
 

 
Investigation of Driving Cycles as Tools to 

Assess Travel Demand Management in 

Edinburgh and Abu Dhabi 

 
 

 

By 
Ahmed Al Zaidi 

B.Sc. (Transport Planning and Policy) 
 

 

A thesis submitted in partial fulfilment of the 

requirements for the degree of PhD 
 

 

 

School of Engineering and the Built Environment, 

Edinburgh, Scotland, UK 

 

February 2013 
 

 

 



 ii

Abstract 
 

 

Traffic congestion today is a major problem in almost all of the metropolitan areas of 

the world. An increasing level of congestion results in negative impacts on the urban 

environment. These include environmental pollution, energy problems and traffic 

accidents. The analysis of these problems and the predictions of the impacts of any 

transport policies that could be devised to deal with them are very critical to their 

success. Traffic problems are almost the same in most modern cities either in 

developed countries or less economically developed countries.  

 

The driving cycle for a vehicle is the representation of a speed–time sequenced 

profile, which is developed for a specific area or city. It is an important requirement in 

the evaluation of the driver’s behaviour and the performance of vehicles for a number 

of applications, mainly in the area of environmental studies. For example, fuel 

consumption and emissions’ predictions need information input on the characteristics 

of driving patterns of traffic. The applications of driving cycle analysis can be 

extended however, to many more other areas.  The motivation for this research is to 

investigate the detailed impacts of travel demand management (TDM) measures, that 

are already in application. This is to improve the network performance, using driving 

cycle analysis. It is important to explicitly assess these measures using a micro-level 

detailed approach in order to comprehend overall results in terms of emissions and 

network performance. These understandings will benefit government agencies and 

policy makers in their planning and appraisals. It will also benefit public transport 

providers to improve their service in attracting and retaining their customers.   

 

The developments of the real world driving cycles in Edinburgh and Abu Dhabi have 

been presented in this research. The analysis of real world data, which has been 

obtained from monitoring traffic conditions in both cities using the GPS tracking of 

traffic, is presented. This data was collected from trips which have been carried out on 

a number of traffic corridors in both cities. The assessment of various parameters of 

traffic (i.e. speed, time percentage spent on acceleration, deceleration, idling, cruising 

and cycle duration) and their statistical validity, produced a real world driving cycle 

for the buses as well as the private cars. Two TDM measures have been considered; 
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bus lanes and traffic calming measures. At each corridor, a handheld GPS device was 

used to record speed, acceleration, deceleration and distances driven. This data 

enabled the analysis of driving cycles for the buses and for the private cars. The 

driving cycle analysis and investigations have further been investigated using 

regression analysis techniques. The results suggest that the approach shows potential 

but further research is needed with more data available. 

 

The results suggest that the driving cycle analysis approach would be very useful to 

have a better understanding of driving behaviour and also the detailed impacts of the 

transport policies on traffic. In terms of bus lanes and traffic calming measures, the 

results show some positive impacts of these policies, while there are evidences of 

some negative impacts as well. These findings would be very valuable for the policy 

decision makers. It is recommended from this research that the driving cycle analysis 

could be utilised effectively in the assessment of TDM measures. Further 

investigations and analysis of driving cycle is urgently recommended in a number of 

research directions.  Combined GIS and GPS data could also enhance the 

development in this research. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 Introduction 

 

Traffic congestion nowadays is a major problem in almost all of the metropolitan areas of the 

world. Increasing levels of congestion result in worst predicaments like urban environmental 

pollution, energy problems and traffic accidents. The situation is the same in most modern 

cities either in developed countries or Less Economically Developed Countries (LEDC). 

Urban centres of many LEDCs are experiencing severe congestion and pollution problems. It 

has been observed that road vehicles are a major source of air pollution in urban areas, 

responsible for over half the nitrogen dioxide emissions and over 75% of carbon monoxide in 

the UK (Defra, 2008). In the past, a consensus existed among the transport policymakers that 

their goal was to accommodate the growing traffic by constructing/improving facilities that 

would have adequate capacity to handle future demand (Wachs, 1991). Nevertheless 

increasing congestion coupled with growing limits of transportation budgets and environment 

halted this strategy. In the late eighties, a growing movement towards Transportation Demand 

Management (TDM) rather than facility construction gained momentum. TDM represents 

measures that aim at reducing car dependency and the techniques or supporting strategies that 

encourage the use of other alternative modes of transport such as public transport, cycling 

and walking.  In other words, TDM measures are aimed at influencing mode choice, trip 

length, the frequency of trips and the route taken. They can be applied to meeting specific 

goals, namely to reduce congestion, reduced parking stalls, decrease property owner/manager 

maintenance costs on parking areas, create more commuting choices for the public, delay the 

need for new road construction, and to improve air quality or to reduce the reliance on 

specific source of energy. However, environmental impacts of such measures have not 

always been considered as the most important consequence; instead the main objective has 

mainly been traffic performance, congestion and travel time savings. Literature is lacking for 

comprehensive studies in which environmental impacts of such TDM measures have been 

carried out to see their overall effect on the metropolis as a whole. Moreover, when 

conventionally used, these measures are usually assessed using various modelling and 

analysis techniques (for example travel demand forecasting, simulation modelling etc.), a 
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major limitation of much of these measures is that assessments have been calculated using the 

conventional criteria such average speed patterns and delays rather than for example real-

world driving conditions. Therefore, they do not embrace actual driving behaviour in any 

particular urban area. Hence in this study, the driving cycle analysis has been utilised to 

obtain more real data to assess impacts of TDM measures on congestion, delays and travel 

time in Edinburgh and Abu Dhabi cities. Measurement of instantaneous speed, acceleration, 

deceleration, and distance travelled and route tracking data were undertaken to develop the 

driving cycle for each of the modes. 

 

A driving cycle for a vehicle is a representation of a speed–time sequenced profile developed 

for a specific area or city. It represents the speed of a vehicle versus time. In this way, driving 

cycles are produced for cities and regions in order to assess the performance of vehicles in 

various ways, for example fuel consumption and polluting emissions. In most cases they are 

widely used to estimate transport air pollutant emissions and in the building of databases for 

emission inventories. The driving cycles for private cars and light goods vehicle (LGV) are 

important to enhance traffic management systems, determining fuel consumption patterns and 

reduce transport impacts on health (Tzirakis et al., 2006; Saleh 2007; Hung et al., 2007). 

There are other potential applications for the driving cycle such as the use of assessing 

impacts of travel demand management (TDM) in urban areas. In this study the tracking of 

instantaneous speed of vehicles is used to assess the performance of traffic when 

implementing TDM measures. 

 

It is important to understand the factors which affect driving cycles in urban and rural areas. 

Speed is a critical element in the transportation systems. Planning, design, construction and 

maintenance of roads, traffic engineering and management affect speed. The speed has a 

critical impact on the capacity, safety, efficiency and the level of service of any road network. 

Driving cycle’s characteristics in urban or rural areas change even for small variations in 

speed. Traffic and roadside characteristics, vehicular volume and number of intersections in a 

link, commercial land uses and pedestrian facilities and carriageway width have important 

effects on speed. Speed of vehicles depends on a number of factors. These factors can be 

defined as four categories: firstly there are traffic characteristics such as the traffic density, 

flow, vehicle composition and the type of traffic management. Traffic management measures 

include speed limits, traffic lights, speed breaker, stop sign (Galin, 1981; Aerde and Yagar, 

1983; Polus et al., 1984). The second category is driver characteristics. Driver characteristics 
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are classified as physical, mental, psychological and environmental (Holmen and Niemeier 

1997; Ericsson, 2000). The third category is roadside characteristics such as land uses 

abutting the road network, incidence of on street parking, bus stops and pedestrian facilities 

(Galin 1981; Aerde and Yagar, 1983; Tignor  and Warren, 1990; Poe et al., 1996; Koshy and 

Thamiz Aharasan, 2005). The fourth category is vehicle characteristics such as model, age of 

the vehicle, size of the vehicle, power and quality of maintenance. The weather conditions 

(temperature, visibility, humidity and wind speed) may also have an impact on speed (Liang 

et al., 1998; Kilpelaninen and Summala, 2004). 

 

Neither previous research nor investigations of driving cycle have been taken place in the city 

of Abu Dhabi in United Arab Emirates (UAE). As any fast growing city, Abu Dhabi needs to 

have in place a number of traffic and transport policies in order to regulate and control the 

growing traffic congestion. Moreover, with the increasing attention and all activities in Abu 

Dhabi city, there is a greater need for management of traffic and the environment. Driving 

cycle is an appropriate tool to be used in these cases. This will enable the accurate assessment 

of the traffic demand in the city, and keeping up with the different international standards and 

campaigns on the reduction of vehicle emissions for a better environment.  

  

 

1.2 Statement of the problem 

 

The sustainability of transportation system in respect to the comprehensive approach can be 

achieved by rendering different strategies to manage and optimally distribute the travel 

volumes in the urban network. The developed traffic management strategies were 

implemented at macro level, e.g. in land use planning processes, and also at micro level, e.g. 

at signalized intersections, but these strategies resolved the problem in an environment where 

the travel demand was within the capacity/supply level of the provided transportation 

infrastructure. Once the demand became more than supply, the system again faced congestion 

and sustainability problems.  Moreover, the environmental impacts of such technologies were 

rather ignored or were not considered at all and the main focus remained on the network 

performance.  

 

The above addressed problems prompted the emphasis on assessment of applied TDM in 

order to improve the efficiency and capacity of the system while not compromising the 
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environmental impacts of the applied scheme. Environmental degradation and emissions are 

the main hurdles in the achievement of sustainability through any TDM technique. However, 

with proper environmental assessment of the any management scheme under consideration, 

sustainability can be achieved by keeping emissions low and distributing demand on various 

alternatives. This means that the analysis of any TDM approach is necessary. Since alternate 

type of management schemes produce different results, it is important to study the effects 

before it is actually installed or deployed. Managing the demand for traffic in any urban area 

is vital. While various transport policies can be investigated and considered as means to 

manage the demand, in most cases the predicted impacts of such policies are usually 

considered based on their impacts on delays, travel time and congestion while their 

environmental impacts are investigated separately.  This is the case in most modern cities, 

either in developed or developing countries. On the other hand, technological advancement in 

data collection methods and equipment made it possible to collect traffic data second by 

second on any traffic corridor, for any type of vehicle and for all types of drivers. Therefore 

driving cycle characteristics can be investigated and modelled much more easily than it was 

in the past. 

  

Previous studies have been carried out to investigate the driving cycle in Edinburgh (EDC) 

for cars (Booth et al., 2002). However, its linkage with the assessment of any TDM measure 

has not been carried out comprehensively. Very few studies actually focused on the 

assessment of TDM measures together with its environmental effects simultaneously in one 

behavioural network. But these studies only focused on the average values of attributes of the 

alternative modes. This study aimed to develop an air quality forecast tool for predicting both 

the future level of vehicular emission within Edinburgh and measure the effect of different 

levels of traffic control scenarios. Investigations of driving cycles as a means to assess traffic 

and environmental impacts of TDM measures have started only recently in the UK and other 

developed countries, while hasn’t happened yet in many developing countries.  

 

The city of Abu Dhabi (UAE) is very typical of any expanding metropolis in the region with 

huge traffic problems of congestion, delays and pollution. Most of these cities are searching 

for the appropriate policies and strategies in order to help managing such problems. It is very 

appropriate therefore to carryout investigations employing driving cycle analysis. 
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While significant improvements have been achieved in reducing fuel consumption and 

pollution in Europe following a number of programmes and initiatives (for example the "Act 

on CO2" and the EU emissions tests from 1997 to 2007), the situation is very different in 

most developing countries.  It is therefore timely to consider such similar studies to be 

undertaken to investigate these problems in developing countries, in this case the city of Abu 

Dhabi. 

 

The motivation behind this research is to investigate effects of different TDM measures that 

are already applied to improve the network performance. It is important to explicitly assess 

these measures using a micro-level detailed approach in order to comprehend overall results 

in terms of emissions and network performance. These understandings will benefit 

government agencies and policy makers in their planning and appraisals. It will also benefit 

public transport providers to improve their service in attracting and retaining their customers.   

 

 

1.3 Justification of research 

 

Travel demand management measures have been used to manage the demand for travel for 

more than three decades or so, mainly in the Western World. The main objectives have been 

essentially used to reduce negative impacts of traffic and congestion. Improving 

environmental impacts, accidents reduction as well as impacts of other externalities have 

always been mentioned as by products of achieving congestion reduction. On the other hand, 

driving cycle techniques and analysis have been used mainly to predict and model traffic 

emissions for cars as well as other modes of travel.  Driving cycle analysis can be used as a 

very useful tool to assess impacts of transport policies on environmental and other external 

issues.  

 

The main aim of this research therefore, is to investigate the potential application of the 

driving cycle techniques to assess transport policies and the detailed impacts on the built 

environment in Edinburgh and in Abu Dhabi.  In order to achieve this aim a number of 

objectives have been defined as discussed below. 

 

Bus lanes have been claimed to improve traffic performance, improve bus reliability and 

reduce delays. However, these claims have been mainly based on findings from studies which 
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investigated the overall bus journey times while not taking into consideration the detailed 

performance of vehicles along the traffic corridors.  

 

The first objective of this research therefore, is to investigate and analyse the more detailed 

impacts of bus lanes on traffic using the analysis of the driving cycles of buses on a 

number of corridors.  

 

In order to achieve that, the driving cycle of a number of traffic corridors with bus lanes, 

mixed traffic and bus only lanes in Edinburgh have been developed and analysed. In order to 

assess the detailed impacts of bus lanes on traffic, the driving cycle of the selected three 

traffic corridors in Edinburgh have been identified and data has been collected using GPS 

equipment to carry out the investigations. The results obtained are presented in chapter five. 

Secondly, the developed driving cycles are discussed in chapter six. 

In order to assess the performance of traffic over traffic calming corridors, which are claimed 

to be improving the impacts of traffic, the performance of traffic on a number of traffic 

calming corridors have been monitored, investigated and analysed. The descriptions of the 

traffic calming corridors are presented in chapter three. The developments of driving cycles 

of these corridors are discussed in chapter six and the comparisons and discussions of the 

results are presented in chapter seven. 

 

The second objective of this research is to investigate and analyse the driving cycles on a 

number of traffic calming corridors.  

 

Driving cycle techniques are mainly used in the western world. This is because the main 

applications of driving cycle have been in the area of emission modelling. Since 

environmental impacts and emission analysis are not the most important issues on the 

national agendas in developing countries, these techniques therefore have been less 

recognised in these countries. These results are presented in chapter five. 

 

The third objective of this research is to investigate the driving cycle on traffic corridors in 

a developing country.  
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In order to achieve this, data was collected from two traffic corridors in the city of Abu Dhabi 

(UAE) and analysed. Driving cycle for cars and for buses have been developed and analysed. 

These results are presented in chapter five. 

 

The fourth objective of this research is to analyse and compare the obtained driving cycle 

results and draw conclusions on the possible impacts of various travel demand 

management policies. 

 

Furthermore, the driving cycle analysis and investigations have always been based on the 

analysis of speed-time diagrams and investigations of average values of speeds, acceleration, 

and deceleration, cruising and idling. There are no further statistical or analytical techniques 

such as regression analysis for example to attempt to analyse and investigate mathematical 

models for the relationships between those parameters. 

 

The final objective of this research therefore, is to attempt using regression analysis 

techniques to establish mathematical relationships between speeds and the other 

performance parameters discussed above.  

 

    

1.4 Objectives of the thesis 

 

The main aim of this research therefore is to investigate impacts of travel demand 

management measures using driving cycle characteristics. Furthermore, this study will also 

develop real world driving cycles for the cities of Edinburgh and Abu Dhabi and to 

investigate their impacts on emissions. The specific objectives of this research are: 

 

1. To investigate and analyse in more details the impacts of bus lanes on traffic using 

the analysis of the driving cycles of buses on a number of corridors.  

2. To investigate and analyse the driving cycles on a number of traffic calming 

corridors.  

3. To investigate the driving cycle on traffic corridors in a developing country.  
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4. The fourth objective of this research is to analyse and compare the obtained driving 

cycle results and draw conclusions on the possible impacts of various travel demand 

management policies. 

5. The final objective of this research therefore, is to attempt using regression analysis 

techniques to establish mathematical relationships between speeds and the other 

performance parameters discussed above.  

 

 

1.5 Conceptual framework for the study 

 

To achieve the above aims and objectives, the framework presented in Figure 1.1 is adopted 

which consists of the preliminary investigation, calibration and validation of driving cycles, 

assessment of different TDM measures, analysis of results and comparisons and evaluations. 

The overall approach agreed for the research is illustrated under the following tasks. 

 

1. Preliminary investigations and literature review. 

2. Selection of the study corridors and TDM measures.  

3. Calibration and validation of a car and bus driving cycle for Edinburgh and Abu Dhabi.  

4. Analysis of results, comparisons and evaluations 

Each of these tasks is briefly discussed in the following sections: 
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Preliminary Investigations include a thorough literature review of the subject area in 

particular the review of different TDM techniques and their impacts in different cities. The 

impacts in terms of emissions and overall network performance are explored. In the light of 

this literature review, a methodology is formulated which includes the selection of the study 

area and the TDM measures present there.  In each study area important corridors with 

similar characteristics are identified and selected for pilot investigations. As mentioned 

earlier, in this research, Edinburgh and Abu Dhabi have been selected as study areas to carry 

out the investigation. To derive the driving cycle, the methodology includes the selection of 

the corridors which already have different TDM measures on them. More specifically, those 

D
a

ta
 

C
o

ll
ec

ti
o

n
 

S
u

rv
ey

 D
es

ig
n

 

  

A
p

p
li

ca
ti

o
n

 
P

re
li

m
in

a
ry

 

In
v

es
ti

g
a

ti
o

n
 

Formulation of Methodology 

 

Identification of TDM Measures 

 

Edinburgh Driving Cycles 

 

Literature Review 

Analysis of Data 

Comparison and Evaluations 

Interpretation and Recommendations 

 

Abu Dhabi Driving Cycles 

Selection of traffic corridors for the study 

Figure 1.1: Conceptual framework of this research 
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corridors having bus lanes on them were selected in addition to ones which have speed 

calming devices. Next, proper vehicles were selected and volunteers to collect data were 

recruited. Data was collected for both peak and off-peak periods for the selected corridors. 

Figure 1.2 shows the selected process for carrying out driving cycles. 

Proper vehicles were selected and volunteer to collect data were recruited. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

  

 

 
Figure 1.2:  Framework of data Collection 

 

 

Finally, the evaluation criteria for the assessment of different TDM measures were setup and 

the results were compared with different driving cycles.   

 

 

1.6 Scope and limitations of the research 

 

 The driving cycles were simplified because of the time and budgetary constraints. 

Classifications of driving cycle and associated factors (e.g. urban/rural, time of day, 

speed, engine size, and driver characteristics) could have been extended to include 

more factors, types of roads, times of day, types of vehicles, etc. For this research, 

only morning peak and afternoon off peak periods were selected and one type of 

vehicle was used for the runs.  

 The number of corridors was limited to three bus corridors in Edinburgh and two in 

Abu Dhabi due to limitations of time, budget and personnel. Times of the day were 

Route Selection 

Instrumentation of probes 

Data collection 

Analysis and synthesis of data 

Absolute 

Error 

If error least 
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also limited to AM peak and PM for the same above reasons. Only one private car 

was used in all runs to avoid discrepancy in the data and to try to minimise errors. 

 Only weekdays were selected for the data collection due to lack of manpower and 

budget.   

 

 

1.7 Structure of thesis  

 

Following this introductory chapter, the thesis begins by a review of the past research in the 

area of Travel Demand Management and driving cycles. The literature review reported in 

chapter two is mostly focused on building an understanding of effects of different types of 

TDM and their impacts on the network. The literature review on the TDM and its impacts 

suggest that they are important determinants which influence the network speed and 

performance.  The chapter also details various driving cycles and their uses. 

 

Case studies are presented in chapter three which begins by discussing the reasons for 

choosing these case studies, then the chapter proceeds with an overview of these case studies. 

The chapter then addresses the characteristics of the case studies in Edinburgh and Abu 

Dhabi. 

 

Chapter four discusses the data collection in this work. The selected corridors, piloting the 

data collection is firstly presented then, the equipment used, the corridors and the assessment 

parameters are discussed. 

 

Chapter five presents results and the preliminary analysis obtained from monitoring and 

measuring of performance of cars and buses on the selected corridors in the study. 

 

Chapter six discuss the developing of the driving cycle. Chapter seven includes in-depth and 

detailed analysis of the preliminary results produced from the data on driving cycles. 

 

Chapter eight has further analysis of the results which are presented and investigated using 

techniques of regression analysis. Finally, chapter nine concludes for the research of this 

study. A summary of the findings of each chapter is discussed, and finally suggestions for 

future work and a summary of the thesis as a whole are presented.   
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1.8 Novelty of the research 

 

The novel aspects of this work include: 

 Development of driving cycles for cars and buses on the same corridor for the purpose 

of investigating the detailed impacts of travel demand management policies. 

 The analysis and investigation of driving cycles for traffic corridors in order to assess 

transport policies. 

 The development of driving cycle for the Abu Dhabi city. 

 Development of driving cycle for traffic calming corridors. 

 The use of regression analysis and driving cycle analysis to model the performance of 

buses and cars on traffic corridors. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

 

The literature review is mostly focused on building an understanding of driving cycles as a 

method to study effects of different traffic demand management measures. It has been 

observed that the amount of literature available in this area has grown dramatically over the 

last two decades. 

 

Driving cycles in the literature have mostly been used to assess emissions from various 

vehicles. Driving cycle analysis however has a great potential to be used to assess other 

transport policies. In this research, bus corridors and traffic calming measures are assessed 

using the principles of driving cycles.  

 

 

2.1 Driving cycles 

 

This section of the literature review will consider what constitutes a driving cycle; provide 

details of the most commonly used standardised driving cycles and outline city specific 

driving cycles. 

 

Emissions due to transport are a major source of air pollution and a major contributor to 

global warming. Tzirakis et al. (2006) point out that emissions from transport vehicle are the 

main source of atmospheric pollution in modern cities. This situation is exacerbated by the 

increasing number of passenger cars, which has resulted in increased emissions and fuel 

consumption. According to Barlow et al. (2009) road vehicles emit a range of air pollutants 

due to the combustion of fossil fuels, which result in pollutants such as carbon monoxide, 

volatile organic compounds, oxides of nitrogen and particulate matter. These pollutants are 

regulated by European Union directives and these directives require all new light duty vehicle 

models to comply with particular emission standards. New light vehicle models must pass an 

emissions test before they can be approved for use in the European Union. It is therefore 

essential to have reliable knowledge “about the sources and causes of the pollution, the 

technological and behavioural parameters of influence and the potentials of different 



 14 

strategies to reduce the pollution” (Joumard 2007). Barlow et al. (2009) point out that the 

best way to ensure that an emission test is reproducible is to perform standardised tests in 

laboratory conditions, using emission models. Emission models are used to quantify the past, 

present and future effects of air pollutants due to transport.  

 

 

2.1.1 Definition of a driving cycle 

 

The literature review shows that there is consensus among experts regarding the definition of 

a diving cycle. A driving cycle for a vehicle is defined as “a representation of a speed–time 

sequenced profile developed for a specific area or city” (Saleh et al. 2010). Montazeri-Gh & 

Naghizadeh (2003) define a drive cycle as “a speed-time sequence developed for a certain 

type of vehicle in a particular environment to represent the driving pattern with the purpose 

of measuring and regulating exhaust gas emissions and monitoring fuel consumption”. 

Barlow et al. (2009) states that a “driving cycle is a fixed schedule of vehicle operation which 

allows an emission test to be conducted under reproducible conditions”. Drive cycles are 

generally defined in terms of vehicle speed and gear function expressed a function of time 

(Barlow et al. 2009). 

 

 

2.1.2 The Benefits of driving cycle 

 

A driving cycle is a series of data points representing the speed of a vehicle versus time. 

These can be produced by different cities to represent their local traffic and driving 

conditions.  They can also be used to assess the performance of vehicles, control traffic 

emissions and as a tool for evaluating various TDM (Travel Demand Management)) measures 

and their effectiveness. Driving cycles are produced by different countries and organizations 

to assess the performance of vehicles in various ways, as for example fuel consumption and 

polluting emissions.. It is widely used to estimate transport air pollutant emissions and in the 

building of databases for emission inventories. For example, driving cycles for private cars 

and light goods vehicle (LGV) are used to enhance traffic management systems, determine 

fuel consumption patterns and reduce transport impacts on health (Tzirakis et al., 2006; Saleh 

2007; Hung et al., 2007). In literature a number of investigations of driving cycles were 

carried out to understand the local and national driving patterns and estimation of fuel 
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consumption and emissions. These investigations started as early as 1978 when Kulher and 

Karsten (1978) collected data on various routes in different European cities with the use of on 

board measurement tools and developed the “Improved European driving cycle”. They 

adopted different assessment parameters for the development of improved driving cycle for 

Europe. During the same time, Kent et al. (1978) collected data using an instrumented vehicle 

which was driven over selected routes during the morning peak traffic period. The chase-car 

technique was used, whereby a vehicle is selected at random in the traffic and the survey 

vehicle simply follows this vehicle keeping approximately a constant distance during cruise 

conditions and allowing a time lag during acceleration and deceleration conditions. With the 

introduction of strict emission standards by the EU in 1990, the emission performances of the 

cars were tested using the ECE (Economic Commission for Europe) driving cycle. The new 

test procedures allowed reproducing one or several short and reproducible tests, in which 

driving cycles were generated by random simulation of speed and time curves, as a function 

of the distributions (probability densities) of the various modes and transitions including gear 

changes. The significant parameters were selected and were related to fuel consumptions in 

the UK. In 1995, the urban driving cycles for actual car use and operating conditions to 

measure emission was developed. The data was measured by a fleet of 58 instrumented 

vehicles, selected in six European cities: London and Derby in the UK, Cologne and Krefeld 

in Germany and Marseilles and Grenoble in France. The main parameters recorded at one 

second intervals were the date and times, vehicle speed, engine speed, throttle positions, fuel 

consumptions and the engine and ambient temperatures. Factor analysis performed identified 

the speed and acceleration level being the main influence on sequence variability. It classified 

the four classes of traffic conditions as congested urban, free flow urban, extra urban and 

motorway among the total trip and 14 urban cycles were produced with short extra urban 

cycles (Andre et al. 1995). 

 

Andre, M. (1996) developed a set of driving cycles to assess private car fuel efficiency. 

Authors proposed a procedure enabling them to reproduce, in one or several short and 

reproducible tests, the significant parameters related to fuel consumptions. Two 

representative vehicle of the national fleet were instrumented and driven on 58 selected road 

routes. The vehicle speed, the engine rotation speed, the drive shaft torque, fuel consumption, 

brake and clutch applications, neutral conditions and information data (limit speed, etc) were 

measured. The data were corrected and prepared into homogenous conditions area and were 

then divided into acceleration, cruise and deceleration phases. These operation modes were 
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analysed. The cycles were generated by random simulation of speed vs time curve, as a 

function of the distributions (probability densities) of the various modes and transitions. 

Cycle validation was performed by comparing speed and acceleration distributions with those 

of initial data and by comparing estimated energy amounts under driving and braking 

(deceleration) phases. Gear changes were considered a predominating factor of energy 

consumptions (and emission) and proposed simple observation based rules: average speed for 

up shifting, median speeds for down shifting. 

 

Ergeneman et al., (1997) on the other hand, developed a methodology to generate a driving 

cycle from measured data for different vehicle groups, such as private cars, taxis, buses, and 

minibus, for various regions in the city possessing similar characteristics and developed a 

mathematical approach representing similar driving conditions to predict exhaust emissions 

and fuel consumptions. For emission inventory in the UK, an emission factor was developed 

by the Highways Agency in the UK, which has been detailed in the Design Manual for Roads 

and Bridges (DMRB) to provide guidance for the calculation of emissions generated by road 

traffic (Cloke, J., et. al 1999). In Volume 11 of the Manual, reference was provided on 

environmental assessment of trunk road schemes and air quality evaluation. In fact, the 

DMRB is not exactly an emissions model, but rather a step-by-step methodology for the 

calculation of road emissions. The average speed emission factors included are related to hot 

engines, and were derived from measurements made by the TRL (Transport Research 

Laboratory) and factors determined by the CORINAIR working group. Andre et al., (2004) 

derived urban driving cycles based on the actual car use and operating characteristics to 

measure emission based on kinematics sequence methodology for European traffic 

conditions. The following sections discusses in detail the driving cycle for cars in different 

cities. 
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2.1.3 The use of drive cycle in emissions measurement 

 

Driving cycle data is used to accurately estimate transport pollutant emissions and for 

building emission inventory databases. There have been studies throughout the world to 

determine the driving cycles for private cars, light goods vehicles and motorcycles, as part of 

traffic management systems. This data is also used for determining fuel consumption patterns 

and reducing the adverse impacts of transport on human health (Saleh et al. 2010). It can also 

be used for engine testing or durability of drive train (Barlow et al. 2009).According to 

Watson (1978) emission data obtained from drive cycle analysis provides data for analysts in 

predicting air pollution and planning mitigation measures. The data is also useful for car 

manufacturers in design and marketing and ensuring that their vehicles comply with national 

and international regulations.  

 

The literature review indicates that emissions are dependent on a number of variables. Faiz et 

al. (1996) suggests that vehicle emissions are variable and are affected by driving patterns, 

behaviour, traffic speed, altitude, temperature, type and age of vehicle. In addition to all these 

variables, differences in operating conditions also affect the emissions for a given vehicle. 

Montazeri-Gh & Naghizadeh (2003) maintain that drive cycles can be used to assess 

vehicular emissions and fuel economy. Driving patterns and behaviour varies from country to 

country and from area to area meaning that it is difficult to apply drive cycles developed for 

one city to another, even if it is in the same country. This means that most research into 

vehicular emissions deals with the development of drive cycles using real world driving tests. 

Barlow et al. (2009) agrees, suggesting that emission levels are dependent on a number of 

variables including model, size and type of car, the fuel used, technology and the actual 

vehicle mileage, as well as operational factors such as speed, acceleration, deceleration and 

gear changes. 

 

Driving cycles can be divided into steady state cycles and transient state cycles.  Barlow et al. 

(2009) defines a steady state cycle as “a sequence of constant engine speed and load modes” 

which are used mainly in testing heavy-duty diesel engines. Rakopoulos & Giakoumis (2009) 

point out that traditionally the study of vehicle engines has been based on steady state 

performance, however it is now accepted that in reality a very small proportion of a vehicles 
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operating pattern is actually steady state, which is probably only achieved when driving along 

a motorway at a steady pace. Rakopoulos & Giakoumis (2009) suggest that more realistic 

models such take account of the unsteady or transient state patterns. 

 

 

2.1.4 Driving cycle data collection 

 

Data can be collected directly from target vehicles by installing data acquisition equipment in 

the vehicles, alternatively data can be collected using a chase car, which potentially reduces 

the possibility of affecting normal driver behaviour in the target vehicle and therefore results 

in useful realistic data. Another method of collecting data is using field survey 

questionnaires. A typical example is the development of a driving cycle for Edinburgh to 

model realistic driving patterns based on data measured and recorded from actual traffic 

conditions, using the car chase technique (Esteves-Booth 2001).  

 

Saleh et al. (2010) point out that data can be collected using micro–simulation methods based 

on psychophysical car–following models, which can also reproduce realistic traffic flows 

based on different real–world driving conditions. One of the disadvantages of these 

techniques is that they are expensive and can be difficult to operate. It is also difficult to 

collect accurate data if the collection equipment is in the vehicle as this can affect the driver’s 

behaviour, which distorts the results. 

 

 

2.1.5 Performance box 

 

2.1.5.1 The GPS device (Performance box) 

 

The performance box (PB) device is a perfect tool for measuring vehicle or driver 

performance accurately (See Figures: 2). The PB device has the ability to monitor vehicle 

speed, throttle position and mass air flow. The device also automatically stores the date and 

time of each individual recording. The data can then be downloaded to a desktop computer 

(PC) and analysed. The private vehicle will have two occupants, the driver and an assistant 

who records further information, such as, abnormal traffic or weather conditions, distances, 

as well as starting and end times at each segment of the route. All these parameters will be 

finalized during the pilot survey (Manual of Performance Box, 2008).   
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Figure 2.1: Performance box keypad 

 

Performance Box has a display screen mode that shows a large digital speed value and 

compass. In open conditions, Performance Box has a velocity accuracy of 0.1km/h, which is 

useful for checking the accuracy of your vehicle’s speedometer. In this mode there are also 

Odometer and Altitude display screens. This display has a ‘Point of Interest’ facility, which 

alerts you as you approach the position of a point of interest such as a safety camera or 

service station. POI files can be created and edited for custom use. Performance Box can help 

measure the power developed by the car’s engine, when the right weight of vehicle is set. 
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Figure 2.2: Changing performance box modes 

 

Performance Box is based on the Race logic VBOX, which is used by the majority of Car 

Manufacturers, Tyre Manufacturers and car magazines around the world to assess 

performance. 

 

With Performance Box it is very easy to measure acceleration times, braking distances, 

quarter mile times and many more. There are a number of configurable screens that show 

specific test results such as 0-60, 0-100, 0-100-0, ½ mile and ¼ mile. Vehicle modification 

can be readily assessed and given specific improvement parameters, the perfect tool for any 

tuning enthusiast. Because it is very easy to edit the test ranges, Performance Box is a very 

powerful tool for use in many different kinds of vehicle testing. 

 

 

2.1.5.2 Lap timing  

 

Displaying your Lap times as you drive around a circuit is simple with Performance Box. 

You can display your last and best Lap times and Lap count, and also display split times for 

up to six specified split points around the lap. The split files can be saved and reused should 

you attend the same circuit again, guaranteeing consistent data. You will be able to catalogue 

and review your performance over any given period of time. 
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Figure 2.3: Lap timing display 

 

 

2.1.5.3 Speed display screen 

 

Performance Box has a display screen mode that shows a large digital speed value and 

compass. In open conditions, Performance Box has a velocity accuracy of 0.1km/h, which is 

useful for checking the accuracy of your vehicle’s speedometer. 

 

 

2.1.5.4 Power calculations 

  

Performance Box can help you to measure the power developed by your car’s engine, either 

at the wheels or flywheel. Having set the vehicle weight, results are calculated from the 

measurements taken by the fast GPS engine to give you useful guidelines to the car’s brake 

horsepower or kilowatt output. Because these calculations are made from the GPS data rather 

than accelerometers, your results are likely to be more consistent and accurate. 

 

 

2.1.5.5 Data logging 

 

For drivers keen to improve their lap times and get valuable feedback on technique, 

Performance Box includes a sophisticated, fully functioning data logging package. If used 

with a 64mb SD card, Performance Box can log up to 50 hours of continuous data, which can 

be analysed in great detail in the available software. 



 22 

 

This software allows graphical analysis of acceleration, braking, cornering and lap times, and 

if the Performance Box is used in conjunction with a Micro Input Module, data from the 

vehicle itself (such as RPM and throttle angle) is recorded alongside the GPS parameters. 

You can overlay up to four files, and you get an accurate track map to compare your driving 

line between different laps. The software also features a graph measure tool, allowing for 

precise analysis of performance figures. Data-logging capabilities are further enhanced by 

automatically generated text data on the SD card (Manual of Performance Box, 2008).   

 

2.1.6 Drive cycle models 

 

There are a number of emission models available and all are slightly different. According to 

Montazeri-Gh & Naghizadeh (2003), there are a number of different driving cycles 

developed to represent different types of vehicles and driving behaviour. Faiz et al. (1996) 

suggests that the most commonly used are the US Federal, the United Nations Economic 

Commission for Europe (ECE) and the Japanese test procedure.  

 

 

2.1.6.1 USA driving cycle 

 

In the USA, a driving cycle has been developed called the FTP-75, which is a transient test 

cycle used for emission certification testing of cars and light duty vehicles (Montazeri-Gh & 

Naghizadeh 2003). In this test procedure a light vehicle, typically a car or light goods vehicle 

is driven on a chassis dynamometer on a predetermined driving cycle. Samples of the exhaust 

emissions are collected throughout the procedure in a constant volume sampling system. 

According to Faiz et al. (1996) the driving cycle which lasts for 2,475 seconds is meant to 

reflect the varying nature of urban vehicle operation, with a average driving speed of 31.4 

km/hr. The test is carried out in three phases, cold start, hot stabilised and hot start. The 

procedure starts with a 12-hour vehicle soak followed by a cold start where temperatures 

range from 20
0
 to 30

0
C. The emission results are calculated as weighted average of emissions 

measured for each of the three phases.  

 

Experts maintain that one of the main disadvantages of this test procedure is the narrow speed 

range and the fact that the procedure does not represent realistic driving conditions. Faiz et al. 
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(1996) points out that the test procedure does not cover the full range of speed and 

acceleration conditions experienced by vehicles operating in the real world. Experts also 

maintain that FTP-75 provides a poor simulation of air conditioner operations. The model has 

been improved by adding supplementary models such as the Supplemental Federal Test 

Procedure (SFTP), which is used to represent the engine load and emissions associated with 

vehicles possessing air conditioning units. There is another supplementary test procedure 

called the US06 Supplemental Federal Test Procedure which was designed to address and 

improve the FTP-75 test cycle in the representation of “aggressive, high speed and/or high 

acceleration driving behaviour, rapid speed fluctuations, and driving behaviour following 

start up” (Faiz et al. 1996). 

 

Emission testing for light duty vehicles is carried out using the "IM-240" test based on a 

chassis dynamometer schedule and used in a number of States for inspection & maintenance 

programmes. Some of the national driving cycles have been developed further to represent 

driving styles for individual states. For example "LA92" is a dynamometer driving schedule 

for light duty vehicles developed by the California Air Resources Board, represents a more 

aggressive driving cycle with higher speeds and rates of acceleration, with less stopping and 

less idles time than allowed for in the federal FTP-75.  

 

 

2.1.6.2 European driving cycles 

 

Driving cycles used for certification of emissions from light duty vehicles in Europe include 

the Economic Commission of Europe (ECE) and the New European Driving Cycle (NEDC). 

These driving cycles are based on a chassis dynamometer (Montazeri-Gh & Naghizadeh 

2003). The European procedure consists of three tests, lasting 780 seconds and covering 

4.052 km with an average speed of 18.7km/hr. The first test measures the exhaust emissions 

produced in a driving cycle on a chassis dynamometer, where the driving cycle is based on a 

typical urban area in Europe with 15 linked driving modes. The procedure has a maximum 

allowable speed of 50km/hr. The test starts with the vehicle soaking for a minimum of six 

hours at a temperature in the range of 20
0
 to 30

0
C. The engine is then started and left to idle 

for 40 seconds, followed by four test cycles without interruption. The second test takes 

samples of carbon monoxide concentrations from the exhaust emissions immediately after the 

last cycle of the first test. Crankcase emissions are measured in the third test.  
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The European test procedure has been criticised for being even less realistic than FTP-75 

because the results are based on low rates of acceleration. The test uses an acceleration rate of 

3.75km/hr/sec sustained for 4 seconds during the first peak, 2.61 km/hr/sec in the second 

peak and 1.92km/hr/sec in the last peak, which equates to less than one-fifth the rate observed 

in actual driving conditions. The European test procedure includes an extra-urban driving 

cycle (EUDC) which lasts for 400 seconds with an average speed of 62.6km/hr and a 

maximum speed of 120km/hr (Faiz et al. 1996). Barlow et al. (2009) points out that the New 

European Driving Cycle which is used to approve light vehicles for use in Europe is based on 

unrealistic steady state conditions. The test uses a cycle where there are periods of constant 

acceleration, deceleration and speed, which Barlow et al. (2009) argue does not reflect real 

driving operations, given that real world driving patterns are transient. Japan uses the MVEG-

A drive cycle for emission certification and fuel economy of light duty vehicles (Montazeri-

Gh & Naghizadeh 2003). 

 

Faiz et al. (1996) maintains that the American and European test procedures are commonly 

used in other countries and that these test procedures have many commonalities. For example 

the volumes of emissions are measured by operating a test vehicle on a chassis dynamometer 

while collecting the exhaust emissions in a constant volume sampling system. The principal 

difference in the testing procedures is the driving cycle for the light duty vehicles. The US 

test involves transient variations in speed and load, which are considered very similar to 

actual driving, whereas the European and Japanese procedures are based on a “series of 

steady state operating conditions” (Faiz et al. 1996). The European test is simpler than the 

US test procedure and the maximum acceleration rate at 3.75 km/hr/sec being significantly 

less than the US test. However it is suggested by Faiz et al. (1996) and Barlow et al. (2009) 

that none of these test procedures accurately reflects real driving patterns and this has led to 

other driving cycles being developed. Barlow et al. (2009) suggests that these driving cycles’ 

model emissions based on varying the average speed of a vehicle trip, expressing emissions 

as grams of pollutant per vehicle kilometre. Barlow et al. (2009) suggests that there are 

limitations to this method of analysis based on average speed models, since it is difficult to 

assess ranges of vehicle operation and emissions behaviour in average speed scenarios. A 

typical example of this is vehicle emissions from a vehicle with a catalytic converter, in this 

type of vehicle the greatest output of pollutant is in the short sharp peaks which occur during 

gear changes and acceleration. 
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2.1.7 City specific driving models 

 

As mentioned earlier, this literature review highlights the fact that emissions are based on 

driving patterns and driving patterns are variable depending on speed, temperature, model of 

car, maintenance of that vehicle and many other variables. This suggests that emissions for 

vehicular operations will vary from place to place and given the importance of quantifying 

these pollutants this has led to the development of city and/or country specific models.  

 

 

2.1.7.1 Artemis driving cycle 

 

This driving cycle represents the European driving behavior for passenger cars. It was developed within the 

European research project ARTEMIS (Assessment and Reliability of Transport Emission Models and Inventory 

Systems). The Common ARTEMIS Driving Cycle (CADC) consists of three parts, urban, rural (i.e. extra-urban) 

and highway. All three parts can be used independently, because all start and end with zero speed (Andre et al., 

2004; Vasic and Weilemann, 2006). Figure 2.4 shows the driving cycle in three different categories of roads 

(urban, rural and motorway). In addition to this, Andre et al., (2006) investigated the driving cycle for 

different categories of cars i.e. specially designed high and low power cars. The cars were 

considered different in their driving conditions, characteristics of driving conditions and 

vehicle usage. Actual driving conditions of the high and low power car were derived using statistical tests as 

shown in Figures 2.5 and 2.6 respectively. In addition, emission measurements on 30 representative cars of 

French fleets were carried out to develop the emission standard. 
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Figure 2.5: ARTEMIS driving cycle for high and low-powered cars 

 

 

Figure 2.4: Figure 2.4 ARTEMIS urban, rural and motorway driving cycles 
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The ARTEMIS project (Assessment and reliability of transport emission models and 

inventory systems) was developed to provide researchers with a “harmonised  methodology  

for emission  estimates at the national and international level” (Joumard 2007). The Artemis 

model for cars and light goods vehicles is based on data derived from over 3500 tests with 

more than 150 vehicles, with specific measurements of regulated and non-regulated 

pollutants. This model contains a set of sub-models. According to Joumard  

(2007) the base model calculates hot emissions for each vehicle category in different driving 

behaviours. It includes five alternative models including a simplified model, which uses the 

same data as the main model and considers driving behaviour with average speeds. It also has 

a continuous or kinematic model, which takes account of aggregated kinematic parameters. 

The Artemis model also has two instantaneous models, which require kinematic data and can 

be adapted to different usages for assessing both national emissions and local traffic controls. 

This system allows researchers to consider the influence of parameters, such as cold start, air 

conditions, vehicle mileage, temperature and humidity, on emissions (Joumard 2007). Barlow 

et al. (2009) points out that within the ARTEMIS model there is a utility called Art.Kinema 

which can be used to assess a broad range of descriptive parameters to define a specific 

driving cycle, such that different driving cycles can have different time and speed resolution 

parameters. This sub-model divides the parameters into groups such as distance related, time 

Figure 2.6: Motorway driving cycle for high and low powered cars and 

ARTEMIS cycle 
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related, speed related acceleration related, stop related and dynamics related. Within each of 

these groups, there are a number of descriptive parameters, which can be used in the driving 

cycle, for example in the time related group, descriptive parameters include total time, 

driving time, cruising, time spent accelerating or decelerating, time spent parking and 

standing time.  Acceleration parameters include average acceleration, number of 

accelerations, positive or negative accelerations and number of accelerations per km travelled 

(Barlow et al. 2009). 

 

 

2.1.7.2 Tehran driving cycle 

 

Montazeri and Naghizadeh (2003) developed the driving cycle for simulation of vehicle 

exhaust gas emissions and fuel economy in the city of Tehran (Figure 2.7). The speed was 

computed by the speedometer of the vehicle whereas the device was an electronic network 

that works together with a laptop computer as a data logger. The output of the network was 

connected to the computer, and there where the frequency of pulse signal was converted to 

vehicle speed. Two parameters were used for analysing micro-trips i.e. average speed and 

idle time percentage (%). The proportions of time spent on four-road category in the whole 

set recorded data were used to find the duration of the cycle length (sec). It was observed that 

as the average acceleration and deceleration of a cycle increase, the emissions and fuel 

consumption increases. The Tehran Car Driving Cycle has greater maximum acceleration and 

deceleration but smaller average acceleration and deceleration, than the FTP cycle, implying 

lower emissions and lower fuel consumptions. 

 

Figure 2.7: Tehran driving cycle 
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Historically analysis of emissions in Tehran used the American or European driving cycle 

test procedures. Montazeri-Gh & Naghizadeh (2003) developed this driving cycle specifically 

for the city as it was believed that other standardised procedures did not accurately reflect 

driving patterns in the city. The driving cycle was developed using a measuring device fitted 

to vehicles to record speed. The driving cycle is based on micro-trips where a micro trip is 

defined “as an excursion between two successive time points at which the vehicle is stopped 

“(Montazeri-Gh & Naghizadeh 2003).  Data on acceleration, cruise and deceleration modes 

was collected and analysed for each micro-trip. The data was then used to calculate the 

following driving parameters, average speed, maximum speed, acceleration, deceleration, and 

the number of "micro-trips" for each car trip. This data also meant that the model could be 

compared to other standardised models. By comparing idle time to average speed distribution 

traffic conditions in Tehran were divided into four categories, congested urban condition, 

urban condition, extra urban condition and highways. The first category, “Congested Urban 

Condition”, categorised by low driving speeds typically less than 10km/hr and varying idle 

times. The second category was “Urban condition” which represents non-free flows with 

moderate idle time and typical speeds of 10 to 25km/hr. “Extra urban condition” 

representing relatively free flow conditions with low idle times and average speeds of 25-

40km/hr. The last category is “Highways” representing completely free flowing traffic with 

very low idle times and average speeds of over 40km/hr. The data collected from the micro-

trips was statistically analysed to develop TEH_ CAR the Tehran driving cycle. The study 

included a comparison of results from Tehran driving cycle to patterns of other countries by 

comparing data from TEH _ CAR with European standards and American standard driving 

cycles. 

  

Table 2.1: Montazeri & Naghizadeh driving cycle 
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This comparison established that driving patterns of Tehran were similar to FTP, with 

similarities including aggressive acceleration and deceleration. However, as shown in Table 

2.1 above, the Tehran driving cycle gave very different output from the European driving 

cycle models. TEH _ CAR also established a link between driving conditions, fuel 

consumption and vehicles exhaust emissions and found that as average acceleration and 

deceleration of a cycle increase, there is a corresponding increase in both fuel consumption 

and vehicle emissions (Montazeri-Gh & Naghizadeh 2003). 

 

 

2.1.7.3 Hong Kong driving cycle 

 

Tong et al., (1999) used an instrumented diesel vehicle along two fixed routes located in two 

urban districts in Hong Kong to develop a standard driving cycle for the urban areas of Hong 

Kong. The typical driving cycle is presented in Figure 2.8. In developing the standard driving 

cycle for Hong Kong, nine parameters were calculated from on-board survey data. The 

methodology included the selection of twenty short driving periods, each bound by idle 

times. Ten such cycles were developed and the best cycle was finally selected with minimum 

total percentage error. The Driving Cycle revealed that Hong Kong had more idle, 

acceleration and deceleration times when compared to those of the European and American 

standard driving cycles. 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Hong Kong driving cycle 
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The Hong Kong diving cycle is based on “on-road” speed time data, which was collected by 

a diesel vehicle fitted with measuring and recording equipment. The vehicle collected the 

data along two fixed urban routes in the city. The data was analysed and compared to other 

driving cycles such as the FTP-75 and ECE. A study carried out by Tong (1999) found that 

none of these standard driving cycles matched the data collected specifically for Hong Kong, 

so a city specific driving cycle was developed for the city.  

 

Hung et al., (2007), on the other hand developed three driving cycles for three traffic 

conditions (urban, sub-urban and highway driving behaviours, see Figure 2.9). The data was 

collected with the car chasing technique along nine selected representative routes during the 

morning peak hours.  

 

 

Figure 2.9: Hong Kong highway driving cycles (a) Urban (b) Suburban (c) Highway  
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2.1.7.4 Athens driving cycle 

 

The transport network is growing in Athens, with rapidly changing vehicle use and driving 

patterns. This has led to growing concern with respect to the increase in atmospheric 

problems in the city, largely due to vehicle emissions. A specific driving cycle was developed 

for Athens because according to Tzirakis et al. (2006), the typical driving profile used in 

standard procedures did not represent typical driving cycles in Athens. Standardised 

procedures such the European driving cycle, FTP75 and the Japan 10-15 procedures were 

based on a complicated series of accelerations, decelerations and frequent stops using a 

laboratory chassis dynamometer which did not represent driving patterns in Greece or more 

specifically Athens. The Athens driving cycle is based on real world driving data, which was 

collected over a two-year period on the Athens road network. This data was then analysed 

and used to develop the Athens driving cycle. The test procedure lasts for 1160 seconds 

covering a distance of 6.512km, at an average velocity of 20.21km.hr and a maximum 

velocity of 70.86km/hr. The driving cycle is presented in Figure 2.10. 

 

 

Table2.2: Comparison of Athens driving cycle with European driving cycles (Tzirakis et al. 2006) 

 

 

 

The Athens driving cycle was tested against the new European Driving cycle, using three 

different classifications of passenger cars. The results of this comparison showed that the 

Figure 2.10: Athens driving cycle 



 33 

Athens driving cycle nitrogen oxides are 2.5 times higher than, either the ECE or NEDC 

cycles. The Athens cycle also recorded higher carbon monoxide levels with no variation in 

hydrocarbon levels (Tzirakis et al. 2006).  

 

 

2.1.7.5 Edinburgh driving cycle (EDC) 
 

Edinburgh driving cycle (EDC) was developed by using car chasing technique on six routes 

of Edinburgh (Booth et al. 2001). The EDC was completely an urban cycle (i.e. does not 

include motorways). 60 % of the times were spent in acceleration and deceleration activity is 

compared with the European Driving cycle (ECE) which has one third of the total time in 

acceleration and deceleration. The reason for this discrepancy is that the EDC is the real 

representation of traffic in EDC, while the ECE is a synthetic cycle, which uses simplified 

modes (Andre, 1996). The typical EDC is presented in Figure 2.11. In all, 1027 data sets 

were collected using an instrumented vehicle. The vehicle was equipped with an instrument 

which recorded on-board data and stored it every second. The data was recorded for two 

months, from Monday to Sunday in the first phase and two weeks in the second phase on six 

different routes with desired driving instructions. The data was analysed using computer and 

statistical analysis techniques. A new methodology called TRAFIX (Traffic Flow Index) was 

developed to calculate the representative driving cycle. 

 

 

 

 

 

 

 

 

 

2.1.7.6 Sydney driving cycle  

 

The Sydney driving cycle was developed by Kent et al. (1978) involved a survey of Sydney 

morning peak hour traffic. The data was collected using an instrumented vehicle, which was 

driven over the selected routes during the morning traffic peak (6:30 - 9:15 am) during 

weekdays. The results revealed that average speed and percentage idle time were close to the 

                                          Figure 2.11: Edinburgh driving cycle 
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U.S. Federal Driving Cycle values but root mean square acceleration was significantly 

higher. The joint speed-acceleration relative frequencies for the Sydney data were also 

markedly different to the FTP cycle. Sydney cruise speeds were centred on around 48-56 

km/h with an even distribution of acceleration and deceleration at low speeds. Dominant 

cruise modes occurred at 32.4 km/h and there were significant contributions at speeds around 

80 and 88 km/h. The U.S. cycle spends significant time at higher speeds and has two 

dominant acceleration peaks at low speeds. A short driving cycle of 10 m 37 s duration 

designed to yield the same statistics and emissions as the overall survey data was synthesised. 

A driving segment consists of a portion of the speed-time trace from any of the data bounded 

by an idling mode at either end and usually of about two minute’s duration. Numerous 

segments were selected and the traces were first visually inspected for any abnormal 

characteristics. The average speed, percentage idle time and root mean square acceleration 

together with the predicted emissions were calculated for each segment. The cycle shown in 

Figure 2.12 was developed by making up the characteristics of the representative cycle.  

 

 

Figure 2.12: Sydney driving cycle 

 

 

 

2.1.7.7 Melbourne driving cycle  
 

Melbourne Driving Cycle was developed when data was collected at the morning peaks at 

different road sections of the Melbourne city (Watson et al., 1982). The purpose of the cycle 

was to provide the basis for a more realistic assessment of the emissions and fuel 

consumptions for Melbourne driving conditions.  
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2.1.7.8 Delhi driving cycle 

 

Gandhi et al., (1983) used the instrumented car to study the driving patterns of the Delhi 

travellers. A comparatively small car was used to collect the data because major car types in 

Delhi are comparatively smaller engine cars. The capacity of the car was 1000 cm
3
. The data 

was collected along the four representative routes. The car was used to record fuel 

consumption, trip length, trace of speed and change of speed with time, and time spent in 

various speed blocks.  

 

 

2.2 Transport problems in developed countries 

 

Transport related environmental problems and congestion is of major concern for all the 

transport managing departments in almost all major cities of developed countries. With 

increasing awareness towards environment, coupled with its rapid degradation, has created 

serious challenges for the today’s transport planners and managers. In addition to this, 

transport safety and crash prevention has also remained a main focus for modern 

metropolitans.  

