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Abstract

A general methodology to develop hyper-elastic membrane models applicable to crystalline
(lms one-atom thick is presented. In this method, an extension of the Born rule based on the
exponential map is proposed. The exponential map accounts for the fact that the lattice vectors
of the crystal lie along the chords of the curved membrane, and consequently a tangent map
like the standard Born rule is inadequate. In order to obtain practical methods, the exponential
map is locally approximated. The e5ectiveness of our approach is demonstrated by numerical
studies of carbon nanotubes. Deformed con(gurations as well as equilibrium energies of atomistic
simulations are compared with those provided by the continuum membrane resulting from this
method discretized by (nite elements.

Keywords: A. Buckling; B. Constitutive behavior; B. Shells and membranes; C. Finite elements;
D. Atomistic models

1. Introduction

The Born rule is a standard kinematic assumption for linking the deformation of an
atomistic system to that of a continuum. It is the basis for developing continuum elastic
potentials from the atomistic description of the system (Cousins, 1978; Ericksen, 1984;
Zanzotto, 1996), without other phenomenological input, and has proven very e5ective
in space-(lling crystals. It states that the crystal vectors de(ned by two nuclei deform
according to the local deformation gradient. The resulting hyper-elastic models describe
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well the crystal behavior as long as the continuum deformation is nearly homogeneous
in the scale of the crystal vectors. If this is not the case, mixed continuum–atomistic
approaches have been proposed to deal with inhomogeneities, defects and non-local
e5ects (Tadmor et al., 1996; Shenoy et al., 1999).
Unfortunately, the traditional approach based on the Born rule works for bulk ma-

terials but fails to extend directly to the case of crystalline (lms and ropes one-atom
thick deforming in higher dimensional spaces, i.e. 3D in the case of (lms and 2D or
3D in the case of ropes. The reason for this can be roughly stated as follows: the de-
formation gradient on a surface gives the tangent behavior, whereas the deformation of
the bonds depends on the behavior of the chords to the surface. This point is clari(ed
later. It is the goal of this paper to extend the Born rule to this situation. The proposed
extension is based on the di5erential geometry concept of the exponential map. An
alternative approach resulting in a Cosserat membrane has been reported by Friesecke
and James (2000) although their theory is aimed at (lms several atoms thick.
We will apply these methods to carbon nanotubes. However, they are applicable

in other situations, such as boron–nitride nanotubes and other thin (lms. Since the
discovery of these crystalline tubes in 1991, many studies have focused on their unique
mechanical properties, through experiments (Yu et al., 2000; Chopra et al., 1995; Yu
et al., 2001b), molecular dynamics (MD) and molecular mechanics (MM) simulations
(Bernholc et al., 1998; Gao et al., 1998) and (rst-principles calculations (Zhou et al.,
2001; Maiti, 2000). Although molecular simulations seem well suited to study these
systems, they are not completely satisfactory; they are computationally very demanding
and the output often requires considerable post-processing to be useful.
Continuum models have been used to explain experimental observations on the trans-

verse stability of nanotubes (Chopra et al., 1995; Yu et al., 2001a). These are extremely
simpli(ed models but bring insights as well as quantitative information on the rele-
vant physical phenomena. The vibrational properties of carbon nanotubes have been
investigated through linear elasticity (Sohlberg et al., 1998). The elastic properties of
carbon nanotubes as a continuum, neglecting all curvature e5ects have been studied
by Lu (1997). In Zhong-can et al. (1997), the nanotube is considered to be an inex-
tensible membrane and an expression for the elastic energy in terms of the curvature
obtained for a family of simple deformations. The theory of elastic shells is used
to study the buckling patterns found in MD simulations of compressed carbon nan-
otubes by Yakobson et al. (1996). A linearized bifurcation analysis of the continuum
shell predicts critical strains for the nanotube that agree to some extent with those ob-
served in MD simulations. Ru (2001) describes a similar linearized buckling analysis
of double-walled nanotubes.
The continuum models for nanotubes proposed so far are phenomenological and sim-

pli(ed to very particular situations. Furthermore, they are restricted to small strains.
However, experiments (Chopra et al., 1995) and (rst-principles calculations (Maiti,
2000) show that carbon nanotubes undergo very large deformations, with highly non-
linear behavior and still remain elastic, with stable bonds and intact bond topology.
Experiments of nanotubes severely deformed with an AFM tip (Falvo et al., 1997)
show the resilience and Iexibility of these molecules; they recover elastically from ex-
tremely bent and buckled con(gurations. Atomistic simulations of nanotubes in tension
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show that large strains are reached before the Stone–Wales transformations occur (Bern-
holc et al., 1998; Belytschko et al., 2001). Thus, a Born-like (and therefore based on
the nano-scale physics) (nite deformation elastic model should be applicable to a large
range of phenomena. It is our aim to develop such a model for curved crystalline (lms.
The paper is organized as follows. In Section 2, we (rst give the motivation for the

