very high
strain rates as well as a wide temperature range going from the environmental temperature
to the one close to the melting point. Hence, instead of a thermo-elasto-visco-plastic model
(generally adopted for metals in the Lagrangian formulation), a thermo-rigid-visco-plastic
behavior is usually introduced within an Eulerian/ALE framework. The elastic strains are
neglected compared to the viscoplastic �ow and, therefore, precluding the computation of
residual stresses.
The incompressibility constraint is often adopted by assuming that the volumetric changes,

including thermal deformation, are negligible in comparison with elasto-plastic (deviatoric)
deformation:

_evol =r � v �= 0 (36)

so that _e = _" = rsv.
According to the split of the stress tensor introduced in Eq. (28), di¤erent rate-dependent

constitutive models can be used for modeling the welding process. The constitutive models
are usually de�ned by the relationship between the deviatoric parts of the stress and the
strain rate, _e. This reduces into the de�nition of visco-plastic constitutive models of the
form:

s = � _e = 2� _e (37)

where � is the e¤ective viscosity coe¢ cient of the material. The following additive decom-
position of the deviatoric strain rate is assumed:

_e = _ee + _evp (38)

where _ee and _evp are the elastic and visco-plastic parts, respectively. In local level FSW, the
elastic part of the strain tensor, _ee, is negligible compared with the visco-plastic component,
_evp, so that:

_e � _evp (39)

This means that the total deformation is visco-plastic and a rigid-visco-plastic model is
recovered. The rigid-visco-plastic models can be interpreted as non-Newtonian laws where
the viscosity � is a nonlinear function of the strain-rate _e: Typical constitutive equations
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(a) � = � Newtonian model

(b) � = �
�p
2 k _"k

�(m�1)
Power-law model [100]

(c) � = �1 + (�0 � �1)
 
sinh�1

�p
2 k _"k 

�
p
2 k _"k 

!
Powell�Eyring model [85]

(d) � = �1 + (�0 � �1)
 

1

1 +
�p
2 k _"k 

�m
!

Cross model [43]

(e) � = �1 + (�0 � �1)
�
1 +

�p
2 k _"k 

�2�(m�1
2 )

Carreau model [39]

(f) � = �1 + (�0 � �1)
�
1 +

�p
2 k _"k 

�a�(m�1
a )

Carreau�Yasuda model [105]

Table 1: Various constitutive models for the viscosity.

used for non-Newtonian modeling are listed in Table 1. The coe¢ cients �0 and �1 in these
models represent the asymptotic values of the viscosity � at zero and in�nite strain-rates,
respectively. In the Newtonian case � = �0 = �1 = �:
In the present paper, depending on the de�nition for �, three models are introduced from

the groups (b), (c) and (f): Norton-Ho¤, Sheppard-Wright and Carreau constitutive models.

3.1.2.1 Norton-Ho¤model The Norton-Ho¤model was originally introduced by Nor-
ton [81] in order to describe the unidimensional creep of steel at high temperature, and
extended by Ho¤ [63] to multi-dimensional situations. This model can be easily charac-
terized by simple mechanical tests and accurately describes the behavior of materials with
signi�cant viscous and creep response to loading. The Norton-Ho¤ model is best suited for
the materials that are tough and highly rate sensitive.
According to this constitutive model, the e¤ective viscosity is expressed as a function of

the temperature and the equivalent plastic strain rate,
�
�" =

p
2=3 k _evpk =

p
2=3 ( _evp : _evp)1=2,

as:

�� = �
�p
3
�
�"
�(m�1)

(40)

where 0 � m (T ) � 1 and � (T ) are the (temperature dependent) rate sensitivity and
viscosity parameters, respectively (Figure 16). Note that:

� m = 0 leads to the expression of a rigid plastic constitutive law.

s =
p
2�n (41)

where n =
_"

k _"k =
s

ksk de�nes the plastic-�ow direction.

� m = 1 leads to the linear behavior of a Newtonian �uid.

s = 2� _" (42)
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Figure 16: Stress vs. strain rate a¤ected by rate sensitivity variation.

that is, a linear relationship between stresses and strain-rates where the constant of
proportionality is the viscosity parameter.

The great advantage of the Norton-Ho¤model is its simplicity as it only depends on two
(temperature dependent) parameters.
For the majority of metals, the rate-sensitivity parameter is usually within the range

0:1 � m � 0:2 which results in a very non-linear (non-Newtonian) material behavior (e.g.
aluminium and steel alloys).
The nonlinearity of the Norton-Ho¤ model increases as m diminishes. To deal with this

nonlinearity, m can be computed in a series of steps starting from the value m = 1 in the
�rst step and reaching its real value at step N . This implies that at each time-step i < N
the problem is solved with constitutive rate sensitivity mi:

mi = 1� (1�m) � ((1� i) = (1�N))m (43)

3.1.2.2 Sheppard-Wright model The equation used to describe the �ow strength of
alloys was introduced initially by Sellars and Tegart [93]. Sheppard and Wright [94] intro-
duced an alternative rigid visco-plastic formulation extending this formulation.
According to the Sheppard-Wright model, the e¤ective viscosity coe¢ cient is de�ned in

terms of e¤ective �ow stress �e (i.e. norm of deviatoric stress) and e¤ective strain rate
�
�"

(i.e. norm of deviatoric strain rate) as

�� =
�e

3
�
�"

(44)
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Figure 17: E¤ect of activation energy on stress vs. strain rate.

where the e¤ective stress �e depends on the strain rate and the temperature �eld (below the
metals solidus temperature) and it is de�ned as

�e

� �
�"; T

�
=
1

�
sinh�1

 �
Z

A

�1=n!
=
1

�
ln

24�Z
A

�1=n
+

s
1 +

�
Z

A

�2=n35 (45)

where Z, the Zener�Hollomon parameter, represents the temperature compensated e¤ective
strain rate [107]

Z =
�
�" exp(

Q

RT
) (46)

R is the universal gas constant and T is the absolute temperature (in Kelvin). The material
constants �; A; n and the apparent activation energy, Q; are derived by �tting experimental
response of the material, and are all independent of temperature (Figure 17).
The advantage of the Sheppard-Wright model in comparison with the Norton-Ho¤model

is the possibility of a better calibration of the material behavior in the entire temperature
range from the environment temperature to the melting point.