 

 

2.2.1 The environmental impacts of vehicle travel 

 

Car travel has a number of positive benefits, including increased mobility and freedom to 

travel. However, there are serious disadvantages to the motor vehicle including air pollution 

and contributing to greenhouse gases and global warming (Tyler Miller & Spoolman 2011). 

According to Corrales et al. (2000) there are five basic groups of transportation activities that 

adversely affect the environment, including the construction of transportation infrastructure 

such as roads, manufacturing of vehicles, vehicle travel, vehicle maintenance and disposal of 

used vehicles. The environmental impacts of vehicle travel include exhaust emissions, dust 

emissions from tyre wear on road surfaces, emissions of refrigeration agents for vehicle air 

conditioning, noise and safety in terms of accidents. Pollutants from motorised vehicles 

include nitrogen oxides and particulate matter. These pollutants present a two-stage problem 

with primary and secondary air pollutants. Primary air pollutants include, carbon monoxide, 

nitric oxide, benzene and particulate matter European Environment Agency (EEA: 2012). 
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Secondary pollutants include nitrogen dioxide and ozone, which is formed by the effects of 

sunlight on volatile organic compounds (Pearce 2000). Each of these pollutants damages 

human health, for example particulate matter is dust emitted from exhausts and is usually 

measured by diameter and expressed as PM10 which is the level of particulate matter with a 

diameter of 10microns or less. Scientific evidence shows that high levels of PM10 can affect 

the human respiratory system, cause long term damage to the heart and lungs and is 

potentially carcinogenic (Pearce 2000).  

 

These pollutants can adversely affect human health and the environment affecting ecology 

and destroying ecosystems. The OECD (2011) state, that global greenhouse gas (GHG) 

emissions reached an all-time high of 30.6 gigatonnes (Gt) in 2010. It is estimated that these 

emissions will continue to increase by approximately 50% by 2050 unless national 

governments implement prevention policies. To put the problem in context, these predicted 

increases equate to an  atmospheric concentration of GHG’s of an estimated 685 parts per 

million (ppm) CO2-equivalents by 2050, which is significantly greater than the concentration 

level of 450 ppm required to stabilise the climate at 2 degrees (2°C) global average  

temperature.  The OECD (2011) and environmental experts warn that such high levels of 

GHG’s could potentially increase the global average temperature by 3 to 6
o
C higher than pre-

industrial levels before the end of this century, leading to significant changes in precipitation 

patterns, melting glaciers and rising sea-levels, with “catastrophic or irreversible outcomes 

for natural systems and society” (OECD 2011).  

 

There have been significant advances in car technology, such as catalytic converters and lead 

free petrol engines, which have led to the reduction of exhaust emissions. However the 

European Environment Agency (EEA: 2012) maintain that the continuing growth in vehicle 

use and vehicle km/year mean that efforts to reduce emissions from individual vehicles are in 

danger of being overtaken by increases in the volume of traffic. According to Tyler Miller & 

Spoolman (2011) the USA is a prime example of a car centred country. The country contains 

4% of the world’s population with an estimated one third of the world’s private cars and 

commercial vehicles. The country has developed with dispersed cities and urban sprawl. 

Passenger vehicles are used for 98% of travel needs, with an estimated three quarters of the 

working population driving to work in single occupancy each day. These travel patterns mean 

that the USA is responsible for an estimated 43% of the world’s total vehicle fuel 

consumption. Statistics released by the Department of Transport in the UK, indicate that the 
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number of vehicles in the UK is increasing from an estimated 4 million in 1950 to 34 million 

in 2010, equating to an annual growth of 3.7%. The proportion of households with access to a 

motor vehicle has increased from 14 per cent in 1951 to 75 per cent in 2010. There is also 

evidence that the average annual mileage of four-wheeled cars is falling from an estimated  

9,700 miles in 1995/97 to 8,430 in 2010 (Department of Transport 2012). According to the 

Department for Transport (DfT 2011), transport makes up 21% of all United Kingdom’s 

domestic carbon emissions.  

 

National governments are committed to reducing greenhouse gas emissions and one of the 

key target areas is reducing emissions from road vehicles. In order to do most transport 

policies need to implement traffic demand measures, which will encourage a modal shift 

away from the private car and towards greater use of public transport and non-motorised 

modes such as cycling and walking. In order for these policies to be effective Chatterjee & 

Venigalla (nd.:p.1) point out that the transportation planning and management of travel 

demand must have a thorough understanding of travel patterns and existing problems before 

carrying out policy changes. This requires detailed data on existing travel patterns, with 

traffic volumes and forecasts for predicted traffic volumes and pollution emissions from that 

traffic to be determined. Once the extent of the problem is realised only then can planners and 

policy makers implement strategic policies to address the issue. The remainder of this 

literature review will focus on travel demand management and specific examples of traffic 

demand management schemes. 

 

 

2.3 Travel demand management (TDM) 

 

Travel demand policies are implemented to reduce the negative aspects of vehicle travel. This 

section of the literature review will include an analysis of the definition of travel demand 

management with example of schemes implemented. It will also consider the effects of these 

schemes and assess whether these policies have been successful.  

 

 

2.3.1 Definition of travel demand management 

 

According to Zhou (2008) travel demand management programmes were first considered in 

the 1970’s with respect to problems of air pollution and road congestion. Zhou (2008) 
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suggests that TDM is a “general term for strategies that result in more efficient use of 

transportation resources” or a “combination of various strategies that change travel 

behaviour” with two main aims increasing the efficiency of transport systems and reducing 

congestion. According to Donna & Nelson (2000) Traffic demand management is the use of 

techniques, policies or strategies to decrease traffic demand in an area or to alter this demand 

within defined time or space parameters. This alteration is often with particular empathise on 

reducing the use and impact of private cars with low occupancy. 

 

The term travel demand management (TDM) represents measures which aim at reducing car 

dependency and supports strategies that encourage the use of other alternative modes such as 

public transport and/or cycling and walking. TDM includes strategies that improve the 

transport options available to users, incentives that encourage travellers to use more efficient 

transport options, more accessible land use patterns, planning reforms and various support 

programs (Litman, 2003). A TDM measure seeks to manage the demand for travel using 

drive alone private cars, rather than catering for that demand, or managing the road system on 

which those cars travel. TDM’s goal is to design and implement transport policies that 

modify trip maker behaviour, optimize the use of road space, and integrate operations of 

various transport modes, to improve transport safety and efficiency, minimize environmental 

impacts, and promote socioeconomic benefits. 

  

TDM is aimed at reducing congestion and all the negative impacts associated with congestion 

on transport routes. According to Ison & Rye (2008) TDM measures aim to influence 

transport mode choice that people use, trip length, frequency of trips made and the route 

travelled. The European Environment Agency (EEA) (2012) point the problem of vehicle 

emissions can be dealt with through TDM and that this can be dealt with by local authorities 

who are best placed to assess the needs of their communities and the resources available. 

Potentially beneficial TDM schemes include improved public transport, park and ride 

schemes, traffic restrictions and land-use management.  

 

There is evidence of a growing awareness among the general population of the problems 

associated with car travel. A travel survey conducted by the Department of Transport, found 

that 87 per cent of respondents believed that congestion was a serious problem for the 

country and over 77% believed that it was important to implement measures which would 

alleviate congestion. The survey noted that this view varied across social group and different 
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areas. The main concerns regarding congestion were first that congested roads make it 

difficult to predict road journey times and it wastes time, especially with respect to businesses 

and logistics (DfT 2008). The study showed that people recognised that there was no easy 

solution to the complex urban problem and although were concerned about congestion in 

terms of its personal affect and its impact on the global environment, there was a general 

reluctance to change behaviour (DfT 2008). 

 

In other words, TDM measures are aimed at influencing mode choice, trip length, the 

frequency of trips and the route taken. They can be applied to meet specific goals, namely to 

reduce congestion, reduced parking stalls, decrease property owner/manager maintenance 

costs on parking areas, create more commuting choices for the public, delay the need for new 

road construction, and to improve air quality or to reduce the reliance on specific source of 

energy.  

 

The negative impacts of increasing vehicular use could be addressed by implementing 

suitable TDM measures. Potter (2008) argues that in the UK there is evidence that the 

average trip length is increasing by 0.15km per year, that there is a decline on 0.3% per year 

in vehicle occupancy rates and an increase of travel pattern shift towards car-based leisure 

travel. Statistics from the Department of Transport show that the UK road network 

accommodates on average over 650 trips per person by car every year, an estimated 4.4 

billion annual passenger bus trips per and also accounts for two-thirds of freight moved in the 

country. Road traffic has grown by an estimated 84 per cent since 1980, equating to an 

increase from 172 to 318 billion vehicle miles. Most of these increases are attributed to an 

increase in the number of cars on the roads and increased car use, which accounts for an 

increase of 87 per cent since 1980, from 134 to 250 billion vehicle miles (DfT 2008). Potter 

(2008) suggests that the demand for transport is influenced by a number of factors that 

generate traffic. These factors include the total number of trips, the length of travel trip, mode 

used and the number of occupants in a vehicle. TDM focuses on encouraging a modal shift, 

traffic volumes and reducing congestion. TDM measures can take the form of land use, 

communication substitutes, traveller information systems, economic measures, administrative 

measures, parking management, traffic management, preferential treatment and public 

transport (OECD 2002). 
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2.3.2 Travel demand management (TDM) measures 

 

TDM can provide wide range of benefits, which include not only reduction in traffic 

congestion, road and parking facility cost savings, better public transport options for non-

drivers, consumer cost savings, traffic safety and reduced pollution emissions. Conventional 

transport planning tends to focus on a limited set of objectives, and so often overlooks some 

of these benefits. Hence, TDM strategies are sometimes tending to be undervalued. TDM 

planning requires more comprehensive evaluation that accounts for a wide range of options 

and impacts. Rather than selecting a single solution to a single problem, a TDM program 

usually involves a combination of complementary strategies that together achieve a variety of 

objectives. 

 

There are a number of different types of travel demand measures, which can be categorised as 

follows; economic measures, land use information for travellers, substitution of 

communication for travel and/or administrative measures.  Economic measures include fuel 

tax, road user charging and parking charges. Subsidising public transport could also be 

categorised as an economic measure. Land use measures include land use and transportation 

strategies such as car-free zones and park and ride facilities. Traveller information strategies 

include car sharing and providing travel information before a trip is undertaken. Internet 

shopping and using modern forms of communication such as tele-working instead of 

commuting to work is a form of TDM. Administrative measures include parking controls, 

pedestrianised zones and alternative work patterns, to reduce rush hour congestion (Ison &  

Rye 2008). 

 

TDM measures may be implemented across a country, for example with fuel tax, or the 

measures may be implemented on an area basis for example parking control in a city. These 

measures can be used in short or long term, where long term measures mainly focus on land 

use patterns (Ison & Rye 2008).  

 

 

 

2.3.2.1 Economic measures 

 

One example of a TDM economic measure is taxation, which includes taxation on fuel, road 

user charges, road tolls and parking charges. Potter (2008) points out that taxation measures 



 41 

must be targeted at influencing decisions on mode of travel and the amount of travel. One 

effective TDM measure is fuel excise duty, which is added to the each litre of fuel purchased. 

In England the rate of tax differs for each type of available fuel, for example there is a 

considerable difference between unleaded petrol prices and diesel. In some European 

countries for example the Netherlands, there is a carbon and energy levy on fuel in addition 

to taxation. The benefits of this type of transport policy is that it makes people think about 

their journey and mode of transport, it provides a reasonable source of income for the 

Exchequer and it is relatively simple and easy to implement. Effectively this TDM measure 

means that the user pays for their chosen mode of transport. Potter (2008) argues that fuel 

duties have a positive effect on traffic generating factors such as modal choice, trip length, 

trip linking and vehicle occupancy rates. However Potter (2008) also points out that fuel 

taxation is a slow TDM measure and must be implemented consistently, with rises relative to 

the cost of public transport, in order to be effective. 

 

Another example of economic TDM measures is parking control implemented by the city 

Council in Nottingham. The parking control strategy is part an integrated transport strategy in 

which the parking management strategy works incrementally to control and price parking 

across Nottingham. The strategy includes restraint, pricing and management of parking 

across the city. Restraint is implemented by limiting the number of parking spaces within the 

city, including limiting the car parking spaces allowed with new developments. Parking 

restraint is also implemented through on street parking controls and “residents parking only” 

permits in residential areas. This is linked with charging for on street parking in areas that are 

prone to congestion and where demand for parking is high. The council has also implemented 

a Workplace Parking Levy scheme, where employers must pay a fee for each parking space 

attached to their business. These measures are cushioned by management measures such as 

providing a park and ride scheme, information for employers with respect to parking 

allocation and management of that parking. The management measures also include a smart 

card access via controlled barriers to parking zones (Seisaku & Kiko 2004).  

 

Congestion charging could be considered an economic TDM tool. According to the 

International Transport Forum (2010) congestion charging is designed so that vehicle drivers 

pay a percentage of the true cost of the journey undertaken, with the ultimate aim of 

suppressing demand. Congestion charging is a means of addressing the difference between 

the personal journeys and essential journeys. Gomez- Ibanez & Small (1994) maintain that 
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road congestion charging can reduce the volume of traffic on roads, with corresponding 

improvements to travel time and a reduction in air pollutants. It can also result in faster bus 

journey times with improved frequency and reliability of services. There should be an 

increase in passenger revenue as travellers move from car to public transport. Congestion 

charging was introduced into Central London in 2003 with the specific aim of reducing the 

level of congestion, to improve journey times and to make the distribution of goods and 

services in the capital more efficient (TfL 2008). There were mixed opinions on the scheme 

before its introduction to the City, with residents largely in favour of the scheme and non-

resident route users against road charging. Ison (2004) suggests that prior to the congestion 

charge, a survey of Londoners indicated that approximately 90% felt that there was too much 

traffic in central London and of those surveyed 40% were in favour of congestion charging. A 

follow-up survey after implementation of the congestion charging found that support among 

residents remained strong and many perceived an improvement to air quality, a better living 

environment and reduced congestion. On the other hand, an estimated 59% of drivers using 

the route but not living in the charging zone believed that they were being penalised by the 

scheme (DfT 2010). 

 

This economic TDM measure was successful in improving the local environment. Studies 

carried out by Transport for London (TfL 2005) found that the congestion-charging scheme 

reduced the volume of cars travelling through London by 33%, with 11% fewer lorries and 

vans. There was a 17% increase in taxis and a 23% increase in buses. These changes in the 

volume of traffic resulted in a reduction in congestion with travel times reduced from 

2.3min/km to 1.6min/km. A second study carried out found that major pollutants due to 

vehicle emissions decreased, with a decrease of 6% in nitrogen oxides and a 7% reduction of 

particulate matter (DfT 2010). Statistics from the London scheme indicate bus passenger 

numbers have increased on average by 6% since the introduction of congestion charging, 

with cyclists up by 12% (DfT 2010). The Environmental Research Group carried out an 

analysis of vehicle emissions of these reduced flows, using a road-traffic emissions model. 

The study found that in the first year of operation total NOX emissions in the charging zone 

fell by 12.0% with a corresponding increase of 1.5% on the inner ring road. PM10 emissions 

have reduced by an estimated 11.9% in the charging zone and by 1.4% on the inner ring road. 

These decreased emissions of NOX and PM10 is attributed to an increase in vehicle speed 

and a reduction in the number of vehicles. The charging scheme has reduced the number of 

vehicle km driven within central London, which has increased bus use and the number of 
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buses travelling in the area. It was anticipated that this increase in bus use would lead to 

greater exhaust emissions however these impacts were minimised by the introduction of 

particle traps in the buses and also by using new modern vehicles (Beevers & Carslaw 2004). 

 

 

2.3.2.2 Land use measures 

 

Land use planning is a long term TDM measure which can be used to reduce the need to 

travel, reduce the length of trips taken and increase the use of public transport, cycling and 

walking (OECD 2002). Land use planning is implemented through national planning policies 

such as Planning Policy Statement PPS1. PPS1 focuses on sustainable development and the 

implementation of land use measures, which “provide improved access for all to jobs, health, 

education, shops, leisure and community facilities, open space, sport and recreation, by 

ensuring that new development is located where everyone can access services or facilities on 

foot, bicycle or public transport rather than having to rely on access by car, while 

recognising that this may be more difficult in rural areas.” (Office of Deputy Prime Minister 

2005).  This shows a clear government policy in favour of reducing reliance on the private 

car and promoting more sustainable modes of transport. At a local level, local authority 

planning offices are responsible for approving plans for new developments or changing uses 

of existing developments (OECD 2002). A study carried out by the Department for 

Transportation (DfT) into the relationship between population density and travel demand 

found that higher population densities increase the opportunities for development of personal 

contact and these types of developments reduce the average distances travelled for services 

and employment. The study also showed that higher density development improved the 

potential viability of public transport. However OECD (2002) point out that land use 

planning alone is not an effective TDM tool. OECD (2002) also point out that the 

disadvantages of land use planning include conflicts of interests between public policy and 

private development and obtaining a compromise between high land costs and low travel 

costs.  

 

A good example of land use planning is the Greenwich Millennium Village in London. This 

sustainable development was constructed on derelict contaminated land in Greenwich 

London. The project was conceived, designed and constructed on the principles of sustainable 

development, in accordance with Planning Policy statement PPS1. The development provides 
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homes for over 7500 residents and employment in the area for an estimated 6,500 people. 

The development has been designed to provide access to all necessary services such as shops, 

schools, health services within a reasonable distance for the residents reducing the need to 

travel by car. The development also gives greater priority to non-motorised forms of transport 

such as pedestrians and cyclists over cars. The designers also took account of integrated 

transport and there is a dedicated bus service to rail transport links. This scheme proves that it 

is possible to implement travel demand measures that reduce the need to travel and still create 

a pleasant environment where communities can thrive socially, economically and without 

damaging the environment OECD (2002). 

 

 

 

 2.3.2.3 Communication substitutes 

 

Information and communication technology (ICT) is increasingly being used in the modern 

world and though it is difficult for transport planners to specifically implement this as a TDM 

measure, it has the potential to reduce travel demand by reducing the vehicles miles travelled, 

through trip elimination or replacement. These measures can be divided into transport 

telematics such as smart cars, satellite navigation systems, variable message signs and traffic 

information; teleworking, teleconferencing, internet shopping and services and distance 

learning (OECD 2002). 

 

Table 2.3 shows examples of TDM measures and areas where these measures can be used to 

improve the transport system in the UK and Figure 2.13 depicts the conceptual framework for 

the TDM measures adopted from Garling et al., (2002). These measures include physical 

measures such as bus lanes, regulatory policies and other public transport measures.  The 

investigations of using bus lanes and speed reduction measures on TDM have been studied 

widely in the UK and other countries. 

 

Table 2.3: Travel demand management measures 

 

TDM Measures  Examples 

Physical change measures  improving public transport 

improving infrastructure for walking and cycling 

park & ride schemes 
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land use planning to encourage shorter travel 

times 

bus lanes 

technical changes to make cars more energy-

efficient 

Regulatory policies prohibiting car traffic in city centres 

parking control 

decreasing speed limits 

Pricing policies  taxation of cars and fuel 

road or congestion pricing 

kilometre charging 

decreasing costs for public transport 

Information and education 

measures  

individualized marketing 

public information campaigns 

feedback about consequences of behaviour 

social modelling 
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Figure 2.13: The conceptual framework (adopted from Garling et al., 2002) 

 

The VTPI Online TDM Encyclopaedia (www.vtpi.org/tdm) is designed to help transportation 

professionals identify, plan, evaluate and implement TDM programs. The website provides 

detailed information about different TDM measures and their impacts. This information has 

been reviewed by experts, and is regularly expanded and updated. Table 2.4 lists TDM 

strategies that are included. 

 

 

Each strategy in the above mentioned table is rated on a seven-point scale according to 

various criteria, including its travel impacts, its ability to help achieve different objectives, its 

equity impacts, and appropriateness in different geographic and organizational conditions.  

 

The objectives considered in the Encyclopaedia are listed below. 

 Congestion reduction 

 Road and parking savings 

 Consumer savings 

 Transport choice 

Table 2.4: TDM strategies included in the online TDM Encyclopedia 

 
 

Improved 

transport options  

Incentives to shift mode  Land use management  Policy and planning reforms  Support 

programs  

Address security 

concerns Alternative 

work schedules  

Bicycle 

improvements 

Bike/transit 

integration Car 

sharing  

Guaranteed ride 

home Park and ride  

Pedestrian 

improvements 

Ridesharing  

Shuttle services  

Taxi service 

improvements  

Tele-work  

Traffic calming  

Transit 

improvements 

universal design  

Bicycle and pedestrian 

encouragement  

Congestion pricing 

Distance-based pricing 

Commuter financial 

incentives  

Fuel tax increases  

High occupant vehicle 

(HOV) priority  

Pay-as-you-drive insurance 

Parking pricing  

Road pricing  

Vehicle use restrictions  

Car-free districts 

Clustered land use 

Location efficient 

development  

New urbanism  

Parking management 

Smart growth  

Transit oriented 

development (TOD)  

Street reclaiming  

Car-free planning 

Comprehensive transportation 

market reforms  

Institutional reforms  

Least cost planning  

Regulatory reform  

Access 

management  

Campus 

transportation 

management  

Data collection 

and surveys 

Commute trip 

reduction 

Intelligent 

transportation 

systems  

Freight 

transportation 

management  

School trip 

management 

Special event 

management 
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 Road safety 

 Environmental protection 

 Efficient land use 

 Community liveability 

 

Smith, 2008 suggested many transport demand management measures which are summarised 

in Table 2.5. Many of these schemes require organisation, monitoring and control, which are 

relatively straightforward electronic tasks, requiring mere development of existing 

technologies and opportunistic use of newly developed techniques. The original intended uses 

may be far removed from transport, but parasitic opportunities will arise. The use of 

technology, for example, to enforce speed limits and hence increase capacity, to monitor and 

collect payments for road-charging schemes, to provide better real-time information for 

public transport is already in place and is relatively cheap. Improved technologies will 

undoubtedly emerge, and so technology will not be a barrier to the implementation of 

transport demand management schemes. 

 

 

Table 2.5: Examples of transport demand management strategies (Hensher and Button, 2003) 

 
Improve transportation 

options 

Incentives to reduce driving Parking and land-use 

management 

Policy reforms and 

programmes 

Alternative work 

schedules 

Bicycle improvements 

Bike/train transit 

integration 

Car sharing 

Flex time 

Guaranteed ride home 

Individual actions for 

efficient transport 

Park and ride  

Pedestrian improvements 

Ride sharing 

Shuttle services 

Small-wheeled transport  

Taxi service 

improvements 

Tele work 

Traffic calming 

Transit improvements 

Walking and cycling 

encouragement 

Commuter financial incentives 

Congestion pricing 

Distance-based pricing 

Fuel taxes 

High-occupancy vehicle priority 

Parking pricing 

Pay-as-you-drive vehicle 

insurance 

Road pricing   

Speed reductions 

Street reclaiming 

Vehicle-use restrictions 

Bicycle parking 

Car-free districts and 

pedestrianised streets   

Clustered land use 

Location-efficient development 

New urbanism  

parking management 

Parking solutions 

Parking evaluation 

Shared parking 

Smart growth planning and 

policy reforms  

Transit-oriented development

  

Access management 

Campus transport 

Car-free planning 

Commute trip reduction 

programmes 

Comprehensive market 

reforms 

Context-sensitive design 

Freight transport 

management 

Institutional reforms  

Least-cost planning 

Regulatory reform 

School transport 

management  

Special event management 

TDM marketing 

Tourist transport 

management 

Transport management 

associations 

Universal design 

 

 

TDM measures may also be classified in terms of those which discourage car use which are 

termed as Push measures and those that encourage the use of alternative transportation modes 
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termed as pull measures. Table 2.6 presents many of these measures. They are listed on a 

continuum from primarily push measures to primarily pull measures. Stradling et al. (2000) 

surveyed English drivers providing them a list of pull and push measures that overlapped 

substantially. Conducting a factor analysis on respondents rating of effectiveness of these 

measures, he extracted two factors that were perfectly matching with push pull distinction. 

The exception was ‘public information campaigns about negative effects of car use’ which 

respondents grouped together with other push measures.  

 

 

Table 2.6: TDM measures varying from Push to Pull measures (Garling et al.2002) 

 

Taxation of cars and fuel 
Closure of city centres for car traffic 
Road pricing 
Parking control 
Decreasing speed limits 
Avoiding major new roads infrastructure 
Teleworking 
Land use planning encouraging shorter travel distances 
Traffic management reallocation space between modes and vehicles (Bus Lane etc) 
Park and ride schemes 
Improved public transport 
Improved infrastructure for walking and biking 
Public information campaigns about negative effects of driving 
Social modelling 

 

 

TDM is sometimes criticized as being harmful to consumers and unfair because it forces 

people with lower incomes to reduce driving and shift to ‘inferior’ transportation modes 

(Green, 1995). This is not necessarily true. Most TDM strategies that directly affect 

consumers rely on positive incentives, as illustrated in Table 2.7. The strategies categorized 

as ‘Positive Incentives’ improve travel choices and provide rewards for reduced driving. With 

such strategies, motorists who continue their current travel patterns are no worse off, but 

those who reduce their mileage must be better off overall, or they would not change. These 

direct benefits occur in addition to indirect consumer benefits, such as reduced congestion, 

tax savings, increased road safety and environmental protection. As a result, even people who 

expect to continue to drive have reasons to support TDM, if it is a cost effective way to 

reduce traffic problems. Table 2.7 actually exaggerates the negative impact. For example, 
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pricing strategies are generally considered negative incentives, but their ultimate consumer 

impacts depend on how revenues are used. 
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Table 2.7: TDM strategies categorized by their direct consumer impacts 

 

 

Two problems can be identified when assessing the impacts of TDM measures: Firstly, 

environmental impacts of such measures have not always been considered as one of their 

consequences. For example speed calming measures have mostly been assessed based on 

speed reduction and accidents prevention along the roads, while environmental impacts of 

these policies are not considered. Secondly, when assessing environmental impacts of such 

TDM measures, a lot of aggregation and average values in the data are used for example 

average stopping times for buses along the bus corridors, average delays, or estimated values 

of these variables from some models. Conventionally, these measures are usually assessed 

using various modelling and analysis techniques (for example travel demand forecasting, 

simulation modelling etc.) and in most cases the performance data relevant for input to these 

models is used whereas in this study, the driving cycle data and analysis have been used to 

obtain more accurate assessment of the impacts of TDM measures in Edinburgh and Abu 

Dhabi cities.  

 

 

 

 

Positive incentives Mixed Negative incentives 
Alternative work schedules  Access management  Fuel tax increases  

Bike/transit integration  Car free planning  Parking pricing  

Car sharing  Traffic calming  Vehicle use  

Commuter financial  HOV preference  restrictions  

incentives (most)  Parking management  Road pricing  

Distance-based insurance  Comprehensive   

and registration fees  market reforms   

Flexible parking requirements  Smart growth   

Guaranteed ride home    

Improved personal security    

Location efficient development    

Park and ride    

Pedestrian and cycling    

improvements    

Ridesharing    

School trip management    

Shuttle services    

Smart growth    

Street reclaiming    

Taxi service improvements    

TDM marketing    

Tele work    

Transit improvements    

Transit oriented development    
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2.3.3 Travel demand measures: Bus priority lanes 

 

The first dedicated bus corridor was opened in the UK in 1971, in Runcorn; it had an elevated 

platform which went into a shopping centre. Since that time there have been numerous bus 

priority schemes all aiming to protect buses from road congestion and make public transport 

more attractive to passengers. There have been guided bus systems implemented in Bradford, 

Crawley, Leeds, Cambridgeshire, Kent and Luton-Dunstable.  Cambridgeshire has built the 

longest guided bus system at 25 km long, the Luton-Dunstable system will be capable of 

operating on both a track and the public roads, Kent operates a non-guided bus system, 

opened in 2006, with half of the routes operating on space dedicated to the bus system (Deng 

& Nelson, 2011). These schemes differ from a conventional bus system in that they have, for 

a significant part of their operation, a dedicated space away from other private traffic. The 

mass transit term is in reference to a public transport scheme that is a large scale system 

which tends to serve a city. These mass transit schemes have fast running speeds, they have 

the capacity to carry a large number of passengers and they generally have a right of way 

over other transport (Deng & Nelson, 2011).  

 

Since the deregulation of public transport services, the transport requirements of the public 

have been met by a combination of commercially based public transport, local authorities, 

and some charities that meet the requirements of certain groups with high specific needs 

(Brake & Nelson, 2007). The exact proportion of this mix will vary by area, particularly 

depending on whether the area is comprised of rurally communities or if it is a city.   

 

Most public transport journeys made in the UK by bus use a fixed route service which is 

registered with the UK Traffic Commissioners, which means that exact routes and the 

frequency of the service is guaranteed.  Although the local or statutory authorities do provide 

a number of bus services that are not registered. These are, for example, transport for 

education, care services, social and non-emergency patient transport (Brake & Nelson, 2007).  

 

White (1995) suggests that bus lanes are TDM measures that give buses priority over other 

modes of traffic in the same road space. King & Bod (1997) suggest that the efficiency of bus 

priority measures is dictated by the weakest links along the route and this is compounded by 

the fact that these schemes try to give buses priority whilst maintaining existing traffic flows. 

White (1995) states that there is a case for giving buses priority over other forms of traffic, 
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this would make the form of transport more attractive to users and that in “conditions of 

scarce road space, giving priority to the most efficient users of that space (buses) may reduce 

total travel time within the network”(White 1995). There is evidence that in areas where 

buses do not have priority up to a third of the bus journey can be spent stationary. Bus 

priority measures can include bus lanes, priority at traffic signals and dedicated road space. 

Case studies show that if bus priority measures are carefully planned and implemented over 

whole routes that this can significantly increase the number of passengers using buses. Two 

typical examples are the Edinburgh Greenways Scheme and the London Bus Initiative. 

 

 

2.3.3.1 Edinburgh greenways scheme: 

 

Edinburgh has suffered from severe traffic congestion since the 1980’s, with a much higher 

rate of private car ownership than the rest of the UK, with an increase in car ownership of 

37% compared to a national average of 19%. This level of car ownership resulted in high 

pedestrian and cyclists accidents rates, environmental impacts such as noise, air pollution, 

congestion, and slow travel times with corresponding impacts on business and quality of life. 

This high percentage of private cars has also affected public transport, effectively reducing 

the level of service to that of the private car, with the perceived benefits of private car travel. 

The City Council introduced the bus priority “Greenways” scheme, with the objective of 

“restoring the balance of car use and public transport.” The priority scheme aims to improve 

the reliability and speed of bus services in the city, cutting bus journey times by 10% in the 

hope that this would increase modal shift from private to public transport (Policy note 

nd.:p1). The council also wished to reduce environmental impacts in the city due to private 

car use. Greenways were introduced in 1997 and involved the phased introduction of 26 

kilometres of bus lanes on five routes within the city. These bus priority measures increased 

bus priority measures in the city by three-fold. Greenways are different from conventional 

bus lanes as they require strict enforcement and traffic calming on side streets. These 

schemes are planned to incorporate cyclist and pedestrian improvements, with priority given 

to buses and non-motorised travel. The greenway operates through the day, unlike 

conventional bus lanes, which generally operate at peak times. Yellow road markings are 

replaced with red lines, which are policed using traffic wardens. The greenways scheme also 

provides a better standard of bus shelter and information system than is associated with 

conventional bus lanes. These differences also equate to a more expensive option than 
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conventional bus lanes, with greenways costing an estimated £500,000 per kilometre and bus 

lanes costing an estimated £100k /km (Scottish Government 2000). The Scottish Government 

funded a study into the effectiveness of the greenways. This study revealed that the 

Greenway had improved the reliability of bus services along the A8 corridor. It also 

concluded that Greenways provide a greater level of insulation from traffic congestion for 

businesses fronting major roads, when compared to conventional bus priority measures. This 

is also evidence as there are an increasing number of passengers using public transport along 

the A8 route. The study shows that the A8 greenway has improved safety for pedestrians and 

cyclists. Bus drivers were in favour of the greenways; however emergency service drivers 

had mixed views. The study found that in areas where a Greenway is located bus journey 

times tend to remain constant whereas car journey times increase due to congestion. Taxis are 

permitted to use the Greenways and therefore their travel times reflected those of the buses. 

In areas along the route where a Greenway could not be implemented due to restricted space, 

it was found that bus times were similar to those of private cars. The implementation of 

Greenways has made bus services more reliable especially in am and pm peak times. The 

Greenways appear to have reversed the falling levels of public transport usage in parts of the 

city, although the figures. The data collected in the study indicates that there are a greater 

number of people using conventional bus lanes coming into the city and a greater percentage 

of passengers using Greenways when travelling out of the city in the afternoon peak. The 

study also revealed that the effectiveness of Greenways is largely dependent on policing and 

enforcement. It was revealed that in areas where there was no retail frontage, the performance 

of Greenways was similar to conventional bus priority measures. However, Greenways 

performed better than conventional bus lanes in areas where there was retail frontage. 

 

There is however, evidence that these Greenways are causing delays to non-priority traffic 

and that Greenways require significantly more policing than conventional bus lanes. Some 

business owners believe that the Greenway schemes have led to a reduction in overall 

business with corresponding decreases in annual turnover (Scottish Government 2000). 
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2.3.3.2 London bus initiative schemes 

 

The London Bus Initiative phase 1 and 2 were implemented since year 2000 supported by 

strong funding from the government. Phase 1 included routes 220, 270 and 280 in the 

Borough, which overlapped with each other and created a study corridor between Putney 

Bridge, SW15 (Thamesfield) and Tooting, SW17 (Graveney) and incorporating Putney 

Bridge Road, part of the Wandsworth one-way System, Garratt Lane, Mitcham Road, SW15, 

SW17/18 (Fairfield, Southfields, Earlsfield, Tooting and Graveney) and the loop around St 

George’s Hospital of Fountain Road, Blackshaw Road and Tooting High Street SW17 

(Tooting). Changes to these routes were proposed by JMP Consultants and approved (Paper 

No. 02-14) by the executive on 14
th

 January 2002. Phase 2 of the London Bus Initiative 

included ten routes partly within the Borough were involved in this phase.  

 

 

Figure 2.14: Key bus routes in central London (Source: Google Maps) 

 

UK Department for Transport (DfT) publication on bus priority (2010b) provides information 

about many other bus lane scheme initiatives in the UK. There are other similar efforts done 

in the West midlands using the scheme called West Midlands showcase in 1997, Leeds city 

centre in 1997 and year 2000, Oxford historic city since 1970, and more studies in 1997 and 
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1999. The West Bromwich town centre implemented Bus lane scheme like the ones 

mentioned above in 2001 and 2002. It has been claimed that very positive impacts of bus 

lanes on traffic in a number of cities in the UK has been achieved.  

 

(Hodges 2007) points out that there are 8000 London buses carrying over 6 million people on 

700 routes, making it one of the most comprehensive bus services in the world. For the past 

decade, a key objective of the Mayors transport policy has been to improve the management 

of the bus network through bus lane priority schemes, such as the London Bus Initiative. The 

scheme led to a partnership of all the 33 London Boroughs with Transport for London with 

the objective of delivering the highway infrastructure needed to support London’s existing 

and planned bus services. The London Bus Initiative Phase 1 (LBI1) was established in 2000 

as a 3 year fixed term bus- improvement initiative supported by a £60million grant from the 

government. The aim was to make bus travel more attractive. The initiative consisted of 

identifying twenty-seven high frequency bus routes across London, called Bus Plus routes. 

These routes were selected for improvement works because they served areas where 

improvements could be made to integrated transport services or where a more reliable bus 

service was needed to aid regeneration of an area. The partnership took a year to set up and 

produce a detailed plan of work, followed by two years of design, consultation and detailing. 

The approach was to consider the whole route and not just sections of a bus route A key 

objective of the London Bus Initiative partnership was “to improve compliance with bus 

priority measures along the entire length of all London Bus Initiative routes “, with co-

operation from the City Police and the Metropolitan Police. The ultimate objective of these 

works was to improve the reliability of bus services, to protect bus services from congestion 

and by improving the services encourage modal shift from the car to public transport.   
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Figure 2.15: (Hodges 2007) Whole route implementation plan 
 

 

Each route was assessed in terms of ten main elements, such as enforcement, pedestrian 

facilities and bus stop improvements; in effect the team agreed that in order to encourage 

people onto London Buses the whole system needed to be addressed. The ten elements 

considered are shown in figure 2.14 above. The routes were categorised as quality whole 

routes and whole routes, with two sub-categories of quality, high priority and priority. The 

scheme included a careful study of the existing road network and bus performance along the 

chosen routes. According to Hodges (2007) a range of measures were implemented as part of 

the scheme including 100 new bus lanes, 50 new pedestrian crossings, improvements to over 

300 signalised junctions to give bus priority over other traffic. Enforcement of the bus 

priorities was achieved by using roadside CCTV and on bus cameras, as well of enforcement 

officers in every Borough. The scheme also improved the bus fleet with enhanced passenger 

information, better training for bus drivers and cleaner more efficient bus vehicles. 

 

Hodges (2007) points out that this co-operation between the authorities and the bus 

companies helped make the scheme a success. The key outcomes of the initiative include an 

increase in bus patronage with an increase of 22% more passengers over a three-year period. 
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The scheme has also improved bus reliability with waiting times reduced by 9% and greater 

customer satisfaction.  

 

Figure 2.16: (Hodges 2007) Annual patronage London bus initiative routes 

 

This scheme deployed parking attendants to enforce the bus lane regulations and issue 

Penalty Charges to bus lane violators. The bus lanes are monitored using cameras with 

specially trained staff to enforce the regulations (Bexley 2002). The London Bus initiative 

has contributed to the increase in bus patronage in London, with an increase of 40% in 

patronage between 1999 and 2007. These increases are attributed to expanded network, 

improved reliability and provision of new buses (Hodges 2007).  

 

 

2.3.3.3 Bus lanes and their assessment 

 

According to Collins English Dictionary & Thesaurus (2006) a bus lane is a part of the road 

which is intended to be used only by buses. Many strategies have been put in place in 

different areas to ensure the effectiveness of the bus lanes. These schemes were conceived, 

studied, and implemented in the UK cities, just to name a few; Edinburgh, London, and West 

Midlands. According to Deng & Nelson (2011) these schemes differ from a conventional bus 

system in that they have, for a significant part of their operation, a dedicated space away from 

other private traffic. The mass transit term is in reference to a public transport scheme that is 

a large scale system which tends to serve a city. These mass transit schemes have fast running 

speeds, they have the capacity to carry a large number of passengers and they generally have 
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a right of way over other transport. The schemes have successful milestones, problems, and 

hence the continued need to improve them is highly considered.  

 

Before and after monitoring of bus performance and patronage results (DfT: 2010) suggest 

that bus lanes or greenways have been successful in improving bus patronage and improving 

bus performance. Local people and bus operators are often involved in the exercise, and 

lessons are learnt from the past. In most cases, suggestions to improve or amend some aspects 

of the schemes are reached together with the city authorities.  

 

Accessibility can be defined by Brake & Nelson (2007) as “the ease with which an individual 

can access services and facilities that he or she needs or desires”.  This is seen as a vital 

means of achieving social inclusion, sustainable communities and social justice (Brake & 

Nelson, 2007).  

 

One method of increasing accessibility is in the use of elevated platforms or very low floors 

on buses. Not only does this increase speed of loading and unloading, it always enables easier 

access to people with mobility problems, although the majority of buses can be lowered if 

necessary for people with obvious needs or at request (Deng & Nelson, 2011).  

 

Bus mass transit schemes are shown to be generally cheaper to implement than equivalent rail 

or tram services (Deng & Nelson, 2011). 

 

Non-traditional bus services can improve on the efficiency involved. For instance having non 

or semi fixed route on the bus system, that respond to local user demand in comparison to a 

fixed service can be used. This could incorporate different fares for standard users and users 

with additional requirements such as being collected and / or deposited at a specific location. 

The use of services whose priority is different can be utilised, for instance, using post vans or 

school children delivery services for buses when the demand is required (Mulley & Nelson, 

2009).  

 

Reports are used in the evaluation, monitoring, and performance of the scheme by traffic 

counts, journey time measurements, casualties and accidents reports, registered local 

complaints, results from local gallery meetings and workshops. In most cases these reports 

claim major benefits from bus lane schemes. 
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Buses are often viewed as being unreliable, slow and a poor quality form of transport, 

although the rapid transit bus schemes have improved this image with their improved 

performance (Deng & Nelson, 2011). The use of separate bus lanes will increase the speed of 

the bus although it obviously will have some effect on the flow of other vehicles, especially 

at junctions.  

 

Whether the use of mass transit bus schemes increases of decreases the value of the land and 

properties that have access points and are along the route is under debate by experts.  It is 

perceived by the general public to be a less permanent transport investment than, for instance, 

a rail service, therefore limiting the impact on property prices.  There is some evidence to 

suggest that this type of bus scheme increases properties prices, especially for commercial 

land use such as offices and for high density residential properties. Although residential 

properties close to large access points, such as bus stations show some indicators of 

decreased property price (Deng & Nelson, 2011).  

 

Basso et al. (2011) analysed urban congestion management policies through numerical 

analysis of a simple model that: allowed users to choose between car, bus or an outside 

option (biking); consider congestion interactions between cars and buses; and allow for 

optimization of frequency, vehicle size, spacing between stops and percentage of capacity to 

be dedicated to bus lanes. He compared resulting service levels, social welfare and consumer 

surplus for a number of different policies and found that dedicated bus lanes are a better 

stand-alone policy than transit subsidization or congestion pricing. He further argued that 

from a policy that assigns part of road capacity to dedicated bus lanes, one expects the bus 

speed to increase considerably, given that buses are no longer trapped in car congestion. Car 

speed may increase as well, because cars may now avoid conflict with buses (including bus 

stop operations), but decreased capacity for cars may have the opposite effect. He found that 

indeed buses can go more than three times faster, while cars decrease their speed by two 

km/hour and this large change in speeds induces a sizeable increase in bus frequency 

(about70%) while decreasing the bus size from 100 to 80 people. It is interesting to note that 

the increase in frequency does not require an increase in bus fleet; the fleet needed is actually 

80% smaller than in the base case. Higher bus speeds also induce a larger separation between 

bus stops, something that neither transit subsidies nor congestion pricing made. Overall, 

dedicated bus lanes induce sizeable changes in service levels, something that under mixed 
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traffic conditions do not happen. As a result of all these changes, bus demand increases 

importantly with respect to mixed- traffic conditions. Hence implementing dedicated bus 

lanes seems to be a policy that, from a social welfare point of view, can improve any existing 

situation. Mohring (1979) argued that bus speed was one of the most important attributes of 

the system and that as such, it should be one the central objectives of planners, if they want to 

increase bus patronage. This is why he considered that dedicating lanes exclusively to bus 

traffic can be a quite successful policy. Furthermore, he argued that dedicated bus lanes may 

be a tool equivalent to congestion pricing in achieving a change in modal split.  

 

Pogun and Satir (1986) evaluated alternative bus scheduling policies for an exclusive bus 

lane and found that dispatching more buses into the lane without making route modifications 

will decrease the efficiency of operations through more convoying. Thus, the dominant factor 

in setting a bus scheduling policy is the route to be followed. Among the route policies 

developed, RING policy achieved a 22.5% increase in the number of boarded passengers 

using the same number of buses. Thus, this policy was found desirable to implement if the 

Transportation Department of Ankara Municipality is not willing to allocate more buses to 

the exclusive bus lane. If, however, the objective is to maximize the number of passengers 

carried during the morning peak hours within the bus allocation constraints of the 

Transportation Department, then SERI route policy provides a 24.4% increase in the number 

of passengers served at the expense of increasing the number of buses operating by 21%. 

Thus, the changes in the operating policy largely depend on the priorities of the transportation 

department. However, it is evident that any change on the current policy should incorporate 

new ring and express services. The variance of passenger demand during morning peak hours 

was found to have no significant effect on the performance of scheduling policies developed 

as long as the same mean demand value is used for various statistical distributions. This is an 

indication for the degree of saturation of the passenger movements in the lane. Thus, the 

construction of a metro on the east-west axis of Ankara remains to be the only viable 

alternative in absorbing the ever-growing passenger demand. 

 

Dahlgren (1998) developed a model to calculate these benefits for four alternatives: add a 

high occupancy vehicle lane, add a general purpose lane, convert an existing lane to a high 

occupancy vehicle lane, and do nothing. The model took into account the initial conditions, 

the dynamic nature of the travel time differential between the high occupancy vehicle lane 

and other lanes, and the uncertainty regarding the extent to which people will shift modes. It 
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combined queuing theory and mode choice theory and provides a robust method for 

comparing alternatives using a small amount of easily observed data. Application of the 

model in typical situations showed that with initial delays on the order of 15 min or more, 

adding a high occupancy vehicle lane would provide substantial reductions in delay and some 

reduction in emissions. However, in a wide range of such situations, adding a general purpose 

lane would be even more effective. Only if the initial delay is long and the initial proportion 

of high occupancy vehicles falls in a rather narrow range, would an added high occupancy 

vehicle lane be more effective. The proportion of high occupancy vehicles must be such that 

it allows good utilization of the high occupancy vehicle lane while maintaining a sufficient 

travel time differential to motivate a shift to buses or carpools. They found out that adding a 

high occupancy vehicle lane to a three lane freeway would be more effective than adding a 

general purpose lane only if the initial maximum delay is on the order of 35 min or more and 

the proportion of high occupancy vehicles is on the order of 20%. Federal policies encourage 

construction of high occupancy vehicle lanes and restrict funding for general purpose lanes in 

areas that have not attained air quality standards. The findings of this research suggest a need 

to reconsider these policies. 

 

Mannering and Hamed (1990) identified key weaknesses in the commonly accepted methods 

and criteria upon which HOV lane effectiveness is measured. According to them, these 

weaknesses arise from two sources; (1) the use of inappropriate measures of effectiveness, 

and (2) the use of analysis procedures that do not account for the full range of traffic system 

impacts. To address these weaknesses, a theoretically appropriate measure of HOV lane 

effectiveness was used, based on consumer welfare theory, and applicability of this measure 

in a dynamic traffic equilibrium model was demonstrated. Admittedly, the application of this 

method, as presented in this paper, is exploratory in nature, since the measure commuter 

welfare included only travel time, operating costs, and route and departure time changes, and 

did not explicitly account for mode choice or trip generation. Nevertheless, they presented a 

very important demonstration of methodology that can be used to draw three important 

conclusions. First, the passengers-per-lane measure of effectiveness has no theoretical basis 

and can produce contradictory and meaningless results. Second, the effectiveness of an HOV 

lane policy is very much dependent on a complex interaction among vehicle occupancy 

levels, overall traffic volumes, the extent of high occupancy vehicles usage, and the number 

of designated HOV lanes. Third, and most importantly, in light of the simulations undertaken 
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that there is clear justification for taking a closer and more rigorous look at current HOV lane 

policy. 

 

 

2.4 Traffic calming measures 

 

This is another transport policy which is implemented to reduce the speed of traffic in a 

defined area. It is implemented using cushions, barrows, chicanes, signing, and traffic 

camera. In addition speed reduction schemes are implemented using special training to 

drivers and road users, dedicated campaigns and children education in schools e.g. the West 

Midlands Casualty Reduction Scheme. The scheme is supported and regularly improved by 

involving all stakeholders in the concerned area.  

 

Traffic calming measures have been implemented in many cities and towns in the UK since 

the 1930’s. Hard measures have been added to many streets in virtually every town in the 

UK, particularly when a way could be seen as being a “rat run”. Examples in Aberdeen 

include road humps, bus lanes, chicanes and low speed limits. Traffic calming is used to 

reduce traffic accidents, have some positive environmental effects and encourage the traffic 

to proceed at a suitable speed for the road. There are a variety of ”hard” and “soft” traffic 

calming measures that can be used to obtain these goals. “Hard” measures include building 

structures within the road to reduce the overall road speed for all or all motorised road users. 

These include road humps, rumble strips, road narrowing, no car lanes and traffic islands. 

Another method is reducing the speed limit, although additional measures, such as previously 

mentioned, may be needed if motorists perceive the speed limit to be too low for the road 

conditions. “Soft” traffic calming measures, can also be referred to as “smart” measures, can 

be used to reduce the speed of private vehicles while ensuring public transport, bicycles and 

taxis are not disrupted or are positively affected. These can be described as “more 

physiological than engineering” (Nelson, 2008).    

2.4.1 Definition of traffic calming 

 

Traffic calming is defined as measures “concerned with reducing the adverse impact of motor 

vehicles on built up areas. This usually involves reducing vehicle speeds, providing more 

space for pedestrians and cyclists, and improving the local environment” (Harvey nd.:section 

3.0).  
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Traffic calming can be used, alongside other measures such as Park and Ride, road user 

charging and encouraging more environmentally friendly cars to reduce the environmental 

effects of vehicle use in cities and promote more sustainable cities (Grieco et al, 2012). Since 

the Kyoto protocol, the UK (and the majority of countries worldwide) has had policies in 

place to reduce the countries environmental footprint.  

 

Traffic calming started in Holland in the 1970’s, using “Woonerf” schemes, which introduced 

the concept of vehicles and pedestrians sharing road space. In Woonerf designs streets were 

reconstructed to reduce vehicle priority with speed humps, chicanes and other measures 

included to reinforce the residential setting, ensuring that drivers were aware that the 

residents had priority over their space. However, these measures proved to be expensive and 

overtime these measures were replaced by cheaper traffic calming measures (Harvey 

nd.:section 3.0). 

 

So traffic calming can be defined as various design features and strategies intended to reduce 

vehicle traffic speeds and volumes on a particular roadway. Table 2.8 describes some of these 

strategies (www.vtpi.org). Traffic Calming projects can range from minor modifications of an 

individual street to comprehensive redesign of a road network. Home Zones refers to an area 

with extensive Traffic Calming. Traffic Calming is becoming increasingly accepted by 

transportation professionals and urban planners.  
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Table 2.8: Traffic calming strategies and devices (Source www.vtpi.org) 

 

Type Description 
Curb extensions  

“pinch points” 

Curb extensions, planters, or centreline traffic islands that narrow traffic lanes to 

control traffic and reduce pedestrian crossing distances. Also called “chokers.” 

Speed tables, raised 

crosswalks 

Ramped surface above roadway, 7-10 cm high, 3-6 m long. 

Mini-circles Small traffic circles at intersections. 

Median island Raised island in the road centre (median) narrows lanes and provides pedestrian 

with a safe place to stop. 

Channelization 

islands 

A raised island that forces traffic in a particular direction, such as right-turn-only. 

Tighter corner radii  The radius of street corners affects traffic turning speeds. A tighter radius forces 

drivers to reduce speed. It is particularly helpful for intersections with numerous 

pedestrians. 

Speed humps Curved 7-10 cm high, 3-4 m long hump. 

Speed lumps Two or more speed humps with gaps spaced to allow fire-rescue vehicles to pass 

without slowing. 

Rumble Strips Low bumps across road make noise when driven over. 

Chicanes Curb bulges or planters (usually 3) on alternating sides, forcing motorists to slow 

down. 

Roundabouts Medium to large circles at intersections. 

Pavement 

treatments 

Special pavement textures (cobbles, bricks, etc.) and markings to designate special 

areas. 

Bike lanes Marking bike lanes narrows traffic lanes. 

“Road diets” Reducing the number and width of traffic lanes, particularly on arterials. 

Horizontal shifts Lane centreline that curves or shifts. 

2-lanes narrow to 1-

lane 

Curb bulge or centre island narrows 2-lane road down to 1-lane, forcing traffic for 

each direction to take turns. 

Semi-diverters, 

partial closures 

Restrict entry/exit to/from neighbourhood. Limit traffic flow at intersections. 

Street closures Closing off streets to through vehicle traffic at intersections or midblock 

“Neotraditional” 

street design 

Streets with narrower lanes, shorter blocks, T-intersections, and other design 

features to control traffic speed and volumes. 

Perceptual Design 

Features 

Patterns painted into road surfaces and other perceptual design features that 

encourage drivers to reduce their speeds. 

Street Trees Planting trees along a street to create a sense of enclosure and improve the 

pedestrian environment. 

Woonerf Streets with mixed vehicle and pedestrian traffic, where motorists are required to 

drive at very low speeds. 

Speed Reductions Traffic speed reduction programs. Increased enforcement of speeding violations. 

 

 

 

2.4.2 History of traffic calming measures 

 

During the 1950s and 1960s car ownership in Europe increased almost exponentially. This 

resulted in rapid increase in traffic and caused extreme pressure on the existing street 

network. At that time, transport professionals were interested in facility building to solve 

capacity problems and the solution was adding more lanes to the roads or by building new 

traffic roads leading into and through town centres. Many breakthroughs of streets were 

implemented in the belief that very optimistic traffic forecasts would prove true. Early traffic 
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planning moved in the name of progress without any significant objections from residents 

and light road users. The increasing and unsolved capacity problems of roads caused queuing 

and delay, which motorists often considered unacceptable. As a consequence, many motorists 

bypassed the roads by using the adjacent local roads as shortcuts. In many local areas, the 

traffic became too intense for children to play and adults to stay on or near the local roads. In 

many places, they tried to solve the through traffic problem by closing the troubled local 

roads at one end or midway. However, the fire brigade and police authorities protested, 

seeing it as a hindrance to responding to emergency calls. Motorists claimed that the closings 

caused inconvenient detours. As a result, the question of where to close the road continued to 

be a point of disagreement in many places. 

 

Gradually, as historical buildings of national interest were bulldozed and whole districts were 

split up by new traffic arteries, a protest movement grew up. In many places it managed to 

stop or delay road projects. In many main streets in the large town centres pedestrian streets 

were laid out as an experiment. Vans could bring goods to the shops only within defined 

hours. Many of these experiments were made permanent because they turned out to be very 

successful for shopkeepers as well as for customers. The rapidly increasing traffic intensity 

on both traffic roads and local roads led to an increase in accidents, particularly between cars 

and light road users. 