extended Born rule. Section 3 presents the kinematics of the membrane and di5erential
geometry preliminaries. Section 4 describes the proposed Exponential Born rule, and
its practical implementation by suitable approximations for the exponential map is de-
scribed in Section 5. Section 6 deals with the formulation of the continuum membrane
model. The continuum strain energy density is constructed for simple Bravais lattices
and Bravais multi-lattices. The latter requires the treatment of additional internal vari-
ables. The continuum version of the non-bonded interactions is also provided, as well
as the variational statement of the continuum problem. Section 7 gives some examples
of calculations made with our model discretized with (nite elements. Finally, some
conclusions and observations on this method are given in Section 8.

2. Standard Born rule for space-�lling crystals

The Born rule is widely used as a link between the atomistic and the continuum
deformations. In the absence of slips, phase transitions, twinning or other inelastic phe-
nomena, the Cauchy and Born hypothesis for crystals are equivalent for homogeneous
deformations (Ericksen, 1984). As a matter of fact, what is often referred to as the
Born rule is called the method of homogeneous deformations in other works (Martin,
1975; Cousins, 1978). Cauchy linked atomic models to continua by assuming that the
atomic and the continuum motion agree where both are de(ned, i.e. at the nuclei. On
the other hand, the Born hypothesis consists of assuming the deformation of the lattice
vectors conforms to that of material line elements in a homogeneous deformation.

2.1. The Born rule

The Born rule is usually expressed in terms of the deformation gradient F. In
classical continuum mechanics, the deformation gradient is said to map “in(nitesimal”
material vectors, dx = F dX from the undeformed body �0 into the deformed one
� (Malvern, 1969). The Born rule views the lattice vectors as in(nitesimal material
vectors that transform according to

a = FA; (1)

where A denotes an undeformed lattice vector and a the same vector in the deformed
crystal. From a physical standpoint, the lattice vectors are physical entities with (nite
length, and therefore the rule expressed by Eq. (1) entails an approximation. It is
applicable as long as the continuum deformation is nearly homogeneous in the scale
of the lattice vectors.
The geometry of the lattice vectors, that is their length and the angles they form

with other lattice vectors in the deformed crystal, can be extracted from the continuum

3



deformation through the Green deformation tensor C= FTF using standard continuum
mechanics relations:

‖a‖=
√
A · CA and cos �=

A · CB
‖a‖ ‖b‖ ; (2)

where B and b represent another undeformed and deformed lattice vectors and � is
the angle a and b form in the deformed crystal. Once the geometry of the deformed
lattice vectors is linked to the continuum deformation, a constitutive model based on
the atomistic description can be constructed by identifying the continuum strain energy
density with the potential energy of the atomic system for a representative cell divided
by its volume.

2.2. Why 8lms are more di9cult

Consider the case in which we have a single-atom thick crystalline (lm (such as
a graphene sheet) deforming arbitrarily in 3D. It is natural in this case to treat the
continuum solid as a surface, a membrane without thickness. We postulate that the
atoms lie on the surface (Cauchy’s hypothesis), and the lattice vectors are chords of
the surface. We would like to use the Born rule in order to express the geometry
of the deformed lattice vectors in terms of a variable characterizing the deformation
of the surface, such as the Green deformation tensor.
If we now try to use directly the Born rule expressed in Eq. (1), the (rst diMculty

encountered is that the meaning of homogeneous deformation is not obvious in the
case of surfaces. Indeed, a uniform metric and uniform curvature are not necessarily
compatible, i.e. there may not exist a surface with such uniform properties (do Carmo,
1976). Furthermore, as will be detailed in Section 3, in the kinematics of deforming
surfaces, the deformation gradient F maps the tangent spaces of the surfaces, TX�0

and Tx� (see Fig. 1 for an illustration). For surfaces, the notation TpS represents
the tangent plane to the smooth surface S at the point p∈ S. The tangent space is

X

Ω0

Ω

x

Ω0TX

ΩTx

A

F ?