3.1.2.3 Carreau model According to Carreau�s constitutive model ([23], [90]), the ef-
fective viscosity coe¢ cient is de�ned as

�� =

2641 +
0@� �0

3_"0�0

� n
1�n

q
2
3
k _ek
_"0

1A2
375

1�n
2n

(�0 � �1) + �1 (47)

where �0, �1, _"0 and n are the saturation viscosities at zero and in�nite limits, the plastic
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Figure 18: Stress-Strain rate behavior of a Carreau model with temperature change.

strain rate corresponding to the yield limit �0 and n the exponent, respectively. The yield
limit �0 is de�ned by a Johnson�Cook power of the form

�0 =

(
�0;R

h
1�

�
T�TR
TM�TR

�mi
T < TM

0 T � TM
(48)

where TM , TR, �0;R and m are melting temperature, room temperature, yield limit at room
temperature and Johnson�Cook exponent, respectively.
The main advantage of this constitutive model is that the range of admissible viscosity

values is bounded by the viscosity at room temperature and for the liquid phase. These limit
bounds will resolve the problem related to singularity of the non-Newtonian constitutive
models and thus use of numerical tricks such as de�nition of cut-o¤ values on the strain
rates.
Figure 18 shows the stress-strain rate behavior of a Carreau model for di¤erent temper-

atures.

3.2 Weak form of the mechanical problem

The mixed u=p formulation is the most classical formulation to tackle the incompressible
limit, where both displacements and pressures are used as master �elds. It is often used for
modeling nearly incompressible (Poisson�s ratio above 0.49) or completely incompressible
material behavior (Poisson�s ratio equal to 0.50). The standard irreducible formulation is
simply not suitable for incompressible conditions.
The mixed u=p formulation solves the balance of momentum equation (30) and the

volumetric part of the constitutive Eq. (31) in the weak form. Taking into account that
s (u) is de�ned as a function of displacement, the weak form of the mixed u=p mechanical
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problem at global level is de�ned over the integration domain 
 and its boundary @
 as:8><>:
R



(s (u) : rs�u) dV +
R



(pr � �u) dV = Wmech 8�vR



[(r � u) �p] dV �
R



h�
e� +

p

K

�
�p
i
dV = 0 8�p

(49)

where �u and �p are the test functions of the displacement and pressure �elds, respectively,
while the mechanical work is de�ned as:

Wmech =

Z



(�ob � �u) dV +
Z
@
�

(�t � �u) dS (50)

De�nition of the problem in the mixed u=p format is not obligatory, however it is con-
venient for including both the compressible and incompressible cases. If e� ! 0 and the
bulk modulus K ! 1; such as in the liquid-like phase, the incompressibility condition
is recovered: r � u = 0. In this case, the second Eq. (49) enforces (in weak sense) the
incompressibility condition as a purely kinematic constraint.
Similarly, according to Eqs. (30) and (36), and taking into account that s (v) is de�ned

as a function of the velocity �eld, the weak form of the mixed v=p mechanical problem at
local level is de�ned over the integration domain 
 and its boundary @
 as:8<:

R



(s (v) : rs�v) dV +
R



(pr � �v) dV = Wmech 8�vR



[(r � v) �p] dV = 0 8�p (51)

where �v is the test function of the velocity �eld.

3.2.1 Boundary conditions

For the global level analysis, the boundary @
 is split into @
� and @
u, being @
 = @
�
[ @
u such that the tractions are prescribed on @
� while displacements are speci�ed on
@
u. The corresponding Neumann and Dirichlet boundary conditions on @
� and @
u are
de�ned as

� � n = �t on @
�
u = �u on @
u

(52)

where �t and �u are the prescribed traction and velocity �eld, respectively and n is the unit
outward normal to the surface @
�.
Similarly, for the local level analysis, the boundary @
 is split into @
� and @
v, being

@
 = @
� [ @
v such that the velocities are speci�ed on @
v and the corresponding Dirichlet
and Neumann boundary conditions on @
� and @
v are de�ned.
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3.3 Discrete weak form of the mechanical problem

In the framework of the standard Galerkin �nite element method, the discrete counterparts
of the weak forms for the mechanical problem can be written as

� Global form:

8><>:
R



(sh (uh) : rs�uh) dV +
R



(ph r � �uh) dV = W ext
mech (�uh) 8�uhR




[(r � uh) �ph] dV �
R



h�
e� (Th) +

ph
K

�
�ph

i
dV = 0 8�ph

(53)

� Local form:

8<:
R



(sh (vh) : rs�vh) dV +
R



(ph r � �vh) dV = W ext
mech (�vh) 8�vhR




[(r � vh) �ph] dV = 0 8�ph
(54)

where uh; vh; ph; sh and Th are the discrete counterparts of the respective �elds.

4 Stabilization methods

In this section, a stabilized �nite element formulation based on the Variational Multiscale
(VMS) stabilization method is adopted. This stabilization method allows the use of equal
order interpolation for the velocity and pressure �elds, bypassing the need to satisfy the
inf-sup condition (see �rst subsection), and avoiding the oscillations arising in convective
dominated problems (see second subsection).