 

At the beginning of this period there was a strong belief that traffic problems, particularly 

traffic safety problems, could be solved by separating the slow-moving light road users from 

the fast-moving heavy road users and by classification of road network in terms of function 

and capabilities. At the same time, oversight, simplicity, and uniformity were emphasised in 

the design of the traffic environment. The idea behind this work was to remove conflicts 

between cars and light road users. The two categories were to have their separate road 

networks, and crossings between paths and roads were to be grade-separated. These traffic 

planning ideas were internationally recognized and applied throughout Europe, where urban 

development’s took place on virgin lands. 

 

However, implementing the ideas in existing cities created problems. In Holland, narrow 

streets in the old towns had too little space left for the separation model. In Delft, residents 

lost patience with through traffic and alien parking in their local streets. Following the lead of 

the 1968 anti-authoritarian movement, they took the matter into their own hands. With the 
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town planner Joost Vahl as their anchorman the narrow streets along the channels were 

reconstructed for “traffic integration.” The entire road area was designed and organised as a 

leisure area with tables, benches, sand boxes, but leaving space for cars to travel through the 

area at walking speed. Speed was physically reduced by means of humps and narrowing. This 

solution, known as the “Woonerf design” was the first traffic calming initiative. The Woonerf 

idea swept through the whole of Europe, especially from the mid-1970s. An early systematic 

approach to speed management emerged from the Swedish SCAFT guidelines (Statens 

Byggeforskningsinstitut 1969), which suggested a speed limit less than 50 km/h for the two 

lowest road classes (primary and secondary access roads). In 1973, Sweden allowed the 

marking of local streets with a speed limit of 30 km/h. In Denmark, an amendment to the 

Road Traffic Act in 1976 permitted the establishment of roads primarily for playing and 

pedestrians in which traffic took second place (Larsen et al. 1978). Give-way was reversed on 

these roads: motorists were to yield to pedestrians. The Dutch “Woonerf design” which was 

legalised in Holland in 1976, became known in Denmark as “Section 40 areas” or “shared 

areas.” As in Holland, speed was controlled primarily by physical speed reducing measures. 

The Danish Section 40 roads were to be established mostly where residential zones were 

particularly in need of areas for pedestrians and playing. In the local roads where regard for 

the light road users made it desirable to reduce the speed of the traffic to a maximum of 30 

km/h without reversing the give-way obligation, physical speed reducing measures were 

allowed. Such roads came to be known as “silent roads.” In connection with the first oil crisis 

in 1973, several restrictions were temporarily introduced on car traffic with a view to saving 

energy throughout Europe. One measure was the “no driving on weekends” prohibition. 

Driving was allowed in vital cases only. This encroachment on freedom to move in 

combination with the resulting silence and clean air had a profound impact on people’s 

perception of the positive and negative aspects of traffic. It prompted a growing concern for 

the environment among residents in traffic issues. 

 

One other means to control fuel consumption was by introducing speed limits. Before the oil 

crisis, speed limits were fairly liberal, and the reason for using them was more concerned 

with the safety of the motorists than with the light road users. The Traffic Acts of most 

countries did stipulate that one should drive as carefully as the conditions would allow. 

Nevertheless, it was interpreted by many motorists to mean the capabilities of driving 

dynamics rather than paying attention to the surroundings and the safety of other road users. 
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In the beginning, traffic calming on local roads was relatively expensive. In view of the short 

supply of money, particularly in the public sector, many people found that after the second oil 

crisis in 1979, the money was better spent on improvement in traffic roads where accidents 

were more frequent. At some sites, physical speed reducing measures were applied to traffic 

roads despite opposition from business circles, bus companies, motorists and, to some extent, 

the police. Experience from a large-scale Swedish experiment involving the marking of a 

speed limit alone without any physical speed reducing measure had indicated an effect on 

traffic safety, but no significant reduction in speed to the desired 30 km/h down from 50 km/h 

had been obtained. The same result was experienced in Norway where increasing traffic and 

a reduced respect for speed limit signs aggravated traffic safety and security problems for 

residents near village through roads. The construction of a bypass was very costly in the 

Norwegian mountains, which forced the Norwegians to think along new lines. The 

Norwegians established three strategies for a solution to the problems. (Jensen and 

Kildebogaard 1981; Statens Vegvesen 1979).  

 

The DfT has supported these kinds of schemes all over the UK, and it has been claimed that 

these measures improve accidents and safety especially in the very busy residential areas. As 

explained earlier, all measures are affected and regulations enacted to enforce its 

implementations (DfT: 2010b). 

 

 

2.4.3 Traffic calming techniques 

 

According to Transport for London (2005) there is a wide range of traffic calming techniques 

available, including visual appearance, speed cameras and variable signs, access control 

measures, priority changes, horizontal and vertical alignment changes. 

 

A driver’s behaviour can be changed by altering the road appearance encouraging drivers to 

slow down. This can be achieved by breaking up long lengths of wide road with visual 

measures such as road markings, to create the impression that the road is narrowing. A 

similar reaction can be achieved by using different coloured or textured road surfacing or by 

using road furniture such as bollards, islands or tree planting to alter the character of the road. 

This approach is particularly suitable for new developments. Speed cameras and variable 

signs are a feasible alternative to speed humps, either using spot speed camera’s or time 
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distance series of cameras, in which the average speed along long lengths of road can be 

calculated. Vehicle Activated Signs (VAS) can also be used to warn drivers that they are 

driving too fast. 

 

Access control measures such as width restrictions can reduce the volume of traffic using a 

road for rat running. Changing traffic light phasing can also discourage traffic rat running 

along pedestrian or unsuitable roads. Mini roundabouts at road junctions can be used to slow 

traffic on all approaches to the junction. Chicanes can be used to deflect traffic making 

drivers slow to negotiate the road layout (TfL 2005). 

 

Hargreaves (1997) points out that vertical access control measures include speed tables, 

speed humps and speed cushions. These methods must be designed taking account the needs 

of all road users especially in areas where there is a bus route. Harvey (nd.:section 4) 

describes speed cushions as raised portions of carriageway with a flat top, which extend over 

a section of the carriageway width. This design allows cyclists and large vehicles for example 

buses to pass the traffic calming measures unhindered. 

 

Speed cushions can be either a single cushion located in the centre of the carriageway or two 

cushions located side by side. An alternative arrangement is to have two cushions with build-

outs to prevent cars parking close to the cushions, forming an obstruction. 

 

Speed tables consist of an extended flat-top hump with a minimum 6 metre long plateau with 

ramps and are designed to reduce discomfort of traffic calming measures on long wheel based 

vehicles. Another traffic calming technique is to raise the levels of a junction on all 

approaches, which is similar to a speed table, but covers the whole junction, with the 

advantage of calming two streets with one measure. Rumble devices consist of installing 

coarse textured road surfacing located in strips at decreasing intervals, causing the driver to 

slow down. However, these need to be located away from residential areas as they can cause 

noise nuisance. Finally, round-top road humps can be used to create a barrier in the road 

making drivers slow to avoid vehicle damage (TfL 2005). 
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2.4.4 The benefits of traffic calming measures  

 

Hargreaves (1997) summarised the benefits of traffic calming including that these traffic 

management methods could reduce the traffic using a residential road as drivers seek routes 

without traffic calming. Traffic calming measures can reduce the speed of vehicles and this 

has corresponding improvements in safety and a reduction in noise from high-speed vehicles. 

Another advantage is that the number of heavy goods vehicles using the residential street 

could be halved. The traffic calming measures could be designed and constructed to the same 

level as the footpaths thus creating a safe crossing area. The disadvantages of traffic calming 

measures include emergency vehicles could take longer to travel along a calmed road and the 

journey would not be as comfortable as driving along a road with no humps. 

 

Int Panis et al. (2006) carried out a study on traffic calming measures in Belgium, where 

whole districts were converted in 30km/hr zones, usually in residential areas. The aim of 

these measures was to improve road safety. These schemes were also promoted as improving 

the environment through lower fuel usage and reduced air pollution. Int Panis et al. (2006) 

investigated the correlation between reducing traffic speed and air pollutant emissions. Using 

real life urban driving cycles and the VeTESS tool to calculate emissions for specific types of 

modern cars, Int Panis et al. (2006) compared real life emissions with artificially modified 

driving cycles limiting the top speed to 30 km/h where appropriate and elongating the cycle 

to preserve the original cycle distance. The study concluded that with the exception of PM 

from diesel engines, the most common air pollutants did not change substantially due to a 

decrease in speed.  

 

Research shows that traffic calming measures can be effective in reducing speed, accidents 

and noise and that the most effective traffic calming measure with respect to speed reduction 

is vertical changes to the carriageway. However, these measures are only effective if the 

speed humps or speed table are spaced sufficiently close together to make drivers slow down. 

Harvey (nd.:section 5) points out that a survey of 35 traffic calming schemes in the UK found 

that the average reduction in speeds was 16 km.hr. If these measures are designed correctly, 

with measures located within 60m of each other, then it is possible to see that 85 percentile 

travel at a speed of less than 30kph. These reductions in speeds have a positive impact on 

accident rates, with slower vehicles reducing both the accident rate and the severity of the 

accidents. According to Pharoah & Russell (1989) a study in Germany found that accidents 
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rates decreased from 6.2 per 100,000 of population to 2.3 per 100,000 in areas where traffic 

calming measures had been implemented. Harvey (nd.:section 5) also cites a study in 

Denmark which reviewed 600 traffic calming schemes in Denmark and found that these 

schemes had a 43% lower accident rate than untreated zones. Traffic calming measures can 

also lead to a reduction in noise, which is attributed to lower traffic volumes and speed. 

Pharoah & Russell (1989) suggest that traffic calming measures can also lead to a reduction 

in air pollutant emissions resulting from lower speeds but reduction levels were influenced by 

driving style. Harvey (nd.:section 5) cites a study in Germany which monitored vehicle 

emissions before and after the implementation of traffic calming and found that the traffic 

calming measures resulted in a decrease in Carbon Dioxide levels of 20% with a reduction of 

10% in Hydrocarbons and 33% in Nitrogen Oxide. 

 

In a Tyne and Wear study on bus lanes, which can be used as a means of traffic calming 

(Mulley et al, 2007), very few of the accidents in the study area were linked to the new 

priority measures on the traffic lanes. Contravention of the road traffic measures only 

occurred in 0.7% and 2.4% for different cases. However, a lower level of traffic was seen 

were it was postulated that it used different routes and cut through. There was uncertainty 

whether traffic journey times increased, with some increasing and some reducing although 

there were also other traffic changes at the time of the study which may have affected these 

results.   

 

Car users are shown to dislike traffic calming measures in surveys, bus operators are shown 

to believe that any kind of priory system for buses was a good thing (Mulley et at, 2007), 

although cyclists and pedestrians are shown to generally have a more positive response to 

them.  As they force traffic to move at a slower speed they are likely to reduce accidents and 

make the environment more pleasant for non-motorised transport and pedestrians. The lower 

speeds and potential requirement for vehicles to start and stop would result in higher traffic 

emissions, which would increase the influence of the cars on climate change, particularly 

from cold engines, when vehicles are on short journeys. The increased amount of stopping 

and starting could increase the noise level, although the overall lower speed would decrease 

the noise level so any assessment on noise levels would need to be considered more carefully 

on a case by case basis.  As mentioned by Mulley et al (2007), as traffic calming measures 

could lead to traffic rerouting their journeys, it may just move the problem to another area 

rather than result in lower speeds and less accidents.  
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Hargreaves (1997) carried out a study into attitudes to traffic calming measures. The study 

involved asking residents of a residential area in Leeds to choose between three options, 

leaving the streets as existing without traffic calming measures, choosing round-topped road 

humps construction with tarmacadam or flat topped road humps constructed using block 

pavers. Respondents living on the primarily residential streets were asked to choose between 

three options.  Respondents living in an area with mixed priority streets were given five 

options, the three previously mentioned plus an option for speed cushions, which are small 

tarmacadam humps that buses can straddle and small cars can avoid going over them. There 

respondents were also given an option of pinch points or chicane which is a localised 

narrowing of the roadway. All the devices were to be placed at 60m intervals and road humps 

were to be 100mm high. The study found that a significant number of residents on the mixed 

priority route were against traffic calming measures despite the higher volume of traffic and 

traffic speeds experienced along these roads. Residents in these areas justified their choice by 

stating that they had chosen to live in a mixed priority area specifically for easy road access 

and public transport routes, they had developed resilience to the impacts of high volumes of 

traffic and believed that these “through roads” were not suitable for traffic calming measures. 

On the mainly residential streets, the residents not in favour of traffic calming measures were 

strongly opposed to traffic calming schemes. The researchers concluded that people’s views 

on traffic management measures such as traffic calming is largely based on current personal 

concerns and circumstances at that time. Where residents were in favour of traffic calming, 

road safety was a priority, stating that traffic calming measures would ensure that traffic was 

diverted to more appropriate roads. Aesthetics of the speed humps were important to 

residential areas. In the mixed priority areas, there was opposition to the pinch points as it 

was believed that these would cause problems for drivers navigating the road and could cause 

problems for parking. Some respondents believed that the flat topped speed humps could be a 

safety hazard as pedestrians may believe that they had priority over road vehicles. Most of 

those polled who were in favour of traffic calming chose speed cushions as the preferred 

method, stating that other types of traffic calming measures were uncomfortable for drivers 

(Hargreaves 1997). Speed cushions are also considered the best solution along bus routes as 

they have less impact on the bus, do not substantially affect bus passenger comfort levels and 

reduce speeds (TfL 2005). 
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2.4.5 Analysis of traffic calming measures 

 

Relatively few studies have attempted to quantify the energy and environmental impact of 

traffic calming measures. Litman (1999) studied the benefit and cost of traffic calming 

measures and not surprisingly concluded that traffic calming strategies that reduce traffic 

speeds and smooth traffic flow can generally reduce air pollution, while those that increase 

the number of stops may increase emissions. He also found that when traffic calming reduces 

vehicle speeds from 50 km/h to 30 km/h for an ‘‘Easy Driver,” savings in CO, HC, Nox, and 

fuel consumption in the range of 13%, 22%, 48%, and 7%, respectively, are achievable. In 

the case of the ‘‘Aggressive Driver” savings in CO, HC, and Nox in the range of 17%, 10%, 

and 32%, respectively are observable with increases in vehicle fuel consumption in the range 

of 7%. He concluded that most emissions models are designed for highway conditions and 

are poorly calibrated for lower-speed travel and thus not effective in evaluating traffic 

calming measures.  

 

Pharoah (1991), found that traffic calming measures with smooth and low speed driving in a 

high gear may result in relatively low emissions and that the effect of traffic calming 

strategies on air quality depends on how the scheme influences both the average speed of 

traffic and the amount of speed variation. While some studies found that traffic calming 

measures benefit air quality, several concluded they increase vehicle fuel consumption and 

emissions. Several previous studies indicated that traffic calming measures can increase the 

emissions from passenger cars. In particular, Hyden showed that traffic circles (or 

roundabouts) increased CO and Nox emissions by 5% (Hyden et al., 1995). Höglund and 

Niittymaki (1999) studied the effect of speed humps during peak and non-peak hours using 

the speed profiles of traffic simulation and computerized emission calculations and found that 

speed humps are responsible for an extra 76%, 32%, 26%, and 19% in HC, CO, Nox, and 

fuel consumption estimates, respectively, compared to a no-speed hump alternative for a 50 

km/h speed limit scenario (Höglund and Niittymäki, 1999). Boulter (1999) also found that 

traffic calming measures increase HC and CO emissions by 54% and 59% respectively and 

CO2 emissions by 26% (Boulter et al., 1999). Boulter (1999) and his colleagues also 

developed a methodology for constructing the driving cycles of speed hump measures. The 

study utilized the measurement of the speed profiles of a large number of vehicles using a 

roadside Light Detection and Ranging (LIDAR) system (Boulter et al., 1999). Also, Daham 

et al. (2005) carried out research by simulating braking and acceleration events to mimic 
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speed humps by driving a normal road using an on-road emission measurement device, found 

that speed humps increase HC, CO, Nox, and CO2 emissions by 148%, 117%, 195%, and 

90%. 

 

Ahn and Rakha (2009) carried out a case study to evaluate the energy and environmental 

impacts of various traffic calming measures. Second-by second GPS field data were collected 

using a passenger car and a sport utility vehicle at three different sites with different traffic 

calming measures, including traffic circles, speed humps, speed lumps, speed bumps, and 

stop sign intersection control measures. While traffic calming measures reduce vehicle speeds 

on neighbourhood streets and may contribute to enhanced road safety, these measures can 

result in significantly higher fuel consumption and emission rates when drivers accelerate 

aggressively. They also found that newly installed speed lumps could be responsible for extra 

fuel consumption. Traffic circles produced the least increases in vehicle fuel consumption 

and emissions and the case study showed that, in general, traffic circles allow smoother 

driving patterns with milder acceleration behaviour when compared to speed humps and stop 

signs. The results also demonstrate reductions when stop signs are replaced by traffic circles. 

The study indicates that by eliminating sharp acceleration manoeuvres significant energy and 

emission savings can be achieved. Consequently, significant improvements in air quality and 

energy consumption may be achievable through driver education.  

 

Galante et al. (2010) investigated drivers’ speed behaviour in a section of a rural highway 

crossing a small urban community in the existing scenario without any traffic calming device 

and in two different scenarios with traffic calming in the urban community. Two gateways 

and four integrative traffic calming devices along the route within the urban area were tested. 

The gateways were aimed at slowing down the vehicles entering in the built-up area, while 

the traffic calming devices were aimed at complementing the gateway effect inside the built-

up area. Simulation results were validated by the comparison of speed behaviour in the real 

world and in the driving simulator, in the scenario without traffic calming. Analysis of 

simulation results showed a different behaviour of drivers approaching the urban community 

in the existing scenario and in the design scenarios. In the south direction, mean speed 

reduction ranging between 16 and 17 km/h, with 5% level of significance was observed. In 

the north direction, mean speed reduction equal to 11 km/h, with 10% level of significance, 

was observed. Differences between the two design alternatives were not significant. Along 

the urban community, a statistically significant mean speed reduction was observed only in 
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the south direction. In the north direction, mean speed reduction was not statistically 

significant. Overall, combined results of cluster analysis and statistical tests showed that the 

treatments were more effective in the direction with higher speeds in the base scenario. 

 

Elvik (2001) conducted a meta-analysis of 33 studies that have evaluated the safety effects of 

area wide traffic calming measures in urban residential areas. Traffic calming consisted of 

measures designed to discourage non-local traffic from using residential streets and reducing 

the speed of the remaining traffic. Roads designated as main roads were upgraded to handle a 

greater traffic volume without a corresponding increase in the number of accidents. On the 

average, evaluation studies showed that area wide traffic calming reduces the number of 

accidents by about 15% in the whole area affected by the measures (main roads and local 

roads combined). There was a greater reduction in the number of accidents on local roads 

(about 25%) than on main roads (about 10%). Results vary considerably between evaluation 

studies but the method adopted in the meta-analysis (random effects model) accounted for 

these discrepancies. Studies were classified in five groups, depending on how well the study 

design controls for confounding factors. There was a tendency, albeit not very strong, for 

weakly controlled studies to find greater effects of traffic calming than well-controlled 

studies. The results of the evaluation studies were stable over time and of similar magnitude 

in eight countries that have reported evaluation studies. It was in principle impossible to rule 

out the possibility that uncontrolled confounding factors account for the results of the 

evaluation studies. It seemed more likely that the results of at least the best-controlled studies 

mostly reflect the effects of traffic calming. 

 

Boulter et al. (1999) developed a methodology for deriving cycles to represent driving 

patterns before and after the installation of different traffic calming measures. For the first 

scheme in the study the driving cycles were derived from a combination of remote speed 

measurements, obtained using a LIDAR device, and speed and gear-change data recorded 

using instrumented cars. The feasibility of selecting a number of instrumented car speed 

profiles to correspond to a representative sample of LIDAR profiles was confirmed in tests at 

TRL and in real traffic. It was found that the range of instrumented car measurements 

covered the range of the LIDAR measurements if the results from two different instrumented 

cars were used. However, although the LIDAR system was capable in principle of measuring 

‘real’ driver behaviour, certain aspects of its operation suggested that it was probably not the 

definitive technique. A single driving cycle was considered sufficient to represent all 
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categories of car. However, the amalgamation of mini-cycles resulted in driving cycles that 

were difficult to follow on the dynamometer and had unrealistic gear change patterns. 

Consequently, a smoothing function was applied to the speed data to make the cycle more 

driveable, and gear-changes were simply set to occur at given speeds. As gear-change data 

was no longer required for the remaining schemes, the LIDAR speed profiles alone would be 

used to construct the driving cycles for the remaining schemes. Cars which conform to a 

range of size and emission-control legislation were driven over the cycles on a chassis 

dynamometer whilst emissions of CO2, CO, HC, Nox, and particulate matter were measured 

continuously. Emissions from heavy-duty vehicles will be estimated using speed-dependent 

functions. The emissions from each category of vehicle g/km were weighted in proportion to 

the total number of vehicles in that category observed passing through the scheme.  

 

 

2.5 Transport problems in developing countries 

 

In the developing countries, situation of transport related problems are not different form the 

developed world. Many cities of the developing countries are struggling with the congestion 

problems and pollution. With the advent of less expensive modes (i.e. motorcycles), the 

situation has worsened in many metropolis including Bangkok, Delhi, Karachi etc. In the 

large cities of the developing world, travel times are generally high and increasing, and 

destinations accessible within limited time are decreasing. The average one-way commute in 

Rio de Janeiro is 107 min, in Bogota it is 90 min. The average vehicle speed in Manila is 7 

miles per hour. The average car in Bangkok is stationary in traffic for the equivalent of 44 

days a year (Gakenheimer, 1999). The number of cars is increasing on the basis of increased 

populations, increased wealth, and increased commercial activities. Accordingly, in much of 

the developing world the number of motor vehicles is increasing at more than 10% a year–the 

number of vehicles doubling in 7 years. Although there is much less research and 

development in the field of planning technique in the developing countries and public 

budgets are limited, they have certain important advantages in mobility innovation relative to 

developed economies. These include some cases in which there is 

1. Stronger authority to increase mobility. There are countries in which urban governments 

have much more authority than in the developed world. Many of the countries have more 

power in central government guidance of local action. 
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2. Lower personnel cost relative to capital costs. This simply results in different choices of 

actions, sometimes with consequences worth the attention of wealthier countries. 

3. Fewer regulatory and legal barriers. These permit the introduction of guidance that would 

be halted in the developed world by fear of law suits in the case of malfunction. 

4. Less convention in problem solving. In countries where transportation planning is a 

professional tradition, thinking is more conventional and there may be less scope for 

innovation. 

5. A larger stake in solving mobility problems that better supports public action. This is 

because the problems are worse. The cities of the developing world have motorized faster, 

leaving urban structure further out of adjustment than in developed world cities. 

6. Perceptibly growing problems. In many developing cities congestion is growing at a rate 

easily perceived year to year by even a casual observer. This public awareness is leverage 

toward action in some cities. 

Transportation in UAE acquires a great deal of the public services investments. The overall 

federal and local investment spending on land transport projects in the UAE has touched Dh. 

86 billion over the period from 1985 to 2002. According to a study by the Ministry of 

Planning, most of that amount was expended in construction, replacement, refurbishment, 

expansion, lighting and landscaping of roads, bridges and tunnels. The study indicates that 

the lengths of paved highways rose to 3969 kilometres in 2002 that is 393 kilometres more 

than the 1985 figure (www.uae.gov.ae/mop). The transportation system in UAE experiences 

many difficulties that may be summarized as bellow:  

A study held by the Ministry of Planning, declares that the number of vehicles in the UAE 

almost doubled to reach 820,000 motors in 2002 from 443,000 in 1985, with an annual 

increase of 9.2 %, which is remarkably more than the population growth rate of 6.5 % and 

even higher by 7.1% than the annual national income growth rate. It attributes the increase in 

number of vehicles in the country to a group of factors, mainly the high living standards and 

competitive credit facilities on offer by financing agencies as well as other factors. The Abu 

Dhabi Emirate has the lion's share of vehicles, with 312,833 automobiles passing through its 

streets; these represent 42% of the total number of motors throughout the country, according 

to the study, Dubai comes second with 285,951 vehicles (38.4%) followed by Sharjah (9.8%), 
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Ras Al-Khaimah (3.4%), Ajman (3.1%), Fujairah (2.4%) and Umm Al-Qaiwain (0.9%) 

(www.uae.gov.ae/mop). 

Nowadays, Dubai is a materialized example for traffic congestion in UAE, due to increasing 

numbers of cars. Recent statistics assert that there are 465,000 vehicles registered in the 

Emirate, in addition to 5,000 taxi cars (www.dm.gov.ae). However, there is a significant 

amount of residents of neighbouring Emirates who are working in the city. This means there 

are more than a million vehicles on Dubai’s roads, making an average of 3.1 million trips 

each day. Furthermore, the number of vehicles in use is increasing rapidly. The annual 

growth rate of vehicles in Dubai is currently 12% and the growth pattern is likely to continue. 

It is expected that Dubai’s population will reach four million in 2020, while the number of 

trips is expected to go up to a staggering 13.1 million trips per day (Nick, 2005). Likewise, 

increasing numbers of vehicles affects strongly the other difficulties that the transportation 

system is undergoing in UAE. There is a common concern over rising pollution levels in 

UAE. Vehicles are to blame for 80% of pollution. Vehicular violations in the UAE caused 

environmental pollution through gas emissions beyond the limits allowed by the law set by 

the country, has ranged between 13 to 25 % during 1999-2003. Problems of environmental 

pollution resulting from car exhausts, has surfaced as one of the most acute problems of 

vehicles plying on the road (Mussallam, 2005). Emissions of harmful gases pose health and 

environmental hazards and need to be reduced to a degree that guarantees unpolluted air and 

a hygienic environment. This situation demands a thorough consideration of new public 

transport policies and for that proper assessment of these measures. 

 

 

2.6 UAE background and transport system 

 

The United Arab Emirates (UAE) was formed by the joining of some organized Arabian 

Peninsula sheikhdoms. Before it gained independence UAE was under the protection of 

Britain and was known as the Trucial Oman or in other words Trucial States. At around 1952, 

the Trucial Council which comprised of rulers from the different sheikhdoms was formed 

with the main aim of ensuring the sheikdoms adapted common policies and especially in 

administrative matters. In 1971 the sheikhdoms acquired independence from the British and 

changed the name to UAE under a common constitution. At the time that the UAE was being 
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formed i.e. 1971 only six of the seven sheikhdoms were on board with the last sheikhdom 

joining the UAE in 1972 (Walker and Butler, 2010).  

 

The most common means of transport in the UAE is usually by cars. Surveys have shown 

that cars constitute the largest means of transportation in UAE while buses and motorcycles 

then follow respectively. For a person to own car in UAE he or she must have a UAE 

residence visa otherwise taxis are the most common means of transport. The transport system 

in UAE is a bit strange as taxis are only allowed to take a passenger from their registered 

Emirate and drop them anywhere but cannot pick passengers from any other Emirate apart 

from where they are registered (Oxford Business Group, 2008). This system in one way or 

another might prove to be costly to the passengers because when a taxi drops a passenger in 

another Emirate it has to return empty without any passengers and since it’s a business the 

total cost is passed onto the passenger. As a way of reducing the cost, many people prefer 

boarding the same taxi. Most of the taxis charge their customers by meter while others base 

their charges on the prices issued by the Emirates. Buses are also commonly used but are not 

preferred by many passengers because of the rigid routes that they have to follow (Nick, 

2005).  

  

2.6.1 Transport and traffic problems in UAE 

 

According to El Mallakh (1981), transportation is a major component of any society across 

the globe but with most of the transportation systems in UAE relying on fossil fuels which 

have been termed as major cause of environmental issues such as global warming there have 

been calls for technology that can solve the transport system while at the same time 

safeguarding the environment. Evidently, with most of the cities in UAE experiencing 

transformations in several aspects such as economic and social, physical transport 

infrastructure have been affected in one way or another. Most of the transformations that 

have taken place in most cities of UAE have been initiated by other things other than 

sustainable development.  The transport systems in UAE have consumed a lot of resources 

with most of those resources being channelled to construction of transport infrastructure 

(Hester and Harrison, 2004).  

 

El Mallakh (1981) points out that the transportation in UAE and specifically the road system 

experiences several problems with the major ones being an ever increasing number of 
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vehicles. A survey carried out in UAE showed that the number of vehicles almost doubled 

between 1985 and 2002. The amazing bit of the survey was that the number grew at a higher 

rate than any other sector including the population and the national income. With regard to 

this, the main reasons as to why the rate at which vehicles increased was high include high 

standards of living among the residents of UAE, and financial agencies that are offering 

credits at very competitive rates among others. Among all the seven Emirates, Abu Dhabi has 

been found to have the greatest share of all the vehicles in UAE with an approximation of 

42%. The statistics also showed that Dubai has the second largest number of cars in UAE. 

Residents from neighbouring Emirates who work in Dubai seem to increase the number of 

cars found in the city. It is estimated that the rate at which cars in Dubai are increasing is 

about 12% but with likely to continue increasing with the increase in population, which 

something will further increase other types of problems associated with traffic in UAE (Al-

Zubaidi and Sabie, 2002). 

 

Another challenge that UAE transport system faces is the increasing number of road 

accidents.  The issue of road accident is not only in UAE but a global challenge with statistics 

from World Health Organization (WHO) showing that more than 15 million people lose their 

lives as a result of road accidents. The statistics further show that road accidents are more 

rampant in developing countries than in developed countries. Road accidents have been 

described as the second largest cause of death among the UAE residents. Further still road 

accidents cause more trauma than any other form of accidents (Al-Zubaidi and Sabie, 2002). 

It has also been found that most of the UAE citizens lost a lot of property through road 

accidents. It is worthy noting that the accidents have far reaching implications on the socio-

economic activities of UAE since a lot of resources have to be spent in addressing issues 

related to road accidents. It is approximated that UAE experiences fatal road accidents six 

times more than United States or even Europe. For example, in the year 2002, UAE recorded 

about 10,800 road accidents with more than 750 people losing their lives in those accidents 

(El Mallakh, 1981).  

 

Another problem brought about by traffic not only in UAE but across the globe is pollution of 

the environment. As earlier mentioned, the number of vehicles in UAE has been growing at 

an alarming rate and since they make use of fossil fuels their contribution to pollution has 

been rated as the highest with about 80% of all the pollution in that country being directed to 

transport mechanisms (Al-Zubaidi and Sabie, 2002). In an effort to reduce the amount of 
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greenhouse gases emitted by vehicles, UAE came up with some laws which have not been 

fully adhered to. Greenhouse gases which mostly originate from fossil fuels and in particular 

vehicles result to global warming (Hensher and Button, 2003). Vehicle emissions are not only 

harmful to the environment through causing of global warming and climate change but also 

on public health as a number of those emissions have been found to be carcinogenic in 

nature. This is a great concern especially given that a very large portion of UAE residents live 

in cities which are in turn overcrowded with vehicles whose emissions pose a great risk to 

their lives. Traffic police in UAE have been involved in monitoring the motorists who do not 

adhere to laws that are intended to reduce traffic pollution. Apart from the emission the traffic 

also pollutes the environment through noise pollution and therefore measures should be taken 

to ensure that the ever growing vehicle number is constrained and the issue of transport 

demand handled in a sustainable manner. For this to be so there will be need for policies and 

supportive framework which will ensure such measures are taken and implemented fully 

(Nick, 2005). 

 

 

2.6.2 The travel demand management in Abu Dhabi city and Dubai city 

  

According to Schulte-Peevers (2010), Abu Dhabi is the largest city in the Abu Dhabi Emirate 

and it is also used as the centre of the government.  The city has a population of about 1.5 

million people and plays host to headquarters of quite a number of oil companies. With that 

kind of a population, government offices and a number of oil companies headquarters, it is 

essential for Abu Dhabi to manage its transportation effectively otherwise businesses in the 

city might be greatly affected. In Dubai the transportation is usually managed and controlled 

by the Dubai’s Roads and Transport Authority (RTA) (Littman, 1999). As mentioned earlier 

most of the transportation in UAE depends on road transport and mostly cars and buses. The 

RTA runs a bus system which operates in 193 routes during weekdays and transports more 

than 30 million people every week. Despite having a very large public transport bus system, 

the demand is far higher than the system can hold and therefore in busy stations commuters 

can spend well over an hour before boarding a bus.  

   

Even though it was earlier mentioned that the number of vehicles in UAE increases at a faster 

rate than the population, the scenario is different when it is compared between the public 

buses and the number of commuters i.e. the number of commuters increases at a faster rate 



 81 

than the number of public buses hence the reason why commuters may stay well over an hour 

before getting a bus to board. In an effort to address the challenge the RTA has always 

endeavoured to increase the number of buses operating in the different routes (Litman, 1999, 

: Nick, 2005). A very good example is where the RTA decided to have a new fleet of buses 

that have state of the art technology such as GPS and voice systems that are used to announce 

next station among others.  

 

It is believed that Dubai is the most congested in terms of commuters in the whole of Middle 

East something which makes residents spend about two hours commuting to and from work. 

In response to the traffic congestion the UAE government has invested greatly in the traffic 

infrastructure. Most of the Dubai’s residents worry more about traffic congestion than 

anything else. Dubai has the largest number of registered car ownership with about 540 

people out of every 1, 000 owning a car a rate which is far higher than those of other major 

cities in the world such New York, London and Singapore among others. Some analysts 

argue that the traffic congestion that is experienced in Dubai and UAE in whole is due to 

flawed road system (Al-Zubaidi and Sabie, 2002).  

 

In an effort to ease traffic congestion mostly in Dubai, RTA decided to come up with a 

master plan which involves the construction or extension of the roads by a further 500km 

with about 120 interchanges by the year 2020. The master plan is also aiming at reducing the 

number of deaths that result from traffic accidents from 17% to about 5% before 2020 

(Sambidge, para 2). RTA is also considering coming up with policies that will reduce the rate 

of vehicle ownership while at the same time make it more attractive for the residents to make 

use of public transport.  The specific measures which the master plan proposes include bus-

dedicated lanes, separate zones for both pedestrians and cyclists, the use of toll gates systems 

and coming up with policies and laws that will govern how vehicles are registered and drivers 

licensed (El Mallakh, 1981). This move will ensure that the most competent driver gets to be 

licensed and faulty vehicles which have higher chances of causing accidents do not find their 

way to the UAE roads. As earlier mentioned the RTA proposes to introduce a new fleet of 

public buses with state of the art technology which would be used to encourage people to 

make use of public transport rather than have many cars that will result to traffic congestion.  
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2.6.3 Speed calming measures in Abu Dhabi city and Dubai city 

 

One method that authorities in UAE and specifically in Dubai and Abu Dhabi have realized 

could be of great use in curbing speeding is the use of painted pavements, sleeper lines and 

new signs. The authorities have also identified the strategic points where these measures will 

be put i.e. transitional distances where it is alleged that motorists either accelerate or 

decelerate (Ismail, n.d para 1). This implies that the plan intends to have these speed curbing 

measures installed in all major roads and specifically transition points of rural and urban. 

Painting the road with colour red would be used to mean that there is a drop in speed limit 

and therefore the driver should adhere to the warning by dropping the speed to the required 

limit. The colour if effectively used would always act as an alert for drivers that they are 

entering an area with a different speed limit and therefore their attention is fully required.   

  

The installation of sleeper lines which is another proposed measure is to ensure that 

inattentive drivers are always reminded of the potential hazards that are on the road. The 

sleeper lines are also referred to as rumble strips and they work by sending some vibrations 

right from the wheels through the car body to the driver and also by making some rumbling 

sound that is audible enough to attract the attention of the inattentive driver. The rumbling 

devices mostly alert drivers when they seem to drift away from their lanes and has been 

termed to be very effective in reducing the accidents that are caused by inattentive drivers 

(Ismail, n.d para 4).  

 

The rumbling devices apart from warning drivers when they drift also warn the drivers when 

there is a situation that warrants them either to stop or to detour. Another measure that was 

taken involved the changing of numerals that are used to indicate speed from Arabic to 

English in order to avoid confusion. Initially the signs that were in use incorporated numerals 

from both the Arabic and English languages with some text which clearly indicated the sort 

of vehicle but the current measure involves only the English language and in place of the text 

there are icons which show the type of vehicles affected by the speed limits. There has been a 

reduction of the distance interval between the sign posts from the previous 10km to 5km. The 

aim of reducing the interval by half is to increase the frequency at which the drivers are 

reminded of the speed limits they are required to be driving at (Ismail, n.d, para 3).  
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2.6.4 Assessment of travel demand management and speed calming measures in UAE 

 

There are several methods that are used to asses travel demand management (especially bus 

lane scheme) and speed calming measures in Dubai and Abu Dhabi cities. The RTA has been 

mandated to carry out the assessment and management of transport means and therefore all 

measures taken up to reduce traffic congestion pass through it (Bener, A., Breger, A. and Al-

Falasi, A, 1994). The only major method that can be used to assess travel demand 

management and speed calming measures is by conducting regular surveys and then 

analysing the data. The survey could be used to determine the number of people in the 

different categories such as those using public transport systems, those using private means 

and those who own cars but prefer using public transport. This data would be useful in 

assessing travel demand management only even though it could in one way or another impact 

on the speed calming measures.  

 

Assessment of speed calming measures would be carried best by determining the number of 

accidents that have been caused by over speeding and in areas where the speed calming 

measures have already been installed. With the data it is then easy for the RTA and the UAE 

authority in general to determine whether the speed calming measures have been effective or 

not. 

  

 

2.6.5 Efficiency of the transport systems in UAE 

 

The transport system and especially the bus lane scheme and speed calming measures are not 

as effective as they should be. This is because if they had been effective the issue of traffic 

congestion would have been solved and road accidents caused mostly by over speeding 

greatly reduced, but this is not the case as traffic congestion is still a problem in Abu Dhabi 

and Dubai (Bener, A., Breger, A. and Al-Falasi, A., 1994). The aim of the bus lane scheme 

was to ensure that buses have their own exclusive lanes with the roads in order to ensure that 

they reach their destinations on time and that the public do not have to wait for buses. Despite 

this there has been over congestion with so many people waiting for about an hour before 

boarding a bus something which makes many commuters revert  to other means of transport 

such as using private cars which then enhances the problem of traffic congestion (Al-Zubaidi 

and Sabie, 2002).  
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Even though the bus lane scheme might have been useful in ensuring that buses reach their 

destination without delay, it has not been effective in dealing with the whole situation of 

traffic congestion. The issue of speed curbing measures have been to some extent useful in 

reducing the number of accidents that have been caused as a result of over speeding. It is 

worth noting that the measures and especially those touching on curbing speed cannot be 

termed to be effective or ineffective as they depend on the other factors such as the 

willingness of the drivers to obey the rules.  

 

Since the issue of traffic congestion in UAE and especially in Dubai and Abu Dhabi seems to 

be recurrent there is need to have short, medium and long term solutions. The short term 

measures especially as it regards to bus lanes would be to increase the number of buses and to 

have them in different parts so that passengers do not have to wait for long before boarding a 

bus (Nick, 2005). Another measure would be to increase the number of lanes set for both 

taxis and busses and if possible have each category have their own lanes as a way of 

improving efficiency within the transport system. In the future the RTA should consider 

prohibiting private cars from entering certain sections of the city i.e. through legislation the 

RTA should ensure only buses and taxis enter certain sections of the city (Rodrigue, J., 

Comtois, C. and Slcak B, 2009). This would greatly reduce traffic congestion while at the 

same time enhancing efficiency within the transport systems.  

 

The RTA should consider other public transport means such as railways which are very fast 

and transport a lot of people simultaneously, this system that is widely used in some of the 

developed countries of the west and have proven to be cheap, fast and more reliable 

especially where people are travelling over long distances such as between Emirates 

(Rodrigue, J., Comtois, C. and Slcak B, 2009). The RTA would then ensure buses pick up the 

passengers from the rail stations and drop them in several bus stations in the cities from 

where they can walk to their points of interests or take taxis. In terms of speed reduction, the 

RTA should ensure that the drivers who are licensed are competent enough and that they 

fully understand the different road signs as well as the repercussions of breaking them. It is 

also advisable for the authorities to ensure that they there are enough police officers and 

monitoring devices to monitor and arrest those who break the laws (Musallam, 2005).  
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2.7 Gaps in the literature 

 

This literature review has shown that vehicle emissions are damaging the environment, with 

potentially catastrophic global consequences. There is evidence that people are aware of the 

implications of car travel especially when these include delays to personal journeys, 

congestion and obvious air pollution. There is also evidence that people are reluctant to 

change travel patterns. Government policy is determined to reduce the adverse impacts of car 

travel and to promote more sustainable living. Transportation planners can provide data on 

current vehicle emissions and predict future emissions using driving cycle analysis. There are 

a number of driving cycles available, with the most commonly used being the American and 

European versions, However there is increased awareness of the need for city specific driving 

cycles since emissions depend on a wide number of variants. The variants that affect the level 

of vehicular emissions include speed, type and model of vehicles, the age and maintenance of 

that vehicle, temperature and manner of driving. There are a number of measures that can be 

implemented using travel demand management, which have been proven to reduce the 

negative impacts of car travel. These measures include major schemes such as giving buses 

greater priority on road space or congestion charging. Measures could be much simpler for 

example implementing area wide traffic calming. These measures can encourage drivers to 

drive slower and can also be used to encourage a modal shift towards greater use of public 

transport. The literature review demonstrates that these measures are most affective if whole 

areas are considered, as demonstrated by the London Bus Initiative. Driving cycles could be 

used to inform and predict the potential effects of travel demand management policies. 

 

The literature review presented above suggests that transportation problems in terms of 

congestion and environmental degradation are abundant both in developed and developing 

countries. Many TDM (Travel Demand Management) measures have been tried by the policy 

makers and are continuing to test different techniques to facilitate mobility and decrease the 

environmental impacts of transport. The literature suggests that driving cycles have potential 

to test and assess different TDM measures in terms of their applicability and use.  

 

The studies carried out so far generally deal with only use of driving cycles as a tool to 

measure environmental emissions and its use as a rather powerful and common technique to 

assess the evaluation of different TDM techniques is ignored. There have been attempts to 

study TDM measures in terms of traffic calming and speed measurements with driving 
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cycles. However, there are certain gaps in the study of different TDM measures considered in 

the assessment not just partial studies on the estimation of speed and emissions.  

 

It is surprising to see that literature has few studies that comprehensively link the driving 

cycle with TDM techniques and their assessment. There are numerous TDM measures now at 

hand and are implemented merely considering operational and travel time savings. It is 

important to study the influence of these TDM techniques in terms of many other less 

tangible criteria like speed, emissions, idling time, etc. 
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CHAPTER 3 

 

CASE STUDIES 

 

 

3. 1 Introduction 

 

In this chapter a description of the selected case studies for this research are presented. Three 

case studies are investigated; two case studies in Edinburgh (UK) and one case study in Abu 

Dhabi (UAE). In Edinburgh the three case studies are: bus traffic corridors and traffic 

calming corridors and bus only corridor. In Abu Dhabi, two traffic corridors have been 

studied.  

 

Firstly, three bus traffic corridors in Edinburgh were investigated to assess the performance 

of traffic. In this case, the performances of both the buses and the private cars along the bus 

lane corridors have been investigated. The aim here is to assess the impacts of bus lanes on 

the operation and performance of both cars and buses. These three corridors are referred to in 

this study as “Edinburgh bus traffic corridors”.  

 

Secondly, there are four “Edinburgh traffic calming corridors”; three with traffic calming 

measures and one used as a control corridor. The performance of the cars on these corridors 

has been investigated. It should be added here that the choice of TDM measures for case 

studies was influenced by the Edinburgh context, i.e. there are many other TDM measures 

that could have been considered if suitable case studies were available. 

 

Finally, there are two traffic corridors in the city of Abu Dhabi, and these are referred to as 

“Abu Dhabi traffic corridors”.  On these corridors, the performance of the cars and buses are 

investigated and compared to that of cars and buses in Edinburgh.  

 

 

3.2 Why these case studies? 

The city of Edinburgh is selected because it has a very good public transport system which is 

often claimed to be efficient, effective and reliable. The statistics revealed a 27 per cent 
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increase in the volume of passengers since 1998 (Edinburgh Evening News, 2005). 

According to the UK Department for Transport (DfT) publication on Bus Priority (2010b); 

Greenways Bus Lane Strategy in Edinburgh was implemented in 1999 costing approximately 

£500,000/km. The scheme studied A8 corridor 6.7 km long and A900 corridor 2.2 km long. It 

has been claimed that bus lanes improve the performance of traffic and save journey times for 

cars and buses as well as increase the bus patronage; it is also claimed that as a result, these 

schemes should have positive impacts on the environment. One aim of this research is to 

carry out a more thorough investigation of the impacts of bus lanes on traffic performance 

and to provide evidence on the possible impacts of bus lane corridors on the environment. 

In addition, Edinburgh has a unique corridor which is completely devoted to buses (Princes 

Street). This corridor represents an interesting opportunity to examine as a case study in this 

research. It should be added here that this particular corridor is going to change very soon 

after the operation of the tram lines in Edinburgh, and that makes this corridor of special 

interest and value to consider as a case study in this research.  Therefore, it was decided to 

use the driving cycle analysis and techniques to investigate impacts of bus lanes on traffic 

performance and on environmental issues. 

The second transport policy which is increasingly implemented in the city of Edinburgh is 

traffic calming policies. These policies are implemented in order to calm traffic specifically 

in residential area, to reduce accidents and to improve safety issues. While there is evidence 

that these measures and polices have positive impacts on accidents reduction and safety 

improvements, there is not much investigations on the possible impacts on other 

environmental issues such as impacts on emissions. Reducing speed by implementing speed 

calming measures requires the vehicles to slow down (i.e. decelerate) then accelerate again. 

Previous work suggests that increase in acceleration and decelerations would results in 

increase in emissions. These emissions especially at the residential areas where there are 

more elderly and young children, who would be more negatively affected by these emissions 

might outweigh the advantage or the gains it achieves from reducing speeds. Therefore, 

utilising the principles of driving cycle analysis to assess the impacts of these policies seems 

both very interesting and very relevant from policy and from the society point of view. As 

discussed earlier, it should be added here that the choice of TDM measures for case studies 

was influenced by the Edinburgh context. It is possible therefore to consider other TDM 

measures in further studies as appropriate.   
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The final case study in this research is the traffic corridors in Abu Dhabi. Abu Dhabi city is a 

unique example of a city in a developing country. It is the capital and the second largest city 

of the United Arab Emirates in terms of population and the largest of the seven member 

emirates of the United Arab Emirates. The public transport system in the city however has 

only been available on the island of Abu Dhabi since June 2008. An initiative by the Abu 

Dhabi Department of Transport made available the first four bus routes and new and 

refurbished buses. The buses were free until February 2009. The traffic therefore is car 

dominated and there have been efforts to provide more public transport facilities and making 

them attractive. Hence the study of driving cycles is needed to understand the traffic 

characteristics and applicability of more public transport friendly policies.  

 

3.3 Overview of the case studies: 

 

The three case studies are detailed in this section. More discussions and details are presented 

in Section 3.4 below. 

 

Firstly, the Edinburgh bus traffic corridors consist of: 

1. A corridor with a bus lane (i.e. a lane is used exclusively by buses from (7.30-9.30 am 

and from 16.00-18.30 pm). This type of corridor is referred to in this study as a “bus-

lane corridor”.  These corridors are represented in this study by corridor A7 (Nicolson 

Street) in Edinburgh.  

2. A corridor with mixed traffic. That is the bus as well as all other traffic share all the 

lanes of the corridor. These types of corridors are referred to in this study as “mixed 

traffic corridors”. These corridors are represented in this study by corridor A702 

(Morningside Road) in Edinburgh. 

3. A corridor which is designated to buses, which is in fact a very special case. However, 

Princes Street in Edinburgh is designated to bus and taxi operations only and no other 

traffic can use the road. Therefore, this has been an interesting case which was worthy 

of investigation and comparisons with other traffic corridors. These types of corridors 

are referred to in this study as “bus-only corridors”, and represented in this study by 

Princes Street corridor in Edinburgh. 
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In total, there were twelve sets of measurements, seven measurements for buses (three on A7, 

two on A702 and two on Princes Street ) and five measurements for the private car (three on 

A7 and tow on A702).   

 

Secondly, the traffic calming corridors consists of: 

1. A corridor with a 20 mph zone speed cushions, speed humps and cobbled street 

surface. This type of corridor is referred to in this study as a “Traffic calming-

corridor-1”.  These corridors are represented in this study by corridor 1 (Iona 

Street) in Edinburgh.  

2. A corridor with a 20 mph zone with speed humps. This type of corridor is referred 

to in this study as a “Traffic calming-corridor-2”.  These corridors are represented 

in this study by corridor 2 (West Bryson Road) in Edinburgh. 

3. A corridor with a 20 mph zone with speed humps and raised junctions. This type 

of corridor is referred to in this study as a “Traffic calming-corridor-3”.  These 

corridors are represented in this study by corridor 3 (Montgomery Street) in 

Edinburgh. 

4. A corridor with no traffic calming measures. This type of corridor is referred to in 

this study as a “control corridor”.  These corridors are represented in this study by 

corridor 4 (Polwarth Terrace) in Edinburgh. 

 

In total, there were four sets of measurements, one set of measurements for cars in Iona 

Street, one set of measurements for cars on West Bryson Road, one set of measurements for 

cars on Montgomery Street, and one set of measurements for cars on Polwarth Terrace 

 

Thirdly, the traffic corridors in Abu Dhabi consist of: 

Two corridors with mixed traffic (i.e. all traffic shares all lanes on the corridor).  These 

corridors are represented in this study by Airport Road and Elektra Road in Abu Dhabi. In 

total, there were eight sets of measurements, four measurements for buses (tow on Airport 

Road and tow on Electra Street) and four measurements  for private cars (tow on Airport 

Road and tow on Electra Street). 
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3.4 Specific characteristics of the selected case studies 

 

3.4.1 Traffic corridors for bus lane investigation in Edinburgh 

 

As mentioned above, in order to investigate impacts of bus lanes on traffic performance, 

driving cycle was investigated on three traffic corridors in Edinburgh; a corridor with a bus 

lane, a corridor with mixed traffic (no bus lane) and a corridor which is dedicated for buses 

and taxis only. Ideally, it is required to identify two similar corridors in terms of traffic 

volumes; one with bus lane and one without. However, it seems that in Edinburgh most of the 

busy traffic corridors already have bus lanes in operation. Therefore, it was attempted to 

select two corridors which are similar in terms of the traffic flow characteristics as well as the 

general geometrical characteristics.  

 

 

3.4.1.1 A7 Corridor (from North Bridge/ Market Street‘s traffic signal to South Clerk 

St/ W Perston St‘s traffic signal): 

 

The A7 begins its course in central Edinburgh, at the A1/A7/A8/A900 junction at North 

Bridge as a non-trunk road before passing through the city's south-eastern suburbs. This part 

of the A7 was the former route of the A68 (the old A7 used to be what the A701/A772 at 

Gilmerton is now). The measurements of driving cycle for bus and car on the A7 started from 

North Bridge/ Market Street‘s traffic signal to South Clerk St/ W Perston St‘s traffic signal. 

The investigated A7 corridor is a single carriageway; it has two lanes, one lane for buses and 

other one for all other type of vehicles. The length of the investigated corridor is 

approximately 0.9 mile (Figure 3.1). Table 3.1 shows the characteristics of this corridor.   

 



 92 

 

Figure 3.1: The A7 traffic corridor (Source: Google Maps) 

 

 

Table 3.1: The characteristics of the A7 Corridor 

 
The 

corridors 

Number  of 

bus stops 

Number of 

Signalised 

junctions 

Number of 

pedestrians 

crossing 

Bus 

frequency/hr 

Number of 

bus routes 

Type of 

road 

Number 

of lanes 

Length of 

the 

corridor 

Direction In Out In Out In Out In Out In Out In/Out In/Out In/Out 

A7 (Bus 

lane) 

7 8 6 6 6 6 57 57 10 10 Single 

carriageway 

2 0.9 miles 

 

The corridor is very busy during the peak hours, because the investigated part has six 

signalised junctions. The corridor has seven bus stops inbound and eight bus stops outbound. 

It has six pedestrian crossings in both directions. The buses frequency are 57 inbound and 57 

outbound. This corridor has 10 bus routes for each direction. The following Table 3.2 shows 

the traffic volume on the investigated part of the A7 corridor (Source: Edinburgh City 

Council). 
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Table 3.2: Traffic flow on the A7 on three time periods (Source: Edinburgh City Council). 

 

Time 

Period 

Pedal 

Cycles 

Motor 

Cycles 

Cars & 

Taxis 

Mini-

Buses 

Midi-

Buses 

Single 

Deckers 

Double 

Deckers LGV's MGV's HGV's Total 

8.00-9.00 

(IN) 45 8 438 1 2 18 57 63 15 2 649 

PCU 

8.00-9.00 

(IN) 18 3 438 1 2 45 143 63 15 5 732.7 

8.00-9.00 

(Out) 26 3 199 4 1 14 47 41 19 2 356 

PCU 

8.00-9.00 

(Out) 10 1 199 4 1 35 118 41 19 5 433.1 

9.00-9.15 

(In) 48 0 348 0 4 16 52 56 12 4 540 

PCU 

9.00-9.15 19.2 0 348 0 4 40 130 56 12 10 619.2 

9.00-9.15 

(Out) 20 0 116 0 0 12 60 36 24 4 272 

PCU 

9.00-9.15 8 0 116 0 0 30 150 36 24 10 374 

 

 

3.4.1.2 A702 (from Tesco Metro Junction to Comiston Road with Greenbank Crescent 

junction), (this corridor has no bus lane): 

 

The A702 corridor starts as a primary route at the Tollcross junction in Edinburgh, and 

continues south until it meets the Edinburgh City Bypass (A720) on the city's outskirts. In the 

city is known as Home Street, Leven Street, Bruntsfield Place, Morningside Road, Comiston 

Road and finally Biggar Road. It continues in a south-westerly direction through the Pentland 

Hills to Biggar, before following the Clyde Valley. The route is a major commuter route for 

residents of Carlops, West Linton and Biggar who work in and around the Edinburgh area. 