a

Fig. 1. Illustration of the diMculties encountered when trying to apply the standard Born rule a = FA
to surfaces.
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then the vector space R2 tangent to the surface and “centered” at p. Here, unlike for
space-(lling materials, the manifold and its tangent space cannot be identi(ed; there is
an essential distinction between the manifold, which is curved, and the tangent space,
which is Iat. As noted, the lattice vectors should be viewed as chords of the surface,
not as elements of the tangent to the surfaces. From Fig. 1, it is clear then that the
deformation gradient cannot be used to transform the undeformed lattice vector A into
the deformed lattice vector a.
To illustrate these issues, consider the following situation. Suppose that the unde-

formed crystal is planar, and is rolled into a cylinder without stretch. If the standard
Born rule is used, the deformed lattice vectors emanating from the same point remain
coplanar, i.e. they lie in the tangent space to the cylinder at that point. In this tan-
gent space, energetically relevant geometric quantities such as the length of the lattice
vectors and the angles they make remain unchanged (the deformation described is an
isometry). Therefore, the energy will remain unchanged upon rolling. However, the
real lattice vectors do not remain coplanar and their lengths change. Therefore, we can
expect that the energy of the atomic system will change in this deformation. Thus, a
continuum model describing only the behavior of the tangent space is blind to the fact
that the plane sheet is being rolled, and assigns zero energy to the deformation.

3. Kinematic preliminaries

The present section describes the continuum kinematics of a zero-thickness mem-
brane. The notation used in the classical literature of shells, in di5erential geometry
and in continuum mechanics is very di5erent despite sharing many underlying con-
cepts. The one used here follows none of these entirely. Two useful references for this
section are Marsden and Hughes (1983) for a mathematical treatment of continuum
mechanics, and do Carmo (1976) for the di5erential geometry of curves and surfaces.

3.1. The deformation map

If the undeformed body is an arbitrary smooth surface, we can formulate the kine-
matics of the membrane as follows. Consider the undeformed body �0 to be de(ned
through a di5erentiable parametrization of a referential body N�, an open set in R2

(which can be called the parametric space). This parametrization is called the unde-
formed con(guration ’0:

’0 : N� ⊂ R2 → R3

� �→ X = ’0(�);
(3)

where � represents any point in N� and X its image in the deformed body. The unde-
formed body �0 = ’0( N�) is a 2-di5erential manifold (a smooth surface) embedded in
the ambient space R3.

Similarly, the deformed body � is another 2-di5erential manifold in R3, and
it is parametrized on the same referential body N� by the current or deformed
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Fig. 2. Deformation map and its tangent map for surfaces in 3D.

con(guration

’ : N� ⊂ R2 → R3

� �→ x= ’(�)
(4)

with � = ’( N�). Finally, the deformation map �, mapping the undeformed body into
the deformed body, can be expressed as the composition of two maps:

�= ’ ◦ ’−1
0 : �0 → �

X �→ x= �(X) = ’(’−1
0 (X)):

(5)

The deformation map � maps two di5erential manifolds, and its tangent T� (the
deformation gradient F) maps the tangent spaces of �0 and � (see Fig. 2). At each
point X of �0, TX� = F(X) is a linear transformation taking elements of TX�0 (the
vector space whose elements lie in the tangent plane to the surface �0 at X and emanate
from this point) into T�(X)� (analogously, the vector space tangent to the deformed
surface at �(X) “centered” at this same point). This geometric structure is hidden in
the case of bulk materials described with Euclidean coordinates. See the references
given at the beginning of this section for more details on these concepts.
For the sake of simplicity, the parametric space or referential body is described here

by Euclidean coordinates. Therefore, in the referential body the distinction between
one-forms and vectors, or cova- and contra- components vanishes (the metric of the
referential body is NGIJ = NGIJ = 
IJ ). On the other hand, we will denote the point and
its position vector in Euclidean components with the same symbol

�= �1I1 + �2I2: (6)

Similarly, ’0 and ’ denote both the point mappings and their Euclidean components,
and we can write for instance,

’= ’1i1 + ’2i2 + ’3i3; (7)

where {ii} represents the Euclidean basis of R3.
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3.2. The metric tensor and the tangents of the con8gurations

Given the Euclidean coordinate system for N� and its basis vectors {II}, the natural
or convected basis vectors (tangent vectors to the surfaces �0 and � respectively) are
de(ned as

GI =
9’i

0

9�I ii and gI =
9’i

9�I ii : (8)

Then, at each point X and x, {G1;G2} is a basis of TX�0 and {g1; g2} of Tx�. The
corresponding dual bases of the cotangent spaces of �0 and � are also de(ned. The
cotangent space T ∗

x� is the space of one-forms on Tx�, i.e. the linear mappings from
the tangent into R. The dual basis is de(ned by the relations ga(gb) = 
a

b (analogous
relations hold for the undeformed body).
The metric tensor of the surfaces can then be de(ned by its covariant components

(the components in the bases {GA ⊗GB} and {ga ⊗ gb}, respectively):
GAB = 〈GA|GB〉 and gab = 〈ga|gb〉; (9)

where 〈·|·〉 is the scalar product in T�0 and in T� induced by the Euclidean scalar
product in R3. The metric tensor is actually the expression of the Euclidean scalar
product in the tangent space. In the following, 〈·|·〉 and ‖ · ‖ denote the Euclidean
scalar product and norm. Also, let GAB and gab denote the inverse matrices of GAB and
gab.
Note that we can express in a simple way the tangent maps of the con(gurations as

T’0 =GI ⊗ II and T’= gI ⊗ II ; (10)

where {II} is the dual basis of {II}.
The metric tensor can be used to measure distances, angles and areas in �0 and �.