4.1 Pressure stabilization

It is known that the incompressibility constraint or under isochoric strain conditions, the use
of an irreducible velocity-based (or displacement-based) formulation leads to pressure locking
situations. It must be pointed out that when using a J2-plasticity model (in solid mechan-
ics) or one of the non-Newtonian laws presented in the previous section (for the Eulerian
framework), it is usual to get an isochoric strain �eld, that is, most of the deformations
are deviatoric and the volumetric part is negligible. The use of a mixed v=p formulation is
a well-known remedy. However, when the mixed Galerkin formulation is used, compatible
spaces for the pressure and the velocity �eld have to be considered and they must satisfy
the Ladyzhenskaya-Babu�ka�Brezzi (LBB) stability condition [16].
The LBB compatibility condition restricts the choice of �nite element spaces Vh and Ph

for velocities (or displacements) and pressure, respectively. It states that in order to obtain
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a stable formulation, Vh and Ph must be chosen such that the following inf-sup condition is
satis�ed:

inf
�ph2Ph

sup
�vh2Vh

(�ph;r � �vh)
k�phk0 k�vhk1

� � > 0; (55)

where parameter � is independent of the mesh size h. If the LBB compatibility condition
is satis�ed, there exists a unique solution vh 2 Vh and a ph 2 Ph (determined up to an
arbitrary constant in the case of purely Dirichlet boundary conditions).
Unfortunately, standard Galerkin mixed elements with continuous equal order linear

velocity/pressure interpolation violate the LBB condition, leading to instabilities in the
pressure �eld and poor numerical performance. Stable formulations can be obtained either
by choosing velocity/pressure pairs that satis�es the LBB condition (e.g. P2/P0 [64]) or by
using pressure stabilization methods.
Using LBB stable elements, such as the Q2/Q1 (Taylor-Hood element, based upon con-

tinuous quadratic velocity, continuous bilinear pressure) or the mini element (continuous
linear velocity+bubble function, continuous linear pressure) is di¢ cult in practice, due to
the complexity of the associated implementation and lower computational e¢ ciency than
that of simplicial elements. Fortunately, there exist possibilities for circumventing the LBB
condition, which permit the use of equal order velocity/pressure interpolations, by modifying
the original Galerkin problem, adding stabilization terms.
Essentially, in the majority of stabilization methods, the stabilizing terms added to the

original Galerkin formulation involve the residual of the balance of momentum equation.
These methods are called residual-based. A stabilization method is consistent if, on conver-
gence, the solution of the modi�ed problem is exactly the solution of the original problem.
The sub-grid method was originally introduced in [66] as a powerful technology known for

its enhanced accuracy properties. The exact solution is split into two parts, corresponding
to di¤erent scales or levels of resolution: the one that can be captured by the �nite element
mesh (coarse) and the other one, called the sub-grid (�ner) part. While the �rst one can be
resolved by the �nite element method, the latter one cannot. The particular approximation
used for the sub-grid scale de�nes the numerical strategy. The solution of the continuous
problem contains components from both scales. It is necessary to, somehow, include the
e¤ect of both scales in the approximation to get the stable solution of the discrete problem.
The aim is to �nd an approximate solution for the sub-grid scale and to include it into the
discrete �nite element solution. The e¤ect of this �ner scale can be included, at least locally,
to enhance the stability of the pressure in the mixed formulation ([33], [2], [34], [26]).
To this end, the solution space, 	, is split into two parts:

	 = 	h � ~	 (56)

	h denotes the �nite element solution while ~	, is the one that completes 	h in 	 and it is
called the sub-grid scale ([66] and [65]). Accordingly, the velocity and pressure �elds of the
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mixed problem are expressed as (Figure 19)

v = vh + ev (57)

p = ph

where vh 2 	h is the velocity �eld of the �nite element scale and ev 2 ~	 is the enhancement

Figure 19: Finite element and sub-grid scale parts of the solution U =

�
v

p

�

of the velocity �eld belonging to the sub-grid scale. Note that no sub-grid scale contribution
is considered for the pressure �eld. It is reasonable to assume that the sub-grid velocities ev
are su¢ ciently small compared to vh. They can be viewed as a high frequency perturbation
of the �nite element �eld, which cannot be resolved in 	h. It can also be assumed that ev
and its variation �ev vanish on the boundary @
.
Di¤erent choices are available for the approximation of the velocity sub-grid scale. Two

possible options correspond to the ASGS and the OSGS methods.
Using ASGS method, ev is approximated as ev = � vrh, where rh is the residual of the

momentum equation in �nite element space.

rh = rh (vh; ph) =r � sh +rph + �ob 'rph (58)

where r � sh vanishes when using linear triangular or tetrahedral elements and the body
forces, �ob, are negligible. This given: ev = � vrph (59)

After substituting into the weak form of both the balance of momentum equation and
the constitutive equation, the discrete ASGS stabilized weak form of the mechanical problem
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Figure 20: Representation of OSGS solution space

for linear elements simpli�es to :8>>>>><>>>>>:

Z



(sh : rs�vh) dV +

Z



(ph r � �vh) dV = W ext
mech (�vh) 8�vhZ




[(r � vh) �ph] dV +
Z



� v (r�ph �rph) dV = 0 8�ph
(60)

where
Z



� v (r�ph �rph) dV is the resulting stabilization term to be considered.