The measurements of driving cycle for bus and car on A702 started from Tesco Metro at the 

junction of Colinton Road with Morningside Road and continued onto the junction of 

Comiston Road with Greenbank Crescent. The investigated A702 corridor is a single 

carriageway; it has two lanes on both directions, both of the lanes are for all type of vehicles, 

and there is no lane dedicated for buses. The length of the investigated corridor is 

approximately 1.0 mile (Figure 3.2). Table 3.3 shows the general characteristics of the 

corridor. 
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Figure 3.2: The A702 corridor (Source: Google Maps) 

 

 

Table 3.3: The characteristics of the A702 Corridor 

 
The corridors Number  of 

bus stops 

Number of 

Signalised 

junctions 

Number of 

pedestrians 

crossing 

Bus 

frequency 

Number of 

bus routes 

Type of 

road 

Number 

of lanes 

Length of 

the 

corridor 

Direction In Out In Out In Out In Out In Out In/Out In/Out In/Out 

A702 (Mixed 

traffic) 

7 5 5 5 5 5 36 36 6 6 Single 

carriagew

ay 

2 1.0 miles 

 

The corridor is very busy during the peak hours, because the investigated part has six 

signalised junctions. The corridor has seven bus stops inbound and five bus stops outbound. It 

has five pedestrians crossing in both directions. The buses frequency are 36 inbound and 36 

outbound. This corridor has 6 bus routes for each direction. According to Edinburgh City 

Council, the following Table 3.4 shows the traffic volume on the investigated part of the 

A702 corridor. 
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Table 3.4: Traffic flow on the A702 on three time periods (Source: Edinburgh City Council). 

 

Time 

Period 

Pedal 

Cycles 

Motor 

Cycles 

Cars & 

Taxis 

Buses & 

Coaches LGV's 

HGV 

Rigid 

2 

Axles 

HGV 

Rigid 

3 

Axles 

HGV 

Rigid 

4 

Axles 

HGV 

Artic 

3,4 

Axles 

HGV 

Artic 

5 

Axles 

HGV 

Artic 

6 + 

Axles Total 

8.00-

9.00 42 27 1,054 67 125 38 3 0 7 1 1 1,365 

14.00-

15.00 16.8 10.8 1054 167.5 125 95 7.5 0 17.5 2.5 2.5 1,499 

PCU 

8.00-

9.00 35 10 789 61 140 27 2 0 3 0 1 1,068 

PCU 

14.00-

15.00 14 4 789 152.5 140 67.5 5 0 7.5 0 2.5 1,182 

 

 

3.4.1.3 Princes ST (from the beginning of Princes Street to the end of it), (this corridor is 

dedicated for buses and taxis only): 

 

Princes Street is one of the major thoroughfares in central Edinburgh, Scotland, and its main 

shopping street. It is the southernmost street of Edinburgh's New Town, stretching around 

1 mile (1.6 km) from Lothian Road in the west to Leith Street in the east. The street is mostly 

closed to private cars, with public transport given priority. The street has virtually no 

buildings on the south side, allowing panoramic views of the Old Town, Edinburgh Castle, 

and the valley between. The measurements of driving cycle for bus only on Princes ST 

started from the beginning of Princes St to the end of it. The Princes ST corridor is a dual 

carriageway; it has two lanes on both directions. This corridor is dedicated for buses and taxis 

only, and no other types of vehicles are allowed in Princes ST. The length of the investigated 

corridor is approximately 0.7 mile (Figure 3.3). Table 3.5 shows the general characteristics of 

the corridor. 
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Figure 3.3: The Princes ST corridor (Source: Google Maps) 

 

 

Table 3.5: The characteristics of the Princes Street Corridor 

 
The corridors Number  of 

bus stops 

Number of 

Signalised 

junctions 

Number of 

pedestrians 

crossing 

Bus 

frequency 

Number of 

bus routes 

Type of 

road 

Number 

of lanes 

Length of 

the 

corridor 

Direction In Out In Out In Out In Out In Out In/Out In/Out In/Out 

Princes St (Bus 

only) 

9 12 7 7 4 4 156 156 29 29 Dual 

carriageway 

2 0.7 miles 

 

 

The corridor is very busy during the peak hours, because the investigated part has seven 

signalised junctions. The corridor has nine bus stops inbound and twelve bus stops outbound. 

It has four pedestrian crossings in both directions. The buses frequency are 156 inbound and 

156 outbound. This corridor has 29 bus routes for each direction. According to Edinburgh 

City Council, the following Table shows the traffic volume on the investigated part of the 

Princes St corridor. 
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Table 3.6: Traffic flow on the Princes Street on three time periods (Source: Edinburgh City Council) 

 

Time 

Period 

Car & 

Taxis 

Buses & 

Coaches LGVs 

HGV 

Rigid 

2 

Axles 

HGV 

Rigid 

3 

Axles 

HGV 

Rigid 

4 

Axles 

HGV 

Artic 

3,4 

Axles 

HGV 

Artic 

5 

Axles 

HGV 

Artic 

6 + 

Axles 

Motor 

Cycles 

Pedal 

Cycles Total 

8.00-

9.00 2639 926 353 92 2 2 3 2 2 40 150 4211 

14.00-

15.00 2164 925 308 89 8 2 1 3 1 26 99 3626 

PCU 

8.00-

9.00 2639 2315 882.5 230 5 5 7.5 5 5 16 60 6170 

PCU 

14.00-

15.00 2164 2312.5 770 222.5 20 5 2.5 7.5 2.5 10.4 39.6 5556.5 

 

 

 

3.4.2 Traffic corridors for traffic calming measure investigation in Edinburgh 

 

Four traffic corridors were selected in this study to investigate the impacts of traffic calming 

measures in Edinburgh on traffic performance and on environmental issues. The routes were 

selected on the basis of the traffic calming measures implemented as follows: 

Corridor 1 = Iona Street (20mph zone) 

Corridor 2 = West Bryson Road (20mph zone) 

Corridor 3 = Montgomery Street (20mph zone) 

Corridor 4 = Polwarth Terrace (no traffic calming measures- Control corridor) 

 

 

3.4.2.1 Corridor 1: Iona Street (20mph zone) 

 

This corridor is located between the roads of Leith Walk and Easter Road as shown in Figure 

3.4 and 3.5. It is the shortest of the traffic calming routes selected at 0.3miles. Although the 

route is not long it is a good addition for getting all round representative parameters because 

it incorporates three separate types of speed reducing measures combined to enforce the 

desired reduction in speed. They are speed cushions, speed humps and cobbled street surface. 

Each of the selected routes has its own method of reducing speed and with data samples 

gathered from all it will give an overall more representative insight into the broader picture of 

driving characteristics in Edinburgh’s 20mph zones. Table 3.7 shows the general 

characteristics of the corridor. 
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Figure 3.4: Iona Street (Source: Google Maps) 

 

 

 

Figure 3.5: Iona Street with road humps  

 

 

Table 3.7: The characteristics of the Iona Street corridor 

 
The 

corridors 

Number  of 

T junctions 

Number of 

+ junctions 

Number of 

raised 

junctions 

Number of 

raised 

pedestrian 

crossing 

Number of 

long humps 

Number 

of 

cushion 

humps 

Type of 

road 

Number 

of lanes 

Length of 

the 

corridor 

Direction In Out In Out In Out In Out In Out In Out In/Out In/Out In/Out 

Iona 

Street 

0 0 2 2 1 1 3 3 0 0 2 2 Single 

carriage

way 

1 0.3 miles 
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3.4.2.2 Corridor 2:  West Bryson Road (20mph zone) 

 

Corridor 2 is that of West Bryson road and Dundee Terrace which is located between the 

large roads of Colinton road and Slateford road and is a total of 0.4 miles in length. To access 

the commercial area of Fountain Park the 20mph zone offers an alternative to the traffic 

lights on the Angle Park Terrace road to the north west of Slateford Road as you look at 

Figure 3.6 and 3.7. This route was a student residential area that incorporated speed bumps as 

its method of speed reduction. The road was wide in nature and it ran past a playground 

situated in the adjacent park. Table 3.8 shows the general characteristics of the corridor. 

 

 

Figure3.6: West Bryson Road (Source: Google Maps) 
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Table 3.8: The characteristics of the West Bryson Road Corridor 

 
The 

corridors 

Number  

of T 

junctions 

Number of 

+ 

junctions 

Number of 

raised 

junctions 

Number of 

raised 

pedestrian 

crossing 

Number of 

long 

humps 

Number of 

cushion 

humps 

Type 

of 

road 

Number 

of lanes 

Length of 

the 

corridor 

Direction In Out In Out In Out In Out In Out In Out In/Out In/Out In/Out 

West 

Bryson 

Road 

0 0 0 0 4 4 3 3 2 2 0 0 Single 

carriag

eway 

1 0.4 miles 

 

 

3.4.2.3 Corridor 3:  Montgomery Street (20mp zone) 

 

Corridor 3 is located between the busy roads of Leith Walk and Easter Road and it is that of 

Montgomery Street is shown in Figure 3.8 and 3.9.  It is the longest of the four routes 

selected at 0.5 miles, and there are a combination of speed reducing measures in place that 

comprises of speed humps and raised junctions. Table 3.9 shows the general characteristics of 

the corridor. 

 

Figure 3.7: A view of West Bryson Road 
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Figure 3.8: Montgomery Street (Source: Google Maps) 

 

 

Figure 3.9: A view of Montgomery Street 

 

Table 3.9: The characteristics of the Montgomery Street corridor 

 
The corridors Number  

of T 

junctions 

Number 

of + 

junctions 

Number 

of raised 

junctions 

Number of 

raised 

pedestrian 

crossing 

Number 

of long 

humps 

Number 

of 

cushion 

humps 

Type of 

road 

Number 

of lanes 

Length 

of the 

corridor 

Direction In Out In Out In Out In Out In Out In Out In/Out In/Out In/Out 

Montgomery 

Street 

4 4 0 0 4 4 2 2 1 1 0 0 Single 

carriage

way 

1 0.5 miles 
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3.4.2.4 Corridor 4: Polwarth Terrace (no traffic calming measures- Control corridor) 

 

This corridor was selected as the control corridor which the driving cycles of the other three 

traffic calming corridors would be compared to. It is a corridor of similar physical features 

which could plausibly be an alternative to the areas enforced by speed reducing measures. 

This corridor is similar to the 20mph zones in that it is bordered by parked cars along each 

side of its length and it is a residential area within walking distance of George Watsons 

School. Corridor 4 was a run carried out using the chase car technique to gather data on the 

real world driving patterns of drivers using that corridor as shown in Figure 3.10 and Figure 

3.11. Table 3.10 shows the general characteristics of the corridor. 

 

 

Figure 3.10: Polwarth Terrace (Source: Google Maps) 
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Figure 3.11: A view of Polwarth Terrace 

 

 

Table 3.10: The characteristics of the Polwarth Terrace corridor 

 
The 

corridors 

Number  

of T 

junctions 

Number 

of + 

junctions 

Number 

of raised 

junctions 

Number of 

raised 

pedestrian 

crossing 

Number 

of long 

humps 

Number of 

cushion 

humps 

Type of 

road 

Number 

of lanes 

Length 

of the 

corridor 

Direction In Out In Out In Out In Out In Out In Out In/Out In/Out In/Out 

Polwarth 

Terrace 

6 6 0 0 0 0 0 0 0 0 0 0 Single 

carriage

way 

1 0.3 miles 

 

 

 

3.4.3 Abu Dhabi traffic corridors 

 

The two traffic corridors which were selected for the investigation of the development of Abu 

Dhabi driving cycle are discussed below. Both corridors have mixed traffic and do not 

operate bus lanes. It should be noted here that although bus lanes are not in operation in Abu 

Dhabi, it is one of the measures which have been considered by the local authorities there for 

implementation in the future. Therefore, this investigation is very relevant not only for 

comparison purposes but also to provide recommendations for policy makers in Abu Dhabi 

for future considerations of bus lanes. 
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3.4.3.1 Airport road (from Al Falah St with Airport Road junction to Mohamed Bin 

Khalifa St with Airport road junction) 

 

Shaikh Rashid Bin Saeed Al Maktoum Road, popularly known as the Airport Road, is the 

most vital road in Abu Dhabi city. The measurements of driving cycle for bus and car on 

Airport Road started from the junction of  Al Falah St with Airport Road to  the junction of 

Mohamed Bin Khalifa St with Airport Road. The Airport Road corridor is a dual 

carriageway; it has four lanes on both directions for all type of vehicles, and there is no lane 

dedicated to buses. The length of the investigated corridor is approximately 1.0 mile (Figure 

3.12). Table 3.11 shows the general characteristics of this corridor.  

 

 

Figure 3.12: The Airport Road corridor (Source: Google Maps) 

 

 

Table 3.11: The general characteristics of the Airport Rroad corridor 

 
The corridors Number  of 

bus stops 

Number of 

Signalised 

junctions 

Number of 

pedestrians 

crossing 

Bus 

frequency 

Number of 

bus routes 

Type of 

road 

Number 

of lanes 

Length 

of the 

corridor 

Direction In Out In Out In Out In Out In Out In/Out In/Out In/Out 

Airport Rd 

(Mixed traffic) 

6 6 4 4 0 0 24 24 4 4 Dual 

carriageway 

4 1.0 

miles 
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The corridor is very busy during the peak hours, because the investigated part has four 

signalised junctions. The corridor has six bus stops inbound and six bus stops outbound. The 

pedestrians crossing are available on the junctions only. The buses frequency are 24 inbound 

and 24 outbound. This corridor has 4 bus routes for each direction. 

 

 

3.4.3.2 Elektra Road (from Airport road with Electra St junction to Al Salam St with 

Electra St junction) 

 

This corridor runs parallel to Hamdan Street and it’s in the heart of Abu Dhabi city with 

many commercial shops on both side of it. The measurements of driving cycle for bus and car 

on Electra St started from the junction of the Airport Road with Electra St to the junction of 

Al Salam St with Electra St. The Electra St corridor is a dual carriageway; it has four lanes on 

both directions for all type of vehicles, and there is no lane dedicated for buses. The length of 

the investigated corridor is approximately 1.0 mile (Figure 3.13). Table 3.12 presents the 

general characteristics of the corridor.  

 

 

Figure 3.13: The Electra Street corridor (Source: Google Maps) 
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Table3.12: The general characteristics of the Elektra Street corridor 

 
The 

corridors 

Number  of 

bus stops 

Number of 

Signalised 

junctions 

Number of 

pedestrians 

crossing 

Bus 

frequency 

Number of 

bus routes 

Type of 

road 

Number 

of lanes 

Length of 

the 

corridor 

Direction In Out In Out In Out In Out In Out In/Out In/Out In/Out 

Elektra Rd 

(Mixed 

traffic) 

5 6 4 4 0 0 42 42 7 7 Dual 

carriageway 

3 1.0 miles 

 

The corridor is very busy during the peak hours, because the investigated part has four 

signalised junctions. The corridor has five bus stops inbound and six bus stops outbound. The 

pedestrian crossings are available on the junctions only. The buses frequency are 42 inbound 

and 42 outbound. This corridor has 7 bus routes for each direction. 
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CHAPTER 4 

 

DATA COLLECTION METHODOLOGY 

 

4.1 Introduction 

 

The present study focuses on trips made by travellers on a number of traffic corridors in 

Edinburgh (UK) and in Abu Dhabi (UAE). The investigations include bus and car trips along 

the selected corridors, Firstly, three bus traffic corridors in Edinburgh were selected for this 

investigation.  The second part of the study investigates four traffic corridors in Edinburgh 

with speed reduction measures for the assessment of these traffic calming measures and their 

impacts on speed, acceleration, and other driving modes using driving cycle analysis 

techniques.  Thirdly, the driving cycles for two traffic corridors in Abu Dhabi were selected 

and investigated using the driving cycle techniques. See Chapters 3 and 5 for further 

discussions of the case studies and the development of the driving cycles for these corridors.  

In this chapter, the data collection is discussed. The selected corridors, piloting the data 

collection is firstly presented. The equipment used, the corridor and the assessment 

parameters are discussed. 

  

 

4.2 The selected corridors- Edinburgh 

 

The trips were investigated during both morning peak and off peak periods.  It was attempted 

to select similar corridors in terms of traffic flow and other general characteristics. This is in 

order to be able to refer the differences in traffic characteristics only to differences in bus 

operation (i.e. with bus lane or without bus lanes). It was extremely difficult however; to 

identify two very similar traffic corridors in everything except in operating a bus lane; in 

particular where there is heavy traffic. As a result, most of the heavily congested traffic 

corridors have bus-lanes in operation, while the corridors which are lighter in terms of traffic 

volumes, could be operating mixed traffic. Therefore, it was not an easy task to identify 

similar traffic corridors which are different only in bus operation.    

 

The most appropriately identified two corridors were the A7 (bus-lane corridor) and the A702 

(mixed traffic corridor). These two corridors are quite similar in terms of traffic volume, 
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number of bus routes, number of pedestrian crossings, number of signalised junctions as well 

as other geometrical characteristics. The third corridor which was considered in this study 

was a bus only corridor (Princes Street). This corridor has been dedicated to buses and to 

taxis only. Therefore, it represented an interesting opportunity for investigations of driving 

cycles on a bus-only traffic corridor. Therefore, driving cycle measurements were also carried 

out on Princes Street in Edinburgh.  

 

In order to eliminate or at least minimise any possible errors due to any unsimilarities of the 

two corridors, it was also decided to carry out driving cycle measurements before 7.30 am 

(i.e. before the operation of the bus-lanes) on the selected traffic corridors.   Table 4.1 below 

shows the general characteristics of the selected corridors. 

 

 
Table 4.1: Characteristics of the selected bus traffic corridors 

 
The 

corridors 

Number  

of bus 

stops 

Number of 

Signalised 

junctions 

Number of 

pedestrians 

crossing 

Bus frequency Number of 

bus routes 

Type of 

road 

Number 

of lanes 

Length 

of the 

corridor 

Direction In Out In Out In Out In Out In Out In/Out In/Out In/Out 

A7 (Bus 

lane) 

7 8 6 6 6 6 57 57 10 10 Single 

carriageway 

2 0.9 

miles 

A702 

(Mixed 

traffic) 

7 5 5 5 5 5 36 36 6 6 Single 

carriageway 

2 1.0 

miles 

Princes St 

(Bus 

only) 

9 12 7 7 4 4 156 156 29 29 Dual 

carriageway 

2 0.7 

miles 

 

 

 

4.3 Pilot surveys 

 

A pilot survey was carried out to assess and finalise the selection of the traffic corridors, the 

selection of data collection period, the procedures and any other considerations for the main 

survey. The pilot data collection exercise was carried out on two traffic corridors Gorgie 

Road (a bus-lane corridor) (Figure 4.1) and Gilmerton Road (mixed traffic corridor). Figure 

4.2 shows a map of the corridor. Ten runs of measurements of driving cycle were carried out 

in each direction during three traffic periods (am peak, pm peak and afternoon off peak). It 

was found that the characteristics of driving cycles for the morning peak were very similar to 

those of the same evening peak, while the afternoon off peak traffic patterns were different. It 

was decided therefore, to collect the data during the morning peak and the afternoon off peak. 
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Figure 4.1: Gorgie Road (a bus-lane corridor) (Source: Google Maps) 

 

 

 

Figure 4.2: Gilmerton Road (mixed traffic corridor) (Source: Google Maps) 

 

 

During the pilot surveys, it was also noted that the general characteristics of the two piloted 

corridors were quite different, not only from the point of view of the existence or otherwise 

of the bus corridors. It was decided therefore, to investigate the suitability of other traffic 

corridors for the main surveys. Finally, the two selected corridors for the main surveys were 

A702 and the A7. These were much more similar in the general characteristics and mainly 

different in terms of the availability of the bus lane.  
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4.5 Experimental equipment 

 

In order to a develop data acquisition system for the driving cycle, the equipment which were 

used are discussed in the sections below. It should be mentioned here that this application is 

novel in the area of a bus context. It should however be acknowledged that technology for 

research is advancing constantly and that future research could, for example, also include 

video data. 

 

4.6 Test vehicle 

 

Data was collected on board via a private car for investigating the driving cycle. The car was 

a Honda Civic (2001), 1600cc engine size and automatic transmission, Table 4.2 shows the 

characteristics of the car used in the tests. The car was equipped with the Performance Box 

on the dashboard in order to collect the data.  

 

Table 4.2: Characteristics of the private car used in the data collection 

 

Model 

Year 

Make Engine 

Type 

(cc) 

Drive’s 

age (yrs) 

Average 

annual 

mileage 

Average 

Routine 

Maintenance 

      

2001 Honda 1600 29 10,000 yearly 

      

 

 

 

4.7 The performance box 

 

The performance box (PB) device is a perfect tool for measuring vehicle or driver 

performance accurately. It is a high performance 10Hz Global Positioning System (GPS), 

which measures 10Hz logging of time, distance, speed, position, G-force, lap times and split 

times, as showed in  (Figure 4.3). The PB device has the ability to monitor vehicle speed, 

throttle position and mass air flow. The device automatically stores date and time. The GPS 

receives signals from the satellites and gives global location of the moving vehicle in second-

to-second intervals. The data can then be downloaded to a desktop computer (PC) and 

analysed. PB uses MMC/SD flash memory card socket. The data is recorded into MMC flash 
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card, which can be analysed in detail using the PC software provided. A rechargeable battery 

powers the PB. The Performance Box can also be connected to the USB port of a PC-

compatible computer to download information stored on the memory card (Manual of 

Performance Box, 2008).   

 

The private vehicle had two occupants, the driver and an assistant who recorded further 

information, such as, abnormal traffic or weather conditions, distances, as well as starting and 

ending times at each segment of the route. All these parameters were finalized during the 

pilot survey  

 

Figure 4.3: Performance box keypad 

 

 

During the testing, the Performance Box was kept on the dashboard of the car. Performance 

Box has a display screen mode that shows a large digital speed value and compass. In open 

conditions, Performance Box has a velocity accuracy of 0.1km/h, which is useful for 

checking the accuracy of your vehicle’s speedometer. In this mode there are also Odometer 

and Height display screens. This display has a ‘Point of Interest’ facility, which alerts you as 

you approach the position of a point of interest such as a safety camera or service station. POI 

files can be created and edited for custom use. Performance Box can help measure the power 
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developed by the car’s engine, either at the wheels or flywheel. Having set the vehicle 

weight, results are calculated from the measurements taken by the fast GPS engine to give 

you useful guidelines to the car’s brake horsepower or kilowatt output. Because these 

calculations are made from the GPS data rather than accelerometers, the results are likely to 

be more consistent and accurate. 

 

 

4.8 Calibration of performance box 

 

In any data collection equipment, the calibration of the measurement instrument is always 

crucial for the quality and reliability of the data. Since the all-driving data was required to be 

collected by the PB the calibration of the PB was crucial in order to collect meaningful data. 

The calibration process involved identification of accurate mile posts with fixed distance, 

clear roads during calibration process, clear weather for calibration test, clear instruction to 

driver to stop at marked line at mile post and authenticated distance between mile posts by 

regulatory authority. In this study a clear chalk mark was made on the ground on the test run. 

The PB was stabilised for 10 minutes at the beginning of each run. Data was recorded by 

professional person, while the driver carried out the driving manoeuvres at the desired speed 

and stopped at the marked line. Three test runs were made and correct start time and elapse 

time was noted using a stopwatch. The results showed that the error was within the 

acceptable limits of the equipment. 

 

 

4.9 Data logging, coding and classification 
 

Before analysing the database a systematic design of database was required for appropriate 

record keeping. Unique codes were generated which describe the routes, vehicle type, time 

and day and other characteristics as discussed below. The coding and classifications of the 

data were based on the major parameters involved in the driving cycle as shown in (Table 

4.3).  

 

After the data logging, the entered speed, acceleration, and decelerations were plotted against 

time data and was inspected visually for any abnormal characteristics. Sometimes the GPS 

readings had some sudden drop down in a few test runs while logging data. There could be 
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other factors influencing the data collection including weather conditions, interferences of 

signals from high-rise walls, trees etc. which may affect the continuity of the data capturing 

process. Even the data capturing was discontinuous at few points. The Performance Box 

software tool prompts repair of the file by clicking on the Tools menu and choosing the File 

Repair option (Manual of Performance Box, 2008). 

 

Table 4.3: Coding and classification for generating input files for driving cycle development  

 

 

 

The data acquisition system was followed as described in the previous section; it constitutes 

the database in which the types of vehicle, road types, time of travel, operating conditions etc. 

were stored. It is also assumed that the data collected via car and bus is representative of the 

‘typical part of traffic stream’ of Edinburgh, because the car following technique was used. In 

addition, in case of buses, the drivers were driving their usual journeys, so their driving 

behaviour was assumed representative. The testing duration varied from 6.30 - 7.30 (early, 

RHM+), 8.00 - 9.00 (rush hours in the morning, RHM) and 14.00-15.00 (non-rush hours, 

NRH). Test runs were done ten times for each corridor and in each direction, a total number 

of 460 runs were finalised for analysis. Table 4.4 shows the breakdown of test runs over each 

of the routes during different hours. The largest percentage of trips was made in the morning.  

 

Parameters Sub-category Code Notes 

Codes for data  001-999  

Corridors A7 1 Bus lane corridor 

A702 2 No bus lane corridor 

Princes St 

Corridor 1(Iona Street) 

Corridor 2(West Bryson Road) 

Corridor 3(Montgomery Street)  

Corridor 4(Polwarth Terrace) 

Airport Rd 

Elektra Rd 

3 

4 

5 

6 

7 

8 

9 

Bus only corridor 

Speed calming corridor 

Speed calming corridor 

Speed calming corridor 

Speed calming corridor (control corridor) 

Mixed traffic corridor 

Mixed traffic corridor 

 

 

Time of travel AM 1 6-30 a.m. - 7.30 a.m.  peak 

AM 2 8.00 a.m. - 9.00 a.m.  peak 

PM off-Peak 

AM off-peak 

3 

4 

2.00 p.m. - 3.00 p.m.   

11.00a.m – 12.00 p.m.  

Vehicle Car 1  

Bus 2  

Direction Inbound 1  

Outbound 2  
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Table 4.4: Duration of the test runs of different periods 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  RHM= Rush Hour Morning; NRH = Non-Rush Hour; RHM+ = Early Rush Hour Morning (6.30-7.30 AM) 

 

 

4.10 Analytical issues 

 

This aim of this section is to discuss a selection of the assessment parameters that will be 

used to develop the driving cycles. 

 

4.10.1 Assessment parameters for driving cycle development 
 

Driving cycles can be created for each trip of a journey to measure the effectiveness of the 

TDM strategies in place. Using the driving cycles to assess the TDM, needs proper usage of 

specialized tools for measurements such as Performance Box, and driving tests among many 

others. The measurements can establish a relationship of demand and mode choice. In fact 

each measure will need implementable strategies to make it effective. Empirically, Kent et al. 

(1978) characterized the driving data by the speed-acceleration relative frequency as well as 

by overall parameters such as average speed and root mean square acceleration. Gandhi et al. 

(1983) used idling time, acceleration time, cruising time, deceleration time, total time, trip 

length, average speed and cruising speed to characterise the driving cycle for Delhi.  

Direction  Inbound Outbound 

R
o

ad
  

ty
p

e 

 R
H

M
  

N
R

H
 

R
H

M
+

 

R
H

M
 

N
R

H
 

R
H

M
+

 

A7 Car 10 10 10 10 10 10 
Bus 10 10 10 10 10 10 

A702 Car 10 10 0 10 10 0 
Bus 10 10 0 10 10 0 

Princes St 

Corridor 1 

Corridor 2 

Corridor 3 

Corridor 4 

Airport Rd 

 

Elektra Rd 

 

Bus 

Car 

Car 

Car 

Car 

Car 

Bus 

Car 

Bus 

10 

0 

0 

0 

0 

10 

10 

10 

10 

10 

20 

20 

20 

10 

10 

10 

10 

10 

0 

0 

0 

0 

0 

0 

0 

0 

0 

10 

0 

0 

0 

0 

10 

10 

10 

10 

10 

0 

0 

0 

0 

10 

10 

10 

10 

 

 

0 

0 

0 

0 

0 

0 

0 

0 

0 

 

Total  90 150 20 90 90 20 

Sub total  260 200 
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In Australia, measurements were done by Lyons et al. (1986) who used distance, mean speed, 

maximum speed, root mean square acceleration, mean positive acceleration, maximum and 

mean negative acceleration, stops per km, and positive kinetic energy to characterise the test 

runs. The corresponding synthetic run was then compared with original observations in 

Australia. The results showed that majority of the driving cycle assessment criteria in 

Australia were matched to within 10 % of the target value. 

 

Tzeng  et al., (1998) used a number of parameters including travel time, travel distance, 

average running speed, average acceleration of all acceleration phases provided acceleration 

a is  greater than 0.1 ms
-2

, average deceleration of all phases, mean length of driving periods, 

average number of acceleration and deceleration changes within one driving period, 

percentage of idling time where velocity V is less than 3 km/h, percentage of acceleration 

time, time percentage at constant speeds and percentage of deceleration time as assessment 

parameters to characterise and compare the Taipei motorcycle driving cycle.  

 

Nine assessment criteria were used in the study by Tong et al. (1999) to characterize the 

driving pattern in the urban areas of Hong Kong. These criteria include: 

(a) Average speed of  the entire driving cycle 

(b) Average running speed 

(c) Average acceleration of all acceleration phases 

(d) Average deceleration of all deceleration phases  

(e) Mean length of driving period 

(f) Time proportion of driving modes (idling, acceleration, cruise and deceleration) 

(g) Average number of acceleration and deceleration changes within one driving period 

(h) Root mean square acceleration 

(i) Positive acceleration kinetic energy. 

 

Andre, M. (2004) developed a driving cycle from a series of measurements of driving data in 

developing the ARTEMIS European driving cycle. The ARTEMIS European driving cycle 

considered the main driving characteristics (average speed, stop frequency and duration), 

their structures according to various driving conditions. The higher diversity of driving 

conditions was identified with the help of 12 clusters or classes derived by factor analysis of 

the speed profile.  



 116 

 

Tsai et al., (2005) used 11 parameters in the assessment analysis to calibrate a driving cycle 

from motorcycles in Taiwan. In addition, factor analysis and cluster analysis have been used 

to identify trip conditions and driving cycle parameters (Andre 2004; Montegari and 

Naghizadeh, 2003). Booth et al., (2001) used five sets of different speeds and acceleration 

groups for the Edinburgh driving cycle. Hung et al., (2005, 2007) used nine and thirteen sets 

of relevant assessment parameters in the development of the car driving cycle for Hong Kong 

city.  

 

 

4.10.2 Data analysis methodology 

 

The Data collected by performance box can be exported from the performance box software 

to excel format file for analysis. The mean value, standard deviation (SD) and coefficient of 

variations (COV) of those assessment parameters can then be estimated for each of the trip of 

selected routes. The COV values are to be calculated to show the variations in the 

performance of the test runs.  

 

A further refining of the driving cycle was done by calculating the absolute sums of the 

relative error (Sj) then by selecting the driving cycle with minimum value of Sj. The relative 

error value for each of the parameters ( k  ) is (see equation 4.1): 

 

*100     equation 4.1 

                                                       

Where k is an assessment parameter (k varies from 1 to 9) and ∆k is the value of 

the relative error for parameter k, P  is overall mean value of parameters. Pij is a parameter 

with a value of a run i (between 1 and number of runs) and route category j. The absolute sum 

of the relative errors (Sj) was calculated for each route category type by summing up the 

individual relative error for a given route (Eq. 4.2): 





7

1k

j kS
                 equation  4.2 
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This current study adopts a similar approach to that suggested by Tong et al., (1999). In 

summary, a set of twelve assessment parameters have been used for the development of 

driving cycles for both Edinburgh and Abu Dhabi cities. The reason for this selection is that 

the parameters adopted are appropriate to use to investigate the impacts of any TDM 

measures and in specifically those measures of bus lanes and traffic calming measures.   

 

 

Table 4.5: Assessment parameters for the driving cycle 

 
Sr. No Assessment parameters Abbreviation Units 

1 Average trip duration T Seconds 

2 Average speed of entire driving cycle V Km/hr 

3 Mean length of driving period L Meters 

4 Average acceleration of all acceleration phases A m/sec-2 

5 Average deceleration of all deceleration phases D m/sec-2 

6 Percentage time spent in driving modes for acceleration Pa % 

7 Percentage time spent in driving modes for deceleration Pd % 

8 Percentage time spent in driving modes for idling Pi % 

9 Percentage time spent in driving modes for cruising Pc % 

10 Standard deviation Sd  

11 Coefficient of variation  Cov  

12 Sum of absolute relative error Sj  

 

A random selection process was adopted for synthesising the collected driving data into 

candidate driving cycles. The best cycle was then selected based on the least value of the sum 

of the average absolute percentage error (AAPE) between the target statistics and derived 

Driving Cycle. 

 

Equations 4.1 & 4.2 were used to calculate the relative error values and the absolute sum of 

the relative errors. 

 

4.11 Summary 

 

The investigation of driving cycle as a tool to assess a number of TDM measures has been 

carried out in this research, which have been influenced by the Edinburgh context, i.e. there 

are many other TDM measures that could have been considered if suitable case studies were 

available. There are many methods available to derive the driving cycle. In this chapter, a 

practical approach is devised to collect data for the development of driving cycles in 

Edinburgh and Abu Dhabi cities. The performance box was calibrated and used to ensure 
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quality of data and issues related to collection of driving data has been discussed. This is in 

order to a develop data acquisition system for the driving cycle.  It should be mentioned here 

that this application is novel in the area of a bus context. It should also be acknowledged that 

technology for research is advancing constantly and that future research could, for example, 

also include video data. 

 

Eight routes were selected and trips were made along these routes to collect driving data 

using the performance box. To derive the driving cycle 12 sets of assessment criteria were 

assessed and analysed. Data analysis for deriving driving cycle has been discussed in 

Chapters 5-7. 
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CHAPTER 5 

 

RESULTS AND PRELIMINARY ANALYSIS 

 

 

5.1 Introduction 

 

This chapter presents results and preliminary analysis obtained from monitoring and 

measuring the performance of cars and buses on the selected corridors in this study. These 

include presenting the results obtained from the assessment of the bus traffic corridors and 

the traffic calming corridors in Edinburgh as well as the traffic corridors in Abu Dhabi. This 

data is used for the development of the driving cycle as discussed in Chapter four.  

 

 

5.2 Results and preliminary analysis of the “bus traffic corridors” in Edinburgh 

 
As discussed earlier in Chapter four, data was collected for the buses and cars on the “bus 

traffic corridors” in Edinburgh, “traffic calming corridors” in Edinburgh as well as for buses 

and cars on the “traffic corridors” in Abu Dhabi. Only bus data was collected for the “bus 

only corridor” in Edinburgh.  

 

The results of the characteristics of the buses and cars on the bus traffic corridors in 

Edinburgh are discussed in this section. The measurements were carried out for each of the 

three corridors during peak (8.00-9.00 am) and off-peak (2.00-3.00 pm) hours of traffic as 

well as before the bus lane operation (6.30-7.30am). The measurements were repeated for 

both directions of traffic flow on each corridor as well (that is inbound and outbound). Table 

5.1 below presents the general characteristics of the bus traffic corridors in Edinburgh. These 

characteristics are discussed below. These characteristics include the average journey time, 

average journey speed, average journey length, average journey acceleration, average journey 

deceleration, standard deviation and coefficient of variation (COV).  
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Table 5.1: General characteristics of the bus traffic corridors in Edinburgh 

Corridors 

Time 

Mode Direction Average 

Time 

(Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

Average   

Acc 

(m/sec2) 

Average  

 Dec 

(m/sec2) 

A7 (bus lane corridor) 

8.00-9.00 am 

Car Inbound 250.022 21.353 1446.969 0.995 -1.121 

SD 41.543 3.599 51.437 0.241 0.235 

COV 0.166 0.168 0.035 0.243 -0.21 

Outbound 232.555 23.401 1480.22 0.867 -0.925 

SD 41.445 3.481 121.899 0.167 0.204 

COV 0.178 0.148 0.082 0.193 -0.22 

Bus Inbound 385.72 12.273 1297.961 1.035 -1.782 

SD 51.834 1.599 100.396 0.244 1.107 

COV 0.134 0.13 0.077 0.236 -0.621 

Outbound 354.2 15.29 1482.013 0.792 -1.075 

SD 50.565 1.998 68.441 0.044 0.303 

COV 0.142 0.13 0.046 0.056 -0.282 

2.00-3.00 pm 

Car Inbound 286.18 18.79 1444.447 0.8795 -1.0317 

SD 53.547 3.793 30.327 0.11 0.408 

COV 0.187 0.201 0.02 0.126 -0.395 

Outbound 291.92 19.245 1531.861 0.85 -0.955 

SD 42.681 2.816 50.761 0.175 0.239 

COV 0.146 0.146 0.033 0.206 -0.25 

Bus 

Inbound 419.1 11.794 1313.907 0.891 -1.308 

SD 57.569 2.019 65.228 0.15 0.632 

COV 0.137 0.171 0.049 0.169 -0.483 

Outbound 365.23 14.759 1474.767 0.836 -1.273 

SD 50.458 2.049 88.276 0.09 0.588 

COV 0.138 0.138 0.059 0.108 -0.462 

6.30-7.30 am 
Car 

Inbound 163.044 31.946 1436.173 0.937 -0.919 

SD 15.161 3.109 44.025 0.291 0.289 

COV 0.092 0.097 0.03 0.31 -0.314 

Outbound 169.922 32.39 1489.863 1.029 -2.315 

SD 23.613 7.363 142.87 0.633 4.311 

COV 0.138 0.227 0.095 0.615 -1.862 

Bus 

Inbound 189.085 17.638 931.191 1.372 -6.111 

SD 36.519 2.902 237.273 0.466 1.258 

COV 0.193 0.164 0.254 0.339 -0.205 

Outbound 259.788 19.989 1396.928 0.863 -2.03 

SD 56.517 3.561 110.833 0.061 1.628 

COV 0.217 0.178 0.079 0.07 -0.802 

A702 (no bus lane 

corridor) 

8.00-9.00 am 

Car Inbound 253.68 20.545 1422.66 0.968 -1.644 

SD 31.004 4.072 161.444 0.129 0.854 

COV 0.122 0.198 0.113 0.133 -0.519 

Outbound 276.122 22.051 1650.357 0.857 -1.384 

SD 40.654 3.494 67.514 0.136 0.722 

COV 0.147 0.158 0.04 0.159 -0.522 

Bus Inbound 399.24 13.333 1422.844 1.07 -1.812 

SD 90.182 2.856 159.973 0.233 0.945 

COV 0.225 0.214 0.112 0.217 -0.521 

Outbound 350.99 16.401 1563.981 1.07 -3.242 

SD 82.059 2.409 249.507 0.238 2.523 

COV 0.233 0.146 0.159 0.222 -0.778 

2.00-3.00 

pm 

Car Inbound 259.37 22.046 1568.821 0.895 -1.07 

SD 30.915 2.802 91.667 0.061 0.232 

COV 0.119 0.127 0.058 0.069 -0.217 

Outbound 318.82 19.234 1622.052 1.021 -2.091 

SD 78.398 4.51 146.361 0.313 1.607 

COV 0.245 0.234 0.09 0.306 -0.768 

Bus 

Inbound 405.41 12.964 1451.403 1.109 -1.967 

SD 47.014 1.589 164.5 0.152 0.813 

COV 0.115 0.122 0.113 0.137 -0.413 

Outbound 358.811 16.758 1646.576 1.055 -2.041 

SD 55.017 2.302 125.77 0.17 1.099 

COV 0.153 0.137 0.076 0.161 -0.538 
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5.2.1 Average journey time 

 

The average journey times for the bus-lane, mixed-lane and bus-only corridors have been 

calculated and analysed. Firstly, for the bus-lane corridor (A7), the average journey times 

during peak hours for buses were 385.72 sec (inbound) and 354.2 sec (outbound), and for 

cars were 250.022 sec (inbound) and 232.555 sec (outbound). During off-peak hours, average 

journey times for buses were 419.1 sec (inbound) and 365.23 sec (outbound), and for cars 

were 286.18 sec (inbound) and 291.92 sec (outbound). During 6.30-7.30 am, average journey 

times for buses were 189.085 sec (inbound) and 259.788 sec (outbound), and for cars were 

163.044 sec (inbound) and 169.922 sec (outbound). 

 

For the mixed-traffic corridor (A702), the average journey times during peak hours for buses 

were 399.24 sec (inbound) and 350.99 sec (outbound), and for cars were 253.68 sec 

(inbound) and 276.122 sec (outbound). During off-peak hours, average journey times for 

buses were 405.41 sec (inbound) and 358.811 sec (outbound), and for cars were 259.37 sec 

(inbound) and 318.82 sec (outbound).    

 

For the bus-only corridors (Princes Street), the average journey times during peak hours for 

buses were 286.52 sec (inbound) and 244.866 sec (outbound). During off-peak hours, average 

journey time for buses were 235.31 sec (inbound) and 223.855 sec (outbound).    

 

Figure 5.1 shows that the travel time is significantly higher for buses even on corridors with 

bus lanes during all times. This implies that the bus lanes are not functioning as anticipated. It 

is normally expected that the dedicated bus lane would improve travel time of buses as 

Princes St (bus only 

corridor) 

8.00-9.00 am 

Bus 

Inbound 
286.52 14.426 1091.004 0.803 -0.809 

SD 
64.289 3.699 68.25 0.093 0.118 

COV 
0.224 0.256 0.062 0.116 -0.146 

Outbound 
244.866 15.414 1023.532 0.797 -0.885 

SD 
62.414 2.528 219.771 0.076 0.867 

COV 
0.254 0.164 0.214 0.096 -0.979 

2.00-3.00 pm 

Bus 

Inbound 
235.31 16.741 1082.989 0.819 -0.836 

SD 
26.823 1.962 53.206 0.036 0.061 

COV 
0.113 0.117 0.049 0.044 -0.073 

Outbound 
223.855 19.44 1206.023 0.838 -0.873 

SD 
18.209 1.055 89.772 0.065 0.103 

COV 
0.081 0.054 0.074 0.078 -0.117 
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compared to other modes in order to make public transport more attractive. However, the 

results show that the bus lanes have travel times more than 1.5 times higher than the travel 

times of cars on average. Bus lanes use a dedicated portion of road area and are expected to 

provide considerable improvements in terms of travel time for them to be deemed beneficial. 

  

Figure 5.1: The total travel time during the period of data collection for each of the mode on different 

corridors 

 

But, the results show a different picture. The difference of travel time between cars and buses 

for bus lane roads and the ones without them are almost 1.5 higher for buses. This proves that 

the provision of a bus lane does not necessarily improve the conditions of public transport. 

On the contrary, there should be careful consideration about the geometry and traffic 

structure in addition to volumes. It has been observed that at signalised intersections, buses 

have to mix with other traffic and thus time gained via bus lane is not only lost but it delays 

the overall operation. Furthermore, parked cars also reduce the road capacity and disrupt 

other TDM measures.  

 

5.2.2 Journey speed 

 

The average journey speeds for the bus-lane, mixed-lane and bus-only lane corridors have 

also been calculated and analysed. Firstly, for the bus-lane corridor (A7), the average journey 

speeds during peak hours for buses were 12.273 km/hr (inbound) and 15.29 km/hr 

(outbound), and for cars were 21.353 km/hr (inbound) and 23.401 km/hr (outbound). During 

off-peak hours, average journey speeds for buses were 11.794 km/hr (inbound) and 14.759 

km/hr (outbound), and for cars were 18.79 km/hr (inbound) and 19.245 km/hr (outbound). 

During 6.30-7.30 am, average journey speeds for buses were 17.638 km/hr (inbound) and 
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19.989 km/hr (outbound), and for cars were 31.946 km/hr (inbound) and 32.39 km/hr 

(outbound).  

 

For the mixed-traffic corridor (A702), the average journey speeds during peak hours for 

buses were 13.333 km/hr (inbound) and 16.401 km/hr (outbound), and for cars were 20.545 

km/hr (inbound) and 22.05 km/hr 1 (outbound). During off-peak hours, average journey 

speeds for buses were 12.964 km/hr (inbound) and 16.758 km/hr (outbound), and for cars 

were 22.046 km/hr (inbound) and 19.234 km/hr (outbound).    

 

For the bus-only corridors (Princes Street), the average journey speeds during peak hours for 

buses were 14.426 km/hr (inbound) and 15.414 km/hr (outbound). During off-peak hours, 

average journey speeds for buses were 16.741 km/hr (inbound) and 19.44 km/hr (outbound).    

 

Figure 5.2 shows the speeds of cars and buses during the period of data collection on 

different corridors. The figure shows that the speed of buses is significantly lower than cars 

on all types of roads during all times. The speed of buses on bus only road, and bus lane 

roads is almost the same as that on mixed traffic roads. It depicts again that the bus lanes are 

not functioning properly. It would be expected that the dedicated bus lane should improve the 

overall bus speeds as compared to the buses on mixed traffic roads in order to improve public 

transport operations and making it attractive. However, the results show that the bus lanes 

have speeds less than half of that of cars on average. Although the speeds of bus only roads 

are better as compared to mixed traffic roads, bus lane roads are lowest of them all. The 

reason here again could be the mixing of traffic at junctions and long queues at the bus stops. 

This also proves that the provision of a bus lane does not necessarily improve the conditions 

of public transport. On the contrary, there should be careful consideration about the geometry 

and traffic structure in addition to volumes.  
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Figure 5.2: The average speeds of cars and buses during the period of data collection on different 

corridors 

 

 

5.2.3 Average journey length 

 

The average journey lengths for the bus-lane corridor (A7), during peak hours for buses were 

1297.961 meter (inbound) and 1482.013 meters (outbound), and for cars was 1446.969 

meters (inbound) and 1480.22 meters (outbound). During off-peak hours, average journey 

length for buses was 1313.907 meters (inbound) and 1474.767 meters (outbound), and for 

cars was 1444.447 meters (inbound) and 1531.861 meters (outbound). During 6.30-7.30 am, 

average journey length for buses was 931.191 meters (inbound) and 1396.928 meters 

(outbound), and for cars was 1436.173 meters (inbound) and 1489.863 meters (outbound). 

 

For the mixed-traffic corridor (A702), the average journey length during peak hours for buses 

was 1422.844 meters (inbound) and 1563.981 meters (outbound), and for cars was 1422.66 

meters (inbound) and 1650.357 meters (outbound). During off-peak hours, average journey 

length for buses was 1451.403 meters (inbound) and 1646.576 meters (outbound), and for 

cars was 1568.821 meters (inbound) and 1622.052 meters (outbound).    

 

For the bus-only corridors (Princes Street), the average journey length during peak hours for 

buses was 1091.004 meters (inbound) and 1023.532 meters (outbound). During off-peak 

hours, average journey length for buses was 1082.989 meters (inbound) and 1206.023 meters 

(outbound).    
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Figure 5.3 shows the average length of journey during the period of data collection on 

different corridors. This can be used to compare the sections under analysis.  

 

 

 

Figure 5.3: The length during the period of data collection on different corridors 

 

 

The average length of the section for inbound bus in early rush hour morning seems little 

different from the rest of the categories as the data collected for this section used smaller 

length of the section. However this does not create any problem with the overall results and 

they were considered adequate for further analysis. The section for the bus only road is also 

little bit shorter but again the results show that the collected data was enough for further 

analysis (reasons for this difference in length ie. Location of bus stops). 

 

 

5.2.4 Average journey acceleration  

 

The average journey acceleration on the bus lane corridor (A7), during peak hours for buses 

was 1.035 m/sec
2
 (inbound) and 0.792 m/sec

2
 (outbound), and for cars was 0.995 m/sec

2
 

(inbound) and 0.867 m/sec
2
 (outbound). During off-peak hours, the average journey 

acceleration, on the bus lane corridor (A7) for buses was 0.891 m/sec
2
 (inbound) and 0.836 

m/sec
2
 (outbound), and for cars was 0.879 m/sec

2
 (inbound) and 0.85 m/sec

2
 (outbound). 

During 6.30-7.30 am, the average journey acceleration on the bus lane corridor (A7) for 
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buses was 1.372 m/sec
2
 (inbound) and 0.863 m/sec

2
 (outbound), and for cars was 0.937 

m/sec
2
 (inbound) and 1.029 m/sec

2
 (outbound). 

 

Whereas the average journey acceleration on the mixed-traffic corridor (A702), during peak 

hours for buses was 1.07 m/sec
2
 (inbound) and 1.07 m/sec

2
 (outbound), and for cars was 

0.968 m/sec
2
 (inbound) and 0.857 m/sec

2
 (outbound). During off-peak hours, the average 

journey acceleration, on the mixed-traffic corridor (A702) for buses was 1.109 m/sec
2
 

(inbound) and 1.055 m/sec
2
 (outbound), and for cars was 0.895 m/sec

2
 (inbound) and 1.021 

m/sec
2
 (outbound). 

 

For the bus-only corridors (Princes Street), the average journey acceleration on the bus-only 

corridor, during peak hours for buses was 0.803 m/sec
2
 (inbound) and 0.797 m/sec

2
 

(outbound). During off-peak hours, the average journey acceleration, on the bus-only corridor 

for buses was 0.819 m/sec
2
 (inbound) and 0.838 m/sec

2
 (outbound). 

 

 

 

Figure 5.4: The total average journey acceleration during the period of data collection for each of the 

mode on different corridors 

 

 

Figure 5.4 shows that the average journey acceleration for buses is significantly higher for 

buses even on roads with bus lanes during all times. It depicts that the bus lanes are not 

functioning properly. However, the situation in bus only roads is different which have around 

the same proportion of acceleration phases as cars on other routes. Here again it should be 
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noted that bus lanes use a dedicated portion of road area and are expected to provide 

considerable improvements in terms of efficiency for their appraisal but, the results show a 

different picture. This proves that the provision of a bus lane does not necessarily improve the 

conditions of public transport. It has been observed that at signalised intersections, buses 

have to mix with other traffic and thus performance is compromised in the event of merging 

with other traffic. Furthermore, parked cars also reduce the road capacity and disrupt other 

TDM measure. 

 

 

5.2.5 Average journey deceleration  

 

The average journey deceleration on the bus lane corridor (A7), during peak hours for buses 

was -1.782 m/sec
2
 (inbound) and -1.075 m/sec

2
 (outbound), and for cars was -1.121 m/sec

2
 

(inbound) and -0.925 m/sec
2
 (outbound). During off-peak hours, the average journey 

deceleration, on the bus lane corridor (A7) for buses was -1.308 m/sec
2
 (inbound) and -1.273 

m/sec
2
 (outbound), and for cars was -1.0317 m/sec

2
 (inbound) and -0.955 m/sec

2
 (outbound). 

During 6.30-7.30 am, the average journey deceleration on the bus lane corridor (A7) for 

buses was -6.111 m/sec
2
 (inbound) and -2.03 m/sec

2
 (outbound), and for cars was -0.919 

m/sec
2
 (inbound) and -2.315 m/sec

2
 (outbound). 

 

Whereas the average journey deceleration on the mixed-traffic corridor (A702), during peak 

hours for buses was -1.812 m/sec
2
 (inbound) and -3.242 m/sec

2
 (outbound), and for cars was -

1.644 m/sec
2
 (inbound) and -1.384 m/sec

2
 (outbound). During off-peak hours, the average 

journey deceleration, on the mixed-traffic corridor (A702) for buses was -1.967 m/sec
2
 

(inbound) and -2.041 m/sec
2
 (outbound), and for cars was -1.07 m/sec

2
 (inbound) and -2.091 

m/sec
2
 (outbound). 

 

For the bus-only corridors (Princes Street), the average journey deceleration on the bus-only 

corridor, during peak hours for buses was -0.809 m/sec
2
 (inbound) and -0.885 m/sec

2
 

(outbound). During off-peak hours, the average journey deceleration, on the bus-only corridor 

for buses was -0.836 m/sec
2
 (inbound) and -0.873 m/sec

2
 (outbound). 
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Figure 5.5: The total average journey deceleration during the period of data collection for each of the 

mode on different corridors 

 

 

Figure 5.5 shows that the average journey deceleration for buses is significantly lower for 

buses even on roads with bus lanes during all times. This means that buses are spending more 

times on either idling/cruising or accelerating. It depicts that the bus lanes playing on average 

at lower speeds and hence there is not much proportion of decelerating as compared to cars 

which have on average higher speeds. The deceleration phases, on the other hand, on the bus 

only routes is almost 20% of the time. This means that the conditions there are relatively 

better as compared to bus lane roads. This shows that bus lanes again are not functioning 

properly. 

 

 

5.3 Results and preliminary analysis of speed calming measures in Edinburgh 
 

This section investigates the general characteristics of traffic along traffic calming corridors. 

Speed calming measures have been associated in the literature with a reduction in speed and 

improvements in safety aspects in urban areas. Höglund and Niittymaki (1999) studied the 

effect of speed humps during peak and non-peak hours using the speed profiles of traffic 

simulation and computerized emission calculations and found that speed humps are 

responsible for an increase in HC, CO, NOx emissions and also an increase in the fuel 

consumption, compared to a no-speed hump alternative for a 50 km/h speed limit scenario 

(Höglund and Niittymäki, 1999). Boulter et al., (2001) also found that traffic calming 
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measures have similar impacts on emissions. Boulter and his colleagues also developed a 

methodology for constructing the driving cycles of speed hump measures. The study utilized 

the measurement of the speed profiles of a large number of vehicles using a roadside Light 

Detection and Ranging (LIDAR) system. Also, Daham et al. (2005) by simulating braking 

and acceleration events to mimic speed humps by driving a normal road using an on-road 

emission measurement device, found that speed humps increase HC, CO, NOx, and CO2 

emissions by 148%, 117%, 195%, and 90%. For the current study, the data collected while 

driving over speed calming corridors was investigated and analysed. 

 

Three corridors were selected with different traffic calming measures and the fourth corridor 

has no speed reduction measures and was used as a control corridor. The traffic corridors are 

listed below: 

 

Corridor 1: Iona Street (20 mph zone with speed cushions, speed humps and cobbled street 

surface) 

Corridor 2: West Bryson Road (20 mph zone with speed humps) 

Corridor 3: Montgomery Street (20 mph zone with speed humps and raised junctions) 

Corridor 4: Polwarth Terrace (20 mph zone with no speed humps). This corridor was 

considered as the control corridor. 