In particular the element of area of � is d� = g d�1 d�2 where g is de(ned by

g=
√

det(gab) = ‖g1 × g2‖: (11)

We also have d�0 = G d�1 d�2 with

G =
√

det(GAB) = ‖G1 ×G2‖: (12)

3.3. The deformation gradient

Recalling the de(nition of the deformation map �= ’ ◦ ’−1
0 and Eq. (10), we can

write its tangent map T�= T’ ◦ T’−1
0 , or deformation gradient as

F= gA ⊗GA : T�0 → T�

W =WIGI �→ w= FW =Wigi :
(13)

Therefore, the matrix representation of F in the convected bases of TX�0 and Tx� is
the 2× 2 identity matrix, with the information about the deformation contained in the
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basis vectors. Recalling that the components of F in the basis {ga ⊗ GA} are Fa
A =


a
A, the components of the Green deformation tensor C= FTF in the convected basis

{GA ⊗GB} are (see Marsden and Hughes, 1983)

CA
B = GACFb

CgabFa
B = GAbgbB: (14)

The Green deformation tensor with lowered indices C[ is the pull-back of the metric
tensor of �, C[ = �∗g, and its components are simply CAB = gAB for our choice of
coordinates. It is a symmetric positive-de(nite tensor, and therefore de(nes a scalar
product in T�0. We denote this scalar product by

〈A|B〉C = AC[B= A · CB; (15)

for all A;B∈T�0. The norm induced by this scalar product is denoted by ‖A‖C =√〈A|A〉C. Thus, the tensor C locally characterizes the tangent deformation: it can be
used to measure length, angle and area changes due to the deformation in terms of
undeformed body entities. In particular, the element of area of � can be written in
terms of the element of area of �0 as d� = J d�0 where the Jacobian determinant is

J =
√

det(CA
B) =

√
det gab

√
detGAB =

g
G
: (16)

3.4. The second fundamental form: the curvature

The unit normal to the surfaces can be de(ned as

N =
G1 ×G2

‖G1 ×G2‖ and n =
g1 × g2
‖g1 × g2‖ : (17)

The second fundamental form of the undeformed body K can be expressed in the basis
{GA ⊗GB} in terms of its components:

KAB = 〈N|GA;B〉; (18)

where GA;B denotes the derivative of the tangent vector GA with respect to �B. Simi-
larly, for the deformed body, the components of k in the basis {ga ⊗ gb} are

kab = 〈n|ga;b〉: (19)

Let us de(ne now the normal curvature in the deformed body. The normal curvature
kn at a point x of the surface � and in the direction of the unit vector v= vaga ∈Tx�,
is the minimum curvature of all the curves of � passing through x tangent to v. It can
be obtained as

kn(x) = kabvavb with gabvavb = 1: (20)

Consider now the pull-back by � of the curvature tensor of �:

K = �∗k; (21)
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or in components:

KAB = kabFa
AF

b
B: (22)

The normal curvature of the deformed body in a given direction expressed in the
undeformed con(guration V∈TX�0 can be written as follows:

kn =
VKV

VC[V
: (23)

The principal curvatures kI; II and the principal directions VI; II of the curvature tensor
are the eigenvalues and the eigenvectors of the generalized eigenvalue problem:

KVI; II = kI; IIC[VI; II : (24)

Note that the principal directions are expressed in the undeformed con(guration. The
principal curvatures are the maximum and the minimum normal curvatures, and the
principal directions VI; II are orthogonal with respect to C[. Finally, the mean curvature
H and the Gaussian curvature K are de(ned as

H =
kI + kII

2
and K = kI kII : (25)