A further approximation for the unknown sub-grid space ~	; is the space orthogonal to
the �nite element space, referred to hereafter as 	?h . This means approximating the solution
space as 	 ' 	h � 	?h . The subsequent stabilization method is called OSGS method, and
it has already been successfully applied to several problems in �uid and solid mechanics.
According to OSGS, ev is approximated as ev = � vP

?
h (rh), where P

?
h is the orthogonal

projection onto the space orthogonal to the �nite element space (Figure 20).
The orthogonal projection of a variable (�) can be computed as: P?h (�) = (�) � Ph (�).

The resulting discrete OSGS stabilized weak form of the mechanical problem is:8>>>>>>>>>><>>>>>>>>>>:

Z



(sh : rs�vh) dV +

Z



(ph r � �vh) dV = W ext
mech (�vh) 8�vhZ




[(r � vh) �ph] dV +
Z



� v [r�ph � (rph � �h)] dV = 0 8�phZ



(rph � ��h) dV �
Z



(�h � ��h) dV = 0 8��h

(61)
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Figure 21: Pressure �eld (left) and streamlines (right) obtained using ASGS (top) and
OSGS (bottom) stabilization method.

where �h = Ph (rph) and ��h are the smooth projection of the pressure gradient and its
variation onto the �nite element space, respectively.
The resulting system is an accurate, stable and consistent formulation for the solution of

the mechanical problem subjected to the incompressibility constraint.
The stabilization parameter � v, is computed as:

� v = cu
h2

2��
(62)

where h is the element size, cu is a constant and �� is the parameter de�ned according to the
constitutive model (either e¤ective viscosity or shear modulus). �� (T ) is usually temperature
dependent and therefore the stabilization term � v (T ) is a temperature dependent parameter.
Figure 21 compares results of ASGS and OSGS pressure stabilization methods in a par-

allel �ow passing through a tube. The results obtained using OSGS are nodally exact, and
totally una¤ected by the boundary conditions [6].

4.2 Convective stabilization

When using an ALE or Eulerian framework for the description of the problem, a convective
term coming from the material time derivative arises in the equations.
It is well-known that in di¤usion dominated problem, the solution of the balance of

energy equation is stable. However, in convection dominated problem, the stabilizing e¤ect
of the di¤usion term is insu¢ cient and instabilities appear in the solution. The threshold
between stable and unstable conditions is usually expressed in terms of the Peclet number.
The typical Peclet number for FSW processes ranges from 101 to 103. For this range of the
Peclet number, the e¤ect of the convective term cannot be neglected and the solution of the
thermal problem is found to be instable.
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According to the sub-grid scale method, the solution space � of the temperature �eld is
split into two parts: the �nite element space and the space for the sub-grid scale.

� = �h + ~� (63)

Therefore, the temperature �eld can be approximated as

T = Th + ~T (64)

where Th 2 �h is the temperature component of the (coarse) �nite element scale and ~T 2 ~�
is the enhancement of the temperature �eld corresponding to the (�ner) sub-grid scale. Let
us also consider the corresponding variations �Th 2 �h and � ~T 2 ~�, respectively.
Also in this case, we consider two possible choices for the approximation of the temper-

ature sub-grid scales corresponding to the ASGS and the OSGS methods.
In the ASGS method, ~T is approximated as ~T= � �r

�
h, where r

�
h is the residual of the

energy balance equation in the �nite element scale.

r�h = �oc

�
@Th
@t

+ vh �rTh
�
�r� (krTh) ' �oc

�
@Th
@t

+ vh �rTh
�

(65)

where the di¤usive term, r� (krTh) ; vanishes when using linear triangular or tetrahedral
meshes.
In this case, the discrete thermal equation for linear elements can be stabilized by adding

a residual based ASGS stabilization term of the form:Z



� � [�oc (vh �r (�Th))] [�oc (vh �rTh) ] dV (66)

to the Galerkin weak form of the problem. This given:Z



�
�oc

�
@Th
@t

+ vh �rTh
�
�Th

�
dV +

Z



(krTh) �r (�Th) dV

+

Z



� � [�oc (vh �r (�Th))] [�oc (vh �rTh) ] dV = W ext
ther (�Th) 8�Th

(67)

It can be observed that for linear elements, the ASGS method coincides with the SUPG
method.
As an alternative, the space orthogonal to the �nite element space �?h can be adopted

for the approximation of the unknown sub-grid space ~�. This means that the solution space
is approximated as � ' �h � �?h . According to the OSGS method, ~T is de�ned as ~T=
� �P

?
h

�
r�h
�
.

Taking into account that P?h (�) = (�) � Ph (�), the resulting discrete OSGS stabilized
weak form of the thermal problem for linear elements simpli�es to:
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Figure 22: Comparison between the temperature distribution at di¤erent times (10, 40 and
70) and at the steady state.
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��h � ���h

�
dV = 0 8���h

(68)

where ��h is the smooth projection of the convective term.

��h = Ph [�oc (vh �rTh) ] (69)

The mesh dependent stabilization parameter de�ned for the thermal (convective) problem
is

� � =

�
c1
k

h2
+ c2

kvhk
h

��1
(70)

where h is the element size, c1 and c2 are algorithmic constants.
Comparison between the temperature distribution at the center line at di¤erent times

(10, 40 and 70) and at the steady state, obtained using GLS pressure stabilization method
and OSGS and SUPG convection stabilization methods are shown in �gure 22 in a parallel
�ow passing through a tube.
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5 Apropos kinematic framework

The kinematic framework used for the simulation of FSW process is di¤erent if a local or
global analysis is performed. When the process is simulated at global level, the Lagrangian
framework is preferred. In this case the movement of the material points, X, coincides with
the mesh nodes. The material and local time derivative of the temperature concide:

d (X; t)

dt
=
@ (X; t)