 

Tables 5.2 below show summary results of traffic performance and characteristics over these 

four selected corridors.  

 

Table 5.2: Summary characteristics of traffic performance on traffic calming corridors 

 

Corridors Average 

Time (Sec) 

Average Speed 

(Km/h) 

Average 

Length (Meter) 

Average   

Acc 

(m/sec
2
) 

Average  

 Dec 

(m/sec
2
) 

Corridor 1 58.59 24.128 392.0356 0.55515 -0.5283 

SD 9.621407 1.615757 64.5323 0.08491065 0.080033611 

COV 0.164216 0.066966 0.164608 0.152950823 -0.151492734 

Corridor 2 97.735 23.87025 643.9516 0.72055 -0.73475 

SD 9.202189 2.148803 21.68666 0.083938872 0.090841606 

COV 0.094154 0.09002 0.033677 0.116492779 -0.123636075 

Corridor 3 85.325 27.50295 665.6761 0.5281 -0.5599 

SD 10.21572 1.871836 11.76537 0.121098003 0.123889127 

COV 0.119727 0.068059 0.017674 0.229308849 -0.221270096 

Corridor 4 55.08 29.127 445.9236 0.7504 -0.7155 

SD 3.667818 1.112965 27.12122 0.0865797 0.103269066 

COV 0.066591 0.038211 0.06082 0.115378065 -0.144331329 
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From Table 5.2, it appears that the average speeds of driving cycles in corridors  1, 2 and 3 

were found to be 24.1 km/h, 23.8 km/h and 27.5 km/h (15.1, 14.9 and 17.2 mph respectively), 

while the average trip lengths were 3.92 km, 6.43 km and 6.65 km respectively. The average 

speed on corridor 4 (the control corridor) is 29.12 km/h (18.2 mph) km/hr. The average 

corridor trip length of corridor 4 is 445.92 meters. It is clear that the average speed is highest 

on the control corridor (i.e. the corridor with no speed controlling measures) while the lowest 

speed was observed on corridor 1 (the corridor with speed cushions, speed humps and 

cobbled street surface). This is an indication of the effectiveness of speed reduction measures 

in achieving reduction of speeds in urban areas.  

 

The average journey time for the corridor 1, corridor 2, and corridor 3 were 58.59, 97.73 and 

85.32 seconds respectively, whereas the average cycle length for corridor 4 is 55.08 seconds. 

The average journey on corridor 1 provided data in acceleration and deceleration were found 

to be 0.55515 m/sec2 and -0.5283 m/sec
2
 respectively, whereas the average journey spent on 

corridor 2 in acceleration and deceleration were found to be 0.72055 m/sec
2
 and -0.73475 

m/sec
2
 respectively. The average journey on corridor 3 in each of the driving modes 

(acceleration and deceleration) was found to be 0.5281 m/sec
2
 and -0.5599 m/sec

2
 

respectively.  For corridor 4, the average journey on acceleration and deceleration were found 

to be 0.7504 m/sec
2
 and -0.7155 m/sec

2
 respectively. Further analyses of these statistics are 

discussed in the following sections.  

 

 

5.3.1 Journey travel time 

 

Figure 5.6 shows the total travel time during the period of data collection on different 

corridors. The figure shows that the travel time is significantly high for corridors 1, 2 and 3 as 

compared to the fourth corridor. This might be a result of the fact that the lengths of the 2nd 

and 3rd corridors were higher in comparisons with corridor 4 while the length of the first 

corridor is less than that of corridor 4. The overall speed on the three corridors (1, 2 & 3) 

where much lower than they are on the fourth corridor (the control) as a result of the speed 

reduction measures implemented there. Obviously, the reduction of speed on these corridors 

is the main objective of implementing speed reduction measures, however, as well as 

reducing speed there is an increase in acceleration and deceleration on these corridors which 
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is not very desirable. This is because speed reduction measures force drivers to reduce their 

speeds just before speed calming measures and then accelerate again straight after; this 

results in increase in emissions and subsequently worsening environmental conditions. This 

will be discussed in the subsequent sections.  

 

 

 
 
Figure 5.6: The total travel time during the period of data collection on different corridors 

 

 

 

 

5.3.2 Journey speed 

 

Figure 5.7 shows the speeds during the period of data collection on different corridors. The 

figure shows that the speed of corridor 1, 2 and 3 are lower than all the remaining corridors. 

This shows that while speed humps only (corridor 2) serves the purpose of reducing speeds, 

they are more efficient when they are combined with other measures (such as raised junctions 

or speed cushions).  
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Figure 5.7: The speeds during the period of data collection on different corridors 

 

 

5.3.3 Journey length 

 

Figure 5.8 shows the length during the period of data collection on different corridors. This 

can be used to compare the sections under study for data collection. The length of the 

corridors 2 and 3 was higher than the rest of the corridors as the data collected for these 

sections used longer length of these corridors. However this does not create any problem with 

the overall results and they were considered adequate for further analysis.  

 
 
Figure 5.8: The length during the period of data collection on different corridor 
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5.3.4 Average journey acceleration 

 

Figure 5.9 shows the total average journey acceleration during the period of data collection 

on the four corridors. The figure shows that the time spent in acceleration is different for the 

different corridors. The average journey acceleration time for corridor 4 is highest among all 

the corridors with the average journey time in acceleration on corridor 3 is the lowest.  The 

reason for this can be the effect of different traffic calming measures on these corridors. For 

example corridor1 with cobbled surface might require constant acceleration whereas raised 

junctions on corridor 3 in addition to humps keep the vehicles at lower speeds even after the 

humps. It depicts that although road humps are effective in reducing speed they cause 

constant acceleration and deceleration of the vehicles whereas other additional measures i.e. 

raised junctions, keep the vehicles at lower speeds. 

 

 
 
Figure 5.9: The total average journey on acceleration during the period of data collection on the fourth 

corridor 

 

 

 

5.3.5 Average journey deceleration 

 

Figure 5.10 shows the total average journey on deceleration during the period of data 

collection on different corridors. The figure shows that the average journey deceleration on 

corridors 1 & 3 are almost similar (higher than 17.3%) and is the highest compared with 

corridors 2 & 4 with corridor 4 (the control) showing the least % time spent on deceleration. 
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As mentioned earlier each of corridor 1 and corridor 3 has more than one type of traffic 

calming measures, corridor 3 has only road humps.  

 

 

Figure 5.10: The total average journey on deceleration during the period of data collection for each of the 

mode on different corridors 

 

 

5.4 Results and preliminary analysis of mixed traffic corridors measures in Abu Dhabi 

 

As mentioned earlier, a novel feature of this study is also the development of Abu Dhabi 

driving cycle for both buses and cars. Table 5.3 and below present the general characteristics 

of the mixed traffic corridors in Abu Dhabi. These characteristics are discussed below. These 

characteristics include the average journey time, average journey speed, average journey 

acceleration, average journey deceleration, standard deviation and coefficient of variation 

(COV).  
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Table 5.3: Characteristics of the mixed traffic corridors in Abu Dhabi 

 

 

 

5.4.1 Journey travel time 

 

The average journey times for the mixed-traffic corridors have been calculated and analysed. 

Firstly, for the mixed-traffic corridor (Airport Road), the average journey times during peak 

hours for buses were 544.9 sec (inbound) and 422.8 sec (outbound), and for cars were 252.64 

Corridors 

Time 

Mode Direction Average 

Time 

(Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

Average   

Acc 

(m/sec2) 

Average  

 Dec 

(m/sec2) 

Airport Road (mixed 

traffic road) 

6.30.-7.30 am 

Car Inbound 252.64 35.628 2387.998 0.83 -0.94 

SD 64.348 7.342 109.843 0.082 0.128 

COV 0.254 0.206 0.045 0.099 -0.136 

Outbound 171.96 44.832 2089.216 0.702 -0.968 

SD 59.256 5.301 642.876 0.143 0.604 

COV 0.344 0.118 0.307 0.204 -0.623 

Bus Inbound 544.9 15.61 2331.912 0.826 -0.876 

SD 81.33 1.878 201.623 0.11 0.118 

COV 0.149 0.12 0.086 0.133 -0.135 

Outbound 422.8 19.907 2302.241 0.838 -1.273 

SD 56.667 2.918 130.622 0.086 0.692 

COV 0.134 0.146 0.056 0.103 -0.543 

11.00-12.00 

pm 

Car Inbound 188.35 45.609 2364.854 0.683 -0.886 

SD 22.335 4.195 114.222 0.194 0.17 

COV 0.118 0.091 0.048 0.285 -0.192 

Outbound 167.9 33.2841 1573.809 0.8215 -1.178 

SD 77.082 7.342 860.927 0.065 0.714 

COV 0.459 0.22 0.547 0.08 -0.606 

Bus 

Inbound 437.42 19.127 2248.493 0.841 -1.258 

SD 82.297 3.801 103.693 0.085 0.476 

COV 0.188 0.198 0.046 0.101 -0.378 

Outbound 332.17 25.765 2359.612 0.81 -1.568 

SD 32.689 2.31 69.428 0.061 1.087 

COV 0.098 0.089 0.029 0.076 -0.693 

Eliktra Road (mixed 

traffic road) 

6.30.-7.30 am 

Car Inbound 209.69 30.552 1762.837 0.935 -3.38 

SD 25.257 3.189 101.124 0.114 4.376 

COV 0.12 0.104 0.057 0.122 -1.294 

Outbound 176.4 35.553 1718.947 0.946 -3.233 

SD 23.879 4.397 97.709 0.143 3.165 

COV 0.135 0.123 0.056 0.152 -0.979 

Bus Inbound 320.29 20.697 1821.542 0.85 -1.081 

SD 37.225 2.247 42.007 0.141 0.402 

COV 0.116 0.108 0.023 0.166 -0.372 

Outbound 408.17 16.315 1840.657 0.917 -1.304 

SD 43.376 1.126 107.873 0.101 0.396 

COV 0.106 0.069 0.058 0.111 -0.303 

11.00-12.00 

pm 

Car Inbound 203.033 33.459 1789.443 0.899 -1.441 

SD 40.822 9.995 84.502 0.055 1.265 

COV 0.201 0.298 0.047 0.062 -0.877 

Outbound 207.777 27.737 1572.042 1.004 -3.529 

SD 35.561 4.123 141.031 0.161 3.787 

COV 0.171 0.148 0.089 0.16 -1.073 

Bus 

Inbound 291.47 20.636 1649.049 0.867 -1.057 

SD 35.144 3.164 151.085 0.133 0.325 

COV 0.12 0.153 0.091 0.154 -0.307 

Outbound 342.71 15.376 1444.897 1.075 -2.318 

SD 66.402 1.79 212.433 0.258 1.543 

COV 0.193 0.116 0.147 0.24 -0.665 
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sec (inbound) and 171.96 sec (outbound). During off-peak hours, average journey time for 

buses was 437.42 sec (inbound) and 332.17 sec (outbound), and for cars was 188.35 sec 

(inbound) and 167.9 sec (outbound). 

 

For the mixed-traffic corridor (Elektra Road), the average journey time during peak hours for 

buses was 320.29 sec (inbound) and 408.17 sec (outbound), and for cars was 209.69 sec 

(inbound) and 176.4 sec (outbound). During off-peak hours, average journey time for buses 

was 291.47 sec (inbound) and 342.71 sec (outbound), and for cars was 203.033 sec (inbound) 

and 207.777 sec (outbound).    

 

Figure 5.11 shows the total travel time during the period of data collection for each of the 

modes on different corridors. The figure shows that the travel time is significantly high for 

buses on both the roads during all times. It depicts that the buses have considerably higher 

travel time and are not very attractive mode of transport especially in peak hours. It can be 

expected that with the provision of dedicated bus lanes, the situation would improve and the 

travel time of buses would decrease as compared to other modes and thus making public 

transport more attractive. The results show that the buses have travel times on average more 

than almost 2.5 times higher than the travel times of cars. Bus lanes use a dedicated portion 

of road area and would be expected to provide considerable improvements in terms of travel 

time for their appraisal. 

 

 

Figure 5.11: The total average travel time during the period of data collection for each of the mode on 

different corridors 
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However, there should be careful consideration about the geometry and traffic structure in 

addition to volumes before provision of any such TDM measure. 

 

 

5.4.2 Journey speed 

 

The average journey speeds for the mixed-traffic corridors have also been calculated and 

analysed. Firstly, for the mixed-traffic corridor (Airport Road), the average journey speeds 

during peak hours for buses were 15.61 km/hr (inbound) and 19.907 km/hr (outbound), and 

for cars were 35.628 km/hr (inbound) and 44.832 km/hr (outbound). During off-peak hours, 

average journey speed for buses was 19.127 km/hr (inbound) and 25.765 km/hr (outbound), 

and for cars was 45.609 km/hr (inbound) and 33.284 km/hr (outbound).   

 

For the mixed-traffic corridor (Elektra Road), the average journey speed during peak hours 

for buses was 20.502 km/hr (inbound) and 16.873 km/hr (outbound), and for cars was 30.552 

km/hr (inbound) and 35.553 km/hr (outbound). During off-peak hours, average journey speed 

for buses was 20.636 km/hr (inbound) and 15.376 km/hr (outbound), and for cars was km/hr 

33.459 (inbound) and km/hr 27.737 (outbound).    

 

Figure 5.12 shows the speeds of cars and buses during the period of data collection on 

different corridors. The figure shows that the speed of buses is significantly lower than cars 

on all roads during all times. The speed of buses improves in the non-rush hours but that too 

is not much improved. On the other hand in rush hours the speeds are less than half of the 

speeds of cars which make the buses very unattractive during peak hours. 
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Figure 5.12: The average speeds of cars and buses during the period of data collection on different 

corridors 

 

 

 

5.4.3 Journey length 

 

The average journey length for the mixed-traffic corridor (Airport Road), during peak hours 

for buses were 2331.912 meters (inbound) and 2302.241 meters (outbound), and for cars 

were 2387.998 meters (inbound) and 2089.216 meters (outbound). During off-peak hours, 

average journey length for buses was 2248.493 meters (inbound) and 2359.612 meters 

(outbound), and for cars was 2364.854 meters (inbound) and 1573.809 meters (outbound).    

 

For the mixed-traffic corridor (Elektra Road), the average journey length during peak hours 

for buses was 1821.542 meters (inbound) and 1840.797 meters (outbound), and for cars was 

1762.837 meters (inbound) and 1718.947 meters (outbound). During off-peak hours, average 

journey length for buses was 1649.049 meters (inbound) and 1444.897 meters (outbound), 

and for cars was 1789.443 meters (inbound) and 1572.042 meters (outbound).    

 

Figure 5.13 shows the length during the period of data collection on different corridors. This 

can be used to compare the sections under study for data collection.  The lengths of the routes 

are comparable and are found to be satisfactory for further analysis. 
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Figure 5.13: The average length during the period of data collection on different corridors 

 

 

5.4.4 Average journey acceleration 

 

The average journey acceleration on the mixed-traffic corridor (Airport Road), during peak 

hours for buses was 0.826 m/sec2 (inbound) and 0.838 m/sec
2
 (outbound), and for cars was 

0.83 m/sec
2
 (inbound) and 0.702 m/sec

2
 (outbound). During off-peak hours, the average 

journey acceleration for buses was 0.841 m/sec
2
 (inbound) and 0.81 m/sec

2
 (outbound), and 

for cars was 0.683 m/sec
2
 (inbound) and 0.821 m/sec

2
 (outbound).  

 

Whereas the average journey acceleration on the mixed-traffic corridor (Elektra Road), 

during peak hours for buses was 0.85 m/sec
2
 (inbound) and 0.917 m/sec

2
 (outbound), and for 

cars was 0.935 m/sec
2
 (inbound) and 0.946 m/sec

2
 (outbound). During off-peak hours, the 

average journey acceleration for buses was 0.867 m/sec
2
 (inbound) and 1.075 m/sec

2
 

(outbound), and for cars was 0.899 m/sec
2
 (inbound) and 1.004 m/sec

2
 (outbound). 

 

Figure 5.14 shows the average journey acceleration during the period of data collection for 

each of the modes on different corridors. The figure shows that the average journey 

acceleration for buses is almost same as compared to cars during all times. 
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Figure 5.14: The total average acceleration during the period of data collection for each of the mode on 

different corridors 

 

 

5.4.5 Average journey deceleration 

 

The average journey deceleration on the mixed-traffic corridor (Airport Road), during peak 

hours for buses was -0.876 m/sec
2
 (inbound) and -1.273 m/sec

2
 (outbound), and for cars was -

0.94 m/sec
2
 (inbound) and -0.968 m/sec

2
 (outbound). During off-peak hours, the average 

journey deceleration for buses was -1.258 m/sec
2
 (inbound) and -1.568 m/sec2 (outbound), 

and for cars was -0.886 m/sec
2
 (inbound) and -1.178 m/sec

2
 (outbound).  

 

Whereas the average journey deceleration on the mixed-traffic corridor (Elektra Road), 

during peak hours for buses was -1.081 m/sec
2
 (inbound) and -1.304 m/sec

2
 (outbound), and 

for cars was -3.38 m/sec
2
 (inbound) and -3.233 m/sec

2
 (outbound). During off-peak hours, the 

average journey deceleration for buses was -1.057 m/sec
2
 (inbound) and -2.318 m/sec

2
 

(outbound), and for cars was -1.441 m/sec
2
 (inbound) and -3.529 m/sec

2
 (outbound). 
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Figure 5.15: The total average deceleration during the period of data collection for each of the mode on 

different corridors 

 

 

Figure 5.15 shows the mixed results for the average journey deceleration for buses and cars 

during all times. On Airport Road the cars in general have higher deceleration phases 

whereas at Elektra road the buses have higher deceleration phases.  

 

 

5.5 Summary 

 

This chapter presented the preliminary analysis from the assessment of the bus traffic 

corridors in Edinburgh and the traffic calming corridors in Edinburgh and Abu Dhabi. This 

data is used for the development of the driving cycle in both cities. Data was collected for the 

buses and cars on the “bus traffic corridors” in Edinburgh, “traffic calming corridors” in 

Edinburgh as well as for buses and cars on the “traffic corridors” in Abu Dhabi. The results 

of the characteristics of the buses and cars on the bus traffic corridors in Edinburgh have been 

presented and briefly discussed. The measurements were carried out for each of the three 

corridors during peak (8.00-9.00 am) and off-peak (2.00-3.00 pm) hours of traffic as well as 

before the bus lane operation (6.30-7.30am). The measurements were repeated for both 

directions of traffic flow on each corridor as well (that is inbound and outbound). The general 

characteristics of the bus traffic corridors in Edinburgh and Abu Dhabi have been presented. 

These characteristics are further discussed in the following chapters. These characteristics 

include the average journey time, average journey speed, average journey acceleration, 
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average journey deceleration, standard deviation and coefficient of variation (COV). Further 

analysis of the results and the driving cycles are presented in the following chapters. 
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CHAPTER 6 

 

DEVELOPMENT OF THE DRIVING CYCLES 

 

 

6.1 Introduction 

 

Development of representative driving cycles is a very important tool for an efficient 

assessment of transport policies. Therefore, much research has been undertaken on this 

subject, as discussed in the literature review (e.g. Saleh, et al., 2010; Simanaitis, 1977; Kent 

et al., 1978; Kulher and Karsten, 1978; Watson et al., 1982; Wang et al., 1985; Lyon et al., 

1986; Andre et al., 1995; Tong et al., 1999; Tzeng & Chen et al., 1998; Booth et al., 2001; 

Shafiepour and Kamalan, 2005; Tsai et al., 2005; Hung et al., 2007).  

 

However, most of the work on the development of driving cycles has been carried out with 

emission monitoring and measurement, in mind rather than their applications in the area of 

assessing further travel demand management. Therefore, this is one of the novel areas of this 

research. While most of this work is immediately relevant to sustainability, one can recognise 

three main gaps in such work. These are:  Firstly, in most studies, emission monitoring and 

measurement are mostly undertaken separately and as a follow up to the investigation of the 

problem of congestion. Secondly, the driving cycle techniques and principle are very useful 

tools. They are applicable for any study area type and the techniques are very flexible. 

Thirdly, most of the work on driving cycles to date has been reported in the western 

countries, but not in the developing countries. This is despite that most of developing 

countries suffer from congestion, pollution and all the other traffic related problems. 

 

In this research, we utilise the techniques of investigating the driving cycle analysis to 

monitor impacts of traffic management policies. Specifically, two policies have been 

considered in this research: bus lanes corridors where the performance of buses and cars over 

these corridors has been investigated. Secondly, traffic calming measures, where a number of 

corridors with traffic calming measures have been studied and analysed. In addition, traffic 

corridors in Abu Dhabi have also been investigated. 
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This Chapter details the methodological development of the driving cycle for the buses and 

for the cars on the bus lane traffic corridors, as well as for the traffic calming corridors, in 

Edinburgh’s case studies. The assessment of the driving cycle for Abu Dhabi traffic corridors 

is also presented. Chapters 3 and 4 present the description of the case studies and the 

methodology for data collection. 

 

 

6.2 Parameters used for the development of the driving cycle 

 

As discussed earlier in Chapter Four, modelling the driving cycles requires synthesising a 

large amount of data collected from the field.  In each case study, there were large numbers 

of test runs. Each test run was comprised of a series of major kinematic sequences (i.e. speed 

vs. time curve) which were divided into a number of minor kinematics sequences (also called 

micro-trips). This data (which was collected every 0.1 seconds time intervals), was exported 

to Excel software to calculate the assessment parameters.  

 

The data analysis was carried out using the performance box analysis programme and 

Microsoft excel. The data collected was edited to remove any errors data such as the time 

spent stationary while waiting for a car to enter the test area that could be chased. After the 

data was edited the remaining data was exported to excel and saved as an excel file. Each of 

the parameters was calculated as below: 

 

Data on speed, time, distance, acceleration, deceleration, idling and cruising were analysed 

for each of the corridors. A number of assessment parameters were estimated which include:  

  

1. Average trip duration (t); 

2. Average speed of the entire driving cycle (v); 

3. Mean length of driving period (l); 

4. Average acceleration of all acceleration phases (a); 

5. Average deceleration of all deceleration phases (d); 

6. Percentage time spent in driving modes for acceleration (Pa); 

7. Percentage time spent in driving modes for deceleration (Pd); 

8. Percentage time spent in driving modes for deceleration (Pd); 

9. Percentage time spent in driving modes for cruising (Pc); 
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10. Standard deviation (Sd); 

11. Coefficient of variation (Cov); 

12. Sum of absolute relative error (Sj). 

 

These parameters are defined hereinafter. 

1. Average trip duration (t): 

The trip duration was simply obtained by noting the time in seconds of each run. 

 

2. Average speed of the entire driving cycle (v); 

The average speed was obtained using excels average formulae, which was done by simply 

highlighting the complete speed data and clicking the average formulae button. 

 

3. Mean length of driving period (l); 

The average length was obtained using excels average formulae, which was done by simply 

highlighting the complete length data and clicking the average formulae button. 

 

4. Average acceleration of all acceleration phases (a); 

To obtain the average acceleration, the column of data that contained the acceleration and 

deceleration first had to be multiplied by 9.81 to convert the data from gravitate to m/s
2
 and 

then sorted into the range of largest to smallest. After this had been completed all the 

acceleration section was highlighted and the average found by excels average formulae. 

 

5. Average deceleration of all deceleration phases (d); 

To obtain the average deceleration, the column of data that contained the acceleration and 

deceleration first had to be multiplied by 9.81 to convert the data from gravitate to m/s
2
 and 

then sorted into the range of largest to smallest. After this had been completed all the 

deceleration section was highlighted and the average found by the excel average formulae. 

 

6. Percentage time spent in driving modes for acceleration (Pa); 

The percentage of acceleration was obtained using the same converted and sorted excel page. 

This was done by noting the cell number of the acceleration phase that was immediately 

greater than the average acceleration and finding the proportion this figure was of the whole 

data by hand calculations, for example if the data was 1000 cells large and the acceleration 
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that was immediately greater than the average acceleration was at cell 350 that would imply 

the percentage time spent in acceleration was 350/1000*100=35%. 

 

7. Percentage time spent in driving modes for deceleration (Pd); 

The percentage of deceleration was obtained using the same converted and sorted excel page. 

This was done by noting the cell number of the deceleration phase that was immediately less 

than the average deceleration and finding the proportion this figure was of the whole data by 

hand calculations, for example if the data was 1000 cells large and the deceleration that was 

immediately less than the average deceleration was at cell 700 that would imply the 

percentage deceleration was 1000-700=300= then (300/1000)*100=30%. 

 

8. Percentage time spent in driving modes for cruising (Pc); 

This was obtained by cutting all the acceleration data between the average acceleration and 

average deceleration values and pasting it in a new excel sheet. Then the data would be sorted 

in order of speed from smallest to largest. Since idle is defined as less than 10 km/h 

percentage cruise is the proportion of the cut data above 10 km/h. The proportion was worked 

out manually in the same manner as percentage acceleration and deceleration. 

 

9. Percentage time spent in driving modes for idle: 

This was worked out by using the same process as percentage cruise except it was the 

proportion of data below 10 km/h. 

  

10.  Standard deviation (Sd); 

This was obtained by selecting all the data for each parameter on each route and using the 

standard deviation formulae in excel. 

 

11.  Coefficient of variation (Cov); 

This was obtained by dividing the SD value of each parameter by the average value of that 

parameter. 

 

12. Sum of absolute relative error (Sj). 

 This was calculated by summing up the individual relative error for the corridors. 

 

6.4 Derivation of driving cycle 
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The driving cycles were derived by examining the statistical resemblance of the nine defined 

parameters as shown in Table 6.3. These assessment parameters were also used in assessment 

of deriving driving cycle by several researchers (Tzeng & Chen et al., 1998, Hung et al., 

2007, Tsai, 2005, Andre 2004, Kumar et al., 2007). These parameters are the most 

appropriate parameters to assess and define the driving cycle for the case of bus lanes 

assessment and for traffic calming measures assessment. The percentages of time spent in 

each of the driving cycles are taken to be a good reflection of the efficiency of the policies 

implemented in terms of impacts on environmental emissions and hence sustainability. 

    

The overall mean value of each of the nine defined parameters, standard deviations (SD) and 

coefficients of variations (COV) of those assessment parameters were estimated for each of 

the test runs for each of the corridors. The COV values were calculated to show the variations 

in the performance of the test runs for the corridors.  

 

A further refining of the driving cycle was done by calculating the absolute sums of the 

relative error (Sj) then by selecting the driving cycle with minimum value of Sj. The relative 

error value for each of the parameters ( k  ) is calculated (see previous discussions in Section 

4.10.2): 

 

 100*
)(

ij

ij

k
p

pp 
     Equation 5.1 

Where k is an assessment parameter (k varies from 1 to 9) and ∆k is the value of the 

relative error for parameter k, P  is overall mean value of parameters. Pij is a parameter with a 

value of a run i (between 1 and number of runs) and corridor category j. The absolute sum of 

the relative errors (Sj) was calculated for each corridor category type by summing up the 

individual relative error for a given corridor (Eq. 5.2): 





7

1k

j kS
                equation 5.2 

 

These assessment parameters are set for each of the corridors, the details of these routes and 

time of data collection is presented in Section 3.4: 
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Table 6.1: Assessment parameters used in deriving the driving cycles for the selected corridors 

 

Assessment parameter Abbreviation 

Average trip duration T 

Mean length of driving period L 

Average speed of the entire driving cycle V 

Average acceleration A 

Average deceleration D 

Percentage time spent in driving modes for acceleration  Pa 

Percentage time spent in driving modes for deceleration  Pd 

Percentage time spent in driving modes for cruising  Pc 

Percentage time spent in driving modes for idling  Pi 

Standard deviation Sd 

Coefficient of variation Cov 

Sum of absolute relative error Sj 

 

The minimum value of the sum of absolute error (%) Sj for the corridors in each category 

was then identified and the corridor driving cycle was selected as a representative driving 

cycle for that category. For example, for the bus corridors in Edinburgh, the inbound and 

outbound traffic corridors where analysed and compared and the driving cycle with the 

minimum (%) Sj was selected to be the representative driving cycle for the bus lane corridors. 

 

 

6.5 Selected traffic corridors for the study 

 

As discussed earlier in Section 3.4, a number of traffic corridors have been tested in this 

research. These include firstly, three traffic corridors in Edinburgh were investigate and 

assess the performance of traffic which include the buses and the private cars and investigate 

the impacts of bus lanes. These three corridors are referred to in this study as “Edinburgh bus 

traffic corridors”. Secondly, there are four “Edinburgh traffic calming corridors”; three with 
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traffic calming measures and one used as a control corridor. The performance of the cars on 

these corridors has been investigated. Finally, there are two traffic corridors in the city of 

Abu Dhabi, and these are referred to as “Abu Dhabi traffic corridors”.  On these corridors, 

the performance of the cars and buses are investigated. 

Firstly, the Edinburgh bus traffic corridors consist of: 

 

1. A corridor with a bus lane (i.e. a lane is used exclusively by buses from (7.30-9.30 am 

and from 16.00-18.30 pm). This type of corridor is referred to in this study as a “bus-

lane corridor”.  These corridors are represented in this study by corridor A7 (Nicolson 

Street) in Edinburgh.  

2. A corridor with mixed traffic. That is the bus as well as all other traffic share all the 

lanes of the corridor. These types of corridors are referred to in this study as “mixed 

traffic corridors”. These corridors are represented in this study by corridor A702 

(Morningside Road) in Edinburgh. 

3. A corridor which is designated to buses, which is in fact a very special case. However, 

Princes Street in Edinburgh is designated to bus and taxi operations only and no other 

traffic can use the road. Therefore, this has been an interesting case which was worthy 

of investigation and comparisons with other traffic corridors. These types of corridors 

are referred to in this study as “bus-only corridors”, and represented in this study by 

Princes Street corridor in Edinburgh. 

 

Secondly, the traffic calming corridors consists of: 

 

4. A corridor with a 20 mph zone speed cushions, speed humps and cobbled street 

surface. This type of corridor is referred to in this study as a “Traffic calming-

corridor-1”.  These corridors are represented in this study by corridor 1 (Iona 

Street) in Edinburgh.  

5. A corridor with a 20 mph zone with speed humps. This type of corridor is referred 

to in this study as a “Traffic calming-corridor-2”.  These corridors are represented 

in this study by corridor 2 (West Bryston Road) in Edinburgh. 

6. A corridor with a 20 mph zone with speed humps and raised junctions. This type 

of corridor is referred to in this study as a “Traffic calming-corridor-3”.  These 
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corridors are represented in this study by corridor 3 (Montgomery Street) in 

Edinburgh. 

7. A corridor with no traffic calming measures. This type of corridor is referred to in 

this study as a “control corridor”.  These corridors are represented in this study by 

corridor 4 (Polwarth Terrace) in Edinburgh. 

 

Thirdly, the traffic corridors in Abu Dhabi consist of: Two corridors with mixed traffic (i.e. 

all traffic share all lanes on the corridor).  These corridors are represented in this study by 

Airport Road and Elektra Road in Abu Dhabi.  

 

Table 6.2 below shows the general characteristics of the five traffic corridors selected in this 

study. 

 

 
Table 6.2: General characteristics of the selected corridors in this study 

 
The corridors Number  of 

bus stops 

Number of 

Signalised 

junctions 

Number of 

pedestrians 

crossing 

Bus 

frequency 

Number of 

bus routes 

Type of 

road 

Number 

of lanes 

Length of 

the 

corridor 

Direction In Out In Out In Out In Out In Out In/Out In/Out In/Out 

A7 (Bus lane) 7 8 6 6 6 6 57 57 10 10 Single 

carriageway 

2 0.9 miles 

A702 (Mixed 

traffic) 

7 5 5 5 5 5 36 36 6 6 Single 

carriageway 

2 1.0 miles 

Princes St (Bus 

only) 

9 12 7 7 4 4 156 156 29 29 Dual 

carriageway 

2 0.7 miles 

Airport Rd 

(Mixed traffic) 

6 6 4 4 0 0 24 24 4 4 Dual 

carriageway 

4 1.0 miles 

Elektra Rd 

(Mixed traffic) 

5 6 4 4 0 0 42 42 7 7 Dual 

carriageway 

3 1.0 miles 

 

 

 

 

6.6 Development of driving cycles for traffic corridors in Edinburgh  

 

As discussed earlier, driving data was collected over three traffic corridors in Edinburgh. 

Each testing period was comprised of a series of major kinematic sequences (i.e. speed vs. 

time curve) which were divided into a number of minor kinematics sequences (also called 

micro-trips) as discussed. Data collected over these three routes were quite huge.  
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The data was collected via instrumented car installed with performance box driven by the 

author on the Morningside road A702 which is a mixed traffic road without a dedicated bus 

lane for both peak and off-peak hours. For bus data, it was collected by carrying the 

performance box on the bus.  

 

Ten tests were completed for each of the three corridors, for each direction of traffic (inbound 

and outbound) and for three time periods peak (8.00-9.00), off peak (2.00-3.00) and before 

7.30 (6.30-7.30). As discussed earlier, the time period 6.30-7.30 was the time period before 

the operation of the bus lanes on the traffic corridors in Edinburgh. These were taken to 

identify any impacts of the bus lane operation. Therefore, there are six sets of measurements 

(twenty tests in each measurement) for the A7 corridor, and four sets of measurements for the 

Morningside (A702) and two sets for the Princes Street corridors; that is twelve sets of 

measurement as presented in the example in Table 6.3.  Appendix 1 presents all the results 

for all the corridors. 

 

Firstly, an investigation of the results was carried out to check any major problems in the 

data. There were a few tests excluded from the analysis where the accuracy of the signals 

from the GPS receiver were not very high (3 receivers only or less were reported). The 

following sections present the results of each set of measurements. Table 6.4 shows the 

average values of the parameters for all traffic corridors in Edinburgh 

 

Table 6.3: Example of data collected for corridor A702 

 

The Routes 

Time 

(sec) 

Speed 

(km/hr) 

Distance 

(meters) 

% time of 

Acceleration 

% time of 

Deceleration 

% time 

of Idling 

% time 

of 

Cruising 

A702 T(1) 8-9 Am (In) Bus 278.1 14.34 1108.75 0.1308 0.037 0.213 0.617 

A702 T(2) 8-9 Am (In) Bus 316.3 14.59 1281.789 0.152 0.03002 0.297 0.519 

A702 T(3) 8-9 Am (In) Bus 403.8 14.39 1614.968 0.182 0.195 0.186 0.435 

A702 T(4) 8-9 Am (In) Bus 490.9 10.34 1410.305 0.123 0.027 0.296 0.55 

A702 T(5) 8-9 Am (In) Bus 398.3 12.78 1414.246 0.105 0.035 0.355 0.503 

A702 T(6) 8-9 Am (In) Bus 535.2 9.61 1430.122 0.119 0.072 0.28 0.526 

A702 T(7) 8-9 Am (In) Bus 506.6 9.38 1320.265 0.053 0.036 0.281 0.628 

A702 T(8) 8-9 Am (In) Bus 317.3 16.407 1446.358 0.203 0.212 0.18 0.403 

A702 T(9) 8-9 Am (In) Bus 322.4 17.97 1609.487 0.197 0.143 0.19 0.468 

A702 T(10) 8-9 Am (In) Bus 423.5 13.53 1592.152 0.17001 0.102 0.312 0.415 

A702 T(1) 8-9 Am (Out) Bus 260.4 18.88 1366.006 0.093 0.031 0.221 0.653 
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A702 T(2) 8-9 Am (Out) Bus 318 20.12 1777.861 0.205 0.213 0.15 0.43 

A702 T(3) 8-9 Am (Out) Bus 498.4 11.71 1621.731 0.104 0.026 0.28 0.588 

A702 T(4) 8-9 Am (Out) Bus 441.1 14.47 1773.561 0.103 0.028 0.342 0.524 

A702 T(5) 8-9 Am (Out) Bus 228.8 17.18 1092.903 0.109 0.063 0.256 0.57 

A702 T(6) 8-9 Am (Out) Bus 344.5 18.39 1760.303 0.207 0.191 0.171 0.429 

A702 T(7) 8-9 Am (Out) Bus 374.3 16.34 1699.303 0.165 0.018 0.272 0.544 

A702 T(8) 8-9 Am (Out) Bus 293.8 15.23 1243.295 0.101 0.023 0.377 0.497 

A702 T(9) 8-9 Am (Out) Bus 402.6 15.88 1776.589 0.202 0.194 0.255 0.347 

A702 T(10) 8-9 Am (Out) Bus 348 15.81 1528.255 0.154 0.032 0.328 0.483 

Average 375.115 14.867 1493.413 0.1438905 0.085401 0.2621 0.50645 

SD 87.491 3.0154 216.4553 0.045921856 0.074837573 0.0654 0.08172 

COV 0.2332 0.2028 0.14494 0.31914446 0.876307924 0.2496 0.16136 

 

 

 

Table 6.4: The average values of the parameters for all traffic corridors in Edinburgh 

 
The corridors Values Time Speed Distance Acceleration Deceleration Idling Cruising 

A7 Bus (8.00-

9.00 am) 

Average 369.96 13.781 1389.987 0.169 0.127 0.302 0.398 

SD 52.395 2.344 126.126 0.047 0.075 0.087 0.069 

COV 0.141 0.1701 0.0907 0.28002 0.595 0.288 0.173 

A7 Bus (2.00-

3.00 pm) 

Average 390.747 13.276 1398.571 0.173 0.127 0.298 0.4002 

SD 59.242 2.496 112.235 0.0308 0.065 0.091 0.074 

COV 0.151 0.188 0.0802 0.177 0.513 0.306 0.186 

A7 Bus (6.30-

7.30 am) 

Average 228.856 18.961 1193.168 0.127 0.077 0.206 0.587 

SD 59.575 3.403 293.274 0.058 0.068 0.091 0.095 

COV 0.2603 0.179 0.245 0.459 0.886 0.444 0.163 

A702 Bus 

(8.00-9.00 am) 

Average 375.115 14.867 1493.413 0.143 0.085 0.262 0.506 

SD 87.491 3.015 216.455 0.045 0.074 0.065 0.081 

COV 0.233 0.202 0.144 0.319 0.876 0.249 0.161 

A702 Bus 

(2.00-3.00 pm) 

Average 383.336 14.861 1543.853 0.133125 0.071 0.263 0.527 

SD 54.971 2.738 174.884 0.041 0.053 0.058 0.054 

COV 0.143 0.184 0.113 0.3106 0.745 0.2204 0.104 

A7 Car (8.00-

9.00 am) 

Average 241.288 22.377 1463.595 0.192 0.176 0.109 0.519 

SD 41.246 3.593 92.36 0.019 0.047 0.053 0.062 

COV 0.17 0.16 0.063 0.101 0.265 0.483 0.12 

A7 Car (2.00-

3.00 pm) 

Average 289.05 19.017 1488.154 0.184 0.169 0.156 0.488 

SD 47.22 3.259 60.556 0.017 0.045 0.057 0.076 

COV 0.163 0.171 0.04 0.093 0.269 0.369 0.156 

A7 Car (6.30-

7.30 am) 

Average 166.483 32.168 1463.018 0.183 0.176 0.065 0.572 

SD 19.573 5.488 106.211 0.027 0.043 0.048 0.094 

COV 0.117 0.17 0.072 0.151 0.248 0.75 0.165 

A702 Car 

(8.00-9.00 am) 

Average 264.31 21.298 1530.51 0.16215 0.105 0.159 0.564 

SD 36.711 3.773 169.415 0.035 0.058 0.053 0.072 

COV 0.138 0.177 0.11 0.216 0.557 0.337 0.127 

A702 Car 

(2.00-3.00 pm) 

Average 289.095 20.64 1595.436 0.167 0.125 0.172 0.532 

SD 65.53 3.929 121.955 0.036 0.065 0.08 0.09 

COV 0.226 0.19 0.076 0.218 0.524 0.465 0.1706 

Princes St 

(8.00-9.00 am) 

Average 266.789 14.92 1059.044 0.197 0.184 0.239 0.378 

SD 65.226 3.125 158.093 0.013 0.051 0.092 0.085 

COV 0.244 0.209 0.149 0.069 0.276 0.386 0.226 

Princes St Average 229.884 18.0909 1141.268 0.198 0.187 0.146 0.45 
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(2.00-3.00 pm) SD 23.273 2.066 94.767 0.0303 0.045 0.047 0.042 

COV 0.101 0.114 0.083 0.152 0.2405 0.327 0.094 

 

 

6.7 Driving cycles of the selected corridors 

 

This section presents the development of the driving cycle for all the selected corridors in this 

study which includes “Edinburgh bus traffic corridors”, “Edinburgh traffic calming 

corridors” and “Abu Dhabi traffic corridors”. Data collection was carried out using a GPS, a 

performance box and data logging equipment, while travelling on the buses or by driving an 

equipped car. Data was collected during peak and off peak hours and before 7.30 am (before 

the operation of the bus lanes), inbound (I) and outbound (O) for each of the car and the bus 

for the “Edinburgh bus traffic corridors” and on “Abu Dhabi traffic corridors” but only 

during one time period on the “Edinburgh traffic calming corridors”. 

 

In total, there are 24 sets of measurements investigated for the driving cycle in Edinburgh and 

Abu Dhabi. Representative driving cycles were selected for each traffic corridor type from 

each of the inbound and outbound data sets based on the lowest value of Sj as discussed 

earlier.  

 

Data was analysed and representative driving cycles was identified for each corridor: 

 

 

6.8 Development of driving cycles for “Edinburgh bus traffic corridors” 

 

As discussed in earlier, data was collected over the A7, A702 and Princes Street in Edinburgh 

for cars and buses. Measurements were taken on both inbound and outbound directions on 

each corridor during both peak and off peak periods. Each two data sets (inbound and 

outbound) were analysed and assessed for each traffic corridor, to identify the representative 

driving cycles for each corridor. Therefore, there resulted 12 representative driving cycles for 

the “Edinburgh bus traffic corridors”. These are a driving cycle for each of the car and the 

bus on each of the “Edinburgh bus traffic corridors” during peak and off peak and before 

7.30am (for the bus-lane corridor) as presented in Table 6.5 below. It should also be noted, 

that the Princes Street corridor has no cars.   

 



 154 

 

Table 6.5: Summary statistics of driving cycle parameters for Edinburgh bus traffic corridors” 

 

 

 

6.8.1 Characteristics of “bus-lane corridor” driving cycle in Edinburgh 

 

The mean values of the key parameters are presented in Table 6.5 with the derived driving 

cycles for the representative driving cycles as discussed above. The characteristics of the 

representative driving cycles for each of the 12 corridor types are discussed briefly below. 

Further discussions, comparisons and analysis of these statistics are presented in Chapter 

seven. 

 

 

6.8.1.1 Car driving cycle during peak-hour (8.00-9.00 am) on bus-lane corridors 

 

The mean values of the key parameters are presented in Table 6.5 with the derived driving 

cycles for bus lane corridors in Edinburgh as shown in Figure 6.1 below.  The average 

driving time for this corridor is 232.555 seconds, the average speed on the corridor is 23.401 

km h
–1

 and the average trip length on the corridor is 1480.22 meters.  The percentage time 

spent on acceleration, deceleration, idling and cruising on the corridor is 18.72%, 17.9%, 

Route 

Time 

Mode Direction Average 

Time 

(Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% time 

of Acc 

% time 

of Dec 

% time 

of  Idling 

% time of 

Cruising 

Sj 

A7 

(bus 

lane 

road) 

8.00-9.00 

Am 

Car Inbound 250.022 21.353 1446.969 0.197 0.174 0.108 0.517 0.613 

Outbound 232.555 23.401 1480.22 0.187 0.178 0.11 0.52 0.306 

Bus Inbound 385.72 12.273 1297.961 0.143 0.107 0.344 0.401 0.038 

Outbound 354.2 15.29 1482.013 0.195 0.147 0.259 0.396 -6.528 

2.00-3.00 

Pm 

Car Inbound 286.18 18.79 1444.447 0.177 0.16 0.168 0.492 -1.438 

Outbound 291.92 19.245 1531.861 0.191 0.178 0.144 0.483 -2.527 

Bus 

Inbound 419.1 11.794 1313.907 0.159 0.12 0.354 0.369 -2.507 

Outbound 365.23 14.759 1474.767 0.188 0.133 0.248 0.427 -4.849 

6.30-7.30 

Am 

Car 

Inbound 163.044 31.946 1436.173 0.188 0.183 0.068 0.557 1.543 

Outbound 169.922 32.39 1489.863 0.178 0.169 0.061 0.588 1.068 

Bus 

Inbound 189.085 17.638 931.191 0.082 0.04 0.262 0.612 9.93 

Outbound 259.788 19.989 1396.928 0.161 0.106 0.162 0.567 0.018 

A702 

(no 

bus 

lane 

road) 

8.00-9.00 

Am 

Car Inbound 253.68 20.545 1422.66 0.154 0.106 0.153 0.583 3.504 

Outbound 276.122 22.051 1650.357 0.169 0.104 0.165 0.544 0.029 

Bus Inbound 399.24 13.333 1422.844 0.143 0.088 0.259 0.506 1.003 

Outbound 350.99 16.401 1563.981 0.144 0.081 0.265 0.506 -0.256 

2.00-3.00 

Pm 

Car Inbound 259.37 22.046 1568.821 0.178 0.147 0.138 0.533 -0.408 

Outbound 318.82 19.234 1622.052 0.155 0.103 0.207 0.531 -2.689 

Bus 

Inbound 405.41 12.964 1451.403 0.118 0.065 0.275 0.539 3.636 

Outbound 358.811 16.758 1646.576 0.148 0.077 0.249 0.515 -0.485 

Prince

s St 

(bus 

only 

road) 

8.00-9.00 

Am 
Bus 

Inbound 
286.52 14.426 1091.004 0.196 0.198 0.25 0.352 

-2.302 

Outbound 
244.866 15.414 1023.532 0.197 0.171 0.226 0.407 

0.77 

2.00-3.00 

Pm 
Bus 

Inbound 
235.31 16.741 1082.989 0.207 0.194 0.149 0.447 

1.103 

Outbound 
223.855 19.44 1206.023 0.19 0.18 0.142 0.454 

0.422 
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about 11.1% and 52.1% respectively.  Obviously, speed is one of the most important criteria 

affecting traffic emission. Figure 6.1 below shows the representative driving cycle for cars on 

bus-lane corridor (peak hour). 

 

 
 
Figure 6.1: The representative Peak-hour driving cycle for cars on bus-lane corridor (peak hour) 

 

 

6.8.1.2 Car driving cycle during off-peak-hours (2.00-3.00 pm) on bus-lane corridors 

 

The average driving time for this corridor is 291.92 seconds, the average speed on the 

corridor is 19.245 km h
–1

 and the average trip length on the corridor is 1531.861 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.191 %, 

0.178 %, about 0.144 % and 0.483 % respectively.  Figure 6.2 below show the representative 

driving cycle for cars on bus-lane corridor (off peak hour). 
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Figure 6.2: The representative Peak-hour driving cycle for cars on bus-lane corridor (before 6.30 am) 

 

 

6.8.1.3 Car driving cycle during before bus-lane operation (6.30-7.30 am) on bus-lane 

corridors 

 

The average driving time for this corridor is 169.922 seconds, the average speed on the 

corridor is 32.39 km h
–1

 and the average trip length on the corridor is 1489.863 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.178 %, 

0.169 %, about 0.061 % and 0.588 % respectively.  Figure 6.3 below shows the 

representative driving cycle for cars on bus-lane corridor (before 6.30 am).  

 

 
 
Figure 6.3: The representative Peak-hour driving cycle for cars on bus-lane corridor (before 6.30 am) 
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6.8.1.4 Bus driving cycle during peak-hour (8.00-9.00 am) on bus-lane corridors 

 

The average driving time for this corridor is 354.2 seconds, the average speed on the corridor 

is 15.29 km h
–1

 and the average trip length on the corridor is 1482.013 meters.  The % time 

spent on acceleration, deceleration, idling and cruising on the corridor is 0.195 %, 0.147 %, 

about 0.259 % and 0.396 % respectively.  Figure 6.4 below shows the representative driving 

cycle for the buses on the bus-lane corridor (peak hour).  

 

 
 
Figure 6.4: The representative driving cycle for buses on bus-lane corridor (peak hour) 

 

 

6.8.1.5 Bus driving cycle during off-peak-hours (2.00-3.00 pm) on bus-lane corridors 

 

The average driving time for this corridor is 365.23 seconds, the average speed on the 

corridor is 14.759 km h
–1

 and the average trip length on the corridor is 1474.767 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.188 %, 

0.133 %, about 0.248 % and 0.427 % respectively.  Figure 6.5 below shows the 

representative driving cycle for buses on bus-lane corridor (off peak hour). 
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Figure 6.5: The representative driving cycle for buses on bus-lane corridor (off peak hour)  

 

 

6.8.1.6 Bus driving cycle during before bus-lane operation (6.30-7.30 am) on bus-lane 

corridors 

 

The average driving time for this corridor is 259.788 seconds, the average speed on the 

corridor is 19.989 km h
–1

 and the average trip length on the corridor is 1396.928 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.161 %, 

0.106 %, about 0.162 % and 0.567 % respectively.  Figure 6.6 below shows the 

representative driving cycle driving cycle for buses on bus-lane corridor (before 6.30 am).  

 

 
 
Figure 6.6: The representative driving cycle for buses on bus-lane corridor (before 6.30 am) 
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6.8.2 Characteristics of the “mixed traffic corridors” driving cycle  

 

The mean values of the key parameters are presented in Table 6.5 with the derived driving 

cycles for the representative driving cycles as discussed above. The characteristics of the 

representative driving cycles are discussed briefly below. Further discussions, comparisons 

and analysis of these statistics are presented in Chapter Seven. 

 

 

 

6.8.2.1 Car driving cycle during peak-hour (8.00-9.00 am) on mixed traffic corridors 

 

The average driving time for this corridor is 276.122 seconds, the average speed on the 

corridor is 22.051 km h
–1

 and the average trip length on the corridor is 1650.357 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.169 %, 

0.104 %, about 0.165 % and 0.544 % respectively.  Figure 6.7 below shows the 

representative driving cycle driving cycle for cars on mixed traffic corridor (peak hour).  

 
 
Figure 6.7: The representative driving cycle for cars on mixed traffic corridor (peak hour) 

 

 

6.8.2.2 Car driving cycle during off-peak-hours (2.00-3.00 pm) on mixed traffic 

corridors 
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The average driving time for this corridor is 318.82 seconds, the average speed on the 

corridor is 19.234 km h
–1

 and the average trip length on the corridor is 1622.052 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.155 %, 

0.103 %, about 0.207 % and 0.531 % respectively.  Figure 6.8 below shows the 

representative driving cycle for cars on mixed traffic corridor (off peak hour). 

 

 
 
Figure 6.8: The representative driving cycle for cars on mixed traffic corridor (off peak hour) 

 

 

6.8.2.3 Bus driving cycle during peak-hour (8.00-9.00 am) on mixed traffic corridors 

 

The average driving time for this corridor is 350.99 seconds, the average speed on the 

corridor is 16.401 km h
–1

 and the average trip length on the corridor is 1563.981 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.144 %, 

0.081 %, about 0.265 % and 0.506 % respectively. Figure 6.9 below shows the representative 

driving cycle for buses on mixed traffic corridor (peak hour). 
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Figure 6.9: The representative driving cycle for buses on mixed traffic corridor (peak hour) 

 

 

6.8.2.4 Bus driving cycle during off-peak-hours (2.00-3.00 pm) on mixed traffic 

corridors 

 

The average driving time for this corridor is 358.811 seconds, the average speed on the 

corridor is 16.758 km h
–1

 and the average trip length on the corridor is 1646.576 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.148 %, 

0.077 %, about 0.249 % and 0.515 % respectively.  Figure 6.10 below shows the 

representative driving cycle for buses on mixed traffic corridor (off peak hour). 
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Figure 6.10: The representative driving cycle for buses on mixed traffic corridor (off peak hour) 

 

 

6.8.3 Characteristics of the bus-only corridor driving cycle  

 

The mean values of the key parameters are presented in Table 6.5 with the derived driving 

cycles for the representative driving cycles as discussed above. The characteristics of the 

representative driving cycles are discussed briefly below. Further discussions, comparisons 

and analysis of these statistics are presented in Chapter Seven. 

 

 

6.8.3.1 Bus driving cycle during peak-hour (8.00-9.00 am) on bus-only corridors 

 

The average driving time for this corridor is 286.52 seconds, the average speed on the 

corridor is 14.426 km h
–1

 and the average trip length on the corridor is 1091.004 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.196 %, 

0.198 %, about 0.25 % and 0.352 % respectively.  Figure 6.11 below shows the 

representative driving cycle for buses on bus only corridor (peak hour).  



 163 

 
 
Figure 6.11: The representative driving cycle for buses on bus only corridor (peak hour) 

 

 

6.8.3.2 Bus driving cycle during off-peak-hours (2.00-3.00 pm) on bus-only corridors  

 

The average driving time for this corridor is 223.855 seconds, the average speed on the 

corridor is 19.44 km h
–1

 and the average trip length on the corridor is 1206.023 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.19 %, 0.18 

%, about 0.142 % and 0.454 % respectively.  Figure 6.12 below shows the representative 

driving cycle for buses on bus only corridor (off peak hour). 

 

 
 
Figure 6.12: The representative driving cycle for buses on bus only corridor (off peak hour) 
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6.8.4 Development of driving cycles for “Edinburgh traffic calming corridors” 

 

Data was collected over three traffic calming corridors in Edinburgh using an instrumented 

car. Three corridors were selected with different traffic calming measures and the fourth 

corridor has no speed reduction measures and was used as a control corridor. The traffic 

corridors are listed below: 

Corridor 1: Iona Street (20 mph zone with speed cushions, speed humps and cobbled street 

surface) 

Corridor 2: West Bryson Road (20 mph zone with speed humps) 

Corridor 3: Montgomery Street (20 mph zone with speed humps and raised junctions) 

Corridor 4: Polwarth Terrace (20 mph zone with no speed humps). This corridor was 

considered as the control corridor. 

Traffic characteristics on these corridors were analysed and compared and were also 

compared with traffic characteristics of the control corridor (see Section 7.17). The data sets 

was analysed to identify the representative driving cycles. Therefore, out of the three 

corridors there resulted one representative driving cycles for the “Edinburgh traffic calming 

corridors” as presented in Table 6.6 below. Further discussions, comparisons and analysis of 

these statistics are presented in Chapter seven. 