3.5. The exponential map

A simple de(nition of the exponential map is given in Morgan (1993), for a manifold
M :
“The exponential map expp at a point p in M maps the tangent space TpM into M

by sending a vector v in TpM to the point in M a distance |v| along the geodesic from
p in the direction v”.
The exponential map is a di5eomorphism—invertible and di5erentiable—in a neigh-

borhood of each regular point p of the manifold, that naturally maps the tangent of
a manifold into the manifold itself in an intrinsic manner. Therefore, the exponential
map can be used to locally parametrize the surface, de(ning the polar geodesic coor-
dinates. It can be de(ned because of the existence and uniqueness of geodesics at any
point given a direction in the tangent space. The exponential map is de(ned here in
geometric terms, and its evaluation requires knowledge of the geodesics. In general,
obtaining the geodesics in a particular coordinate system involves solving the geodesic
di5erential equations. These equations are a system of non-linear ordinary di5erential
equations whose unknowns are the parametric coordinates of the geodesic, and whose
coeMcients are the Christo5el symbols of the surface. Finding the geodesics, and thus
the exponential map, is much simpler in some particular cases, as will be shown for
the cylinder. More details about the exponential map in the case of surfaces can be
found in do Carmo (1976).
It is worth commenting on another important application of the exponential map

in computational mechanics: the transformation of in(nitesimal rotations (represented
by skew-symmetric matrices or the corresponding spin vector) into (nite rotations
(represented by orthogonal proper matrices) (Simo and Hughes, 1998). The underlying
idea is very similar to the one used here. Indeed, the in(nitesimal rotations are the
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tangent to the (nite rotations. Further geometrical insight is gained by understanding
the correspondence between the (nite rotations and the unit sphere (Simo and Fox,
1989).

4. Extension of the Born rule

In order to construct a continuum mechanics theory from an atomistic model, we need
to distribute the deformation energy of the discrete atomic system into the continuum.
For this purpose, following the path of crystal elasticity, we need an analog of the
standard Born rule that relates the deformation of the lattice vectors to that of the
continuum membrane.
In Section 2.2, the breakdown of the standard Born rule for curved continua was

sketched. We saw that the kinematic rule a= FA presented formal inconsistencies. In
this section, these are overcome by introducing a new kinematic rule that exploits the
exponential map. In this section, the proposed rule is kept at an abstract level, and
should be seen as a framework for practical models. Reference to Fig. 3 is particularly
useful to visualize the ideas presented below.
Let A denote an undeformed lattice vector, de(ned as the chord between points X

and Y (see Fig. 3). Recall that in a neighborhood of each regular point the exponential
map is invertible. We assume that Y is close enough to X so that the exponential map
has an inverse. If the inverse of the exponential map at X∈�0 is applied to Y, a vector
W∈TX�0 is obtained. This vector can be transformed through the deformation gradient
F into a vector w∈Tx�, which in turn can be sent back to a point z∈� through the
exponential map at x∈�. Then, the deformed lattice vector a can be de(ned as the
chord to the surface � between x= �(X) and z.
In order to keep the notation simple and highlight the fundamental ideas, the follow-

ing notation is used. The exponential map at X∈�0 maps tangent vectors W∈TX�0

into points in the surface Y = expX(W). Since, given X, the chord A and the point
Y can be identi(ed, we will simply write A= expX(W). The same notation applies in
the deformed body.

X

Ω0

Ω

x

Ω0TX

ΩTx

exp 1

W

Y

A

F

w

exp

z

a

Fig. 3. Illustration of the proposed extension of the Born rule.
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Therefore, the proposed kinematic rule can be summarized as:

exp�(X) ◦ F(X) ◦ exp−1
X : �0 → TX�0 → : : :

A �→ W = exp−1
X (A) �→ : : :

: : : T�(X)� → �

: : : w= FW �→ a = exp�(X)(w):

(26)

The above map overcomes the formal inconsistencies of the standard Born rule pointed
out in Section 2.2 by exploiting the natural way to map the tangent space and the
surface provided by the exponential map. This extension to the Born rule will be called
Exponential Born rule in the remainder of the paper, and is symbolically denoted as

a =F�(A) := exp�(X) ◦ F(X) ◦ exp−1
X (A): (27)

This map transforms an undeformed lattice vector into a deformed one based on the
deformation of the surface. In our model, the deformation gradient expresses changes
in intrinsic length between the atoms (length inside the surface, de(ned as the length
of the shortest curve between them on the surface), but not necessarily the actual
Euclidean distance between the atoms, i.e. the length of the lattice vector.
Note that strictly speaking the map exp�(X) ◦ F(X) ◦ exp−1

X is intrinsic, i.e. can
be performed “from inside” the surface, without recourse to the ambient Euclidean
space. However, the total map is necessarily extrinsic, because the energy is ultimately
expressed in terms of lattice vectors in R3. The extrinsic part of the map stems from
the de(nition of lattice vectors as chords of the surface.
Although this model provides a theoretical and formal way to overcome the pre-

viously mentioned diMculties of the standard Born rule, its practical application is
not straight-forward. To determine the geodesics, and thus the exponential map, the
geodesic di5erential equations must be integrated. The exact implementation of the
proposed model results in a computationally very complex non-local model. Indeed,
the deformed lattice vectors would depend not only on the deformation of the surface
at a particular point, but in a neighborhood. However, approximations to the exponen-
tial map can be used, rendering the model possibly local and computationally feasible.
One can consider the kinematic assumption a =F�(A) as a general framework for a
family of extensions to the Born rule in di5erent situations. In Section 6, these abstract
ideas are practically realized in a model applicable to carbon nanotubes.