@t

If the process is studied at the local level, ALE or Eulerian frameworks are a convenient
choice. In this case, the material derivative depends on the local derivative plus a convective
term of the form:

dT (x; t)

dt
=
@T (x; t)

@t
+
@T (x; t)

@x

dx

dt
=
@T (x; t)

@t
+ v (x; t) � rxT (x; t) (71)

where v (x; t) is the spatial velocity and rxT (x; t) is the spatial gradient. The convective
term accounts for the movement of the material points with respect to a �xed mesh.
In the ALE framework, the reference system neither moves together with the material

(Lagrangian) nor is �xed (Eulerian) but it can move arbitrary. In this case, the material
derivative depends on the local derivative plus a convective term as a function of the relative
velocity c. It is de�ned as

dT (�; t)

dt
�=

@T (�; t)

@t
+
@T (�; t)

@�

d�

dt
=

@T (�; t)

@t
+ c � r�T (�; t) (72)

where the relative velocity is c = v (�; t) � vmesh. v (�; t) and vmesh are the material and
the mesh velocities, respectively .
In this case, the movement of the mesh must be calculated at each time-step. In general,

an ad-hoc methodology is necessary to compute the position of the mesh at each time-step
of the analysis. This is known to be one of the main di¢ culties of the ALE method.
At this point, it is convenient to introduce a feasible strategy and an apropos kinematic

framework for the simulation of the FSW process. In the FSW process, the pin rotates at
constant angular velocity and, at the same time, advances with a constant speed. For the
sake of convenience, in the numerical simulation, the movement of the pin is de�ned by
the pure rotation around its axis while the advancing speed (in the opposite direction) is
imposed to both the work-piece and the back-plate.
Taking into account that, during the welding process, the pin is rotating with a very

high speed (e.g. 50-5000 RPM, depending on the work-piece material), a fully Lagrangian
approach (which follows the material particles of the continuum in their motion) leads to a
computational overhead. The reason is that in a Lagrangian analysis, the mesh is attached
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to the material and thus the mesh deforms with it. The material in the stirring zone su¤ers
very large deformations at high strain-rates. As a consequence, a �ne mesh and a contin-
uous re-meshing are required to avoid an excessive mesh distortion. This usually leads to
computationally intensive analyses, as well as, to a general loss of solution accuracy due to
the interpolation process necessary to move both nodal and Gaussian variables from mesh
to mesh.
Application of a fully Eulerian approach is feasible exclusively for pins with a circular

cross-section. When the pin is not cylindrical, the boundaries of the model are continu-
ously changing according to the actual position/rotation of the pin. As a consequence, the
integration domain must be re-de�ned at each time-step of the simulation.
In modeling FSW, the choice of kinematic frameworks for di¤erent domain zones (regions)

crucially impacts on the computational e¢ ciency and the solution quality. For de�ning the
suitable frameworks several observations must be made:

� The extent of the material deformation varies in di¤erent regions of the analysis do-
main.

� Pins used in practice are not necessarily cylindrical (Figure 4).

Figure 23: The geometry discretization

� Boundary conditions must be applied conveniently according to the movement of the
pin.

� Re-de�nition of the integration domain and re-meshing is preferably to be avoided.

In the proposed methodology, the original geometry is divided into three distinct zones
(Figure 23) which are: the pin, the work-piece and the stir-zone (process zone close to the
pin where most of the material deformation takes place). An apropos kinematic framework
is adopted for each one of these zones.
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Pin Work-Piece Stir-Zone
Framework Lagrangian Eulerian ALE
Mesh velocity vmesh = v vmesh = 0 vmesh =$ � r

Convective velocity c = 0 c = v c = v � vmesh
Time derivative D(�)

Dt =
@(�)
@t

D(�)
Dt =

@(�)
@t + v �r (�)

D(�)
Dt =

@(�)
@t + c �r (�)

Table 2: Convective velocity, material derivative and spatial gradient in Lagrangian (pin),
Eulerian (work-piece) and ALE (stir-zone) formulations.

� The pin is assumed to be rigid and it is de�ned in the Lagrangian framework as at
each time-step of the analysis, the mesh moves according to the rotation of the pin.

� The work-piece, excluding the stir-zone close to the pin, is modeled in the Eulerian
framework, as in this area the domain neither changes its shape nor contains moving
boundaries. The �xed mesh in Eulerian zone enables the application of boundary
conditions in the in�ow and out�ow of the work-piece.

� In the stir-zone, the material is subjected to extremely high strains. Thus, the ALE
kinematic framework is chosen to study the stir-zone. The stir-zone is modeled as a cir-
cular region around the pin. The size of this area strongly depends on the viscosity and
thermal di¤usivity of the material. The key idea consists in using the so-called mesh
sliding techniques, meaning that the mesh rigidly rotates at each time-step according
to the pin movement, decoupling the material motion from the motion of the mesh.
Consequently, the integration domain moves in such a way that the inner boundary of
the stir-zone is connected to the contour surface of the pin. In the ALE approach, the
calculation of the mesh velocity can be a di¢ culty while in the proposed strategy, this
is not an issue. When studying a FSW process, the mesh velocity can be prescribed
according to the pin rotation as:

vmesh =$ � r (73)

where $ is the angular velocity of the pin and r is the position of any grid point with
respect to the rotation axis.

The ALE kinematic framework can recover the Lagrangian and the Eulerian frameworks
as limit cases. Denoting by vmesh the mesh velocity, the convective term can be writ-
ten as �oc [(v � vmesh) �rT ], the convective term vanishes in the Lagrangian framework (
v = vmesh) and simpli�es to �oc v �rT in the Eulerian zone ( vmesh = 0). Table 2 sum-
marizes the computational framework together with the solution hypotheses for the pin, the
work-piece and the stir-zone.
According to the geometry subdivision and kinematic frameworks introduced, two dif-

ferent types of domain interactions exist. The coupling between each part needs a special
attention: on one hand, the connection between the �xed mesh of the work-piece and the
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Figure 24: Node-to-node link approach.