 

 
Table 6.6: Summary statistics of assessment parameters of different Edinburgh traffic calming corridors 

 
The 

Corridors 

Time 

(sec) 

Speed 

(km/hr) 

Distance 

(meters) 

% of 

acceleration 

% of 

deceleration 

% of 

idling 

% of 

cruising 

Sj 

Corridor 1 58.59 24.128 392.035 0.177 0.179 0.024 0.618 9.884 

Corridor 2 97.735 23.87 643.951 0.173 0.157 0.024 0.64 -6.203 

Corridor 3 85.325 27.502 665.676 0.166 0.175 0.019 0.635 -3.681 

Corridor 4 55.08 29.127 445.923 0.162 0.134 0.024 0.677  

 

 

 

6.8.4.1 Characteristics of the traffic calming corridor driving cycle  

 

The mean values of the key parameters are presented in Table 6.7 with the derived driving 

cycles for the representative traffic calming corridor (corridor 2) as well as for control 

corridor (corridor4).  The average driving time on the traffic calming corridor is 97.735 

seconds, the average speed on the corridor is 23.87 km h
–1

 and the average trip length on the 
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corridor is 643.951 meters.  The % time spent on acceleration, deceleration, idling and 

cruising on the corridor is 0.173 %, 0.157 %, about 0.024 % and 0.64 % respectively.  Figure 

6.13 below show the representative driving cycle for traffic calming corridor.  

 

Table 6.7: Characteristics of the representative driving cycle for traffic calming corridor (corridor 2 vs 

corridor 4) 

 

The Route  Time 

(sec) 

Speed 

(km/h) 

Distance 

(meters) 

% of 

acceleration 

% of 

deceleration 

% of 

idling 

% of 

cruising 

Corridor 2 

(representative driving  

cycle for traffic 

calming corridor) 

 

Average 97.735 23.87 643.951 0.17375 0.158 0.02 0.64 

SD 9.202 2.148 21.686 0.01281 0.01137 0.01 0.018 

COV 

0.094 0.09 0.033 0.073 0.078036 0.47 0.028 

Corridor 4 (Control  

traffic 

calming corridor) 

 

Average 55.08 29.127 445.923 0.162 0.134 0.024 0.677 

SD 3.667 1.112 27.121 0.013 0.011 0.006 0.015 

COV 0.066 0.038 0.06 0.086 0.081 0.257 0.022 

 

 

 

Figure 6.13: The representative driving cycle for traffic calming corridor 

 

 

From the above data we can see that due to the implementation of a traffic calming system 

the aims of the instillation were achieved. This is evident from this data as there can be seen 

to be a decrease in the average speed being observed on the corridor by 5.257 km/hr. This is 

seen to be a significant decrease as it accounts for 5.5% reduction in the speeds being 
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achieved. As these routes are dominated my slow moving vehicles as it is this accounts for a 

significant proportional reduction and thus increase in overall safety on the route. 

 

The route of this reduction in speed can be determined through the detailed analysis of the 

driving behaviour of those using the route. In the control it can be seen that a total of 29.6% 

of the journeys are spent in the acceleration and deceleration phases, whereas in the calming 

corridor this figure is increased to a total of 33.175% of the journey time. This alteration in 

percentage journey time represents a significant change in driving style given that overall 

lower speeds are being achieved. This data along with an apparent reduction in overall 

percentage time spent in the idling and cruising phases would lead us to believe that the 

implementation of the calming system has led to much more sporadic and uneven driving 

styles being adopted while in turn reducing the overall speeds being achieved. This would in 

turn lead us to infer that the most likely system which has been introduced has been the 

instillation of speed ramps which deem it necessary for vehicles to decelerate on approach but 

do not require the vehicle to come to a complete stop thus resulting in an overall increase in 

the deceleration percentage of the vehicle without altering idling time. There is also a 

requirement to accelerate following the calming measure however the obstructions are often 

placed at intervals to reduce as much as the maximum speed of the vehicle. Due to this there 

will be seen an increase in the overall percentage of the journey dedicated to acceleration 

along with a decrease in cruising times on the given route. 

 

 

6.9 Development of driving cycles for “Abu Dhabi traffic corridors” 

 

Data collection was carried out using a GPS, a performance box and data logging equipment, 

while travelling by car and on the buses on the selected mixed traffic corridors in Abu Dhabi, 

during peak and off peak hours, inbound (I) and outbound (O) the selected corridors (the 

Airport Road and the Elektra Road). See Section 3.4.3 for details of method of data collection 

and Section 5.4 for the preliminary data analysis.  

 

Representative driving cycles were selected for each traffic corridor type from each of the 

inbound and outbound data sets. Table 6.8 below shows the summary statistics of the driving 

cycle of each of the corridors.  
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Table 6.8: Summary statistics of the driving cycle of each of the corridors in Abu Dhabi 

 

 

 

6.9.1 Characteristics of the Airport road corridor driving cycle  

 

The mean values of the key parameters are presented in Table 6.8 with the derived driving 

cycles for the representative driving cycles as discussed above. The characteristics of the 

representative driving cycles are discussed briefly below. Further discussions, comparisons 

and analysis of these statistics are presented in Chapter Seven. 

 

 

6.9.1.1 Peak-hour (6.30-7.30 am) (outbound) driving cycle for cars on Airport Road 

corridor 

 

The average driving time for this corridor is 252.64 seconds, the average speed on the 

corridor is 35.628 km h
–1

 and the average trip length on the corridor is 2387.998 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.206 %, 

0.175 %, about 0.143 % and 0.472 % respectively.  Figure 6.14 below shows the 

representative driving cycle for cars on mixed traffic corridor (Airport Road) (peak hour). 

 

Route 

Time 

Mode Direction Average 

Time 

Average 

Speed 

Average 

Length 

% time 

of Acc 

% time 

of Dec 

% time 

of Idling 

% time of 

Cruising 

Sj 

Airport 

Road 6.30.7.30 

Am 

Car Inbound 252.64 35.628 2387.998 0.206 0.175 0.143 0.472 -1.034 

Outbound 171.96 44.832 2089.216 0.208 0.15 0.071 0.566 3.403 

Bus Inbound 544.9 15.61 2331.912 0.186 0.173 0.302 0.335 -8.313 

Outbound 422.8 19.907 2302.241 0.181 0.139 0.267 0.409 -2.796 

11.00-

12.00 

Am 

Car Inbound 188.35 45.609 2364.854 0.203 0.159 0.074 0.56 1.011 

Outbound 167.9 33.284 1573.809 0.194 0.148 0.141 0.513 7.777 

Bus 

Inbound 437.42 19.127 2248.493 0.187 0.124 0.258 0.427 -1.914 

Outbound 332.17 25.765 2359.612 0.202 0.12 0.161 0.513 1.867 

Elektra 

Road 6.30-7.30 

Am 

Car Inbound 209.69 30.552 1762.837 0.187 0.112 0.245 0.452 -0.321 

Outbound 176.4 35.553 1718.947 0.19 0.07 0.191 0.545 2.789 

Bus Inbound 323.077 20.502 1819.247 0.179 0.154 0.196 0.467 -2.48 

Outbound 397.9 16.873 1840.797 0.172 0.128 0.268 0.428 -3.085 

11.00-

12.00 

Am 

Car Inbound 203.033 33.459 1789.443 0.205 0.116 0.227 0.448 -1.68 

Outbound 207.777 27.737 1572.042 0.181 0.122 0.263 0.43 1.106 

Bus 

Inbound 291.47 20.636 1649.049 0.195 0.164 0.199 0.438 -1.349 

Outbound 342.71 15.376 1444.897 0.154 0.073 0.309 0.459 5.021 
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Figure 6.14: The representative driving cycle for cars on mixed traffic corridor (Airport Road) (peak 

hour) 

 

 

 

 

6.9.1.2 Off Peak-hour (11.00 am-12.00 pm) (inbound) driving cycle for cars on Airport 

corridor 

 

The average driving time for this corridor is 188.35 seconds, the average speed on the 

corridor is 45.609 km h
–1

 and the average trip length on the corridor is 2364.854 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.203 %, 

0.159 %, about 0.074 % and 0.56 % respectively.  Figure 6.15 below show the representative 

driving cycle for cars on mixed traffic corridor (Airport Road) (off peak hour).  
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Figure 6.15: The representative driving cycle for cars on mixed traffic corridor (Airport Road) (off peak 

hour) 

 

 

6.9.1.3 Peak-hour (6.30-7.30 am) (outbound) driving cycle for buses on Airport Road 

corridor 

 

The average driving time for this corridor is 544.9 seconds, the average speed on the corridor 

is 15.61 km h
–1

 and the average trip length on the corridor is 2331.912 meters.  The % time 

spent on acceleration, deceleration, idling and cruising on the corridor is 0.186 %, 0.173 %, 

about 0.302 % and 0.335 % respectively.  Figure 6.16 below shows the representative driving 

cycle for buses on mixed traffic corridor (Airport Road) (peak hour).  
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Figure 6.16: The representative driving cycle for buses on mixed traffic corridor (Airport Road) 

(peak hour) 

 

 

6.9.1.4 Off Peak-hour (11.00 am-12.00 pm) (inbound) driving cycle for buses on Airport 

Road corridor 

 

The average driving time for this corridor is 437.42 seconds, the average speed on the 

corridor is 19.127 km h
–1

 and the average trip length on the corridor is 2248.493 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.187 %, 

0.124 %, about 0.258 % and 0.427 % respectively.  Figure 6.17 below shows the 

representative driving cycle for buses on mixed traffic corridor (Airport Road) (off peak 

hour).  
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Figure 6.17: The representative driving cycle for buses on mixed traffic corridor (Airport Road) (off peak 

hour) 

 

 

6.9.2 Characteristics of the Elektra Road corridor driving cycle  

 

The mean values of the key parameters are presented in Table 6.8 with the derived driving 

cycles for the representative driving cycles as discussed above. The characteristics of the 

representative driving cycles are discussed briefly below. Further discussions, comparisons 

and analysis of these statistics are presented in Chapter seven. 

 

 

6.9.2.1 Peak-hour (6.30-7.30 am) (inbound) driving cycle for cars on Elektra Road 

corridor 

 

The average driving time for this corridor is 209.69 seconds, the average speed on the 

corridor is 30.552 km h
–1

 and the average trip length on the corridor is 1762.837 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.187 %, 

0.112 %, about 0.245 % and 0.452 % respectively.  Figure 6.18 below shows the 

representative driving cycle for cars on mixed traffic corridor (Elektra Road) (peak hour).  
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Figure 6.18: The representative driving cycle for cars on mixed traffic corridor (Elektra Road) (peak 

hour) 

 

 

6.9.2.2 Off Peak-hour (11.00 am-12.00 pm) (inbound) driving cycle for cars on Elektra 

Road corridors 

 

The average driving time for this corridor is 203.033 seconds, the average speed on the 

corridor is 33.459 km h
–1

 and the average trip length on the corridor is 1789.443 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.205 %, 

0.116 %, about 0.227 % and 0.448 % respectively.  Figure 6.19 below shows the 

representative driving cycle for cars on mixed traffic corridor (Elektra Road) (off peak hour). 
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Figure 6.19: The representative driving cycle for cars on mixed traffic corridor (Elektra Road) (off peak 

hour) 

 

 

6.9.2.3 Peak-hour (6.30-7.30 am) (outbound) driving cycle for buses on Elektra Road 

corridor 

 

The average driving time for this corridor is 397.9 seconds, the average speed on the corridor 

is 16.873 km h
–1

 and the average trip length on the corridor is 1840.797 meters.  The % time 

spent on acceleration, deceleration, idling and cruising on the corridor is 0.172 %, 0.128 %, 

about 0.268 % and 0.428 % respectively.  Figure 6.20 below shows the representative driving 

cycle for buses on mixed traffic corridor (Elektra Road) (peak hour). 
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Figure 6.20: The representative driving cycle for buses on mixed traffic corridor (Elektra Road) (peak 

hour) 

 

 

6.9.2.4 Off Peak-hour (11.00 am-12.00 pm) (outbound) driving cycle for buses on 

Elektra Road corridor 

 

The average driving time for this corridor is 291.47 seconds, the average speed on the 

corridor is 20.636 km h
–1

 and the average trip length on the corridor is 1649.049 meters.  The 

% time spent on acceleration, deceleration, idling and cruising on the corridor is 0.195 %, 

0.164 %, about 0.199 % and 0.438 % respectively.  Figure 6.21 below shows the 

representative driving cycle for buses on mixed traffic corridor (Elektra Road) (off peak 

hour). 
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Figure 6.21: The representative driving cycle for buses on mixed traffic corridor (Elektra Road) (off peak 

hour) 

 

 

6.10 Summary 

 

In this section the summary statistics of the results produced from driving cycle analysis have 

been presented. A more detailed analysis of these results will be discussed and compared in 

the following chapter. That will include investigations of the variations taking place on 

individual corridors and attempt to justify the reasons for these variations. The statistics 

which are to be examined include; journey time, average speed, % time spent accelerating, % 

time decelerating, % time Idling and % time cruising. The parameters for the determination 

of these statistics have been clearly outlined in Section 6.2. In addition, a comparison of these 

statistics for individual corridors will also be discussed in order to determine the most 

efficient corridor type available. i.e. is a bus lane road more efficient than a no bus lane road 

or a bus only road. 
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CHAPTER 7 

 

ANALYSIS AND COMPARISON OF THE RESULTS OF  

DRIVING CYCLES 

 

 

7.1 Introduction 

 

In this section a more in-depth and detailed analysis of the preliminary results produced from 

the data on driving cycles developed in Chapter Five and Chapter Six above shall be carried 

out. The purpose of this shall be to examine any variations taking place on individual 

corridors and attempt to justify the reasons for these variations. The statistics which are to be 

examined include; journey time, average speed, % time spent accelerating, % time 

decelerating, % time idling and % time cruising. The parameters for the determination of 

these statistics have been clearly outlined in Section 6.2. 

 

Along with carrying out an analysis of these statistics for individual corridors, comparisons 

shall also take place between the corridors as a whole in an attempt to determine the most 

efficient corridor type available. i.e. is a bus lane road more efficient than a no bus lane road 

or a bus only road. 

 

7.2 Analysis of the performance of buses on the bus lane road in Edinburgh 

 
 

Table 7.1: Summary statistics of bus driving cycle parameters on the A7, Edinburgh 

 

Route Time 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling 
% 

Cruising 

A7 (bus 

lane road) 

8.00-9.00 

Am 
354.2 15.29 1482.013 0.195 0.147 0.259 0.396 

2.00-3.00 

Pm 
365.23 14.759 1474.767 0.188 0.133 0.248 0.427 

6.30-7.30 

Am 
259.788 19.989 1396.928 0.161 0.106 0.162 0.567 
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The table above presents the data to be analysed for the buses travelling on A7 (bus lane 

road) within Edinburgh city. These statistics have been extracted from Table 6.5 and have 

been selected as they represent the data collected with the lowest relative errors. 

 

From this data we can see that the off peak journey time for this corridor is 3.1% higher than 

that of the peak journey time. This may be due to the fact that there may be increased 

pedestrian and cyclist activity within this lane during the off peak which may cause 

obstructions and delays to the vehicles. This along with the fact that the bus lane is only in 

operation at certain times of the day means that there will also be inherent interference with 

the free movement of the buses due to the presence of other vehicles on the corridor. 

 

When comparing the off peak and peak journeys it can be seen that the total percentages of 

the journeys which are dedicated to acceleration and deceleration are 32.1% and 34.2% 

respectively. When this information is taken into account and used as basis for comparison of 

the total times spent in cruising and idling it is clear that there is a much more unobstructed 

movement of buses in the off peak time. Even though the overall journey time is increased 

slightly there is a greater percentage of the journey spent in motion and less of it spent idling. 

The reasons for this increase in efficiency when the bus lane is not in effect are numerous, 

however the most likely factor which effects it is that there is an overall reduction in the 

volume of customers availing of the bus service at this time and thus there is a reduction in 

the amount of time spent at each stop letting people on and off the bus, along with a reduction 

in the number of stops necessary to be made. This along with the possibility of increased bus 

numbers operating along the corridor at these times will result in an overall reduction in 

cruising time. 

 

It can be seen that all observed readings are more favourable in the early morning time period 

before the bus lane takes effect. There is a reduction in journey time for this period of 26.7% 

when compared to the peak time when the bus lane is in operation, which is clearly seen due 

to the significant increase of 7.399km/hr in average speed occurring throughout the corridor. 

It can be seen that during this time period that there is a greatly reduced overall percentage of 

the journey dedicated to acceleration and deceleration at only 26.7% and idling falling to 

16.2% and cruising rates increasing to 56.7%. These alterations in the statistics are likely due 

to the significantly lower volumes of traffic travelling on the corridor at this time of the day, 
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along with a reduction in the number of stops being made by the buses due to an overall 

reduction in patron numbers. 

 

Due to the above information at first glance it may be interpolated that the implementation of 

the bus lane does in fact reduce the efficiencies of the buses along this corridor however the 

overall effect of this implementation cannot be fully assessed until such time as the effects 

this lane has on other vehicles using the route. 

 

 

7.3 Analysis of the performance of buses on the no bus lane road in Edinburgh 

 
 

Table 7.2: Summary statistics of bus driving cycle parameters on the A702, Edinburgh 

 

Route Time 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling % Cruising 

A702 ( 

no bus 

lane 

road) 

8.00-9.00 

Am 
350.99 16.401 1563.981 0.144 0.081 0.265 0.506 

2.00-3.00 

Pm 
358.811 16.758 1646.576 0.148 0.077 0.249 0.515 

 

The table above presents the data to be analysed for the buses travelling on A7025 (no bus 

lane road) within Edinburgh city. These statistics have been extracted from Table 6.5 and 

have been selected as they represent the data collected with the lowest relative errors. 

 

From this we can see that there is a slight increase in journey time of 7.82 seconds for the off 

peak journey time when compared to the peak journey time. This is however contrary to the 

average speed data whereby the traffic is flowing at an average of 0.357 km/hr faster in the 

off peak time period. The reasoning behind this discrepancy in the data is due to the fact that 

the route observed in the peak time period is in fact on average 82.6 metres shorter than the 

one examined in the off peak time period. When this is allowed for and the length of the off 

peak journey time is adjusted to have a same length as the peak journey and assuming a 

similar average speed we see that the overall journey time can be interpolated as being 

341.066 seconds. This is in line with the expected results for the observations given that there 

will invariably be a reduction in overall traffic flows and passenger numbers during the off 

peak time period. 
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When an analysis of the driver behaviour is carried out we can see that a slightly higher 

percentage of the journey time is spent in acceleration during the off peak hours (14.8%) 

which is to be expected as a slightly higher average speed is achieved. The percentage of time 

spent in deceleration however is slightly lower (7.7%) in this time period when compared to 

the peak time (8.1%). This would lead us to believe that the driver is taking an overall more 

aggressive approach to their driving style which may be down to a reduction in overall traffic 

volumes and thus a belief that the road conditions will allow for a more aggressive style. 

 

We can see also that there is a decrease and increase in the percentages spent in idling and 

cruising in the peak time period (24.9% and 51.5% respectively) when compared to the off 

peak time period (26.5% and 50.6%). Both of these changes in the overall percentage of the 

journey time spent in these situations leads us to believe that there is a higher traffic volume 

on the route at this time. This may take the form of both other vehicles on the route along 

with a higher number of pedestrians and patrons of the bus services. All of these factors 

would require the busses to be stationary for much longer periods of time at signalised 

junctions, pedestrian crossings and bus stops.  

 

7.4 Analysis of the performance of buses on the bus only road in Edinburgh 

 

 

Table 7.3: Summary statistics of bus driving cycle parameters on Princes Street, Edinburgh 

 

Route Time 

Average 

Time 

(Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling % Cruising 

Princes St 

(bus only 

road) 

8.00-9.00 

Am 
286.52 14.426 1091.004 0.196 0.198 0.25 0.352 

2.00-3.00 

Pm 
223.855 19.44 1206.023 0.19 0.18 0.142 0.454 

 

The table above presents the data to be analysed for the busses travelling on Princes Street 

(bus only road) within Edinburgh city. These statistics have been extracted from Table 6.5 

and have been selected as they represent the data collected with the lowest relative errors. 

 

As has been stated previously this is a very unusual route as the route is a bus and taxi only 

route and it was deemed prudent to carry out an examination of this route as part of this 

research as so few of these roadways exist. 
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We can see for the data provided as to the details of the journey distances being compared 

along with the average speeds achieved and journey times that the off peak journey is 

significantly quicker than that of the peak journey. What makes this difference in overall 

journey time even more significant is the fact that there was a difference of 115.1 metres in 

the overall distance of the corridor being examined. Should the average time be adjusted in 

line with the average speed observed for the off peak journeys and assuming that the average 

length of the journey is the same as the peak journey we can interpolate the journey should 

take a total of 202.038 seconds which represents a significant time saving between the two 

time periods.  

 

However it is once more essential to examine the actual driving behaviour of those using the 

route and not just rely on average journey times in the assessment of the overall route. It 

would be expected that the peak time for the journey will be significantly higher due to the 

increased number of passengers on the route which will lead to an increase in time spent 

stationary. This can clearly be seen in the data provided for the idling times of the buses 

where an increase of 10.8% of the journey time in the peak time is seen when compared to 

the off peak time along with a decrease of 10.2% in the overall time spent cruising. This may 

also be due to a significant increase in the overall traffic volumes at the peak time, which in 

turn will lead to the need for queuing of the buses to take place at the stops at times of heavy 

passenger numbers. 

 

It is also clear that the drivers behave in a slightly more aggressive manner when accelerating 

and decelerating in the off peak times. This is evident in the fact that a lower percentage of 

the total journey time is spent in these actions during the off peak time (37%) when compared 

to the peak time (39.4). This decrease in time spent in altering the speed of the buses along 

with the fact that higher overall average speeds are being achieved would indicate that these 

top speeds are reached and slowed from at a much greater rate. This may be once more due to 

an overall reduction in traffic volumes operating on the route and thus the drivers deem it to 

be a much safer time to be travelling on the route and thus a more aggressive manner may be 

adopted. 
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7.5 Analysis of the performance of cars on the bus lane road in Edinburgh 

 
 

The table below presents the data to be analysed for the cars travelling on the A7 (bus lane 

road) within Edinburgh city. These statistics have been extracted from Table 6.5 and have 

been selected as they represent the data collected with the lowest relative errors. 

 

Table 7.4: Summary statistics of car driving cycle parameters on the A7, Edinburgh 

 

Route Time 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling % Cruising 

A7 (bus 

lane 

road) 

8.00-9.00 

Am 
232.555 23.401 1480.22 0.187 0.178 0.11 0.52 

2.00-3.00 

Pm 
291.92 19.245 1531.861 0.191 0.178 0.144 0.483 

6.30-7.30 

Am 
169.922 32.39 1489.863 0.178 0.169 0.061 0.588 

 

 

From the above data we can see that there is a drastic increase in the overall efficiency of the 

road when the bus lane is in operation during the peak time when compared to the off peak 

time. There is a significantly lower journey time taking place during the before 7:30 time 

period when the bus lane is also not in use, however this vast reduction in journey time may 

be attributed to the overall reduction in traffic volumes on the route. 

 

For the examination of the off peak flow we can see that a corridor which was 51.64 metres 

on average was being travelled on at a lower speed than at peak flow times. When this data is 

adjusted to allow for this same speed to be carried out over a similar distance we can see that 

a total journey time of 281.69 seconds is achieved which is still a greater time than that of the 

off peak time. It is clear from this that the inclusion of the bus lane does reduce the overall 

journey time for the car users on the route. 

 

The overall benefits of the inclusion of this lane for the car users may be seen in the fact that 

the overall percentage of the journey spent accelerating decreases from 19.1% to 18.7% when 

the bus lane is in place, this may be due to the fact that there is less of an occurrence of the 

cars being caught behind the slower accelerating buses which are required to use the non-bus 

lane when the bus lane is congested with other traffic. The percentage of journey time spent 

in deceleration during these two time periods is identical however which would lead us to 
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believe that there is no significant alteration in the driving style of the vehicle occupants 

during these two time periods.  

 

It can also be seen that there is a decrease and increase in the percentages of the journey spent 

idling and cruising respectively when the bus lane is in effect as opposed to when all traffic is 

able to use it. This is due to the ability of the cars to freely segregate themselves from the 

buses which may be required to encroach onto the lanes which they occupy during these 

times as other road users may be using the bus lane and causing an obstruction for the busses.  

 

 

7.6 Analysis of the performance of cars on the no bus lane road in Edinburgh 

 

Table 7.5 below presents the data to be analysed for the cars travelling on the A702 (no bus 

lane road) within Edinburgh city. These statistics have been extracted from Table 6.5 and 

have been selected as they represent the data collected with the lowest relative errors. 

 
 

Table 7.5: Summary statistics of car driving cycle parameters on the A702, Edinburgh  

 

Route Time 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling % Cruising 

A702 

(no bus 

lane 

road) 

8.00-9.00 

Am 
276.122 22.051 1650.357 0.169 0.104 0.165 0.544 

2.00-3.00 

Pm 
318.82 19.234 1622.052 0.155 0.103 0.207 0.531 

 

 

From the above data it can be seen that there is a significantly higher journey time on this 

route for all car users during the off peak time than during the peak time. This is counter 

intuitive as one would expect a greater volume of traffic to lead to an increase journey time 

over this route. This would in turn lead us to believe that there may be an extremely efficient 

traffic management system taking place along this corridor which will alter the green time 

displayed to this road during times of heavy traffic flow and thus helping to alleviate 

congestion. 

 

This hypothesis may be further supported through the analysis of the driver behaviour on the 

route. This indicates that even though there is a significantly lower percentage of the overall 
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journey time spent idling, when this is compared with the figures for when the vehicles are 

accelerating and at cruising speeds there is a significant increase in these activities when 

compared to the off peak time period. This would lead us to believe that there is a much more 

controlled and freer flow of traffic taking place.  

 

This hypothesis may be false however as this route may not in fact experience higher flows of 

traffic in the traditional morning peak time, should this be a mainly residential area, which 

does not provide a main link to areas of high population and high employment it is possible 

that the majority of the traffic delay is experienced at other times of the day. This may be 

what is occurring in this situation as the 4.2% increase in idling time may also reflect a higher 

overall congestion rate due to higher traffic volumes. The presence of a school along or near 

this route may also be having an effect on these results as this would lead to a significant 

increase in pedestrian and vehicle numbers during this off peak period. 

 

 

7.7 Analysis of the performance of cars and buses on the bus lane road in Edinburgh 

 

Table 7.6 presents the data to be analysed for the cars and buses travelling on the A7 (bus 

lane road) within Edinburgh city. These statistics have been extracted from Table 6.5 and 

have been selected as they represent the data collected with the lowest relative errors. 

 
 

Table 7.6: Summary statistics of car and bus driving cycle parameters on the A7, Edinburgh 

 

Route Time Mode 

Average 

Time 

(Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec 
% 

Idling 

% 

Cruising 

A7 

(bus 

lane 

road) 

8.00-9.00 

am 

Bus  354.2 15.29 1482.013 0.195 0.147 0.259 0.396 

Car 232.555 23.401 1480.22 0.187 0.178 0.11 0.52 

2.00-3.00 

pm 

Bus  365.23 14.759 1474.767 0.188 0.133 0.248 0.427 

Car 291.92 19.245 1531.861 0.191 0.178 0.144 0.483 

6.30-7.30 

am 

Bus  259.788 19.989 1396.928 0.161 0.106 0.162 0.567 

Car 169.922 32.39 1489.863 0.178 0.169 0.061 0.588 

 

 

From the data presented in the above table it can be seen that in all instances there is a 

significant reduction in journey time when using cars as opposed to buses as the method of 

transportation. It can also be seen that higher average speeds are achieved at all times by cars 
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than buses with the greatest variation in this respect taking place in the before 7:30 time 

period where a difference of an average of 12.4km/hr can be seen. In this time period it is 

seen that even though relatively equal percentages of the journey are spent in the cruising and 

acceleration phases of the journey for the two vehicle types there is an ability of the car driver 

to achieve and maintain these speeds much quicker. 

 

We can also see that when the bus lane is in operation the cars are capable of achieving a rate 

of 52% of the journey at cruising rates in comparison to the 39.6% achieved by the buses. 

This along with increased idling times for the buses both contribute to the lower average 

speed and thus higher journey time of the buses. 

 

Therefore, it is clear that the car speed is much higher than that of the buses on the bus lane 

corridor during peak and during off peak hours (53% & 30%) respectively. In terms of idling 

times, it is also seen that the bus spend much more higher time idling than the cars during 

both peak and off peak times (135% & 72.2% higher idling times) respectively. In terms of 

cruising times, it is also seen that the bus spends much less time cruising than the cars during 

both peak and off peak times (31.3% & 13.1% higher cruising times) respectively.  In the 

scenario of the before the bus lane operation, that is between 6.30 and 7.30 am, the bus 

performance relative to that of the cars is also similar.  That is the idling times for the bus is 

165% higher than that of the cars while the cruising times are similar  

 

We can then see that once the bus lane is no longer in use there is a falloff in the overall 

journey times of all vehicles on the route. This may be due to overall higher traffic and 

pedestrian rates, however this is unlikely. The lack of a bus lane could also be a likely factor 

for these delays with vehicles being forced to interact with each other to a greater extent 

when the bus lane is in effect. This lack of a bus lane has an effect on the traffic stream as a 

whole with a reduction in the deviation for all parameters being examined between both 

forms of transport. This would lead us to believe that there is a much more uniform traffic 

flow present but we must attempt to determine to what extent this is hindering the free 

movement of the cars on the corridor and if this is in fact the most efficient method available.  

 

There may be grounds also to claim that the presence of the bus lanes do not necessarily 

brings advantages to the buses. This might be because of the fact that buses are forced to 

queue up in the bus lane and are not free to overtake other traffic and leave the queue which 
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might results in higher idling times for buses than they are for cars for example.  Further 

research in this direction is certainly needed. 

 

 

7.8 Analysis of the performance of cars and buses on the no bus lane road in Edinburgh 

 

Table 7.7 presents the data to be analysed for the cars and buses travelling on the A702 (no 

bus lane road) within Edinburgh city. These statistics have been extracted from Table 6.5 and 

have been selected as they represent the data collected with the lowest relative errors. 

 
 

Table 7.7: Summary statistics of car and bus driving cycle parameters on the A702, Edinburgh 

 

Route Time Mode 

Average 

Time 

(Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling 
% 

Cruising 

A702 ( 

no bus 

lane 

road) 

8.00-

9.00 Am 

Bus  350.99 16.401 1563.981 0.144 0.081 0.265 0.506 

Car 276.122 22.051 1650.357 0.169 0.104 0.165 0.544 

2.00-

3.00 Pm 

Bus  358.811 16.758 1646.576 0.148 0.077 0.249 0.515 

Car 318.82 19.234 1622.052 0.155 0.103 0.207 0.531 

 

 

From the data above we can see that there is a significant reduction in journey time along 

with an increase in average speed for car users along this corridor as a whole. Once more we 

must infer from the data above that there is in fact a higher traffic flow at the off peak time 

than at the peak time due to the overall increase in journey time for all vehicles. 

 

We do see however that in the off peak time there is a reduction in the overall percentage of 

time spent by the car users cruising, and this in turn is reflected in an increase in this aspect 

for buses. We also see that there is an increase in idling time for car users during the off peak 

time whereas there is an overall reduction in this aspect for the buses. All of this data would 

lead us to believe that the car users are being delayed more by the busses during this time 

period. The reason for this may be that due to increased oncoming traffic flows there are not 

as many opportunities for the car to overtake the bus when it is stationary at bus stops. This is 

further reflected in the fact that the cars percentage of time in acceleration is altered in the off 

peak time to mirror more closely that of the bus than was evident in the peak flow data.  
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It is most prudent to realise however that no major alterations in the overall style of driving 

take place for the bus users during these two time frames, however when these figures are 

compared to those of the car users it can be seen that overall the journey times are increased 

with the average speed being reduced. This along with the increased idling times experienced 

along with increased time spent in acceleration can possibly lead to impatience on behalf of 

the car driver along with increased anger at perceived delays. 

 

 

7.9 Analysis of the performance of buses on the bus lane road and no bus lane road in 

Edinburgh 

 

 

Table 7.8 presents the data to be analysed for the buses travelling on the A7and A702 roads 

within Edinburgh city. These statistics have been extracted from Table 6.5 and have been 

selected as they represent the data collected with the lowest relative errors. 

 
Table 7.8: Summary statistics of bus driving cycle parameters on the A7 and A702, Edinburgh 

 

Route Time Mode 

Average 

Time 

(Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec 
% 

Idling 

% 

Cruising 

A7 (bus 

lane road) 

8.00-

9.00 Am 
Bus  354.2 15.29 1482.013 0.195 0.147 0.259 0.396 

2.00-

3.00 Pm 
Bus  365.23 14.759 1474.767 0.188 0.133 0.248 0.427 

A702 ( no 

bus lane 

road) 

8.00-

9.00 Am 
Bus  350.99 16.401 1563.981 0.144 0.081 0.265 0.506 

2.00-

3.00 Pm 
Bus  358.811 16.758 1646.576 0.148 0.077 0.249 0.515 

 

 

From the above data we may ignore the average time taken and average speed as the 

information provided is for two different routes whose conditions are too varied to accurately 

compare for driving time and speed. The purpose of this analysis is to examine the overall 

effect the implementation and presence of a bus lane has on the driving styles achieved by the 

road users, in this case busses. 

 

From this data we can see that on the A7 during the times when the bus lane is in effect there 

is in fact more of a restriction in the amount of time spent cruising by the buses. This time is 

not however directly transferred to the idling time but instead is associated more with the 

acceleration and deceleration phases of the journey. This would indicated that while there is 
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an overall reduction in the amount of time spent at a constant speed there is in effect an 

increase in the overall time spent in motion. When this is compared to the A702 for the same 

time period we can see that there is a greater percentage of the overall journey spent in the 

idling phase. However as this represents only a 0.6% difference it is hard to verify the reasons 

for this change in behaviour. This could be down to a slightly higher number of passengers 

availing of the bus service along this route at this time. From this we can see that there is no 

clear advantage to the implementation of the bus lane to help to speed up the flow of the 

buses on these routes. It can be envisaged if a bus lane was to be implemented on the A702  

there would also be little or no benefit to the buses efficiency, however the benefits that it 

may provide to the other road users is also a vital benefit. 

 

7.10 Analysis of the performance of cars on the bus lane road and no bus lane road in 

Edinburgh 

 
 

Table 7.9: Summary statistics of car driving cycle parameters on the A7 and A702, Edinburgh 

 

Route Time Mode 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling 
% 

Cruising 

A7 (bus 

lane road) 

8.00-9.00 

Am Car 232.555 23.401 1480.22 0.187 0.178 0.11 0.52 

2.00-3.00 

Pm Car 291.92 19.245 1531.861 0.191 0.178 0.144 0.483 

A702 ( no 

bus lane 

road) 

8.00-9.00 

Am Car 276.122 22.051 1650.357 0.169 0.104 0.165 0.544 

2.00-3.00 

Pm Car 318.82 19.234 1622.052 0.155 0.103 0.207 0.531 

 

Table 7.9 presents the data to be analysed for the cars travelling on the A7 and A702 roads 

within Edinburgh city. These statistics have been extracted from Table 6.5 and have been 

selected as they represent the data collected with the lowest relative errors. 

 

From the above data we may ignore the average time taken and average speed as the 

information provided is for two different routes whose conditions are too varied to accurately 

compare for driving time and speed. The purpose of this analysis is to examine the overall 

effect the implementation and presence of a bus lane has on the driving styles achieved by the 

road users in this case cars. 

 

From the above data we can see that due to the implementation of the bus corridor in the peak 

time on the A7 there is an increase in the overall time spent in motion by the cars travelling 
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on this route when compared to that of the off peak time. This is most likely due to the 

presence of the bus lane at this time removing the buses from the main thoroughfare and 

providing them with their own lane and thus eliminating any possible conflicts between the 

two transport modes. 

 

It can also be seen that when a comparison is made between the two different routes at the 

same time periods that there is a significantly higher percentage of the cars journey spent in 

the idle phase on the A702. This may be attributed also to the fact that there is no bus lane 

provided on this route and thus there is a reduced opportunity for the cars to overtake these 

buses when they are required to stop to pick up passengers. It can also be seen however that 

the overall percentage of time spent in the cruising phase on the A702 is higher than on the 

A7 with lower total acceleration and deceleration times present also. This would lead us to 

believe that the aim and the implementation of bus lanes should be revisited in order for this 

policy to meet its targets. 

 

This data may all lead us to believe that there is in fact no necessity to implement a bus lane 

on the A702 and should this take place at any stage a detailed analysis of the data collected to 

justify its implementation should be carried out. This provides us with a strong argument that 

it is not always going to be an improvement to an overall road network to implement a bus 

lane. 

 

7.11 Analysis of the performance of buses on the Airport Road in Abu Dhabi 

 

 

Table 7.10 presents the data to be analysed for the buses travelling on the Airport Road 

within Abu Dhabi. These statistics have been extracted from Table 6.8 and have been 

selected as they represent the data collected with the lowest relative errors. 

 
Table 7.10: Summary statistics of bus driving cycle parameters for Airport Road, Abu Dhabi 

 

Route Time 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling 
% 

Cruising 

Airport 

Road 

6.30.7.30 

Am 
544.9 15.61 2331.912 0.186 0.173 0.302 0.335 

11.00-

12.00 Am 
437.42 19.127 2248.493 0.187 0.124 0.258 0.427 
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From the above data we can see that there is a significant difference in the average time taken 

to complete the route by the buses for the given time periods. This difference can be slightly 

mitigated when we adjust the average time to account for the difference in the length of the 

corridor under examination in the two situations. Given that in the off peak time period the 

corridor is in fact shortened by 83.419 meters, should we adjust the average time taken to 

account for this discrepancy we see that the duration adjusts to 453.12 seconds. This still is 

however a significant difference in time taken to complete the same route. This clearly 

indicates to us that there are extremely different conditions present in the two time periods. 

 

Given that the percentages of time spent in acceleration are virtually identical in the two time 

periods it along with the fact that the percentage of time spent decelerating is 4.9% lower in 

the off peak time we can infer from this that the driver is capable of adopting a more 

aggressive driving style. This would lead us to believe that there is much less congestion on 

the route as the driver feels safe in the adoption of this driving style. 

 

It can also be seen that the idling times are 4.4% higher in the peak time. This indicated that 

the buses were required to spend a much greater time stationary throughout the corridor in 

this time period. The reasons for this may be that due to increased traffic flows there are 

larger queues forming at signalised junctions. These higher delays may also be due to 

increased passenger numbers availing of the buses on the corridor at this time which would 

require a greater duration spent at each stop to allow for the alighting of this greater volume 

of people. 

 

It is also clear that a much freer movement of the vehicles is allowed during the off peak time 

period due to the fact that there is an increase of 9.2% of the journey time in the cruising 

phase when compared to the peak time. This would also indicate that there is an ability of the 

buses to move much easier without obstruction from other vehicles during this time period. 

 

7.12 Analysis of the performance of buses on the Elektra Road in Abu Dhabi 

 

Table 7.11 below presents the data to be analysed for the buses travelling on the Elektra Road 

within Abu Dhabi. 
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Table 7.11: Summary statistics of bus driving cycle parameters for Elektra Road, Abu Dhabi 

 

Route Time 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling 
% 

Cruising 

Elektra 

Road 

6.30.7.30 

Am 
323.077 20.502 1819.247 0.179 0.154 0.196 0.467 

11.00-

12.00 Am 
291.47 20.636 1649.049 0.195 0.164 0.199 0.438 

 

These statistics have been extracted from Table 6.8 and have been selected as they represent 

the data collected with the lowest average relative errors. As in previous situations the lowest 

relative error was presented on the corridor with the readings being taken when the vehicle 

was travelling in the same direction. However in this situation it has been seen that the lowest 

relative errors are presented in opposing directions. It has been therefore deemed prudent to 

select the observations which provide the lowest average relative error so as to provide a 

comparison of two sets of numbers which were calculated on the same stretch of road 

operating in the same direction. This has been deemed necessary in this situation as there is 

an extra bus stop on this route in the outward direction which could possibly lead to a 

discrepancy in the interpretation of the results being presented. 

 

In this scenario we can see that there is a large variation in the average times taken to 

complete the corridor, however this can be ignored due to the fact that there is a significant 

difference in the length of the corridor being examined in the two time periods. Due to the 

fact that the  average speeds are vertically identical we can hypothesise that the overall traffic 

management methods adopted on this route must be very effective as there is an ability to 

maintain near uniform average speeds on the route through both peak and off peak traffic 

flow situations. 

 

As we examine the driving style adopted by the drivers further based on the acceleration and 

deceleration statistics available we can see that a greater percentage of the journey is spent 

carrying out these operations in the off peak time period. This indicates to us that the driver 

has adopted a much more relaxed driving style. This may be based on a number of factors 

however it may be possible to infer that it is due to an increase in overall traffic volumes on 

the route during this period and therefore the driver is not capable of accelerating as freely 

without the risk of obstruction from other vehicles. 
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As the overall idling time on this route only varies by 0.3% we may infer that there are a near 

constant number of passengers using this route, as there is not a need for the buses to remain 

stationary for long periods to allow for the boarding and disembarking of these passengers. 

The near uniformity of these figures also indicates to us further that there is an extremely 

efficient traffic management system in place along this route as no variations in the length of 

time spent queuing at signalised junctions is occurring. 

 

Due to the presence of an increase of 2.9% of the overall journey time spent cruising in the 

peak traffic time period; we would be lead to infer that there is an overall freer movement of 

the buses taking place and this may be attributed to an overall reduction in vehicle volumes 

along the corridor at this time. 

 

7.13 Analysis of the performance of cars on the Airport Road in Abu Dhabi 

 

Table 7.12 presents the data to be analysed for the cars travelling on the Airport Road within 

Abu Dhabi. These statistics have been extracted from Table 6.8 and have been selected as 

they represent the data collected with the lowest relative errors. 

 

Table 7.12: Summary statistics of car driving cycle parameters for Airport Road, Abu Dhabi 

 

Route Time 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling 
% 

Cruising 

Airport 

Road 

6.30.7.30 

Am 
252.64 35.628 2387.998 0.206 0.175 0.143 0.472 

11.00-

12.00 Am 
188.35 45.609 2364.854 0.203 0.159 0.074 0.56 

 

From the above table we can see that there is a significant difference between the speeds 

achievable by car users of this route on off peak times as opposed to peak times. We can see 

that there is an ability to achieve an increase of 9.98 km/hr during the off peak time period 

which results in a decrease of 64.29 seconds in the average journey time.  

 

From the data available regarding the driving style adopted we can see that the total 

percentage taken for acceleration and deceleration for the two time periods varies by 1.9%. 

From this piece of information we can conclude that there is a much more aggressive driving 

style adopted by the car user during the off peak time. This is clear as a much higher speed is 

being achieved and then returned to a stationary position taking less time than in the peak 

time period. The reasoning for this may be safely assumed to be that there are significantly 



 192 

less traffic volumes using the route during the off peak time thus allowing for much more 

rapid unhindered acceleration and deceleration. 

 

This is also reflected in the data provided for the amount of time spent in the idling and 

cruising phases for the two time periods. Given that 6.9% more of the journey time is spent 

idling in the peak time period when compared to the off peak time period, we can assume that 

there are significantly larger queues developing at the signalised junctions in place along the 

route. This creation of queues and increase in idling time has a knock on effect in reduction 

the percentage of the journey which is spent in the cruising phase, and thus increases the 

overall journey time. 

 

7.14 Analysis of the performance of cars on the Elektra Road in Abu Dhabi 

 

Table 7.13 presents the data to be analysed for the cars travelling on the Elektra Road within 

Abu Dhabi. These statistics have been extracted from Table 6.8 and have been selected as 

they represent the data collected with the lowest relative errors. 

 
Table 7.13: Summary statistics of car driving cycle parameters for Elektra Road, Abu Dhabi 

 

Route Time 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling 
% 

Cruising 

Elektra 

Road 

6.30.7.30 

Am 
209.69 30.552 1762.837 0.187 0.112 0.245 0.452 

11.00-

12.00 Am 
203.033 33.459 1789.443 0.205 0.116 0.227 0.448 

 

From the above table we can see that there is only a small variance in the average time taken 

to complete the route in question with only an increase of 2.9km/hr average speed over the 

course of the corridor. 

 

This would indicate to us that a very small variation in the overall traffic volumes is taking 

place along this route between the two time periods. Should higher traffic volumes be present 

in one or other of the time periods, we would expect to see a significant increase in the 

journey time along with an overall reduction in the average speed, both due to the increased 

congestion taking place. There may be alterations taking place in the overall traffic volumes 

but due to these results we can infer that the road network which has been developed here is 

sufficient to deal with the variations in volume taking place without adversely effecting 

overall journey time for any of the car users throughout the day. 
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The increase in the overall percentage of journey time spent in acceleration and deceleration 

of 2.2% would lead us to believe that there are slightly less traffic volumes in place during 

the off peak time as there is an allowance for a greater duration of acceleration along with a 

higher overall average speed occurring. 

 

This is also reflected in the fact that there is 1.8% more of the journey spent in the idling 

phase in the early morning peak time slot when compared to the afternoon off peak time. 

However the presence of a slightly higher average cruising percentage of 45.2% in the peak 

time when compared to the 44.8% of the off peak time would lead us to a contrary belief. 

It is clear due to the minimal variation in all of these statistics however that overall there is 

not a significant change in the overall traffic volumes on this route between the two time 

periods in question, and if there is a slightly heavier traffic flow it will be occurring in the 

early morning peak time. 

 

7.15 Analysis of the performance of cars and busses on the Airport Road in Abu Dhabi 

 

Table7.14 below presents the data to be analysed for the buses and cars travelling on the 

Airport Road within Abu Dhabi. These statistics have been extracted from Table 6.8 and have 

been selected as they represent the data collected with the lowest relative errors. 

 
Table 7.14: Summary statistics of car and bus driving cycle parameters for Airport Road, Abu Dhabi 

 

Route Time Mode 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling 
% 

Cruising 

Airport 

Road 

6.30.7.30 Am 
Bus  544.9 15.61 2331.912 0.186 0.173 0.302 0.335 

Car 252.64 35.628 2387.998 0.206 0.175 0.143 0.472 

11.00-12.00 

Am 

Bus  437.42 19.127 2248.493 0.187 0.124 0.258 0.427 

Car 188.35 45.609 2364.854 0.203 0.159 0.074 0.56 

 

 

From the above data we can see that there is a significant difference in journey times and 

average speeds achieved by the buses and cars on this corridor. This can be attributed 

however to the fact that this route under examination is a dual carriageway, where there will 

be minimal disruption to the car users in the instances of the buses stopping.  

 



 194 

This is clearly reflected in the data provided for the percentage of time spent in the idling 

phase. In both situations this percentage is significantly higher for the buses and this may be 

attributed to their need to make six extra stops along the route than the cars are required to 

make. The overall acceleration and deceleration percentage times only vary by 7.3% over the 

entire course of the study on this route which would indicate a very uniform flow of traffic 

occurring throughout. The main reasoning behind the slightly higher acceleration and 

deceleration rates of the cars would be down to the fact that they are achieving a significantly 

higher average speed than the buses which will require a longer time to reach and in turn a 

longer time to reduce from. 

 

We can also see that the cruising rates for the buses are significantly lower than those of the 

cars throughout the two time periods, however this is clearly dependant on the idling rates 

and as there is a requirement of the buses to remain stationary for a greater period of time the 

cruising rate will in turn decrease. 

 

 

7.16 Analysis of the performance of cars and busses on the Elektra Road in Abu Dhabi 

 

Table 7.15 below presents the data to be analysed for the buses and cars travelling on the 

Elektra Road within Abu Dhabi. These statistics have been extracted from Table 6.8 and have 

been selected as they represent the data collected with the lowest relative errors. 

 
Table 7.15: Summary statistics of car and bus driving cycle parameters for Elektra Road, Abu Dhabi 

 

Route Time Mode 
Average 

Time (Sec) 

Average 

Speed 

(Km/h) 

Average 

Length 

(Meter) 

% Acc % Dec % Idling 
% 

Cruising 

Elektra 

Road 

6.30.7.30 Am 
Bus  323.077 20.502 1819.247 0.179 0.154 0.196 0.467 

Car 209.69 30.552 1762.837 0.187 0.112 0.245 0.452 

11.00-12.00 

Am 

Bus  291.47 20.636 1649.049 0.195 0.164 0.199 0.438 

Car 203.033 33.459 1789.443 0.205 0.116 0.227 0.448 

 

 

From the above data we can see that there is a rather large variance in the average time spent 

on the journey by the different modes of transport. This is clearly associated with the fact that 

much lower average speeds are being achieved by the buses (on average 11.44 km/hr). 
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These overall speeds do not represent any significant variation in the overall driving style 

which is present on the route however. This can be seen in the fact that there is only a 7.2% 

variation in the overall acceleration and deceleration statistics. Given that there is a 

requirement of the cars to achieve higher speeds on average this is a minimal variation in 

overall driving style over the duration of the route being examined. 

 

One surprising statistic is that in total the cars spend on average 7.7% more of the journey 

time idling when compared to that of the buses. This is an even more interesting figure given 

that there is a requirement of the buses to service five stops on this inward journey where as 

there is no requirement of the cars to become stationary at these locations. This information 

would lead us to believe that the stops must be located near to signalised junctions as this 

would help to reduce the impact these stops will have on this data field. 

 

The fact that this idling percentage figure for the cars is greater along with the fact that there 

is a minimal variation in the overall cruising percentages experienced along the route, it can 

be inferred that the traffic flows on this route are extremely uniform and are most likely being 

heavily controlled by the signalised junctions present on the route. It is clear that the higher 

average speeds are being produced by the cars due to their ability to carry out acceleration at 

a much greater rate than that of the buses and this is the main reason that a reduced journey 

time is presented. 

 

 

7.17 Analysis of the performance of vehicles on the traffic calming corridor and the 

traffic control corridors in Edinburgh 

 

Table 7.16 presents the data to be analysed for the cars travelling on the traffic calming 

corridors and the traffic control corridors in Edinburgh. These statistics have been extracted 

from Table 6.6 and Table 6.7. 
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Table 7.16: Summary statistics of car driving cycle parameters for Corridor 2 (traffic calming corridor) 

and corridor 4 (control corridor) 

 

Route 
 Time 

(Sec) 

Average 

Speed 

(Km/h) 

 Length 

(Meter) 
% Acc % Dec % Idling 

% 

Cruising 

Corridor 2 (Calming 

Corridor) 97.735 23.87 643.951 0.17375 0.158 0.02 0.64 
Corridor 4(Control 

Corridor) 55.08 29.127 445.923 0.162 0.134 0.024 0.677 

 

 

From the above data we can see that due to the implementation of a traffic calming system 

the aims of the installation were achieved. This is evident from this data as there can be seen 

to be a decrease in the average speed being observed on the corridor by 5.257 km/hr. This is 

seen to be a significant decrease as it accounts for 5.5% reduction in the speeds being 

achieved. As these routes are dominated the slow moving vehicles as it is this accounts for a 

significant proportional reduction and thus increase in overall safety on the route. 

 

The route of this reduction in speed can be determined through the detailed analysis of the 

driving behaviour of those using the route. In the control it can be seen that a total of 29.6% 

of the journeys are spent in the acceleration and deceleration phases, whereas in the calming 

corridor this figure is increased to a total of 33.175% of the journey time. This alteration in 

percentage journey time represents a significant change in driving style given that overall 

lower speeds are being achieved. This data along with an apparent reduction in overall 

percentage time spent in the idling and cruising phases would lead us to believe that the 

implementation of the calming system has led to much more sporadic and uneven driving 

styles being adopted while in turn reducing the overall speeds being achieved. This would in 

turn lead us to infer that the most likely system which has been introduced has been the 

installation of speed ramps which deem it necessary for vehicles to decelerate on approach 

but do not require the vehicle to come to a complete stop thus resulting in an overall increase 

in the deceleration percentage of the vehicle without altering idling time. There is also a 

requirement to accelerate following the calming measure however the obstructions are often 

placed at intervals to reduce as much as the maximum speed of the vehicle. Due to this there 

will be seen an increase in the overall percentage of the journey dedicated to acceleration 

along with a decrease in cruising times on the given route. 

 

This can be slightly worrying however when examination of this data is carried out and the 

environmental effect of these driving style alterations is taken into effect. In instances where 
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the duration of time spent in acceleration and deceleration it can be seen that there is an 

overall increase in the levels of emissions being produced. Due to this it can be assumed that 

the implementation of this traffic calming system there is an overall increase in the levels of 

emissions over this route. Due to this it may be deemed prudent for the relevant authorities to 

attempt in the future to implement systems whereby the percentage acceleration and 

deceleration times of vehicles are maintained while attempting to increase the cruising 

percentages being observed while also decreasing the overall average speeds being observed 

on the route under alteration. 

 

 

7.18 Summary 

 

From all of the above data we can see that there is a slight reduction in overall journey times 

for buses and cars in situations where bus lanes are in place. This will indeed lead to overall 

reduced emissions over the course of the route; however the extent of this reduction will 

depend greatly on the overall efficiency of the installation of the corridor. As can be seen 

from the above analysis in certain situations the inclusion of the bus lane results in seemingly 

insignificant reductions in journey times and in certain situations leads to an increase in 

overall journey time. We have also seen that where a bus lane is installed this has generally a 

positive effect on the overall journey times of car users on the routes. This is due to the fact 

that there is no longer the requirement of the car user to remain stationary behind buses when 

they are stopped to allow for the collection and alighting of passengers. 

 

The installation of bus lanes can also lead to the situation taking place whereby there is an 

increase in the overall percentage of the journey time of the vehicles dedicated to 

acceleration, deceleration and idling. When increases in these activities take place there will 

be an overall increase in the levels of emissions emanating from the vehicle in question. This 

is due to the fact that the majority of engines utilised in these vehicles are still quite dated and 

do not as of yet utilise new technologies to minimise fuel consumption during these times. 