Remark 1. If this model is applied to space-(lling bodies; it results exactly in the
standard Born rule. Indeed; the geodesics in a subset of the Euclidean space Rn are
straight lines and the exponential map is; loosely speaking; an identity map.

Remark 2. It can be said that this is a higher order model; because it involves not only
the metric but also its derivatives (the Christo5el symbols depend on the metric and its
(rst derivatives). We prefer to think of it in the geometric terms presented. The present
approach de(ned in geometric terms automatically leads to hyper-elastic potentials that
satisfy frame-indi5erence. A “higher order” ad hoc model will have diMculties in this
respect.
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Remark 3. Note that in general z �=�(Y) (see Fig. 3). Actually; the same happens
with the standard Born rule; unless the deformation is homogeneous. Similarly; in the
present theory there are some special cases where (26) it is kinematically exact in this
sense.

5. Implementation of the exponential Born rule

This sections addresses the implementation of the Exponential Born rule. For the
sake of simplicity, we assume the undeformed body �0 is a planar crystalline sheet
described with Euclidean coordinates. Therefore, the referential and the undeformed
bodies coincide. In particular, we have GAB = 
AB, G = 1 and K = 0. The choice of
a planar undeformed body is natural for our application to carbon nanotubes, since
usually the inter-atomic potentials available for graphene sheets are in equilibrium in
the planar con(guration.
In general the evaluation of the exponential map, and therefore the application of

the extended rule, requires knowledge of the geodesic curves. In a given coordinate
system, these are obtained by integration of a system of two non-linear ODE’s. The
coeMcients of these equations are the Christo5el symbols. In general, a closed-form
solution of these equations is not available, but one can think of approximations based
on these equations. For instance, they could be solved numerically, or simpli(ed so
that a closed-form solution is available. These approaches have obvious drawbacks. The
(rst one is the computational cost and complexity of the resulting method. Secondly,
it would be diMcult to guarantee frame-indi5erence.
In a paper dealing only with the transverse deformation of nanotubes (Arroyo and

Belytschko, 2001), a geometric approach was adopted. In this simple kinematic setting,
the surface was locally assumed to be a cylinder with the curvature and the stretch of
the actual surface. Then, since the exponential map for the cylinder can be obtained
in closed form, the deformation of the lattice vectors was written in terms of the local
deformation of the kinematically constrained membrane.
We now consider an arbitrary deformation of the crystalline (lm. Rather than trying

to build at each point of the membrane a local representation based on its local de-
formation, the exponential map is approximated by decoupling the principal directions.
The procedure separately considers each principal direction VI and VII of the curva-
ture tensor, and two corrections for the tangent deformed lattice vector w are obtained
from the exponential map for (ctitious cylinders of radius 1=kI and 1=kII . Finally, the
corrections in each direction are added to w to obtain a. This approach is simple and
leads to accurate predictions according to the numerical experiments described later.

5.1. Basic setup

For the planar undeformed crystal, the Exponential Born rule simpli(es to

a = exp�(X) ◦ F(X)A; (28)
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Fig. 4. Principal directions of the curvature tensor in the undeformed and the deformed bodies, and a lattice
vector A.

where we are identifying �0 and TX�0. The (rst part of this map can be readily
performed and is equivalent to the standard Born rule:

w= FA: (29)

We call this vector the tangent deformed lattice vector, and it can be thought as the
push-forward of A.
Given a deformation map for the originally planar membrane, the local deforma-

tion can be characterized by the Green deformation tensor C and the curvature ten-
sor expressed in �0; K. The eigenvalue problem (24) de(nes the principal directions
expressed in the undeformed con(guration and principal curvatures of the curvature
tensor. Fig. 4 illustrates that only the push-forward of VI and VII by �, that is vI and
vII , are orthogonal in the Euclidean sense. This (gure also shows a generic undeformed
lattice vector A; a unit vector in the direction of A is also de(ned by