ALE mesh used for the stir-zone must be considered. On the other hand, the frictional
contact between the stir-zone and the pin (see section 2.5) must be de�ned.
The coupling at the interface between the ALE (stir-zone) and the Eulerian (work-piece)

parts requires a special treatment as the mesh is �xed on one side (Eulerian) and it moves
on the other side (ALE). Physically, work-piece and stir-zone are not separated, they belong
to the same metal sheet even if in the numerical model, a relative movement of the two
computational sub-domains exists. Therefore, the objective is to get continuous �elds for
all the state variables v; p and T at the interface between the two zones. The coupling is
performed using a node-to-node link or node-to-face contact approach.
In the �rst and simpler case, each node of the mesh on the interface is duplicated (Figure

24). One node belongs to the ALE region and the other one to the Eulerian region. At every
mesh movement, for a given node of the ALE surface, the corresponding node of the Eulerian
side is found and a link between the two nodes is created. A search algorithm restricted to
the interface nodes is performed in order to identify all the node-to-node connections at the
interface. This leads to an ad-hoc assembling procedure, where the contributions (elemental
residuals and tangent matrices) of the stir-zone nodes are summed to the corresponding con-
tributions of the work-piece nodes. This approach requires a coincident mesh at the interface.
The time-step is chosen such that the two meshes (ALE and Eulerian) are synchronized to
keep the Courant number, Cu = 1 at the sliding interface.
The node-to-node linking approach is simple to achieve for 2D analysis but it becomes

complex when an automatic 3D mesh generator (which usually supports unstructured tetra-
hedral meshes) is used. This approach can be applied in 3D analysis if a structured mesh is
de�ned at the interface surfaces. It should be meshed in such way that at each time-step,
the ALE mesh at the interface slides from one node to another. This requires coincident and
equi-spaced mesh at the contact surfaces.
If the surface meshes are not coincident, a node-to-face approach can be used. For this
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more complex approach, the mesh is not sychronized. Therefore, at the sliding interface,
contact elements are created. At the contact interface, each node of the stir-zone is projected
on the work-piece surface. Once the contact elements are generated, whether the Lagrange
multiplier method, the augmented Lagrange method, or the penalty method can be used to
apply the constraint between the problem variables, T , p, v.
In the penalty method, very large values of both sti¤ness and thermal resistivity rep-

resenting the penalty parameters are assigned to the contact elements. This is performed
to ensure the most rigid/conductive link between the two domains in both the mechanical
and the thermal problems. In this case, the integration domains are connected by forcing
coincident heat �uxes and normal tractions on both sides of the contact surface.
In this approach, at each time-step, the contact elements need to be regenerated according

to a (rather time-consuming) closest-point-projection algorithm.

6 Particle tracing technique

One of the main issues in the study of FSW is heat generation. In the FSW process, welding
is achieved by the heat generated due to friction and the material mixing/stirring process.
The heat generated must be enough to allow for the material to �ow and to obtain a deep
heat a¤ected zone. The visualization of the material �ow is very useful to understand its
behavior during the weld (Figure 25). A method assessing the quality of the created weld by
visualization of the joint pattern is advantageous. It can be used to have a pre-knowledge of
the appropriate process parameters.

Figure 25: Material �ow visualization in horizontal and vertical directions.

In this paper, a numerical particle tracing technology is introduced to study the extent
of material stirring during the FSW process and to study the weld quality.
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Figure 26: Material points distribution.

Figure 27: Tracer position in time

Using the Lagrangian framework, the solution obtained at the mesh points represents
the material movement: points of the mesh are material particles. Therefore, no special
technique for the tracking of the material is necessary. A particle tracing technique needs
to be used when the solution of the problem is performed in ALE or Eulerian kinematic
frameworks.
Due to the ALE framework of the �nite element analysis used, the motion of the mesh is

not necessarily tied to the motion of the material. During the analysis, a material particle
moves through the mesh and at di¤erent time, it is located inside di¤erent elements. To
observe material movement around the pin, it is necessary to construct and analyze material
particle trajectories. This is possible with the use of a particle tracing method to follow
the motion of material points. This method can be naturally applied to the study of the
material �ow in the welding process.
In this method, �rstly, a set of points representing the material points (tracers) are

distributed in the domain and then, an Ordinary Di¤erential Equation (ODE) for the com-
putation of material displacement at a post-process level must be solved (Figure 26). Each
particle position is integrated from:

D (X (t))

Dt
= V (X (t) ; t) (74)

with the initial condition
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Figure 28: Velocity e¤ect on the weld quality.

X (t = 0) = X0

where X (t) is the position of the material points at time t and V (X (t) ; t) is the velocity of
the tracer in the position X (t) and time t. The tracer velocity is obtained interpolating the
nodal velocity of the background mesh. To this end, �rstly, a search algorithm is necessary
in order to identify the element containing the tracer (Figure 27).
To solve Eq. (74), there exist a large amount of integration techniques ranging from

the simple �rst order Backward Euler (BE) scheme to higher order Runge-Kutta schemes.
The RK4 method is the best choice among the other integration techniques because it can
integrate exactly a circular trajectory, which is the most common particle path in FSW.

Figure 29: Material particles after the weld with a threaded pin.
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Figure 28 demonstrates the velocity e¤ect on the �nal weld quality. It demonstrates that
the rotational and advancing velocities can not be selected arbitrarily.
Figure 29 shows the �nal state of the material particles (a colorful set) after FSW process.