These vehicles therefore are at a state of optimum fuel consumption during times of cruising 

where the engine is not set to be running at higher or lower than required consumption levels 

and thus the overall emission to journey distance ration is at a minimum. 
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We have also seen that the analysis of driving cycles is a very useful tool in the assessment of 

the effectiveness of traffic calming measures when they are installed on an existing route. 

The analysis of driving cycle data taken before and after the installation of the measures 

allows us to gain an insight to the attitude of the driver using the route during both situation 

and allows us to determine if the installation has in face resulted in an overall more uniform 

and controlled driving style being established. This is represented in an overall increase or 

decrease in the percentage times of the journey which are spent in the various driving phases. 

Should a traffic calming system be successful it should be hoped to see a slight increase in 

the overall journey time along a given route along with a decrease in average speed. The 

percentage phase changes taking place will depend greatly on the type of traffic calming 

measures utilised. Should it be a reduction of speed limits, an increase in overall cruising 

time should be seen with a corresponding decrease in acceleration and deceleration 

percentages taking place. If on the other hand there is some form of traffic light system put in 

place we should expect to see an increase in idling, deceleration and acceleration taking place 

with a corresponding decrease in cruising taking place.  
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CHAPTER 8 

 

FURTHER INVESTIGATION USING REGRESSION  

ANALYSIS RESULTS 

 

 

8.1 Introduction 

 

Chapters 5 and 6 presented the results from the runs on the selected traffic corridors. Section 

5.2 outlines the main results from the bus lane and the no bus lane corridors. In this chapter 

further analysis of the results are presented and investigated using techniques of regression 

analysis.  

  

This analysis requires the identification of some performance indicators in order to 

effectively compare the performance of the buses and assess the results. The evaluation of the 

performance is achieved through the calculation of some performance indicators such as 

percentage time spent in acceleration mode, percentage time spent in deceleration mode, 

percentage time spent in idling mode and percentage time spent in cruising mode as discussed 

in Chapters 4 & 5.  

 

Other performance indicators can be identified and have been further investigated in this 

Section. These indicators include percentage of time spent in acceleration plus deceleration 

modes as this combined mode can represent the worst two driving modes in terms of impacts 

on delays, congestion and air quality, Barlow et al. (2009). These parameters have been 

assessed and analysed using regression analysis techniques.  

 

 

8.2 Regression analysis techniques 

 

In the late 1950's and early 1960's linear regression was the most popular method of 

prediction in a large number of fields. In transport, regression analysis has been widely used 

to predict and estimate numbers of trip generations as a function of some relevant factors 

affecting trip generation. This approach uses trip data collected at one time to determine a 
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functional relationship between, in that case, trip generation (which are known as the 

‘response’ or ‘dependent’ variable of the function) and the characteristics that exhibit a causal 

effect on it (which are known as the ‘explanatory’ or ‘independent’ variables of the function) 

utilising the principle of least-squares, i.e. the squared sum of the residuals or deviations from 

the estimated line is minimised.  The linear least-squares model is based on the hypothesis 

that there exists a linear relationship between some dependent variable and one or more 

independent variables.  

 

A linear regression analysis predicts the dependent variable Y as a function of some 

independent variables X by estimating the coefficients   as: 

nno xxxY   ...2211  

 

Where 

Y = the dependent variable; 

X= the independent variables; and 

 = the model coefficients estimated by linear regression. That is, for any given set of 

observations X1, X2, … , Xk there exists a corresponding observation Y which differs from the 

regression line (0 + 1X1 + … + kXk) by the amount of  ; 

 = the error terms which are commonly referred to as the disturbance terms of the equation. 

They arise in practice mainly because the model does not take account of all factors which 

influence the value of Y; thus the   values account for the net effect of excluded variables 

and random deviations.  

 

 

8.3 The assumptions of the linear regression model 

 

The use of least-squares regression analysis involves a number of important assumptions 

which mainly include (Douglas and Lewis, 1970): 
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1. Distribution of the disturbance terms. Regarding the disturbance terms it is assumed 

that their mean and co-variance are zero, their variance is constant and that their 

distribution is normal. If the variance is not constant then data is said to be 

heteroscedastic and this may lead to an over-statement of the accuracy of the 

regression equations. 

2. Collinearity between independent variables. When two or more variables are inter-

correlated (it is known as multi-collinearity) it becomes difficult to distinguish their 

separate effects and sometimes the coefficients of a value or sign may be contrary to 

intelligent expectation. 

3. Error in variables. Measurement errors in the independent variables are not allowed 

for by the model and if present can lead to biased estimates of the equation 

coefficients. 

4. The shape of the response surface. It assumes that the dependent variable is a linear 

function of the independent variables. The independent variables need not be in their 

original forms and transformations such as the logarithm and reciprocal are 

sometimes used.  

 

 

8.4 The tests of the multiple linear regression model 

 

The statistical validity of trip generation analysis derived through linear regression can be 

assessed by a series of standard statistical tests: 

1. Multiple correlation coefficient (R). It indicates the degree of association between the 

independent variables and the dependent variables. Its square is approximately the 

decimal fraction of the variation in the dependent variable which is accounted for by 

the independent variables; 

2. ‘t’ test statistic on regression coefficients. The significance of the regression 

coefficient of each independent variable in a regression equation is indicated by the ‘t’ 

test statistic. The value of ‘t’ is calculated by dividing the regression coefficient by its 

standard error, and a value of at least 1.96 is necessary for significance to be 

established at the 95%  level. 

 



 202 

In addition, the size of the regression constant should be carefully examined - if it is large 

then the regression set should be used with caution.  

 

Below is an example (Ortúzar and Willumsen, 2001) of a multiple linear regression analysis 

model to estimate the number of trips per household using number of workers in the 

household and number of cars (t-ratios are given in parentheses): 

 

Y = 0.84 + 1.41X1+0.75Z1+3.14Z2           R
2 
= 0.387 

                               (3.6)    (8.1)     (3.2)     (3.5) 

 

Where  

Y is household peak hour trips;  

X1 is the number of workers in the household; and  

Z1 and Z2 are two dummies for number of cars with Z1 taking the value 1 for household with 

one car and 0 in other cases and Z2 taking the value 1 for households with two or more cars 

and 0 in other cases (it should be noted that only n-1 dummy variables are needed to 

represent n intervals); non-car-owning households correspond to the case where both Z1 and 

Z2 are zero.  

This model is a good equation in spite of its low R
2
. In the model, the intercept 0.84 is not 

large (i.e. as compared with 1.41 times the number of workers) and the regression 

coefficients are significantly different from zero with t-ratios 8.1, 3.2 and 3.5.  The positive 

signs of the coefficients are correct, i.e. more workers in a household, more household trips 

and so with the cars owned by the households. In this example, it is clear that there is a non-

linear relationship between household car ownership and the number of trips made by a 

household and in this case, a model with dummy variables is preferable to that with a single 

‘number of cars’ linear variable. 
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8.5 The fits of the linear regression model 

 

There may be a large number of variables to exert a causal effect on trip generation (Douglas 

and Lewis, 1970). Some of them may be interrelated and measure largely the same effect and 

others may exhibit only minor influence. The objective of trip end modelling is to provide a 

reliable forecasting tool. In the process of trip end modelling attention should be given to the 

following: 

1. The explanatory variables must lend themselves to future estimation and be 

incorporated in a meaningful way with particular regard to the sign and magnitude of 

their coefficients. 

2. If two explanatory variables are highly intercorrelated, it is desirable to override any 

automatic selection procedure in order to include only the preferred variable, i.e., the 

one that either has more meaning or may be more easily forecasted.    

3. Known or anticipated change in trip-making behaviour should be reflected in the 

model. For example, models for vehicle trips must reflect the rising level of vehicle 

ownership. 

4. Generally it will be necessary to estimate beyond the range of data used to develop 

the model in order that future situations are still suitable, and 

5. Zonal regression models only explain the variation in trip making behaviour which 

exists between various traffic zones and can only provide reasonable future estimates 

if the “between zone” variance sufficiently reflects the true reasons for trip variability. 

Zones thus should be of homogeneous socio-economic composition and should 

represent as wide a range of conditions as possible. 

 

As the regression models are to be used to predict future impacts and behaviour, reasonable 

forecasts can only be expected if the models take account of a sufficient high proportion of 

the total variation in trip behaviour. Ideally, therefore, the data should be disaggregate and the 

sample size should be as large as possible to capture most of the effects of the various 

variables included in the study and to reduce the within parameters variance which is 

unaccounted for by the model. However, this approach can result in more expensive models 

in terms of data collection, calibration and operation; and present greater sampling errors 

which are assumed to be non-existent by the multiple linear regression models. If sampling 

errors exist in the independent variables, these can produce biased estimates of the regression 
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coefficients. Therefore, care must be taken in decisions related to sample size as well as in 

terms of interpretation of the results. 

 

8.6 The advantages and disadvantages of regression analysis  

 

The regression analysis method has the following advantages: 

1. Regression models are simple; 

2. It is relatively easier to include many variables in linear models; and 

3. The linear regression models have statistical measures to evaluate the goodness-of-fit, 

such as t-test, the coefficient of determination (R
2
) and F-test for the complete model. 

 

On the other hand, the regression analysis method has the following disadvantages:  

1. The need to assume a linear relationship between dependent variable and independent 

variables.  It is not easy to detect non-linearity because a linear effect may turn out to 

be non-linear when the presence of other variables is allowed in the model.  

2. There is a class of variables in most transport applications, those of a qualitative 

nature, which usually shows non-linear behaviour (e.g. type of dwelling, occupation 

of the head of household, age, and sex).  In these models, these variables are usually 

treated as dummy variables where the independent variables under consideration are 

divided into several discrete intervals and each of them is treated separately in the 

model.  Or some transformation has to be considered, i.e. to transform the variables in 

order to linearise their effect (e.g. take logarithms, raise to a power). However, 

selecting the most adequate transformation is not an easy or arbitrary exercise and it 

takes time and effort. 

3. Problems may be encountered in relation to heteroscedasticity and multicollinearity. 

For zone-based linear regression, the magnitude of the error depends on zone sizes 

when aggregate variables are used. By using multipliers, this heteroscedasticity can be 

reduced because the model is made independent of zone size (Ortúzar and Willumsen, 

2001).  

For more discussions on regression analysis and example applications in transport 

predictions see Hobbs, 1979; Koppelman and Pas, 1984; Bruton, 1985; Sheppard, 

1986, Hu and Saleh (2005) and Ortúzar and Willumsen (2001). 
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Sections 8.7 below present the use of regression analysis in the context of modelling impacts 

of bus lanes on performance of buses on the corridors as well as the results obtained from the 

regression analysis.  

 

8.7 Modelling the performance of buses on bus lanes using regression analysis 

 

Chapter 6 described the datasets which have been used for the driving cycle development for 

the different corridors in this study. In this chapter, the data has been further analysed and 

used to calibrate regression analysis models which represent and describe the impacts of bus 

lanes and the buses on these corridors. The results are assessed and compared. 

 

It should be reported here that the data set is very limited due to the very small number of 

corridors investigated. However, the principles of using regression analysis to correlate and 

investigate relationships of various driving modes and the other factors is appealing. There is 

a limitation here in terms of the small amount of data available for this task. With larger data 

set, the results would have been more meaningful.  

 

In this section, a linear regression model for the performance of buses and cars on the “bus 

lane corridors” in Edinburgh have been developed and investigated. The descriptions of the 

variables which are used in the linear regression models are given in Table 8.1. 

  

As part of the investigation in this research, some performance indicators have been utilised 

to derive and assess the driving cycles for different corridors in the transport network. Other 

indicators can be defined and selected to meet the targets and objectives of any particular 

study. In our case here, the percentage time spent in acceleration, percentage time spent in 

deceleration, percentage time spent in idling and percentage time spent in cruising etc. In 

addition, a new indicator has been used in the regression analysis models to reflect the 

impacts of the considered traffic demand management measures. This indicator is the 

percentage of time spent in acceleration plus deceleration during the driving cycle, to 

represent the dependent variable. It is selected because it reflects the time of the driving cycle 

during which negative impacts on air quality is obtained. In total, nine independent variables 
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have been tested for inclusion in the regression models for both the bus and the car on the bus 

lane corridors in Edinburgh. These are:  peak traffic volume, off peak traffic volume, number 

of bus stops on the corridor, number of signalised junctions on the corridor, number of 

pedestrian crossing on the corridor, number of traffic lanes, number of bus routes on the 

corridor and bus frequency on the corridor as well as type of road. It should also be noted that 

both of the type of roads and number of lanes variables not included in the analysis because 

there were no variations in the data to allow this investigation. 

In principle, multiple regression analysis could have been used to investigate the different 

combinations of the independent factors in the models. However, the number of observations 

in the investigation is very limited as discussed earlier. Therefore, it was not possible to 

carryout multiple regression analysis because of lack of data. Instead, linear regression 

analysis was carried out for each individual independent variable. The approach could be 

further investigated in future research where larger data set can be used.  Table 8.1 below 

shows the list of variables used in this analysis and their definitions. 

 

Table 8.1: Description of variables used in the linear regression model 

 

Variables Description 

TRF_PK A continuous variable: describes the volume of traffic on 

the corridor during peak hours. 

TRF_OFPK A continuous variable: describes the volume of traffic on 

the corridor during off-peak hours. 

BUS_STOPS A continuous variable: describes the number of bus stops 

on the corridor. 

SIGN_JUNS A continuous variable: describes the number signalised 

junctions on the corridor. 

PED-CROSS A continuous variable: describes the number pedestrian 

crossings on the corridor. 

TRFK_LANES A continuous variable: describes the number traffic lanes 

on the corridor. 

BUS_ROUTS A continuous variable: describes the number of bus routes 

on the corridor. 

BUS_FREQ A continuous variable: describes the bus frequency on the 

corridor. 
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Two sets of linear regression models have been calibrated from this data; one for the bus and 

one for the car. Table 8.2 show the coefficient estimates and the t-values for each of these 

models.   

 

8.8 Discussion of the results of the Bus Models 

 

Table 8.2 below, shows the coefficient estimates and the t-values for each of the linear 

regression models in the case of the bus. 

 

From the table, all the variables have the correct signs and all are statistically significant at 

the 95% level of significance. The R
2 

values of the three models are presented in table 8.2 

below. All the R
2 
values can be considered reasonably good.   

Table 8.2: Linear regression models of % time spent in acceleration plus deceleration and the 

independent variables 

 
Variables Intercept Coefficient R

2 

TRF_PK 0.2302734 
(4.101) 

2.3E-05 
(1.490) 

0.379 

TRF_OFPK 0.229 
(3.745) 

2.51E-05 
(1.349) 

0.290 

BUS_STOPS -0.0047 
(-0.0859) 

0.018 
(5.52) 

0.936 

SIGN_JUNS -0.225 
(-39.91) 

0.086 
(91.532) 

0.999 

PED-CROSS 0.502 
(1.359) 

-0.0438 
(-0.592) 

0.481 

TRFK_LANES --- --- --- 

BUS_ROUTS 0.192 
(-4.446) 

0.007 
(2.746) 

0.766 

BUS_FREQ 0.186 
(4.142) 

0.0013 
(2.756) 

0.767 

 
n 

 
3 

 
3 

 
3 

 

As shown in Table 8.2, the signs of the coefficients for traffic volume during peak hours and 

during off peak hours are positive as expected. As the number of traffic volume increase, the 

percentage of time spent on acceleration plus deceleration also increase. However, the t-value 

of each of these coefficients is not statistically significant at the 95% level of significance.  
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As the number of bus stops on the corridor increase, also the percentage of time spent on 

acceleration plus deceleration also increase (positive coefficients of BUS_STOPS in the 

model) which is logical. As the number of signalised junctions on the corridor increase, the 

percentage of time spent on acceleration plus deceleration also increases (positive 

coefficients of SIGN_JUNS in the model) which is also logical.   The sign of number of 

pedestrian crossings (PED-CROSS) on the corridor is negative which indicates that as the 

number of pedestrian crossings on the corridor increases, the percentage of time spent on 

acceleration plus deceleration decreases, which is also logical.  It should be noted however, 

that this variable is not statistically significant at the 95% level (t-value is -0.592). The 

variable representing the number of bus routes on the corridor is statistically significant at the 

95% level and has a positive sign in the model, which is logical.  Finally, as expected, the 

variable representing the bus frequency on the corridor is statistically significant at the 95% 

level and has a positive sign in the model, which is also logical.  

 

To further investigate the results from these models, the relative importance of each variable 

is obtained. Firstly, the mean value (m) of each independent variable is calculated from the 

survey data (i.e. the average value of each variable). The mean value is then multiplied by the 

coefficient of the corresponding variable to work out a relative importance value for each 

variable. 
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Table 8.3: The relative importance of each variable in the bus model 

 
Variables Coefficients 

 

Mean Values of 

Variables 
(m) 

Relative Importance of 

Variables 
(m * coefficient) 

TRF_PK 2.3E-05 2606.966 
 

6.00E-02 
 

TRF_OFPK 2.51E-05 
 

2411.7 
 

6.05E-02 
 

BUS_STOPS 0.018 
 

16 
 

2.95E-01 
 

SIGN_JUNS 0.086 
 

6 
 

5.15E-01 
 

PED-CROSS -0.0438 
 

5 
 

-2.19E-01 
 

TRFK_LANES --- --- --- 

BUS_ROUTS 0.007 
 

15 
 

9.85E-02 
 

BUS_FREQ 0.0013 
 

83 
 

1.05E-01 
 

 
n 

3 3  

 

From the models it seems that the number of signalised junctions, the bus frequency and the 

number of bus stops are the most contributing to the percentage of time spent on acceleration 

plus deceleration on the corridor. On the other hand it seems that the traffic volume, both 

peak and off peak have less impact on the percentage of time spent on acceleration plus 

deceleration. 

8.9 Discussion of the results of the car models 

 

Table 8.4 presents the results from the regression analysis of the total time spent in 

acceleration plus deceleration as a measure of performance of cars on the bus lane corridors 

and the factors that are tested to have an effect on performance. The Table shows summary 

results of the regression analysis.  
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Table 8.4: Linear regression models of % time spent in acceleration plus deceleration and the 

independent variables for cars 

 
Variables Intercept Coefficient R

2 

TRF_PK 0.284 
(5.039) 

3.43E-05 
(2.205) 0.659 

TRF_OFPK 0.282 
(4.445) 

3.78E-05 
(1.957) 0.586 

BUS_STOPS 
-0.033 

(-5.711) 
0.025 

(72.47444) 0.999 

SIGN_JUNS -0.314 
(-2.540) 

0.115 
(5.612) 0.938 

PED-CROSS 0.749 
(1.659) 

-0.075 
(-0.842) -0.170 

TRFK_LANES --- --- --- 

BUS_ROUTS 0.226 
(7.484) 

0.002 
(5.380) 0.934 

BUS_FREQ 0.284 
(6.957) 

3.43E-05 
(5.413) 0.659 

 
n 

3 3  

 

It should be noted that while the type of road and the number of traffic lanes are both 

relevant, they were not included in the analysis because there was no variations in this 

variable in the data (only one type of road and number of lanes available as discussed earlier). 

From the Table, all the variables, all the R
2 
values of the calibrated models are reasonable.  

 

As shown in 8.5, the signs of the coefficients for traffic volume during peak hours and during 

off peak hours are positive as expected. As the traffic volume increase, the percentage of time 

spent on acceleration plus deceleration also increase and the-values of each of these 

coefficients is statistically significant at the 95% level of significance.  

 

As the number of bus stops on the corridor increase, also the percentage of time spent on 

acceleration plus deceleration also increases (positive coefficients of BUS_STOPS in the 

model) which is logical. As the number of signalised junctions on the corridor increase, the 

percentage of time spent on acceleration plus deceleration also increase (positive coefficients 

of SIGN_JUNS in the model) which is also logical.   The sign of number of pedestrian 

crossings (PED-CROSS) on the corridor is negatives which indicates that as the number of 
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pedestrian crossings on the corridor increases, the percentage of time spent on acceleration 

plus deceleration decreases, which is logical.  It should be noted however, that this variable is 

not statistically significant at the 95% level (t-value is -0.592). The variable representing the 

number of bus routes on the corridor is statistically significant at the 95% level and has a 

positive sign in the model, which is logical.  Finally, as expected, the variable representing 

the bus frequency on the corridor is statistically significant at the 95% level and has a positive 

sign in the model, which is also logical.  

To further investigate the results from these models, the relative importance of each variable 

is obtained. Firstly, the mean value (m) of each independent variable is calculated from the 

survey data (i.e. the average value of each variable). The mean value is then multiplied by the 

coefficient of the corresponding variable to work out a relative importance value for each 

variable. 

 
Table 8.5: The relative importance of each variable in the car model 

 
Variables Coefficients 

 

Mean Values 

of Variables 
(m) 

Relative Importance of 

Variables 
(m * coefficient) 

TRF_PK 
3.43E-05 

2606.966 
 

8.94E-02 
 

TRF_OFPK 
3.78E-05 

2411.7 
 

9.12E-02 
 

BUS_STOPS 
0.025405 

16 
 

4.06E-01 
 

SIGN_JUNS 
0.114625 

6 
 

6.88E-01 
 

PED-CROSS 
-0.075 

5 
 

-3.75E-01 
 

TRFK_LANES --- --- --- 

BUS_ROUTS 
0.009315 

15 
 

1.40E-01 
 

BUS_FREQ 
0.001787 

83 
 

1.48E-01 
 

 
n 

3 3  

 

In all the calibrated models, the estimates of the coefficients are compared.  From the models 

it seems that the number of bus stops, number of signalised junctions, number of pedestrian 

crossings, and number of bus routes as well as bus frequency are the most contributing to the 
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percentage of time spent on acceleration plus deceleration on the corridor. On the other hand 

it seems that the traffic volume, both peak and off peak have less impact on the percentage of 

time spent on acceleration plus deceleration. 

 

8.10 Summary 

In this chapter, the results obtained in this study from the analysis of the driving cycle have 

been further analysed using regression analysis techniques. Regression analysis results show 

that peak traffic volume, off peak traffic volume, number of bus stops on the corridor, 

number of signalised junctions on the corridor, number of pedestrian crossings on the 

corridor, number of bus routes on the corridor and bus frequency on the corridor are all 

relevant factors which have impacts on the amount of acceleration and decelerations on bus 

lane corridors. This finding is very important because vehicle emissions increase with the 

increase in acceleration and deceleration. It should also be noted that both of the type of roads 

and number of lanes variables where not included in the analysis because there were no 

variations in the data to allow this investigation. Furthermore, the result provides evidence 

that the number of signalised junctions, the number of pedestrian crossings and the number of 

bus routes are the most contributing to the percentage of time spent on acceleration plus 

deceleration on the corridor, while the traffic volumes on the corridor have less impacts on 

the percentage of time spent on acceleration plus deceleration. The driving cycle analysis can 

provide a platform for the investigation and analysis of the performance of traffic and impacts 

of various transport policies on emissions as well as other environmental issues. Further 

research and investigations are urgently needed in this area. 
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CHAPTER 9 

 

CONCLUSIONS 
 

 

9.1 Introduction 

 

Traffic congestion is nowadays a major problem in almost all of the metropolitan areas of the 

world. Increasing levels of congestion results in worst predicaments like urban environmental 

pollution, energy problems and traffic accidents. There has been a move towards utilising 

TDM measures which aim at reducing car dependency and encouraging the use of other 

alternative modes such as public transport and/or cycling and walking.  In other words, TDM 

measures are aimed at influencing mode choice, trip length, the frequency of trips and the 

route taken. However, environmental impacts of such measures have not often been 

considered as one of the main objectives of such measures. Instead, the main objective has 

always been the traffic performance and travel time savings. Conventionally, these measures 

are usually assessed using various analytical modelling and analysis techniques (for example 

travel demand forecasting, simulation modelling etc.). A major limitation of much of these 

approaches is that the assessments are usually calculated based on average speed patterns and 

not on real-world driving conditions, which are much more detailed and reflect the actual 

performance of the traffic and the system. Therefore, the conventional techniques do not 

embrace actual driving behaviour in any particular urban area. Driving cycle analysis can be 

used to obtain more real data to assess the impacts of TDM measures on congestion, delays 

and travel time. Measurement of instantaneous speed, acceleration, deceleration, and distance 

travelled and route tracking data can be used to develop the driving cycle for each of the 

modes. It should be emphasised here that, most of the work on development of driving cycles 

has been carried out with emission monitoring and measurement, in mind. Therefore, there is 

no previous literature was found in this area. This is therefore one of the novel areas of this 

research.   

 

The motivation behind this research is to investigate effects of different TDM measures that 

are already applied to improve the network performance. It is important to explicitly assess 

these transport policy measures with a very detailed analysis of driving cycles in order to 

monitor the impacts of policies on network performance and on emissions as well. These 

understandings will benefit government agencies and policy makers in their planning and 
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appraisals. It will also benefit public transport providers to improve their service in attracting 

and retaining their customers.   

 

The main goal of this research therefore has been to investigate impacts of travel demand 

management measures using driving cycle characteristics. Furthermore, this study has also 

developed real world driving cycles for traffic corridors in Abu Dhabi and investigated their 

impacts on emissions. The specific objectives of this research are: 

 

1. To investigate and analyse in more details impacts of bus lanes on traffic 

using the analysis of the driving cycles of buses on a number of corridors.  

2. To investigate and analyse the driving cycles on a number of traffic calming 

corridors.  

3. To investigate the driving cycle on traffic corridors in a developing country.  

4. To analyse and compare the obtained driving cycle results and draw 

conclusions on the possible impacts of various travel demand management 

policies. 

5. To attempt using regression analysis techniques to establish mathematical 

relationships between speeds and the other performance parameters 

discussed above.  

 

 

9.2 Summary of Achievements 

 

9.2.1 Meeting the objectives of the research 

 

 

The main aim of this research has been to investigate the potential application of the driving 

cycle techniques to assess transport policies and the detailed impacts on the built environment 

in Edinburgh and in Abu Dhabi.  In order to achieve this aim a number of objectives have 

been defined as discussed below. 

 

The first objective of this research has been to investigate and analyse in more details 

impacts of bus lanes on traffic using the analysis of the driving cycles of buses on a 

number of corridors.  
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Bus lanes have been claimed to improve traffic performance, improve bus reliability and 

reduce delays. However, most of research in this area relies on investigating performance of 

the buses in terms of speed and travel times only. Other criteria of bus performance such as 

acceleration, deceleration, idling and cruising are not usually included. In order to assess the 

more in depth impacts of bus lanes on traffic, the driving cycle of the selected three traffic 

corridors in Edinburgh have been identified and data has been collected using GPS 

equipment to carry out the investigations. The results obtained have been presented in 

chapters Five and Six. 

 

From the results, it can be seen that in all instances, on the bus lane corridor, there is a 

significant reduction in journey times when using cars as opposed to buses as the method of 

transportation. It can also be seen that higher average speeds were achieved at all times by 

cars than buses, on the bus lane corridors. It was also revealed that when the bus lane is in 

operation the cars are capable of achieving a rate of 52% of the journey at cruising rates in 

comparison to the 39.6% achieved by the buses. This along with increased idling times for 

the buses both contribute to the lower average speed and thus higher journey time of the 

buses. 

 

Further analysis of the results show that in terms of idling times, it is also seen that the bus 

spends much more higher time idling than the cars during both peak and off peak times 

(135% & 72.2% higher idling times) respectively. In terms of cruising times, it is also seen 

that the bus spends much less time cruising than the cars during both peak and off peak times 

(31.3% & 13.1% higher cruising times) respectively.  In the scenario of the before the bus 

lane operation, that is between 6.30 and 7.30 am, the bus performance relative to that of the 

cars is also similar.  That is the idling times for the bus is 165% higher than that of the cars 

while the cruising times are similar.  

 

We can also see that once the bus lane is no longer in use there is a fall off in the overall 

journey times of all vehicles on the route. This may be due to overall higher traffic and 

pedestrian rates, however this is unlikely. The lack of a bus lane could be seen as the likely 

factor for these delays with vehicles being forced to interact with each other to a greater 

extent when the bus lane is in effect. This lack of a bus lane has an effect on the traffic stream 

as a whole. However, there may be grounds also to claim that the presence of the bus lanes do 

not necessarily brings advantages to the buses. This might be because of the fact that buses 
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are forced to queue up in the bus lane and are not free to overtake other traffic and leave the 

queue which might results in higher idling times for buses than they are for cars for example.  

Further research in this direction is certainly needed. 

 

Investigating the data that present the cars and busses travelling on the A702 (no bus lane 

road) within Edinburgh city, we can see that there is a significant reduction in journey time 

along with an increase in average speed for car users along this corridor as a whole. Once 

more a question is raised regarding the actual benefits of bus lanes since the performance of 

the cars is way better than those of the buses.  

 

The data which present the busses travelling on the A7and A702 roads within Edinburgh city 

has also been investigated. From this data we can see that on the A7 during the times when 

the bus lane is in effect there is in fact more of a restriction in the amount of time spent 

cruising by the busses. This time is not however directly transferred to the idling time but 

instead is associated with the acceleration and deceleration phases of the journey. This would 

indicated that while there is an overall reduction in the amount of time spent at a constant 

speed there is in effect an increase in the overall time spent in motion. When this is compared 

to the A702 for the same time period we can see that there is a greater percentage of the 

overall journey spent in the idling phase. However as this represents only a 0.6% difference it 

is hard to verify the reasons for this change in behaviour. This could be down to a slightly 

higher number of passengers availing of the bus service along this route at this time. From 

this we can see that there is no clear advantage to the implementation of the bus lane to help 

to speed up the flow of the busses on these routes. It can be envisaged if a bus lane was to be 

implemented on the A702  there would also be little or no benefit to the busses efficiency, 

however the benefits that it may provide to the other road users is also a vital benefit. 

 

From the data presented in table 7.9, we can see that due to the implementation of the bus 

corridor in the peak time on the A7 there is an increase in the overall time spent in motion by 

the cars travelling on this route when compared to that of the off peak time. This is most 

likely due to the presence of the bus lane at this time removing the busses from the main 

thoroughfare and providing them with their own lane and thus eliminating any possible 

conflicts between the two transport modes. 
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It can also be seen that when a comparison is made between the two different routes at the 

same time periods that there is a significantly higher percentage of the cars journey spent in 

the idle phase on the A702. This may be attributed also to the fact that there is no bus lane 

provided on this route and thus there is a reduced opportunity for the cars to overtake these 

busses when they are required to stop to pick up passengers. It can also be seen however that 

the overall percentage of time spent in the cruising phase on the A702 is higher than on the 

A7 with lower total acceleration and deceleration times present also. This would lead us to 

believe that the aim and the implementation of bus lanes should be revisited in order for this 

policy to meet its targets. 

 

Therefore, while there are some evidence to support the claims that bus lanes may improve 

traffic performance, there may be grounds also to claim that the presence of the bus lanes do 

not necessarily bring advantages to the buses. This might be because of the fact that buses are 

forced to queue up in the bus lane and are not free to overtake other traffic and leave the 

queue which might results in higher idling times for buses than they are for cars for example.  

Further research in this direction is certainly needed. 

 

The second objective of this research has been to investigate and analyse the driving cycles 

on a number of traffic calming corridors.  

 

In order to assess the performance of traffic over traffic calming corridors, which are claimed 

to be improving the impacts of traffic, the performance of traffic on a number of traffic 

calming corridors have been assessed, analysed and investigated. The descriptions of the 

traffic calming corridors are presented in Chapter Three. The developments of driving cycles 

of these corridors are discussed in Chapter Six and the comparisons and discussions of the 

results are presented in Chapter Seven. 

 

The implementation of traffic calming systems can result in a decrease in the average speed 

being observed on the corridor by 5.257 km/hr. This is seen to be a significant decrease as it 

accounts for 5.5% reduction in the speeds being achieved. The reason for this reduction in 

speed can be determined through the detailed analysis of the driving behaviour of those using 

the route. In the case of the control corridor it can be seen that a total of 29.6% of the 
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journeys are spent in the acceleration and deceleration phases, whereas in the calming 

corridor this figure is increased to a total of 33.175% of the journey time. This alteration in 

percentage journey time represents a significant change in driving style given that overall 

lower speeds are being achieved. This data along with an apparent reduction in overall 

percentage time spent in the idling and cruising phases would lead us to believe that the 

implementation of the calming system has led to much more sporadic and uneven driving 

styles being adopted while in turn reducing the overall speeds being achieved. This would in 

turn lead us to infer that the most likely system which has been introduced has been the 

installation of speed ramps which deem it necessary for vehicles to decelerate on approach 

but do not require the vehicle to come to a complete stop thus resulting in an overall increase 

in the deceleration percentage of the vehicle without altering idling time. There is also a 

requirement to accelerate following the calming measure however the obstructions are often 

placed at intervals to reduce as much as the maximum speed of the vehicle. Due to this there 

will be seen an increase in the overall percentage of the journey dedicated to acceleration 

along with a decrease in cruising times on the given route. 

 

This can be slightly worrying however when examination of this data is carried out and the 

environmental effect of these driving style alterations is taken into effect. In instances where 

the duration of time spent in acceleration and deceleration increase it can be seen that there is 

an overall increase in the levels of emissions being produced. Due to this it can be assumed 

that the implementation of this traffic calming system there is an overall increase in the levels 

of emissions over this route. Due to this it may be deemed prudent for the relevant authorities 

to attempt in the future to implement systems whereby the percentage acceleration and 

deceleration times of vehicles are maintained while attempting to increase the cruising 

percentages being observed while also decreasing the overall average speeds being observed 

on the route under alteration. 

 

The third objective of this research has been to investigate the driving cycle on traffic 

corridors in a developing country.  

 

Driving cycle techniques are mainly used in the western world. This is because the main 

applications of driving cycle have been in the area of emission modelling. Since 

environmental impacts and emission analysis are not the most important issues on the 
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national agendas in developing countries, these techniques therefore have been less known in 

such areas. These results are presented in Chapter Five. 

 

In order to achieve this, data was collected from two traffic corridors in the city of Abu Dhabi 

(UAE) and analysed. Driving cycle for cars and for buses have been developed and analysed. 

These results are presented in Chapter Five. The data to be analysed is for the buses and cars 

travelling on the Elektra Road within Abu Dhabi. From the above data we can see that there 

is a rather large variance in the average time spent on the journey by the different modes of 

transport. This is clearly associated with the fact that much lower average speeds are being 

achieved by the buses (on average 11.44 km/hr). 

 

These overall speeds do not represent any significant variation in the overall driving style 

which is present on the route however. This can be seen in the fact that there is only a 7.2% 

variation in the overall acceleration and deceleration statistics. Given that there is a 

requirement of the cars to achieve higher speeds on average this is a minimal variation in 

overall driving style over the duration of the route being examined. 

 

One surprising statistic is that in total the cars spend on average 7.7% more of the journey 

time idling when compared to that of the buses. This is an even more interesting figure given 

that there is a requirement of the buses to service five stops on this inward journey where as 

there is no requirement of the cars to become stationary at these locations. This information 

would lead us to believe that the stops must be located near to signalised junctions as this 

would help to reduce the impact these stops will have on this data field. These types of 

findings are helpful for the practitioners and traffic engineers in order to help them to 

efficiently design the transport system in order to optimise its performance. 

 

The fact that this idling percentage figure for the cars is greater along with the fact that there 

is a minimal variation in the overall cruising percentages experienced along the route, it can 

be inferred that the traffic flows on this route are extremely uniform and are most likely being 

heavily controlled by the signalised junctions present on the route. It is clear that the higher 

average speeds are being produced by the cars due to their ability to carry out acceleration at 

a much greater rate than that of the buses and this is the main reason that a reduced journey 

time is presented. 
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The fourth objective of this research has been to analyse and compare the obtained driving 

cycle results and draw conclusions on the possible impacts of various travel demand 

management policies. 

 

Chapter Seven presented a comprehensive comparative analysis for the results obtained in 

this research regarding driving cycles. The analysis include comparisons of performance of 

each of the vehicle types (that is the bus and the private car) during peak and off peak traffic 

hours, a comparison of the buses and cars on each corridor and a comparison of each of the 

bus and the car on each corridor type (that is the bus lane, no bus lane and bus only 

corridors).  These types of comparisons and analysis are very useful for the understanding of 

the performance of traffic and the implications of various transport policies which can be 

implemented to improve traffic.  

 

Moreover, driving cycles are useful for not only developed countries but also for the 

developing countries. Furthermore, developing countries being short of resources in turn 

require extensive analysis of big projects that suit their local conditions. This study found that  

driving cycle can provide useful information about the applicability of different traffic 

improvement measures. The results show that the bus lanes could be implemented in Abu 

Dhabi in order to attract more people to public transport and distribute the demand between 

different modes as well as to improve congestion and reduce delays. It is important however, 

to use the right approach for the investigation and implementation of such policies. For 

example, driving cycle analysis is an appropriate tool to be used for such investigations.  

 

The final objective of this research therefore, is to attempt using regression analysis 

techniques to establish mathematical relationships between speeds and the other 

performance parameters discussed above.  

 

 

In chapter eight, data collected in this research has been further analysed and used to calibrate 

regression analysis models which represent and describe the impacts of bus lanes and the 

buses on these corridors. The results are assessed and compared. Although the available data 

set is very limited due to the very small number of corridors investigated, the principles of 

using regression analysis to correlate and investigate relationships of various driving modes 
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and the other factors is appealing. Further research should be directed to further investigate 

this type of analysis. 

 

A linear regression model for the performance of buses and cars on the “bus lane corridors” 

in Edinburgh have been developed and investigated. Some performance indicators have been 

utilised to derive and assess the driving cycles for different corridors in the transport network. 

Other indicators can be defined and selected to meet the targets and objectives of any 

particular study. That is the percentage time spent in acceleration, percentage time spent in 

deceleration, percentage time spent in idling and percentage time spent in cruising etc. In 

addition, a new indicator has been used in the regression analysis models to reflect the 

impacts of the considered traffic demand management measures. This indicator is the 

percentage of time spent in acceleration plus deceleration during the driving cycle, to 

represent the dependent variable. It is selected because it reflects the time of the driving cycle 

during which negative impacts on air quality is obtained. Nine independent variables have 

been tested for inclusion in the regression models for both the bus and the car on the bus lane 

corridors in Edinburgh, including peak traffic volume, off peak traffic volume, number of bus 

stops on the corridor, number of signalised junctions on the corridor, number of pedestrian 

crossing on the corridor, number of traffic lanes, number of bus routes on the corridor and 

bus frequency on the corridor as well as type of road. As discussed, other variables could 

have been used subject to the case under investigation. 

In all the calibrated models, the estimates of the coefficients are compared and analysed and 

seem reasonable.  From the models it seems that the number of bus stops, number of 

signalised junctions, number of pedestrian crossings, and number of bus routes as well as bus 

frequency are the most contributing to the percentage of time spent on acceleration plus 

deceleration on the corridor. On the other hand it seems that the traffic volume, both peak and 

off peak have less impact on the percentage of time spent on acceleration plus deceleration. 

The driving cycle analysis can provide a platform for the investigation and analysis of the 

performance of traffic and impacts of various transport policies on emissions as well as other 

environmental issues. Further research and investigations are surely needed in this area. 

 

Last but not least, it should be mentioned here that the added value of this research to future 

policy making in Abu Dhabi in for example the introduction and the investigations of bus 
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lanes and other bus measures. It was also be helpful for the researcher to learn and observe 

the differences in practices, including data collections and problems associated during the 

contrasting case studies of Edinburgh and Abu Dhabi. 

 

 

9.3 Recommendations for further research 

 

Travel demand management measures have been used to manage the demand for travel for 

more than three decades or so, mainly in the Western World. The main objectives have been 

essentially used to reduce negative impacts of traffic and congestion. Improving 

environmental impacts, accidents reduction as well as impacts of other externalities have 

always been mentioned as by products of achieving congestion reduction. On the other hand, 

driving cycle techniques and analysis have been used mainly to predict and model traffic 

emissions for cars as well as other modes of travel.  Driving cycle analysis can be used as a 

very useful tool to assess impacts of transport policies on environmental and other external 

issues. In this research, the principles of driving cycle analysis have been used to assess and 

investigate the impacts of bus lanes and traffic calming measures on traffic performance. This 

is a very important development in the investigation and analysis of travel demand 

management policies. It should be added here however, that the choice of TDM measures for 

case studies was influenced by the Edinburgh context. And therefore, many other TDM 

measures can be considered if suitable case studies were available. 

 

 

The number of traffic corridors investigated, the time periods, the type of vehicles tested 

and type of drivers however, have been limited by the time and survey costs constraints. 

Further investigations of impacts of transport policies on the performance of traffic using 

driving cycles analysis is strongly recommended.  

 

Moreover, driving cycle analysis has been mainly used in the western world’s cities and in 

the relatively more advanced developing countries. This is because the main applications of 

driving cycle have been in the area of emission modelling. Since environmental impacts and 

emission analysis are not the most important issues on the national agendas in developing 

countries, these techniques therefore have been less recognised in these countries. These 

results are presented in Chapter Five. One of the objectives of this research has been to 
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investigate the driving cycle on traffic corridors in a developing country. In order to achieve 

this, data was collected from two traffic corridors in the city of Abu Dhabi (UAE) and 

analysed. Driving cycles for cars and for buses have been developed and analysed.  

 

The study has been limited however to one city in the UAE, and to two corridors because of 

time and money constraints. Similar studies should be implemented however in other cities 

in the UAE and other developing countries and results should be compared. In addition, 

further investigations of this approach in Abu Dhabi will provide critical evaluation before 

the  implementation of any TDM measure. Moreover, as  this is a novel application in a 

bus context, it should be acknowledged that technology for research is advancing 

constantly and that future research could, for example, also include video data. 

Furthermore, the driving cycle analysis and investigations have always been based on the 

analysis of speed-time diagrams and investigations of average values of speeds, acceleration, 

and deceleration, cruising and idling. There are no further statistical or analytical techniques 

such as regression analysis for example to attempt to analyse and investigate mathematical 

models for the relationships between those parameters.  

 

In this research, the final objective has been to attempt using regression analysis 

techniques to establish mathematical relationships between speeds and the other 

performance parameters discussed above. This analysis can provide a platform for the 

investigation and analysis of the performance of traffic and impacts of various transport 

policies on emissions as well as other environmental issues. Further research and 

investigations are urgently needed in this area to investigate larger numbers of 

independent variables, larger sample size, investigate possibility of multiple linear 

regression and investigate further modelling and statistical techniques. Finally, further 

investigations and analysis of driving cycle is urgently recommended in a number of 

research directions. Combined GIS and GPS data could also enhance the development in 

this research. 
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A final note on the future directions which could reflect on the possible extensions to the 

applications of driving cycle analysis to include vehicle types and other vehicle 

characteristics in the analysis and the exploring of the sensitivity of different traffic 

calming measures and interaction with practitioners are also very relevant. 
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Appendices: 
 

1.1 Mixed traffic corridor measurements in Edinburgh 

  

1.1.1 A702 (8.00-9.00 am) (In and outbound) Bus 

 

The following table shows the results from this section: 

 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A702 T(1) 8-9 Am (In) Bus 278.1 14.34 1108.75 0.1308 0.037 0.213 0.617 

A702 T(2) 8-9 Am (In) Bus 316.3 14.59 1281.789 0.152 0.03002 0.297 0.519 

A702 T(3) 8-9 Am (In) Bus 403.8 14.39 1614.968 0.182 0.195 0.186 0.435 

A702 T(4) 8-9 Am (In) Bus 490.9 10.34 1410.305 0.123 0.027 0.296 0.55 

A702 T(5) 8-9 Am (In) Bus 398.3 12.78 1414.246 0.105 0.035 0.355 0.503 

A702 T(6) 8-9 Am (In) Bus 535.2 9.61 1430.122 0.119 0.072 0.28 0.526 

A702 T(7) 8-9 Am (In) Bus 506.6 9.38 1320.265 0.053 0.036 0.281 0.628 

A702 T(8) 8-9 Am (In) Bus 317.3 16.407 1446.358 0.203 0.212 0.18 0.403 

A702 T(9) 8-9 Am (In) Bus 322.4 17.97 1609.487 0.197 0.143 0.19 0.468 

A702 T(10) 8-9 Am (In) Bus 423.5 13.53 1592.152 0.17001 0.102 0.312 0.415 

A702 T(1) 8-9 Am (Out) Bus 260.4 18.88 1366.006 0.093 0.031 0.221 0.653 

A702 T(2) 8-9 Am (Out) Bus 318 20.12 1777.861 0.205 0.213 0.15 0.43 

A702 T(3) 8-9 Am (Out) Bus 498.4 11.71 1621.731 0.104 0.026 0.28 0.588 

A702 T(4) 8-9 Am (Out) Bus 441.1 14.47 1773.561 0.103 0.028 0.342 0.524 

A702 T(5) 8-9 Am (Out) Bus 228.8 17.18 1092.903 0.109 0.063 0.256 0.57 

A702 T(6) 8-9 Am (Out) Bus 344.5 18.39 1760.303 0.207 0.191 0.171 0.429 

A702 T(7) 8-9 Am (Out) Bus 374.3 16.34 1699.303 0.165 0.018 0.272 0.544 

A702 T(8) 8-9 Am (Out) Bus 293.8 15.23 1243.295 0.101 0.023 0.377 0.497 

A702 T(9) 8-9 Am (Out) Bus 402.6 15.88 1776.589 0.202 0.194 0.255 0.347 

A702 T(10) 8-9 Am (Out) Bus 348 15.81 1528.255 0.154 0.032 0.328 0.483 

        

Average 375.12 14.867 1493.413 0.1438905 0.085401 0.2621 0.50645 

SD 87.491 3.0154 216.4553 0.045921856 0.074837573 0.0654 0.08172 

COV 0.2332 0.2028 0.14494 0.31914446 0.876307924 0.2496 0.16136 
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1.1.2 A702 (2.00-3.00 pm) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A702 T(1) 2-3 Pm (In) Bus 409.5 11.62 1322.612 0.088 0.037 0.296 0.578 

A702 T(2) 2-3 Pm (In) Bus 379.1 15.15 1596.367 0.195 0.2002 0.159 0.444 

A702 T(3) 2-3 Pm (In) Bus 351.8 13.16 1286.523 0.1003 0.0309 0.302 0.565 

A702 T(4) 2-3 Pm (In) Bus 404.8 13.92 1566.231 0.143 0.079 0.225 0.551 

A702 T(5) 2-3 Pm (In) Bus 385.1 10.58 1132.277 0.1002 0.035 0.291 0.572 

A702 T(6) 2-3 Pm (In) Bus 409.6 12.42 1413.615 0.103 0.032 0.29 0.574 

A702 T(7) 2-3 Pm (In) Bus 376.1 14.63 1528.904 0.124 0.034 0.284 0.556 

A702 T(8) 2-3 Pm (In) Bus 506.9 11.92 1679.998 0.148 0.08007 0.348 0.422 

A702 T(9) 2-3 Pm (In) Bus 368.1 14.75 1508.77 0.136 0.087 0.265 0.51 

A702 T(10) 2-3 Pm (In) Bus 463.1 11.49 1478.737 0.045 0.039 0.296 0.618 

A702 T(1) 2-3 Pm (Out) Bus 362.1 18.9 1901.413 0.197 0.152 0.183 0.466 

A702 T(2) 2-3 Pm (Out) Bus 361.2 14.48 1453.937 0.074 0.025 0.295 0.603 

A702 T(3) 2-3 Pm (Out) Bus 474.1 12.94 1704.455 0.146 0.072 0.297 0.482 

A702 T(4) 2-3 Pm (Out) Bus 300.5 20.32 1696.53 0.198 0.156 0.182 0.463 

A702 T(5) 2-3 Pm (Out) Bus 380.5 15.15 1602.072 0.161 0.029 0.316 0.491 

A702 T(6) 2-3 Pm (Out) Bus 335.8 17.02 1588.298 0.171 0.128 0.194 0.506 

A702 T(7) 2-3 Pm (Out) Bus 299.7 19.102 1590.227 0.162 0.121 0.168 0.547 

A702 T(8) 2-3 Pm (Out) Bus 318.9 17.72 1570.285 0.129 0.03009 0.3 0.54 

A702 T(9) 2-3 Pm (Out) Bus  16.41  0.127 0.027   

A702 T(10) 2-3 Pm (Out) Bus 396.5 15.54 1711.962 0.115 0.031 0.312 0.541 

        

Average 383.34 14.861 1543.853 0.133125 0.071263 0.2633 0.52784 

SD 54.972 2.7381 174.8846 0.041351394 0.053159719 0.058 0.05492 

COV 0.1434 0.1842 0.113278 0.310620798 0.745965219 0.2204 0.10404 
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1.1.3 A702 (8.00-9.00 am) (In and outbound) Car 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A702 T(1) 8-9 Am (In) Car 288.5 17.05 1366.83 0.141 0.183 0.145 0.529 

A702 T(2) 8-9 Am (In) Car 297.6 16.76 1386 0.094 0.027 0.222 0.655 

A702 T(3) 8-9 Am (In) Car 203.6 27.55 1558.78 0.189 0.113 0.091 0.605 

A702 T(4) 8-9 Am (In) Car 263.1 18.88 1380.21 0.165 0.129 0.21 0.493 

A702 T(5) 8-9 Am (In) Car 286 16.19 1287.07 0.167 0.182 0.197 0.452 

A702 T(6) 8-9 Am (In) Car 232.1 16.64 1073.25 0.111 0.033 0.172 0.681 

A702 T(7) 8-9 Am (In) Car 228.5 24.19 1535.73 0.194 0.087 0.097 0.62 

A702 T(8) 8-9 Am (In) Car 252.5 20.86 1463.03 0.196 0.192 0.096 0.514 

A702 T(9) 8-9 Am (In) Car 258.5 22.29 1600.57 0.136 0.099 0.168 0.594 

A702 T(10) 8-9 Am (In) Car 226.4 25.04 1575.15 0.156 0.015 0.139 0.688 

A702 T(1) 8-9 Am (Out) Car 276.9 19.72 1517.77 0.153 0.047 0.2 0.597 

A702 T(2) 8-9 Am (Out) Car 280.8 21.402 1669.27 0.183 0.154 0.149 0.512 

A702 T(3) 8-9 Am (Out) Car 337.1 16.83 1576.18 0.153 0.096 0.243 0.506 

A702 T(4) 8-9 Am (Out) Car 219 27.78 1690.24 0.223 0.035 0.116 0.624 

A702 T(5) 8-9 Am (Out) Car  22.67  0.087 0.057   

A702 T(6) 8-9 Am (Out) Car 244.3 25.22 1711.61 0.163 0.085 0.143 0.607 

A702 T(7) 8-9 Am (Out) Car 222.7 26.35 1630.68 0.196 0.192 0.042 0.569 

A702 T(8) 8-9 Am (Out) Car 284.8 21.92 1734.18 0.182 0.157 0.205 0.454 

A702 T(9) 8-9 Am (Out) Car 312.5 19.17 1664.44 0.169 0.082 0.221 0.526 

A702 T(10) 8-9 Am (Out) Car 307 19.45 1658.85 0.185 0.138 0.17 0.505 

        

Average 264.31 21.298 1530.52 0.16215 0.10515 0.1593 0.56479 

SD 36.712 3.7732 169.415 0.035097271 0.058620344 0.0538 0.07227 

COV 0.1389 0.1772 0.11069 0.216449404 0.557492573 0.3375 0.12796 
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1.1.4 A702 (2.00-3.00 pm) (In and outbound) Car 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A702 T(1) 2-3 Pm (In) Car 270.8 18.38 1383 0.1406 0.051 0.303 0.504 

A702 T(2) 2-3 Pm (In) Car 264.3 21.55 1582.95 0.166 0.154 0.173 0.505 

A702 T(3) 2-3 Pm (In) Car 181.2 28.62 1440.87 0.209 0.092 0.054 0.644 

A702 T(4) 2-3 Pm (In) Car 273.2 21.75 1651.54 0.199 0.203 0.086 0.51 

A702 T(5) 2-3 Pm (In) Car 260.1 22.802 1647.5 0.177 0.119 0.123 0.579 

A702 T(6) 2-3 Pm (In) Car 289.2 19.74 1586.32 0.201 0.187 0.124 0.486 

A702 T(7) 2-3 Pm (In) Car 262.9 20.94 1529.19 0.177 0.166 0.149 0.506 

A702 T(8) 2-3 Pm (In) Car 271 21.72 1635.23 0.2002 0.188 0.089 0.521 

A702 T(9) 2-3 Pm (In) Car 237 24.23 1595.95 0.133 0.112 0.171 0.582 

A702 T(10) 2-3 Pm (In) Car 284 20.73 1635.67 0.186 0.2007 0.113 0.499 

A702 T(1) 2-3 Pm (Out) Car 195 25.59 1386.7 0.125 0.031 0.104 0.738 

A702 T(2) 2-3 Pm (Out) Car 276.7 22.38 1721.24 0.143 0.091 0.118 0.647 

A702 T(3) 2-3 Pm (Out) Car 342.4 16.84 1602.6 0.133 0.0809 0.253 0.531 

A702 T(4) 2-3 Pm (Out) Car 274.3 21.38 1629.63 0.163 0.053 0.203 0.577 

A702 T(5) 2-3 Pm (Out) Car 328.4 14.701 1341.03 0.057 0.029 0.307 0.605 

A702 T(6) 2-3 Pm (Out) Car 441.7 13.92 1707.96 0.184 0.198 0.291 0.326 

A702 T(7) 2-3 Pm (Out) Car 431.9 14.01 1680.52 0.177 0.135 0.281 0.405 

A702 T(8) 2-3 Pm (Out) Car 365.3 16.38 1662.64 0.199 0.199 0.169 0.43 

A702 T(9) 2-3 Pm (Out) Car 268.2 24.13 1798.51 0.177 0.021 0.244 0.556 

A702 T(10) 2-3 Pm (Out) Car 264.3 23.01 1689.68 0.195 0.199 0.104 0.5 

        

Average 289.09 20.64 1595.44 0.16709 0.12548 0.173 0.53255 

SD 65.53 3.9292 121.956 0.03654128 0.065874159 0.0805 0.09085 

COV 0.2267 0.1904 0.07644 0.218692203 0.52497736 0.4656 0.1706 
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1.2 Bus lane corridor measurements in Edinburgh 