E=
1
A
A; (30)

where A denotes the length of A. Note that vI; II and w are vectors of the tangent to
the membrane T�(X)�.
Consider an auxiliary Euclidean coordinate system of R3, {xI ; xII ; xIII} centered at

x=�(X) and whose axes are parallel to vI ,vII , and vI ×vII . The associated orthonormal
basis is BR3 = {iI ; iII ; iIII}. Consider also the restriction of this coordinate system to
Tx�, {xI ; xII} with the basis BTx� = {iI ; iII}.
Let us de(ne the angle ! (see Fig. 4) that vI and w form in T�(X)�. This angle can

be characterized by

cos! =
VI · CE√

VI · CVI
√
E · CE ;

sin ! =
VII · CE√

VII · CVII
√
E · CE : (31)

The length of the tangent deformed lattice vector w can be obtained as

‖w‖= A"; (32)

13



T Ω
x

x

w

vI

∆wI

T Ω

x

x

w
vII∆wII

k  > 0

k  < 0

I

II

C

CI

II

Fig. 5. Exponential map in (ctitious cylinders in each principal direction.

where "=
√
E · CE is the stretch in the direction of the lattice vector. Consequently,

the components of w in the basis BTx� are:

{
wI

wII

}
=

{
A" cos!

A" sin !

}
=




A
VI · CE√
VI · CVI

A
VII · CE√
VII · CVII


=




A
〈VI |E〉C
‖VI‖C

A
〈VII |E〉C
‖VII‖C




: (33)

5.2. Principal direction I

Fig. 5 illustrates the approximation to the exponential map for a surface with negative
Gaussian curvature—a hyperbolic point. Consider a (ctitious cylinder CI of radius
1=kI passing through point x = �(X) whose tangent plane is Tx� and whose axis is
perpendicular to vI .
The cylinder CI can be parametrized isometrically from Tx� into R3 as

CI : fI (xI ; xII ) =




1
kI

sin kI xI

xII
1
kI
(1− cos kI xI )




: (34)

The geodesic of this cylinder passing through x and tangent to w is

c(s) =




1
kI

sin[kI (cos!)s]

(sin !)s
1
kI
(1− cos[kI (cos!)s])




; (35)14



where s denotes the arc-length parameter. Consequently, by evaluating the above ex-
pression at s= ‖w‖, the image of w through exponential map of CI at x is

[expx; I w]BR3
=




1
kI

sin kIwI

wII

1
kI
(1− cos kIwI )




: (36)

Finally, the exponential correction in the (rst principal direction, that is the di5erence
between the above vector and w, is

[SwI ]BR3
=




1
kI

sin kIwI − wI

0
1
kI
(1− cos kIwI )




: (37)

5.3. Principal direction II

In this case, the parametrization of the cylinder CII of radius 1=kII in the coordinate
systems described above is

CII : fII (xI ; xII ) =




xI
1
kII

sin kII xII

1
kII

(1− cos kII xII )




(38)

and similarly we obtain

[SwII ]BR3
=




0
1
kII

sin kIIwII − wII

1
kII

(1− cos kIIwII )




: (39)

Note that all the deformed geometric quantities are expressed in the undeformed con-
(guration.

5.4. Final formula

The Exponential Born rule a = exp�(X) ◦ FA is then approximated by the map a =
FA+SwI +SwII . By de(ning Q(x) = sin x=x, the expression for the deformed lattice
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vector in the orthonormal basis BR3 is

[a]BR3
=




wIQ(kIwI )

wIIQ(kIIwII )

kIw2
I

2
Q2(kIwI =2) +

kIIw2
II

2
Q2(kIIwII =2)




: (40)

Bearing Eqs. (30) and (33) in mind, and the fact that kI; II and VI; II are obtained from
the eigenvalue problem (24), it is clear that [a]BR3

depends only on the undeformed
lattice vector A, the Green deformation tensor C and the pull-back of the curvature
tensor K. Deformed geometric quantities can readily be obtained from (40). We can
symbolically write the length of a deformed lattice vector ai and the angle between two
lattice vectors �jk , in terms of the undeformed crystal and the local strain measures:

ai = f(C;K;Ai) and �jk = g(C;K;Aj;Ak): (41)

Remark 4. In the numerical implementation; the function Q(x) = sin x=x should be
treated carefully to avoid large round-o5 errors. Its limit when the argument tends to
zero is one. Here; this function is evaluated by a Taylor expansion when x is smaller
than a certain threshold.

6. Membrane formulation

The present section describes the formulation of the continuum membrane mechanics.
The membrane constitutive model based on the atomistic potential energy is outlined
in Section 6.1. The essential ideas can also be found in other works dealing the qua-
sicontinuum method for bulk materials (Tadmor et al., 1996; Shenoy et al., 1999;
Tadmor et al., 1999). Then, Section 6.2 describes the formulation of the continuum
counterpart of the long-range interactions. Finally, Section 6.3 gives the continuum
variational problem as well as Lagrangian stress measures conjugate to the considered
strain measures.