7 Residual stresses

In this section, the two-step strategy for computing the residual stresses is based upon
combining global and local level analysis. The strategy is shown in �gure 30.

Figure 30: Coupling strategy at local and global level.

The �rst step consists of computing the heat generated by the FSW tool at the thermo-
mechanically a¤ected zone (TMAZ). This is performed within the local level analysis.

7.1 Step 1: The local level analysis

In the local level analysis, the focus of the simulation is a small domain (typically, its size
is the double of the pin-shoulder) including the TMAZ. Because of this, the size of the local
domain is not necessarily the whole component. It can be much smaller as big as the HAZ
surrounded by arti�cial boundary (Figure 23). The local model provides a highly detailed
description of the heat generation in order to capture accurately the temperature �eld.
At local level, the analysis data are the pin geometry, rotation and advancing speeds,

tool pressure and thermo-physical material properties. The process phenomena studied
are the relationship between the welding parameters, the contact mechanisms in terms of

55



applied normal pressure and friction coe¢ cient, the pin geometry, the material �ow within
the HAZ (or stirring zone), its size and, eventually, the corresponding consequences on the
microstructure evolution.
The local level analysis requires a very �ne mesh in the TMAZ as in this region (basically

a narrow area close to the pin) the strain rate gradient is extremely steep. This strain rate
localization is mainly due to the highly non-linear behavior of the constitutive models that
characterize the material.
The output of the local analysis, which is the heat power ( _P ) to be used at global level,

is calculated once the steady-state is achieved. It is computed taking into account the heat
generated from both friction (qfric) and plastic dissipation ( _D) integrated over the TMAZ
domain:

_P =

Z

TMAZ

_QdV =

Z

TMAZ

_DdV +

Z
@
TMAZ

qfricdS (75)

where _Q is the power density introduced into the system.
Thus, performing the local level analysis provides the input data for the global study.

Figure 31: Schematic of a global model with a moving heat source

7.2 Step 2: The global level analysis

A simulation carried out at the global level studies the entire component to be welded. In
this case, a moving heat power source is applied to a control volume representing the actual
TMAZ at each time-step of the analysis. The e¤ects induced by the welding process on the
structural behavior are the target of the study. These are the distortions, residual stresses
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Figure 32: TMAZ schematic

or weaknesses along the welding line, among others. At global level, the analysis data are
the heat source, gravity load, clamping system and cooling device (clamping, release and
cooling down). In the model, the small di¤erences in the temperature resulting from the
characteristics of the retreating or advancing sides of the welds are not considered (Figure
31).
For the performance of the global level analysis, the de�nition of the input power is

required. Since no �ller material is needed for joining in FSW, the power input does not
form part of the industrial setting and is generally unknown. Apart from experiments and
calibration, the power can be approximated mathematically or by use of inverse analysis. In
this work, it is proposed to compute it from the local level simulation.
The principal e¤ect of the material processing at the stirring zone on the structure is the

thermal expansion. The clamping system prevents the expansion of the material due to the
thermal deformations which transform into plastic strains and, therefore, producing residual
stresses in both longitudinal and transversal directions in the weld and its vicinity.
The only data transferred between the two analysis levels is the heat source, as the de-

formations are negligible in the size of stirring zone comparing with the structure dimension.
Keeping the same input power obtained from local level analysis, the global level FSW

simulation can be performed for desired component dimensions and welding paths, indepen-
dently of the domain and mesh used in the local level analysis.
The numerical simulation at global level needs an ad-hoc procedure in order to apply the

power energy to the elements representing the Thermo-Mechanically A¤ected Zone (TMAZ)
(Figure 32). Therefore, a search algorithm is required to identify those elements at each
time step of the simulation. The total power input ( _P ) delivered within the time-step, �t,
is distributed among the elements of the TMAZ volume during the current time-step. The
upper surface of the volume is a rectangle with dimension of advancing speed (v) � time
step (�t) � pin diameter (dp). The diameter of the pro�le of this volume (d0) decreases
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Figure 33: Mesh resolution at local (left) and global (right) levels.

Figure 34: Temperature �eld at local (left) and global (right) levels.
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Figure 35: Temperature evolution obtained from local and global level analyses compared
with experiment

Figure 36: Comparison between the stresses obtained from global level analysis and experi-
ment at a line orthogonal to the weld line.
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parabolically with depth z in the work-piece thickness (d):

d0 (z) = dp

q
z+d
z

�d � z � 0 (76)

The mesh resolution of the TMAZ in the global analysis needs to be su¢ cient for the
de�nition of the volume where the power input is inserted. According to the search algorithm,
the volumes (VTMAZ) of all the elements representing the TMAZ are added up as

VTMAZ =

ne2TMAZX
e=1

V (e) (77)

so that the heat source distribution is de�ned as (Figure 31)

_Q =
_P

VTMAZ

(78)

This power re-distribution preserves the total amount of energy input independently of
the mesh used ([36]).

7.3 Experimental validation

In this section, �rstly, the comparison between the temperature �elds obtained at local and
global levels are shown to validate the local-global coupling strategy. Then, the residual
stresses computed using the strategy are illustrated.
The meshes at local and global levels are shown in �gure 33. The total dissipated power

is obtained at the steady state and used as the heat input energy for the global level analysis.
It is applied to the control volume representing the TMAZ at each time-step of the analysis.
The temperature �elds at local and global levels at the end of the process is shown in �gure
34. The comparison between the temperature �elds obtained from both local and global level
analyses for di¤erent lines parallel to the weld line at the bottom surface or thermocouples
placed at identical locations with those obtained from experiments are presented in �gure
35.
The global level analysis provides the residual stress �eld. The comparison between the

variations of the residual stress (normal stresses in x direction) along the transverse direction
(along the line perpendicular to the weld line) and experimental results are plotted in �gure
36 at the same location. Longitudinal stresses after �xture release and cooling are depicted
in this �gure.

