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SUMARIO

Desenvolve-se um novo método semi-iterativo (método RFII-SI} com respeito ao método
iterativo de Richardson de grau dois (método RFII). Aplicam-se ambos os métodos a classe
de sistemas algébricos definido-positivos, que inclui os problemas de Ortega e o da equagdo
solvente do método dos elementos finitos.

SUMMARY

A new semi-iterative method (RF II-SI) related to Richardson’s iterative method (RF II)
is developed. Both methods are applied to positive definite algebraic systems, which include
Ortega problems and the solving equation for the finite element method.

INTRODUGAO

Uma das técnicas eficientes para resolucao de sistemas algébricos lineares consiste
no emprego da extrapolagao de Chebyshev. Tal procedimento .aplicado ac método de
Richardson do segundo grau (método RFII) conduz ao método semi-iterativo RFII-SI.

Ambos os métodos constroem sequéncias de aproximagoes da solugdo do problema,
através de um algoritmo de recorréncia em trés termos.

A convergéncia é garantida, caso a matriz do sistema algébrico seja definida
positiva, o que inclui indmeras aplicagcdes, como, por exemplo, a equagao solvente
resultante da aplicagio do método dos elementos finitos a problemas de valor de
contorno. 4 '

Atualmente, tem-se procurado, com vantagem, resolver o sistema algébrico
resultante acima através de métodos iterativos. Por conseguinte, torna-se pertinente o
emprego de semi-iteragdo, quando couber o emprego dessa técnica, o que geralmente
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leva a algoritmos mais eficientes. A técnica de semi-iteracao eficiente requer que
os autovalores da matriz de iteragdo do método bésico, sobre o qual é construido
o procedimento, possua autovalores reais. Tal ocorre, por exemplo, com a matriz
associada ao problema de Ortega.

CLASSES DE PROBLEMAS

Seja o sistema algébrico linear
Az =b (1)
onde A é ndo singular, de ordem N, z o vetor incdgnito e b, vetor dos termos conhecidos

com N componentes, cada um.
Seja a classe de (1), onde

A=CRC! (2)

onde R é qualquer matriz com espectro conhecido e C' uma matriz nao simétrica valendo

C=TI+uvT (3)
tal que
u=1[1 1 17 (4)
€
v=[1 1---1, =1 .-, =17 (5)

sendo n par, i.e, metade das componentes sdo 1 e outra metade -1.
A matriz inversa C™! é calculada por

Cl=71-wT (6)

A classe de matrizes A, similares a R, assim obtidas denomina-se de “Ortega” e o
problema (1) apresentando este tipo de matriz é denominado “problema de Ortega”.

Uma matriz dessa classe, assim gerada, serd nio simétrica. E possivel obter também
matrizes simétricas através do emprego de um conveniente vetor v em (5).

Outra classe de problemas de interesse é dada pela equagao solvente resultante da
aplicacdo do método dos elementos finitos a problemas de valor contorno de amplo
emprego nas varias areas de engenharia.

Cita-se, entre outros exemplos, o caso do problema de difusdo do calor em regime
transiente, que é regulado pela equacao diferencial parcial

9
V¥ =-—— em QCR? 7
adt (7)
onde « é a difusidade térmica do material; ¢, o tempo e 8, a temperatura adimensional
do corpo num ponto de coordenadas genéricas (z,y) e as condicdes na fronteira I', do
dominio €2, sd3o de 3% espécie.
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Neste caso, a equagio solvente é dada por

Ch+ K —Fl—0 @

sendo 6 a derivada de 6§ em relacio a t. [C]e[K] séo, respectivamente, as matrizes de
conduténcia e rigidez e [F], o vetor forca.

A importancia da classe de Problemas de Ortega reside no fato de possuir espectro
que se pode pré-definir, o que é de importancia para a aplicacao dos métodos semi-
iterativos, os quais exigem o prego do conhecimento das limitagdes dos autovalores da
matriz de iterac@o, associada ao problema (1), oferecendo em contrapartida, via de
regra, convergéncia mais rapida.

Por outro lado, geralmente, pouco se sabe sobre o comportamento dos autovalores
da classe de matrizes presentes nas equagoes solventes do m.e.f. Contudo, espera-se que
o desempenho dos métodos seja, em principic, andlogo ao da primeira classe, tendo em
vista que a matriz em (1) serd definida positiva.

METODO RFII E RFII-SI

O método RFII aplicado ao problema (1) constréi uma seqiiéncia de aproximagoes
2™ da sua solugdo dada por

2" = (1 — w)z™ ™Y + [(w — p)I + pFlz™ + ph (9)
F=I-rA4 (10)
h=rb | (11)

€ 0s parametros r, w € p sdo a determinar.
A determinagao de w e p é feita de modo a minimizar o raio espectral p( ) da
matriz de ordem 2N abaixo

. 0 I ,
B=la_w)I w-pI+pF (12)
isto requer os célculos :
b—a :
=" - ‘ 13
T oo (a+b) (13)
we—— A (14)
Sl
2w
- 1
Py b (15)

Dois vetores iniciais sdo necessérios ao algoritmo (9). Arbitram-se, por exemplo,
z{® = 0(vetor nulo) e z(V =b.
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A convergéncia desse método é garantida quando aplicado a problemas com matriz
definida positiva, o que inclui os problemas de interesse ja citados.
Observa-se que se pode reescrever (9), compactamente, como