 

1.2.1 A7 (6.30-730 am) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A7 T(1) 6.30-7.30 Am (In) Bus 175 21.84 1062.358 0.081 0.051 0.135 0.73 

A7 T(2) 6.30-7.30 Am (In) Bus 179.9 20.59 1029.729 0.0505 0.037 0.214 0.697 

A7 T(3) 6.30-7.30 Am (In) Bus 183.5 17.48 891.2685 0.181 0.0403 0.342 0.435 

A7 T(4) 6.30-7.30 Am (In) Bus 173.4 13.62 656.4729 0.051 0.036 0.318 0.59 

A7 T(5) 6.30-7.30 Am (In) Bus 242.9 17.09 1153.578 0.044 0.047 0.319 0.588 

A7 T(6) 6.30-7.30 Am (In) Bus 231.9 17.97 1158.194 0.119 0.031 0.156 0.691 

A7 T(7) 6.30-7.30 Am (In) Bus 137 14.88 566.7378 0.053 0.041 0.35 0.554 

A7 T(1) 6.30-7.30 Am (Out) Bus 249.7 19.95 1384.495 0.112 0.024 0.139 0.724 

A7 T(2) 6.30-7.30 Am (Out) Bus 261.4 18.28 1327.427 0.147 0.024 0.217 0.611 

A7 T(3) 6.30-7.30 Am (Out) Bus 286.9 19.601 1562.343 0.173 0.182 0.122 0.521 

A7 T(4) 6.30-7.30 Am (Out) Bus 187.7 24.41 1273.018 0.169 0.186 0.071 0.572 

A7 T(5) 6.30-7.30 Am (Out) Bus 273.9 16.57 1261.226 0.102 0.027 0.291 0.577 

A7 T(6) 6.30-7.30 Am (Out) Bus 283.1 19.66 1546.203 0.1903 0.211 0.136 0.461 

A7 T(7) 6.30-7.30 Am (Out) Bus 373.8 14.14 1468.798 0.191 0.158 0.222 0.427 

A7 T(8) 6.30-7.30 Am (Out) Bus 232.9 21.908 1417.4 0.152 0.127 0.156 0.563 

A7 T(9) 6.30-7.30 Am (Out) Bus 188.7 25.39 1331.439 0.217 0.019 0.11 0.653 

        

Average 228.86 18.961 1193.168 0.12705 0.07758125 0.2061 0.58713 

SD 59.576 3.404 293.2745 0.058336438 0.068806727 0.0917 0.09592 

COV 0.2603 0.1795 0.245795 0.459161259 0.886898917 0.4449 0.16337 
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1.2.2 A7 (8.00-9.00 am) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A7 T(1) 8-9 Am (In) Bus 395.1 10.67 1171.896 0.0903 0.025 0.462 0.421 

A7 T(2) 8-9 Am (In) Bus 381.7 12.79 1356.318 0.197 0.205 0.318 0.278 

A7 T(3) 8-9 Am (In) Bus 348.6 14.39 1394.026 0.206 0.2001 0.235 0.357 

A7 T(4) 8-9 Am (In) Bus 351.1 13.06 1274.03 0.105 0.025 0.379 0.49 

A7 T(5) 8-9 Am (In) Bus 296.8 13.51 1114.417 0.093 0.021 0.351 0.532 

A7 T(6) 8-9 Am (In) Bus 458.1 9.96 1268.087 0.062 0.031 0.46 0.445 

A7 T(7) 8-9 Am (In) Bus 437.9 11.66 1419.4 0.192 0.175 0.316 0.315 

A7 T(8) 8-9 Am (In) Bus 446.9 10.09 1253.298 0.117 0.023 0.462 0.395 

A7 T(9) 8-9 Am (In) Bus 397.2 12.61 1391.928 0.176 0.177 0.238 0.407 

A7 T(10) 8-9 Am (In) Bus 343.8 13.99 1336.209 0.198 0.196 0.227 0.377 

A7 T(1) 8-9 Am (Out) Bus 469.5 11.81 1540.302 0.186 0.105 0.303 0.404 

A7 T(2) 8-9 Am (Out) Bus 300.8 18.94 1582.93 0.211 0.202 0.277 0.309 

A7 T(3) 8-9 Am (Out) Bus 334.3 14.83 1377.653 0.199 0.206 0.217 0.376 

A7 T(4) 8-9 Am (Out) Bus 296.6 17.21 1418.008 0.217 0.165 0.275 0.341 

A7 T(5) 8-9 Am (Out) Bus 386.1 14.03 1505.383 0.175 0.151 0.287 0.385 

A7 T(6) 8-9 Am (Out) Bus 326.3 16.21 1469.551 0.202 0.193 0.152 0.451 

A7 T(7) 8-9 Am (Out) Bus 356.2 14.93 1478.141 0.205 0.109 0.191 0.493 

A7 T(8) 8-9 Am (Out) Bus 354.1 14.13 1390.352 0.184 0.082 0.282 0.451 

A7 T(9) 8-9 Am (Out) Bus 333.5 16.56 1534.91 0.202 0.217 0.279 0.301 

A7 T(10) 8-9 Am (Out) Bus 384.6 14.25 1522.901 0.172 0.041 0.336 0.449 

        

Average 369.96 13.782 1389.987 0.169465 0.127455 0.3024 0.39885 

SD 52.396 2.3448 126.1262 0.04745489 0.075962411 0.0873 0.06927 

COV 0.1416 0.1701 0.090739 0.280027677 0.595993966 0.2888 0.17366 
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1.2.3 A7 (2.00-3.00 pm) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A7 T(1) 2-3 Pm (In) Bus 374.2 11.67 1213.735 0.112 0.021 0.394 0.472 

A7 T(2) 2-3 Pm (In) Bus 519.9 9.17 1325.34 0.181 0.121 0.399 0.296 

A7 T(3) 2-3 Pm (In) Bus 409 11.35 1289.577 0.193 0.202 0.279 0.324 

A7 T(4) 2-3 Pm (In) Bus 389.5 12.76 1381.641 0.181 0.175 0.203 0.439 

A7 T(5) 2-3 Pm (In) Bus  14.54  0.188 0.1408   

A7 T(6) 2-3 Pm (In) Bus 429.8 10.46 1249.966 0.136 0.030006 0.481 0.351 

A7 T(7) 2-3 Pm (In) Bus 320 15.71 1396.715 0.185 0.211 0.281 0.322 

A7 T(8) 2-3 Pm (In) Bus 409.8 11.26 1282.26 0.174 0.1607 0.334 0.329 

A7 T(9) 2-3 Pm (In) Bus 462.7 10.05 1292.682 0.137 0.094 0.412 0.355 

A7 T(10) 2-3 Pm (In) Bus 457 10.97 1393.25 0.103 0.052 0.403 0.44 

A7 T(1) 2-3 Pm (Out) Bus 438.6 12.55 1530.11 0.176 0.122 0.234 0.467 

A7 T(2) 2-3 Pm (Out) Bus 352.6 14.301 1401.095 0.205 0.211 0.237 0.346 

A7 T(3) 2-3 Pm (Out) Bus 383.5 12.42 1323.764 0.146 0.017 0.412 0.423 

A7 T(4) 2-3 Pm (Out) Bus 289 16.56 1330.192 0.215 0.171 0.291 0.321 

A7 T(5) 2-3 Pm (Out) Bus 396 13.94 1533.784 0.1906 0.096 0.211 0.501 

A7 T(6) 2-3 Pm (Out) Bus 331.5 16.84 1551.404 0.195 0.198 0.232 0.372 

A7 T(7) 2-3 Pm (Out) Bus 371.4 14.81 1528.602 0.188 0.1109 0.173 0.527 

A7 T(8) 2-3 Pm (Out) Bus 361.1 15.23 1528.543 0.176 0.065 0.238 0.519 

A7 T(9) 2-3 Pm (Out) Bus 431.7 12.49 1497.869 0.203 0.203 0.24 0.352 

A7 T(10) 2-3 Pm (Out) Bus 296.9 18.45 1522.313 0.194 0.141 0.214 0.448 

        

Average 390.75 13.277 1398.571 0.17393 0.1271203 0.2983 0.40021 

SD 59.243 2.4969 112.2358 0.030831855 0.065252097 0.0914 0.07472 

COV 0.1516 0.1881 0.08025 0.177265881 0.513309808 0.3063 0.18671 
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1.2.4 A7 (6.30-7.30 am) (In and outbound) Car 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A7 T(1) 6.30-7.30 Am (In) Car 162.7 32.84 1484.82 0.186 0.2002 0.048 0.564 

A7 T(2) 6.30-7.30 Am (In) Car 161.1 31.71 1419.31 0.186 0.194 0.049 0.568 

A7 T(3) 6.30-7.30 Am (In) Car 148.4 34.85 1436.87 0.188 0.193 0.016 0.6 

A7 T(4) 6.30-7.30 Am (In) Car 174.1 29.06 1405.77 0.159 0.148 0.065 0.626 

A7 T(5) 6.30-7.30 Am (In) Car 162.2 32.68 1472.85 0.192 0.166 0.089 0.55 

A7 T(6) 6.30-7.30 Am (In) Car 145.3 35.102 1416.85 0.177 0.1905 0.037 0.594 

A7 T(7) 6.30-7.30 Am (In) Car 150.8 35.58 1490.49 0.196 0.194 0.017 0.591 

A7 T(8) 6.30-7.30 Am (In) Car 168 28.96 1351.64 0.209 0.183 0.109 0.497 

A7 T(9) 6.30-7.30 Am (In) Car 194.8 26.74 1446.95 0.205 0.182 0.188 0.423 

A7 T(1) 6.30-7.30 Am (Out) Car 175.2 30.84 1501.32 0.195 0.199 0.141 0.463 

A7 T(2) 6.30-7.30 Am (Out) Car 188.3 28.25 1477.62 0.1804 0.071 0.073 0.675 

A7 T(3) 6.30-7.30 Am (Out) Car 176.9 28.79 1414.59 0.199 0.191 0.089 0.519 

A7 T(4) 6.30-7.30 Am (Out) Car 197.3 23.57 1292.13 0.196 0.208 0.086 0.508 

A7 T(5) 6.30-7.30 Am (Out) Car 135.5 48.59 1827.31 0.084 0.056 0 0.859 

A7 T(6) 6.30-7.30 Am (Out) Car 149.9 35.09 1461.57 0.17 0.214 0.018 0.598 

A7 T(7) 6.30-7.30 Am (Out) Car 139 37.27 1439.02 0.187 0.186 0.013 0.611 

A7 T(8) 6.30-7.30 Am (Out) Car 169.8 32.19 1518.53 0.193 0.198 0.046 0.562 

A7 T(9) 6.30-7.30 Am (Out) Car 197.4 26.92 1476.68 0.206 0.204 0.088 0.5 

        

Average 166.48 32.168 1463.02 0.1838 0.176538889 0.0651 0.57267 

SD 19.573 5.4881 106.211 0.027911878 0.04386588 0.0488 0.09461 

COV 0.1176 0.1706 0.0726 0.151860055 0.248477152 0.7502 0.16521 
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1.2.5 A7 (8.00-9.00 am) (In and outbound) Car 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A7 T(1) 8-9 Am (In) Car 182.9 27.07 1375.23 0.1803 0.141 0.065 0.613 

A7 T(2) 8-9 Am (In) Car 210.8 25.51 1494.64 0.187 0.164 0.041 0.606 

A7 T(3) 8-9 Am (In) Car 237.8 22.38 1479.14 0.206 0.189 0.093 0.509 

A7 T(4) 8-9 Am (In) Car 256.9 20.24 1444.25 0.1906 0.203 0.095 0.51 

A7 T(5) 8-9 Am (In) Car 270.1 19.95 1497.53 0.227 0.225 0.092 0.454 

A7 T(6) 8-9 Am (In) Car 224.8 23.22 1450.24 0.215 0.199 0.093 0.492 

A7 T(7) 8-9 Am (In) Car 309.8 15.77 1357.4 0.184 0.189 0.169 0.457 

A7 T(8) 8-9 Am (In) Car 304.3 17.63 1490.91 0.197 0.206 0.162 0.432 

A7 T(9) 8-9 Am (In) Car 252.8 20.407 1433.38 0.1905 0.058 0.168 0.582 

A7 T(1) 8-9 Am (Out) Car 219.9 24.94 1524.27 0.181 0.197 0.116 0.504 

A7 T(2) 8-9 Am (Out) Car 220.8 25.209 1546.33 0.205 0.177 0.152 0.463 

A7 T(3) 8-9 Am (Out) Car 260.2 21.46 1552.05 0.196 0.189 0.122 0.491 

A7 T(4) 8-9 Am (Out) Car 202.2 26.61 1495.19 0.197 0.224 0.069 0.508 

A7 T(5) 8-9 Am (Out) Car 244.7 23.19 1576.49 0.196 0.194 0.041 0.566 

A7 T(6) 8-9 Am (Out) Car 282.4 18.7 1466.74 0.184 0.19008 0.2 0.424 

A7 T(7) 8-9 Am (Out) Car 195.5 28.109 1526.51 0.207 0.203 0.06 0.528 

A7 T(8) 8-9 Am (Out) Car 171.4 24.609 1171.53 0.187 0.175 0.044 0.592 

A7 T(9) 8-9 Am (Out) Car 295.9 17.79 1462.88 0.132 0.061 0.194 0.611 

        

Average 241.29 22.377 1463.59 0.192355556 0.176893333 0.1098 0.519 

SD 41.246 3.5932 92.3606 0.019499358 0.047009312 0.0531 0.06245 

COV 0.1709 0.1606 0.06311 0.101371432 0.265749482 0.4833 0.12032 
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1.2.6 A7 (2.00-3.00 pm) (In and outbound) Car 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

A7 T(1) 2-3 Pm (In) Car 232.8 22.51 1455.81 0.166 0.038 0.129 0.665 

A7 T(2) 2-3 Pm (In) Car 256.7 19.71 1405.32 0.171 0.091 0.122 0.614 

A7 T(3) 2-3 Pm (In) Car 298 17.86 1479.24 0.185 0.195 0.138 0.48 

A7 T(4) 2-3 Pm (In) Car 286.1 18.23 1449.04 0.213 0.203 0.155 0.427 

A7 T(5) 2-3 Pm (In) Car 266.1 19.87 1469.03 0.19008 0.199 0.148 0.462 

A7 T(6) 2-3 Pm (In) Car 361.5 14.58 1464.03 0.1703 0.192 0.261 0.375 

A7 T(7) 2-3 Pm (In) Car 299.3 17.01 1414.25 0.1706 0.181 0.172 0.474 

A7 T(8) 2-3 Pm (In) Car 326.1 15.75 1426.78 0.1401 0.129 0.227 0.503 

A7 T(9) 2-3 Pm (In) Car 349.5 15.24 1480.13 0.182 0.196 0.275 0.346 

A7 T(10) 2-3 Pm (In) Car 185.7 27.14 1400.85 0.186 0.181 0.054 0.577 

A7 T(1) 2-3 Pm (Out) Car 333.3 16.92 1567.26 0.165 0.194 0.205 0.434 

A7 T(2) 2-3 Pm (Out) Car 260.5 20.71 1498.45 0.2006 0.158 0.125 0.515 

A7 T(3) 2-3 Pm (Out) Car 311.4 18.22 1576.76 0.196 0.206 0.139 0.456 

A7 T(4) 2-3 Pm (Out) Car 215.2 25.58 1529.67 0.209 0.207 0.061 0.521 

A7 T(5) 2-3 Pm (Out) Car 319.3 17.72 1572.33 0.179 0.112 0.169 0.539 

A7 T(6) 2-3 Pm (Out) Car 317.5 17.69 1560.84 0.1908 0.196 0.219 0.392 

A7 T(7) 2-3 Pm (Out) Car 292.9 18.58 1512.12 0.193 0.211 0.11 0.483 

A7 T(8) 2-3 Pm (Out) Car 314.2 17.88 1561.13 0.198 0.143 0.138 0.518 

A7 T(9) 2-3 Pm (Out) Car 328 16.801 1530.96 0.184 0.166 0.156 0.492 

A7 T(10) 2-3 Pm (Out) Car 226.9 22.35 1409.08 0.2004 0.187 0.125 0.487 

        

Average 289.05 19.018 1488.15 0.184494 0.16925 0.1564 0.488 

SD 47.221 3.26 60.5561 0.017308814 0.045556067 0.0578 0.07659 

COV 0.1634 0.1714 0.04069 0.09381776 0.269164356 0.3693 0.15695 
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1.3 Bus only corridor measurements in Edinburgh 

 

1.3.1 Princes Street (8.00-9.00 am) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Princes St T(1) 8-9 Am (In) 278.4 14.84 1147.73 0.208 0.199 0.24 0.35 

Princes St T(2) 8-9 Am (In) 361.9 9.48 953.611 0.177 0.2 0.401 0.22 

Princes St T(3) 8-9 Am (In) 283.6 13.27 1046.07 0.1804 0.139 0.224 0.455 

Princes St T(4) 8-9 Am (In) 160.8 22.52 1006.82 0.228 0.211 0.115 0.444 

Princes St T(5) 8-9 Am (In) 256.3 15.94 1135.62 0.191 0.211 0.285 0.311 

Princes St T(6) 8-9 Am (In) 330.1 12.13 1112.89 0.186 0.1904 0.282 0.339 

Princes St T(7) 8-9 Am (In) 242.7 16.78 1131.75 0.206 0.205 0.17 0.418 

Princes St T(8) 8-9 Am (In) 379.1 11.07 1166.61 0.185 0.201 0.347 0.265 

Princes St T(9) 8-9 Am (In) 320.3 12.23 1088.45 0.207 0.218 0.28 0.293 

Princes St T(10) 8-9 Am (In) 252 16.0008 1120.49 0.201 0.209 0.158 0.431 

Princes St T(1) 8-9 Am (Out) 178.4 16.64 825.174 0.214 0.215 0.189 0.38 

Princes St T(2) 8-9 Am (Out) 190.7 17.02 902.179 0.186 0.012 0.241 0.559 

Princes St T(3) 8-9 Am (Out) 279.2 13.51 1047.78 0.195 0.113 0.324 0.366 

Princes St T(4) 8-9 Am (Out) 259.6 10.41 751.24 0.179 0.125 0.419 0.275 

Princes St T(5) 8-9 Am (Out) 159 16.85 744.576 0.192 0.228 0.117 0.461 

Princes St T(6) 8-9 Am (Out) 282.1 15.87 1244.59 0.1909 0.206 0.177 0.425 

Princes St T(7) 8-9 Am (Out) 359.9 12.48 1248.7 0.198 0.198 0.291 0.311 

Princes St T(8) 8-9 Am (Out)  15.66  0.198 0.216   

Princes St T(9) 8-9 Am (Out) 233.1 18.85 1221.05 0.216 0.197 0.15 0.435 

Princes St T(10) 8-9 Am (Out) 261.8 16.85 1226.51 0.211 0.203 0.131 0.453 

        

Average 266.79 14.92 1059.04 0.197465 0.18482 0.239 0.378474 

SD 65.227 3.12535 158.094 0.013784899 0.051165116 0.0924 0.085771 

COV 0.2445 0.20947 0.14928 0.06980933 0.276837548 0.3865 0.226624 

 

 

 

 

 

 

 



 253 

1.3.2 Princes Street (2.00-3.00 pm) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Princes St T(1) 2-3 Pm (In) 260.4 15.98 1156.07 0.206 0.218 0.157 0.417 

Princes St T(2) 2-3 Pm (In) 229 17.31 1101.4 0.206 0.211 0.154 0.427 

Princes St T(3) 2-3 Pm (In) 249.8 15.46 1073.42 0.198 0.204 0.102 0.494 

Princes St T(4) 2-3 Pm (In) 281 13.77 1075.37 0.189 0.196 0.23 0.383 

Princes St T(5) 2-3 Pm (In) 226.4 16.606 1044.34 0.2105 0.187 0.149 0.452 

Princes St T(6) 2-3 Pm (In) 229.3 17.37 1107.38 0.201 0.158 0.199 0.44 

Princes St T(7) 2-3 Pm (In) 188.3 20.99 1098.85 0.225 0.214 0.093 0.467 

Princes St T(8) 2-3 Pm (In) 206 18.304 1047.49 0.2207 0.198 0.137 0.442 

Princes St T(9) 2-3 Pm (In) 252.6 16.38 1150.05 0.216 0.201 0.166 0.414 

Princes St T(10) 2-3 Pm (In) 230.3 15.24 975.511 0.198 0.154 0.104 0.542 

Princes St T(1) 2-3 Pm (Out) 233.8 19 1234.39 0.193 0.186 0.112 0.508 

Princes St T(2) 2-3 Pm (Out) 199 18.46 1020.86 0.207 0.216 0.124 0.451 

Princes St T(3) 2-3 Pm (Out) 198.1 19.76 1086.96 0.196 0.213 0.074 0.514 

Princes St T(4) 2-3 Pm (Out)  19.608  0.077 0.015   

Princes St T(5) 2-3 Pm (Out) 222.3 20.34 1256.62 0.204 0.2109 0.116 0.468 

Princes St T(6) 2-3 Pm (Out) 218.2 21.04 1275.64 0.216 0.178 0.162 0.442 

Princes St T(7) 2-3 Pm (Out) 218.2 20.38 1236 0.213 0.218 0.132 0.435 

Princes St T(8) 2-3 Pm (Out) 249 18.32 1267.83 0.187 0.182 0.244 0.385 

Princes St T(9) 2-3 Pm (Out) 228.8 19.82 1260.77 0.208 0.212 0.106 0.472 

Princes St T(10) 2-3 Pm (Out) 247.3 17.68 1215.14 0.2008 0.171 0.215 0.411 

        

Average 229.88 18.0909 1141.27 0.1986 0.187145 0.1461 0.450737 

SD 23.273 2.06658 94.7671 0.030349005 0.045016833 0.0478 0.042527 

COV 0.1012 0.11423 0.08304 0.152814728 0.240545207 0.3274 0.09435 
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1.4 Traffic calming measurements in Edinburgh 

 

 

1.4.1 Corridor 1 = Iona Street (20mph zone) 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Rout 1-1 63.2 22.58 397.0482 0.156 0.199 0.015 0.628 

Rout 1-2 58.9 24.29 398.0878 0.177 0.205 0.032 0.584 

Rout 1-3 49.9 25.41 352.4751 0.176 0.148 0.01 0.666 

Rout 1-4 59.4 23.71 392.0386 0.171 0.159 0.025 0.643 

Rout 1-5 54.8 25.88 394.7522 0.151 0.165 0.032 0.65 

Rout 1-6 62.5 22.84 397.3163 0.194 0.162 0.025 0.616 

Rout 1-7 68 21.07 398.734 0.187 0.162 0.03 0.618 

Rout 1-8 61.5 22.83 390.7543 0.202 0.155 0.032 0.608 

Rout 1-9 50.3 23.71 331.5972 0.212 0.184 0.019 0.583 

Rout 1-10 59.3 24.23 399.9322 0.222 0.171 0.033 0.572 

Rout 1-11 91.3 25.45 646.236 0.192 0.141 0.025 0.641 

Rout 1-12 56.5 25.51 401.1704 0.21 0.206 0.035 0.545 

Rout 1-13 60 22.32 372.6211 0.173 0.188 0.038 0.6 

Rout 1-14 50.2 23.92 333.9104 0.133 0.176 0.011 0.677 

Rout 1-15 50.2 25.62 357.6217 0.165 0.182 0.023 0.628 

Rout 1-16 50.1 27.62 384.8092 0.175 0.149 0.013 0.661 

Rout 1-17 50.1 24.12 336.0207 0.149 0.181 0.017 0.651 

Rout 1-18 62.6 22.45 391.0306 0.181 0.192 0.022 0.602 

Rout 1-19 50.2 26.07 363.8682 0.155 0.18 0.017 0.646 

Rout 1-20 62.8 22.93 400.6872 0.174 0.163 0.036 0.624 

        

Average 58.59 24.128 392.0356 0.17775 0.1734 0.0245 0.62215 

SD 9.62141 1.61576 64.53229 0.023071685 0.018989 0.00877 0.034095 

COV 0.16422 0.06697 0.164608 0.129798507 0.109508 0.35816 0.054801 
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1.4.2 Corridor 2 = West Bryson Road (20mph zone) 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Rout 2-1 109.6 22.18 676.1029 0.184 0.142 0.027 0.646 

Rout 2-2 103.5 22.41 644.9514 0.182 0.165 0.02 0.632 

Rout 2-3 102.7 22.42 640.3258 0.17 0.143 0.017 0.668 

Rout 2-4 112.9 20.55 645.1824 0.182 0.137 0.019 0.661 

Rout 2-5 103.6 22.36 644.1969 0.153 0.143 0.028 0.673 

Rout 2-6 87.6 24.89 606.1071 0.171 0.164 0.007 0.656 

Rout 2-7 87.8 23.94 584.4399 0.153 0.154 0.012 0.679 

Rout 2-8 83.5 28.109 652.7531 0.177 0.144 0.016 0.661 

Rout 2-9 101.9 23.35 661.7493 0.179 0.16 0.015 0.644 

Rout 2-10 99.9 23.88 663.4382 0.177 0.142 0.033 0.648 

Rout 2-11 108.9 21.801 660.0786 0.195 0.155 0.023 0.624 

Rout 2-12 103.8 23.55 679.8031 0.191 0.16 0.025 0.621 

Rout 2-13 101.9 22.56 639.2557 0.175 0.134 0.046 0.643 

Rout 2-14 96.6 23.82 640.0065 0.166 0.13 0.024 0.678 

Rout 2-15 92.7 24.72 637.234 0.174 0.149 0.017 0.658 

Rout 2-16 81.6 28.11 638.0754 0.162 0.151 0.031 0.653 

Rout 2-17 101.3 22.12 623.1565 0.187 0.135 0.026 0.65 

Rout 2-18 94.7 24.58 647.33 0.186 0.147 0.028 0.637 

Rout 2-19 82.5 28.305 649.4301 0.154 0.13 0.058 0.656 

Rout 2-20 97.7 23.75 645.4143 0.157 0.129 0.02 0.692 

        

Average 97.735 23.8703 643.9516 0.17375 0.1457 0.0246 0.654 

SD 9.20219 2.1488 21.68666 0.012809844 0.01137 0.01157 0.018388 

COV 0.09415 0.09002 0.033677 0.073725721 0.078036 0.47027 0.028116 

 

 

 

 

 

 

 

 

 

 

 



 256 

1.4.3 Corridor 3 = Montgomery Street (20mp zone) 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Rout 3-1 91.4 26.34 669.6565 0.172 0.183 0.014 0.629 

Rout 3-2 83.4 29.07 674.3857 0.167 0.178 0.025 0.628 

Rout 3-3 89.7 26.609 663.7397 0.152 0.188 0.011 0.648 

Rout 3-4 50.1 25.47 649.4708 0.147 0.118 0.019 0.713 

Rout 3-5 82.6 29.04 667.2379 0.172 0.171 0.015 0.639 

Rout 3-6 94.5 25.44 668.6479 0.131 0.175 0.019 0.674 

Rout 3-7 89.3 26.77 664.8189 0.183 0.168 0.029 0.618 

Rout 3-8 93.4 25.98 674.9332 0.164 0.177 0.017 0.64 

Rout 3-9 92 25.92 663.1568 0.196 0.176 0.018 0.608 

Rout 3-10 90.7 26.73 674.1929 0.175 0.176 0.016 0.632 

Rout 3-11 97.8 24.77 673.6957 0.205 0.175 0.033 0.585 

Rout 3-12 92.1 25.95 664.5975 0.17 0.177 0.02 0.631 

Rout 3-13 88.2 27.05 663.5547 0.16 0.191 0.015 0.631 

Rout 3-14 82.6 29.34 674.1622 0.159 0.206 0.015 0.617 

Rout 3-15 76.3 31.59 670.5035 0.164 0.18 0.019 0.634 

Rout 3-16 83.8 27.48 640.5039 0.15 0.184 0.032 0.632 

Rout 3-17 80.7 29.89 671.0179 0.142 0.172 0.025 0.659 

Rout 3-18 87.6 27.81 677.5717 0.182 0.164 0.012 0.64 

Rout 3-19 74.9 30.42 633.2689 0.158 0.178 0.01 0.652 

Rout 3-20 85.4 28.39 674.4058 0.185 0.176 0.03 0.607 

        

Average 85.325 27.503 665.6761 0.1667 0.17565 0.0197 0.63585 

SD 10.2157 1.87184 11.76537 0.0181488 0.016255 0.007 0.026609 

COV 0.11973 0.06806 0.017674 0.108871027 0.092545 0.35518 0.041848 
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1.4.4 Corridor 4 = Polwarth Terrace (20mph ISA) 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Rout 4-1 49.9 30.61 424.7799 0.16 0.206 0.016 0.618 

Rout 4-2 56 29.51 459.9103 0.151 0.196 0.028 0.623 

Rout 4-3 59.1 27.99 460.289 0.168 0.138 0.025 0.667 

Rout 4-4 59.2 27.66 455.7119 0.172 0.16 0.016 0.65 

Rout 4-5 50.3 27.55 385.2561 0.142 0.158 0.027 0.67 

Rout 4-6 57.5 28.47 455.5554 0.159 0.157 0.032 0.649 

Rout 4-7 49.9 30.27 419.9918 0.144 0.134 0.018 0.704 

Rout 4-8 55.9 29.71 462.1725 0.186 0.118 0.025 0.671 

Rout 4-9 56.4 29.66 465.5975 0.175 0.155 0.035 0.633 

Rout 4-10 56.6 29.84 469.9722 0.167 0.171 0.022 0.638 

        

Average 55.08 29.127 445.9237 0.1624 0.1593 0.0244 0.6523 

SD 3.66782 1.11296 27.12125 0.013993649 0.026854 0.00648 0.026205 

COV 0.06659 0.03821 0.06082 0.086167792 0.168573 0.26574 0.040173 
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1.5 Mixed traffic corridor (1) measurements in Abu Dhabi 

 

 

1.5.1 Airport Road (6.30-7.30 am) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Airport T(1) 6.30-7.30 Am (In) Bus 459.2 18.14 2314.085 0.201 0.204 0.2 0.392 

Airport T(2) 6.30-7.30 Am (In) Bus 540.4 14.47 2172.951 0.193 0.202 0.309 0.295 

Airport T(3) 6.30-7.30 Am (In) Bus 420.1 19.06 2224.248 0.206 0.131 0.187 0.474 

Airport T(4) 6.30-7.30 Am (In) Bus 633.3 13.87 2440.676 0.1909 0.192 0.363 0.253 

Airport T(5) 6.30-7.30 Am (In) Bus 616.5 15.91 2725.055 0.172 0.127 0.283 0.416 

Airport T(6) 6.30-7.30 Am (In) Bus 501.2 16.104 2241.624 0.183 0.187 0.284 0.344 

Airport T(7) 6.30-7.30 Am (In) Bus 651.7 14.26 2582.588 0.189 0.174 0.395 0.239 

Airport T(8) 6.30-7.30 Am (In) Bus 474.9 15.52 2048.432 0.171 0.1606 0.35 0.317 

Airport T(9) 6.30-7.30 Am (In) Bus 617.8 12.98 2227.738 0.188 0.184 0.336 0.29 

Airport T(10) 6.30-7.30 Am (In) Bus 533.9 15.79 2341.723 0.1705 0.172 0.32 0.336 

Airport T(1) 6.30-7.30 Am (Out) Bus 557.8 15.49 2400.433 0.193 0.189 0.266 0.35 

Airport T(2) 6.30-7.30 Am (Out) Bus 427.6 19.73 2343.327 0.194 0.203 0.188 0.413 

Airport T(3) 6.30-7.30 Am (Out) Bus 375.7 22.88 2388.603 0.186 0.146 0.207 0.459 

Airport T(4) 6.30-7.30 Am (Out) Bus 384.1 20.88 2228.443 0.192 0.085 0.26 0.461 

Airport T(5) 6.30-7.30 Am (Out) Bus 347.6 25.64 2476.108 0.203 0.193 0.147 0.455 

Airport T(6) 6.30-7.30 Am (Out) Bus 422.3 19.25 2258.541 0.195 0.184 0.236 0.383 

Airport T(7) 6.30-7.30 Am (Out) Bus 445.9 18.99 2352.419 0.1802 0.1807 0.327 0.311 

Airport T(8) 6.30-7.30 Am (Out) Bus 426.4 19.41 2299.082 0.146 0.024 0.343 0.485 

Airport T(9) 6.30-7.30 Am (Out) Bus 401.3 20.45 2280.08 0.19 0.163 0.272 0.374 

Airport T(10) 6.30-7.30 Am (Out) Bus 439.3 16.35 1995.375 0.139 0.027 0.428 0.405 

        

Average 483.9 17.7587 2317.076 0.18413 0.156415 0.2851 0.3726 

SD 92.62 3.25017 166.0423 0.017303729 0.053724838 0.0752 0.074193 

COV 0.191 0.18302 0.07166 0.093975612 0.34347625 0.2637 0.199124 
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1.5.2 Airport Road (11.00-12.00 am) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Airport T (1) 11.00-12.00 Am (In) Bus 309 25.76 2211.476 0.218 0.189 0.103 0.487 

Airport T (2) 11.00-12.00 Am (In) Bus 434.7 19.27 2327.449 0.183 0.183 0.22 0.413 

Airport T (3) 11.00-12.00 Am (In) Bus 380.6 20.91 2210.86 0.204 0.187 0.182 0.425 

Airport T (4) 11.00-12.00 Am (In) Bus 484 17.37 2335.843 0.185 0.186 0.273 0.354 

Airport T (5) 11.00-12.00 Am (In) Bus 586.5 13.02 2122.163 0.158 0.031 0.424 0.383 

Airport T (6) 11.00-12.00 Am (In) Bus 332.6 24.25 2240.769 0.207 0.196 0.163 0.433 

Airport T (7) 11.00-12.00 Am (In) Bus 502.8 16.91 2362.113 0.149 0.05 0.304 0.496 

Airport T (8) 11.00-12.00 Am (In) Bus 420.1 19.85 2316.758 0.185 0.066 0.267 0.48 

Airport T (9) 11.00-12.00 Am (In) Bus 456.1 16.12 2043.097 0.178 0.024 0.341 0.454 

Airport T (10) 11.00-12.00 Am (In) Bus 467.8 17.81 2314.402 0.205 0.132 0.312 0.348 

Airport T(1) 11.00-12.00 Am (Out) Bus 308.5 27.94 2394.333 0.194 0.176 0.107 0.521 

Airport T(2) 11.00-12.00 Am (Out) Bus 374.2 23.57 2449.887 0.202 0.186 0.151 0.458 

Airport T(3) 11.00-12.00 Am (Out) Bus 384.9 22.87 2445.548 0.206 0.189 0.158 0.445 

Airport T(4) 11.00-12.00 Am (Out) Bus 336.3 24.93 2328.97 0.203 0.181 0.123 0.491 

Airport T(5) 11.00-12.00 Am (Out) Bus 318.3 25.73 2275.228 0.202 0.017 0.215 0.564 

Airport T(6) 11.00-12.00 Am (Out) Bus 340 25.93 2448.426 0.211 0.052 0.238 0.497 

Airport T(7) 11.00-12.00 Am (Out) Bus 274.6 30.706 2342.001 0.208 0.033 0.104 0.653 

Airport T(8) 11.00-12.00 Am (Out) Bus 331 25.31 2327.11 0.2002 0.096 0.204 0.498 

Airport T(9) 11.00-12.00 Am (Out) Bus 306.1 26.82 2280.72 0.202 0.138 0.143 0.515 

Airport T(10) 11.00-12.00 Am (Out) Bus 347.8 23.85 2303.897 0.195 0.139 0.168 0.497 

        

Average 384.8 22.4463 2304.052 0.19476 0.12255 0.21 0.4706 

SD 81.42 4.57941 103.0816 0.017405214 0.068192819 0.0879 0.070438 

COV 0.212 0.20402 0.044739 0.089367498 0.556448949 0.4184 0.149677 
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1.5.3 Airport Road (6.30-7.30 am) (In and outbound) Car 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Airport T(1) 6.30-7.30 Am (In) Car 320 26.98 2398.678 0.217 0.192 0.215 0.374 

Airport T(2) 6.30-7.30 Am (In) Car 269.9 32.62 2446.245 0.187 0.195 0.147 0.469 

Airport T(3) 6.30-7.30 Am (In) Car 230 36.807 2351.533 0.206 0.153 0.17 0.469 

Airport T(4) 6.30-7.30 Am (In) Car 385.9 24.11 2585.242 0.213 0.181 0.219 0.384 

Airport T(5) 6.30-7.30 Am (In) Car 287.9 30.74 2458.873 0.194 0.173 0.221 0.409 

Airport T(6) 6.30-7.30 Am (In) Car 235.4 33.99 2222.629 0.192 0.169 0.101 0.536 

Airport T(7) 6.30-7.30 Am (In) Car 200.8 40.42 2254.74 0.205 0.174 0.102 0.517 

Airport T(8) 6.30-7.30 Am (In) Car 196.7 43.76 2391.491 0.209 0.186 0.076 0.526 

Airport T(9) 6.30-7.30 Am (In) Car 224.8 39.55 2470.989 0.205 0.166 0.149 0.477 

Airport T(10) 6.30-7.30 Am (In) Car 175 47.303 2299.564 0.234 0.166 0.035 0.563 

Airport T(1) 6.30-7.30 Am (Out) Car 185.4 46.39 2390.257 0.164 0.038 0.044 0.752 

Airport T(2) 6.30-7.30 Am (Out) Car 218.1 38.62 2340.148 0.211 0.171 0.11 0.5 

Airport T(3) 6.30-7.30 Am (Out) Car 180.6 45.15 2265.484 0.213 0.169 0.057 0.559 

Airport T(4) 6.30-7.30 Am (Out) Car 226.7 38.04 2396.044 0.197 0.175 0.122 0.503 

Airport T(5) 6.30-7.30 Am (Out) Car 118.7 44.12 1455.722 0.198 0.179 0.04 0.581 

Airport T(6) 6.30-7.30 Am (Out) Car 233.3 36.97 2396.296 0.211 0.145 0.162 0.48 

Airport T(7) 6.30-7.30 Am (Out) Car 32.5 50.81 458.9315 0.282 0.107 0 0.61 

Airport T(8) 6.30-7.30 Am (Out) Car 177.5 48.71 2401.961 0.204 0.186 0.076 0.532 

Airport T(9) 6.30-7.30 Am (Out) Car 181.7 48.32 2439.367 0.201 0.175 0.058 0.564 

Airport T(10) 6.30-7.30 Am (Out) Car 165.1 51.19 2347.953 0.208 0.161 0.049 0.581 

        

Average 212.3 40.23 2238.607 0.20755 0.16305 0.1077 0.5193 

SD 73.06 7.8195 474.3167 0.022283992 0.035060061 0.0661 0.084785 

COV 0.344 0.19437 0.21188 0.107366863 0.215026441 0.6144 0.163267 
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1.5.4 Airport Road (11.00-12.00 am) (In and outbound) Car 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Airport T(1) 11.00-12.00 Am (In) Car 181.2 49.12 2473.291 0.201 0.178 0.04 0.579 

Airport T(2) 11.00-12.00 Am (In) Car 173.8 49.14 2372.593 0.21 0.178 0.064 0.546 

Airport T(3) 11.00-12.00 Am (In) Car 203.2 42.65 2408.08 0.2001 0.171 0.095 0.532 

Airport T(4) 11.00-12.00 Am (In) Car 188.5 44.89 2350.743 0.189 0.178 0.132 0.5 

Airport T(5) 11.00-12.00 Am (In) Car 174.3 49.37 2391.396 0.194 0.186 0.029 0.588 

Airport T(6) 11.00-12.00 Am (In) Car 234.3 36.18 2354.943 0.221 0.184 0.147 0.446 

Airport T(7) 11.00-12.00 Am (In) Car 184.9 45.12 2317.6 0.194 0.141 0.075 0.588 

Airport T(8) 11.00-12.00 Am (In) Car 201.3 43.95 2458.167 0.198 0.084 0.094 0.623 

Airport T(9) 11.00-12.00 Am (In) Car 149.6 49.88 2073.563 0.203 0.149 0.022 0.624 

Airport T(10) 11.00-12.00 Am (In) Car 192.4 45.79 2448.168 0.22 0.149 0.049 0.58 

Airport T(1) 11.00-12.00 Am (Out) Car 31 45.901 394.6604 0.067 0.012 0 0.919 

Airport T(2) 11.00-12.00 Am (Out) Car 240.2 35.04 2338.608 0.211 0.177 0.125 0.484 

Airport T(3) 11.00-12.00 Am (Out) Car 124.6 23.29 805.8683 0.221 0.193 0.205 0.38 

Airport T(4) 11.00-12.00 Am (Out) Car 152.5 33.66 1425.834 0.212 0.176 0.131 0.48 

Airport T(5) 11.00-12.00 Am (Out) Car 97.2 23.65 638.1406 0.21 0.203 0.184 0.4 

Airport T(6) 11.00-12.00 Am (Out) Car 103.1 24.89 713.5482 0.195 0.184 0.21 0.409 

Airport T(7) 11.00-12.00 Am (Out) Car 236.9 35.61 2344.554 0.219 0.189 0.143 0.447 

Airport T(8) 11.00-12.00 Am (Out) Car 252.5 34.84 2444.391 0.222 0.185 0.147 0.443 

Airport T(9) 11.00-12.00 Am (Out) Car 239.8 36.01 2399.714 0.184 0.025 0.175 0.614 

Airport T(10) 11.00-12.00 Am (Out) Car 201.2 39.95 2232.769 0.206 0.141 0.096 0.554 

        

Average 178.1 39.4466 1969.332 0.198855 0.15415 0.1082 0.5368 

SD 56.22 8.59365 722.4577 0.033069933 0.053338319 0.0618 0.11887 

COV 0.316 0.21786 0.366854 0.166301745 0.346015695 0.5719 0.221443 
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1.6 Mixed traffic corridor (2) measurements in Abu Dhabi 

 

 

1.6.1 Elektra Road (6.30-7.30 am) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Elektra T(1) 6.30-7.30 Am (In) Bus 283.9 22.81 1798.901 0.186 0.2003 0.151 0.461 

Elektra T(2) 6.30-7.30 Am (In) Bus 312.1 20.92 1813.856 0.126 0.082 0.245 0.544 

Elektra T(3) 6.30-7.30 Am (In) Bus 339.1 19.306 1818.499 0.195 0.201 0.148 0.454 

Elektra T(4) 6.30-7.30 Am (In) Bus 269.7 23.94 1793.966 0.201 0.198 0.1 0.5 

Elektra T(5) 6.30-7.30 Am (In) Bus 288.3 23.02 1844.233 0.191 0.201 0.14 0.467 

Elektra T(6) 6.30-7.30 Am (In) Bus 334.7 18.76 1744.769 0.174 0.063 0.247 0.514 

Elektra T(7) 6.30-7.30 Am (In) Bus 348.1 18.603 1798.918 0.197 0.205 0.193 0.403 

Elektra T(8) 6.30-7.30 Am (In) Bus 339.7 19.78 1866.831 0.212 0.182 0.187 0.417 

Elektra T(9) 6.30-7.30 Am (In) Bus 392.1 17.38 1893.246 0.134 0.059 0.355 0.449 

Elektra T(10) 6.30-7.30 Am (In) Bus 295.2 22.46 1842.196 0.2008 0.2001 0.156 0.441 

Elektra T(1) 6.30-7.30 Am (Out) Bus 420.5 16.54 1932.149 0.193 0.149 0.276 0.381 

Elektra T(2) 6.30-7.30 Am (Out) Bus 434.5 14.73 1778.137 0.147 0.113 0.328 0.411 

Elektra T(3) 6.30-7.30 Am (Out) Bus 386.9 17.89 1923.974 0.2 0.203 0.241 0.354 

Elektra T(4) 6.30-7.30 Am (Out) Bus 517.9 14.19 2041.86 0.148 0.119 0.335 0.395 

Elektra T(5) 6.30-7.30 Am (Out) Bus 396.5 16.67 1836.853 0.189 0.194 0.227 0.388 

Elektra T(6) 6.30-7.30 Am (Out) Bus 380 17.1 1805.211 0.149 0.107 0.255 0.487 

Elektra T(7) 6.30-7.30 Am (Out) Bus 401.6 16.47 1838.198 0.181 0.052 0.322 0.444 

Elektra T(8) 6.30-7.30 Am (Out) Bus 397.9 16.28 1799.827 0.172 0.058 0.311 0.457 

Elektra T(9) 6.30-7.30 Am (Out) Bus 377.2 17.301 1812.972 0.196 0.18 0.204 0.419 

Elektra T(10) 6.30-7.30 Am (Out) Bus 368.7 15.98 1637.393 0.125 0.042 0.299 0.532 

        

Average 364.23 18.507 1831.1 0.17584 0.14042 0.236 0.4459 

SD 59.833 2.8369 80.27553 0.027492131 0.062740305 0.0747 0.05151 

COV 0.1643 0.1533 0.04384 0.156347423 0.446804623 0.3166 0.11551 
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1.6.2 Elektra Road (11.00-12.00 am) (In and outbound) Bus 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Elektra T(1) 11.00-12.00 Am (In) Bus 322.5 18.98 1700.658 0.189 0.163 0.234 0.413 

Elektra T(2) 11.00-12.00 Am (In) Bus 344.4 17.58 1681.647 0.196 0.198 0.226 0.377 

Elektra T(3) 11.00-12.00 Am (In) Bus 309.5 16.12 1385.974 0.198 0.187 0.237 0.376 

Elektra T(4) 11.00-12.00 Am (In) Bus 264.6 24.68 1814.472 0.186 0.155 0.184 0.473 

Elektra T(5) 11.00-12.00 Am (In) Bus 241.5 21.72 1457.039 0.196 0.081 0.199 0.522 

Elektra T(6) 11.00-12.00 Am (In) Bus 259.6 25.05 1807.293 0.216 0.145 0.148 0.49 

Elektra T(7) 11.00-12.00 Am (In) Bus 326.7 18.03 1635.965 0.193 0.207 0.195 0.403 

Elektra T(8) 11.00-12.00 Am (In) Bus 260.6 24.21 1752.4 0.222 0.186 0.119 0.472 

Elektra T(9) 11.00-12.00 Am (In) Bus 309.9 20.36 1752.93 0.2 0.147 0.191 0.46 

Elektra T(10) 11.00-12.00 Am (In) Bus 275.4 19.63 1502.112 0.163 0.179 0.259 0.397 

Elektra T(1) 11.00-12.00 Am (Out) Bus 343.5 14.06 1341.882 0.135 0.052 0.36 0.451 

Elektra T(2) 11.00-12.00 Am (Out) Bus 364.3 14.87 1505.529 0.178 0.126 0.301 0.393 

Elektra T(3) 11.00-12.00 Am (Out) Bus 278.1 16.78 1296.529 0.202 0.184 0.19 0.422 

Elektra T(4) 11.00-12.00 Am (Out) Bus 291.4 17.54 1420.033 0.18 0.02 0.262 0.527 

Elektra T(5) 11.00-12.00 Am (Out) Bus 260.8 15.93 1154.074 0.145 0.033 0.277 0.543 

Elektra T(6) 11.00-12.00 Am (Out) Bus 283.7 17.42 1373.326 0.11 0.035 0.298 0.555 

Elektra T(7) 11.00-12.00 Am (Out) Bus 434.6 13.301 1605.208 0.158 0.04 0.387 0.412 

Elektra T(8) 11.00-12.00 Am (Out) Bus 364.5 17.01 1722.482 0.163 0.067 0.282 0.486 

Elektra T(9) 11.00-12.00 Am (Out) Bus 457.9 14.18 1803.886 0.166 0.139 0.315 0.377 

Elektra T(10) 11.00-12.00 Am (Out) Bus 348.3 12.67 1226.019 0.109 0.038 0.424 0.427 

        

Average 317.09 18.006 1546.973 0.17525 0.1191 0.2544 0.4488 

SD 58.005 3.6802 207.7431 0.031679107 0.065596775 0.0786 0.05772 

COV 0.1829 0.2044 0.13429 0.18076523 0.550770568 0.3091 0.1286 
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1.6.3 Elektra Road (6.30-7.30 am) (In and outbound) Car 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Elektra T(1) 6.30-7.30 Am (In) Car 183.4 35.85 1827.017 0.163 0.158 0.176 0.501 

Elektra T(2) 6.30-7.30 Am (In) Car 211.1 29.06 1704.255 0.196 0.04 0.267 0.495 

Elektra T(3) 6.30-7.30 Am (In) Car 226.9 29.59 1865.67 0.194 0.212 0.199 0.393 

Elektra T(4) 6.30-7.30 Am (In) Car 204.5 30.71 1744.904 0.162 0.017 0.269 0.549 

Elektra T(5) 6.30-7.30 Am (In) Car 173.4 32.61 1571.497 0.222 0.042 0.23 0.504 

Elektra T(6) 6.30-7.30 Am (In) Car 257.2 25.64 1831.972 0.197 0.186 0.294 0.321 

Elektra T(7) 6.30-7.30 Am (In) Car 200 30.08 1671.362 0.183 0.022 0.329 0.463 

Elektra T(8) 6.30-7.30 Am (In) Car 236.5 28.04 1842.659 0.187 0.144 0.242 0.425 

Elektra T(9) 6.30-7.30 Am (In) Car 191.5 35.24 1875.398 0.208 0.125 0.18 0.485 

Elektra T(10) 6.30-7.30 Am (In) Car 212.4 28.705 1693.641 0.164 0.179 0.265 0.389 

Elektra T(1) 6.30-7.30 Am (Out) Car 181.6 30.33 1530.738 0.193 0.023 0.265 0.518 

Elektra T(2) 6.30-7.30 Am (Out) Car 209.8 30.105 1754.785 0.149 0.028 0.205 0.616 

Elektra T(3) 6.30-7.30 Am (Out) Car 176.9 36.75 1806.904 0.217 0.018 0.166 0.598 

Elektra T(4) 6.30-7.30 Am (Out) Car 200.3 32.55 1811.72 0.211 0.197 0.18 0.411 

Elektra T(5) 6.30-7.30 Am (Out) Car 202 32.79 1840.897 0.164 0.065 0.237 0.532 

Elektra T(6) 6.30-7.30 Am (Out) Car 178.1 35.21 1742.782 0.195 0.175 0.191 0.437 

Elektra T(7) 6.30-7.30 Am (Out) Car 173.5 34.37 1656.898 0.194 0.037 0.211 0.556 

Elektra T(8) 6.30-7.30 Am (Out) Car 158.4 39.99 1760.721 0.193 0.071 0.202 0.532 

Elektra T(9) 6.30-7.30 Am (Out) Car 144.8 40.79 1641.269 0.191 0.042 0.151 0.614 

Elektra T(10) 6.30-7.30 Am (Out) Car 138.6 42.65 1642.753 0.197 0.048 0.109 0.644 

        

Average 193.04 33.053 1740.892 0.189 0.09145 0.2184 0.49915 

SD 29.393 4.5342 99.3643 0.019617393 0.070916908 0.0533 0.08573 

COV 0.1523 0.1372 0.057077 0.10379573 0.775471934 0.2438 0.17176 
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1.6.4 Elektra Road (11.00-12.00 am) (In and outbound) Car 

 

The following table shows the results from this section: 

The Routs Time Speed Distance Acceleration Deceleration Idling Cruising 

        

Elektra T(1) 11.00-12.00 Am (In) Car 241.5 27.209 1825.011 0.189 0.16 0.359 0.29 

Elektra T(2) 11.00-12.00 Am (In) Car 244.8 24.91 1694.483 0.196 0.133 0.249 0.42 

Elektra T(3) 11.00-12.00 Am (In) Car 179 37.44 1861.812 0.214 0.015 0.231 0.537 

Elektra T(4) 11.00-12.00 Am (In) Car 228.7 29.33 1863.988 0.202 0.083 0.375 0.337 

Elektra T(5) 11.00-12.00 Am (In) Car 110.2 58.12 1779.856 0.204 0.166 0.004 0.623 

Elektra T(6) 11.00-12.00 Am (In) Car 207.4 31.56 1818.495 0.212 0.186 0.258 0.343 

Elektra T(7) 11.00-12.00 Am (In) Car 194.3 33.05 1783.803 0.228 0.031 0.219 0.519 

Elektra T(8) 11.00-12.00 Am (In) Car 206.2 32.49 1861.135 0.208 0.222 0.09 0.478 

Elektra T(9) 11.00-12.00 Am (In) Car 215.2 27.03 1616.407 0.195 0.052 0.259 0.491 

Elektra T(10) 11.00-12.00 Am (In) Car        

Elektra T(1) 11.00-12.00 Am (Out) Car 255.6 24.44 1735.338 0.105 0.049 0.355 0.489 

Elektra T(2) 11.00-12.00 Am (Out) Car 237.1 23.33 1537.219 0.201 0.148 0.29 0.359 

Elektra T(3) 11.00-12.00 Am (Out) Car 186.2 28.82 1490.932 0.131 0.029 0.305 0.532 

Elektra T(4) 11.00-12.00 Am (Out) Car 172 28.55 1364.333 0.161 0.023 0.299 0.514 

Elektra T(5) 11.00-12.00 Am (Out) Car 213.8 29.11 1729.034 0.213 0.14 0.324 0.321 

Elektra T(6) 11.00-12.00 Am (Out) Car 168.6 36.42 1705.63 0.187 0.157 0.134 0.52 

Elektra T(7) 11.00-12.00 Am (Out) Car 260 23.21 1676.054 0.209 0.207 0.282 0.3 

Elektra T(8) 11.00-12.00 Am (Out) Car 197.6 26.14 1435.287 0.216 0.135 0.215 0.431 

Elektra T(9) 11.00-12.00 Am (Out) Car 179.1 29.62 1474.547 0.206 0.211 0.171 0.411 

Elektra T(10) 11.00-12.00 Am (Out) Car        

        

Average 205.41 30.599 1680.742 0.193166667 0.119277778 0.2455 0.43972 

SD 37.22 7.9801 158.8432 0.031200019 0.070683059 0.0971 0.09704 

COV 0.1812 0.2608 0.094508 0.161518648 0.592592014 0.3954 0.22069 

 

 

 

 

 

 

 

 

 

 