8 Conclusion

This paper presents the challenges and achievements in the numerical simulation of coupled
thermo-mechanical FSW problems. The existing methodologies are designed to simulate
FSW process either at global or local level.
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In the global level approach, the objective is to study the e¤ect of a moving heat source,
in a Lagrangian framework, on the behavior of the whole structure to be welded (the input
energy is known).
In the local level approach, the objective is to analyze the heat a¤ected zone and to study

the heat source locally. This can be used as energy input for the global analysis (the heat
generation comes from plastic dissipation and frictional e¤ects).
Generally, more attention has been paid to local level simulation as the complex coupled

thermo-mechanical phenomenon are mostly concentrated in the HAZ. In the local level
approach, the e¤ect of high rotational velocity is studied. Contact, strain-rate localization,
strongly non-linear and isochoric material behaviors and convective domination make the
local analysis more complicated and important.
In this paper, several aspects of FSW modeling are highlighted:

� Coupled thermo-mechnical model: A robust and accurate thermo-mechanical
solver for the simulation of FSW processes has been developed. The transient thermal
model proposed in both Lagrangian and Eulerian kinematic frameworks allows for lo-
cal and global level analysis. Suitable boundary conditions based on Newton�s law are
introduced to deal with heat conduction at contact interface and heat convection at
the external boundaries.

� Apropos kinematic framework: To study FSW process, a suitable and robust
kinematic setting has been proposed. The apropos kinematic setting, combines ALE,
Eulerian and Lagrangian frameworks for di¤erent parts of the domain avoiding remesh-
ing and variable remapping procedures. Moreover, it permits to account for the arbi-
trary and complex pin shapes typically found in FSW process.

� Mixed stabilized formulation for the mechanical problem: In the hypothesis
of isochoric material behavior as for liquid-like phase or more generally when the de-
formations are mainly deviatoric (J2 plasticity model used for metals), the stabilized
mixed v=p formulation has been introduced. Due to the good performance, this tech-
nology must be used especially for industrial simulations with triangular/tetrahedral
meshes for the domain discretization . Pressure locking is overcome using VMS sta-
bilization methods. Two stabilization methods are compared: ASGS and OSGS. The
OSGS stabilization method shows higher accuracy even if the necessary computational
e¤ort is superior.

� Mixed stabilized formulation for convective dominated thermal problem:
To deal with thermal analysis where the convective term dominates (ALE/Eulerian
framework), the convection instabilities has been overcome using VMS stabilization
methods. This leads to a very accurate treatment of this numerical problem. The sta-
bilization method based on the sub-grid scales approach circumvents the Ladyµzenskaja-
Babu�ka-Brezzi (LBB) condition, allowing an accurate and robust formulation for lin-
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ear elements. Classical GLS and SUPG stabilization methods can be recovered as a
particular case of the sub-grid scale stabilization framework.

� Constitutive modeling: The thermo-elasto-visco-plastic constitutive model used for
the simulation of FSW process at global level has been developed. This model covers
the full temperature range leading to an accurate evolution of temperature, distortions
and the residual stresses.

Thermo-rigid-visco-plastic constitutive models such as Norton-Ho¤, Carreau or Sheppard-
Wright have been used for the simulations of FSW processes at local level. These kind
of models neglect both the elastic and the thermal strains. They are intended to solve
mechanical problem dominated by very high deviatoric strains as well as high strain
rates. It is important to observe that also in this case the thermal coupling is essential
to capture the real material behavior. This leads to highly non-linear models strongly
coupled with the temperature �eld, which can be treated as non-Newtonian �ows, with
a temperature dependent viscosity.

� Strain localization problem: The FSWprocess produces a strong strain localization
in the stirring zone close to the pin. A sliding zone concentrates in a thin layer under
a pure shear stress �eld.

The solution of such problem is not feasible using a standard velocity-based element.
However, the use of mixed v=p element is able to capture the strain localization satis-
factorily. Also in this case the proposed VMS-based stabilization technique is suitable
to treat such complex problem.

� Material �ow visualization: The paper also deals with the problem of material
tracking in the stirring zone. The simulation is carried out using a rigid visco-plastic
constitutive model and this reduces into a non-Newtonian �uid-like analysis where it is
important to visualize the material �ow. The model provides this insight by tracking
the particles position during the full motion of the FSW process in the stirring zone.

The trend observed is consistent with the results of experiments, showing the motion
of the markers inserted into the weld. The model correctly predicts the material �ow
around the retreating side of the pin. Results of the simulation correctly demonstrate
that the material is moved away from the direction of travel and material sticking
could occur at the tool interface. The resulting material �ow is not symmetric with
respect to the joint line and the �ow patterns on the advancing and retreating sides
are di¤erent.

The model is able to include the e¤ect of complex tool geometries as threaded pins.
Some distinctive 3D features of the �ow can be appreciated. These included: the
material �ow within the thickness direction and a centrifugal material �ow pattern
around the pin.
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Among the integration methods (BES, BFECC and RK4) used for the problem of
interest, RK4 is found to be the most accurate when a larger time-step is used.

� Residual stress computation: The paper proposes a local-global two level strategy
for the prediction of residual stresses in FSW processes. At the �rst step, the heat
power is calculated at local level from both viscous dissipation and friction. Then the
heat power is transferred into the global level simulation in order to obtain the residual
stresses.
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