™) = Ry™ 4+ h (16)
sendo & dada por (12) e A o vetor com 2N componentes
h=[0 ph)T (17)
e w1 vetor dado pelas 2N componentes
%(n—}-l) - [;C(n) x(n—kl)l’}” (18)
A convergéncia decorre do fato de que o raio espectral
A 1
p(R) = (w—1)2 < 1, visto que 1 < w < 2 vale, pois, A é matriz definida positiva

er <0
Sejam, agora, as novas notagoes

n
i =3 ape® (19)
k=0
() _
ys " = Z appz®t (20)
k=0

com a restricdo Y p_gonk = 1. Defina também

o = [y )" (21)

Aplicando-se a técnica de extrapolagido de Chebyshev aos esquemas (19) e (20), e
minimizando os pardmetros ok, chega-se ao método semi-iterativo dado pela férmula
de recorréncia

(rt1y _ __Tndl  frop (o (n) 4 9} _ (n—1)
v 2_(C+d){[2}?, (c— o™ +2h{ + (1= rnsa)v (22)

onde os pardmetros r, valem

222 rn \ 7!
=1 r= 9g 1 ™<= <1 - é) (23)

e z, o parAmetro determinado através das limitagoes c e d dos autovalores de R, 7.e.,

_2—(c+d)
Z= (24)
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A convergéncia desse novo método, nos casos em estudo, resulta do fa,to de que as
constantes ¢ e d sdo determinadas por

d = —C = —
‘.c 5 (25)
Estes valores de ¢ e d levados & matriz
' 2R — d)I
M= _R_L)_ (26)
2—(c+d)

implica M = R. Donde, p(M) = p(R) < 1
Agora, basta aplicar o Teorema 4.1 de*, p. 64, para se concluir que a convergenaa
esta garantida.

RESULTADOS COMPUTACIONAIS E CO_NCLUS@ES

Experimentos computacionais relativos aos métodos tratados sao mostrados nas
Tabelas I a V adiante. As tabelas contém os nimeros-de iteragoes necessarias, para
convergéncia, para cada método e diferentes tamanhos de problemas, respeitada uma
tolerancia (precisdo) de 1075, como critério de parada.

Os resultados referem-se ac problema de Ortega. A variedade de experimentos
numéricos decorre de diferentes situagGes do problema envolvendo, por exemplo,
mudanca do numero de condigdo, P, da matriz, combinag¢bes de multiplicidades de
autovalores e, finalmente, pardmetros aproximados no lugar dos exatos que devem ser
usados na férmula (22).

Observando-se os resultados obtidos, vé-se que se o ndmero de condigao P for
pequeno entdo ambos os métodos sdo adequados (Tabela I). Entretanto, quando o
nimero P cresce o método semi-iterativo torna-se superior, quer os pardmetros sejam
exatos (Tabelas II e III) quer aproximados (Tabelas IV e V). E importante observar
que o nimero de iteracoes, em geral, nao.depende da ordem da matriz, se mantido fixo
o nimero de condicdo, o que é um resultado bastante significativo, j4 que para essa
classe de problema, o método desenvolvido se torna sem duvida competitivo.

N2 de Iteracoes
Ordem da Matriz
Método RFII Método RFII-SI

50 8 7
100 8 7
200 8 7
500 7 7

Tabela I. Problema de Ortega-P = 1.5
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Resta observar que para a obtengao dos resultados computacionais com o fim de
analisar o efetivo desempenho dos métodos, utilizou-se, exaustivamente, do software
SIRINEL*, desenvolvido pelo autor deste trabalho. Para esse fim foi necessaria a
implantagdo, no software SIRINEL, de procedimentos novos, relativos ao novo método
RFII-SI proposto, e o de geragao dos dados relativos ao problema de Ortega.

Contudo restam, ainda, elaborar experimentos comparativos mais conclusivos,
envolvendo, por exemplo, métodos competitivos como o SOR (superliberacdo com
parametro otimizado) e tratamento de dados relativos ao problema de Stefan, o que
devera ser feito futuramente.

Entretanto, os resultados ja obtidos, nas Tabelas IV e V, servem como um indicativo
inicial para esse outro caso, em virtude de lidar com parametros aproximados, o que
pode de certa forma simular o comportamento dos métodos diante desse novo problema,
para os quais normalmente vai-se deparar com a utilizagao de parametros nao exatos
nos célculos.

N2 de Iteragoes
Ordem da Matriz N
Método RFII  Método RFII-SI

50 60 28
100 84 35
200 120 42
500 193 56

Tabela II. Problema de Ortega-P = N

Multiplicidade de N2 de Iteragoes
Ordem da Matriz
Autovalores (m1, m2) | Método RFII Método RFII-SI
50 (49,1) 18 ERE
50 (40,10) 18 13
100 (99,1) 18 13
100 (90,10) 18 14
200 (190,1) 18 13
200 (190,10) 18 14
500 (499,1) 18 13
500 (490,10) 18 14

Tabela III. Problema de Ortega— Anéalise da Multiplicidade de Autovalores (P = 5)
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N2 de Iteracoes
Ordem da Matriz N
Método RFII Método RFII-SI

50 26 21
100 27 21
200 27 21
500 27 21

Tabela IV. Problema de Ortega—Pardmetros Aproximados (Ambos pardmetros 2 %
de erro) P = 10

N2 de Tteragoes
Ordem da Matriz N
Método RFII Método RFII-SI

50 29 25
100 29 25
200 29 25
500 29 25

Tabela V. Problema de Ortega—(Ambos par. 5 % de erro) P = 10
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