6.1. Constitutive model

So far, we have related the deformation of the atomic system to that of an equiv-
alent continuum membrane. No particular assumption about the underlying atomic
model has been made. The kinematic relation a = F�(A) can be used to derive
continuum hyper-elastic potentials for a wide variety of atomic models consistent
with the Born–Oppenheimer approximation, i.e. where the energy can be obtained
in terms of the nuclear positions. These models include analytic empirical poten-
tials and quantum-mechanical models such as tight-binding models, see e.g. Tadmor
et al. (1999).
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6.1.1. Atomic model
In the following, a particular atomistic model is considered. Our interest here is to

model covalently bonded systems, and it is assumed that the topology of the bond
network does not change, i.e. there is no bond breaking or formation. For such a
system, the energy can be expressed in terms of the bond geometry, i.e. their length
and the angles between adjoining bonds:

E = E(ri; �j); (42)

where ri denotes the lengths of the covalent bonds of the system and the �j the angles.
One instance of such a model is the many-body expansion of the potential energy, for
example a 2-body=3-body expansion:

E =
∑
i

Vs(ri) +
∑
k

V�(�k ; r1k ; r
2
k ); (43)

where the (rst sum runs over the covalent bonds, the second over the angles formed
by covalent bonds. Here, r1k and r2k denote the lengths of the bonds that form the angle
�k . The MM2=MM3 models fall within this formalism. Other examples are bond order
potentials, such as those for hydrocarbons proposed by Brenner (1990):

E =
∑
i

[VR(ri)− bi(r
j
i ; �

j
i )VA(ri)]; (44)

where the sum runs over the bonds, and the bond order function bi depends on the
lengths of all the bonds connected to the ith bond, rji , and on the angles they form
with the ith bond, �j

i .

Remark 5. The use of these atomic potentials for covalent systems; in which the po-
tential energy at a nucleus or bond depends on the lengths and angles directly adjacent
to it allows closed-form expressions for the continuum strain energy density to be
obtained. Predominant short range interactions also support the use of a local contin-
uum model. This contrasts with the situation in other works (Tadmor et al.; 1996)
where materials with longer range interactions are considered. In these cases; the con-
tinuum strain energy density is computed by local constrained atomistic calculations;
and non-local e5ects need to be included.

Remark 6. In the literature dealing with the non-linear elasticity of crystals; an impor-
tant concern is the implications of non-convexity and the presence of invariant groups
in the strain energy. Non-convexity is responsible for many important phenomena such
as the development of stable dislocations and phase changes; and the continuum vari-
ational problem may then not have a solution (see Dacorogna (1989; p. 276) and
references therein). In the present work; these issues are not dealt with.

6.1.2. Simple Bravais lattices
Consider that the undeformed planar crystal is a simple Bravais lattice, i.e. the atomic

positions Xn can be de(ned relative to an atomic site as follows:

Xn = niBi ; i = 1; 2; (45)
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where Bi denote the Bravais basis vectors and ni are integers. Therefore, the covalent
bonds Ak are integer linear combinations of the basis vectors of the crystal, Ak =ni

kBi,
with ni

k being typically 0 or 1. Using the approximation to the Exponential Born rule
described in the previous section, we can obtain deformed bond lengths and angles
in terms of the continuum deformation. Plugging Eqs. (41) into Eq. (42), and con-
sidering a representative cell of the crystal containing all energetically relevant bonds
and angles—a representative volume element, RVE—, we can write the continuum
hyper-elastic potential as

W (C;K) =
1
S0

ECell(ai; �jk); (46)

where S0 denotes the area of the undeformed representative cell. Although not explicitly
shown, this hyper-elastic potential also depends on the undeformed crystal structure,
and inherits its symmetries. Moreover, this model is automatically frame indi5erent.

6.1.3. Bravais multi-lattices
A Bravais multi-lattice can be seen as a collection of interpenetrating simple Bravais

lattices, where the atomic sites can be obtained by

Xn = niBi + Pk ; i = 1; 2; (47)

where, as before, Bi denote the basis or lattice vectors and Pk ; k = 1; : : : ; K represent
shifts of the di5erent simple lattices. In such a lattice, in order to generate all the
atomic positions, K + 1 basis nuclei are needed in addition to the basis vectors (in
a simple Bravais lattice, K = 0, only one primitive atom is needed). The honeycomb
structure of the graphene sheets (see Fig. 6) is an example of a multi-lattice. Note that
one nuclear site (say a black one) and the basis vectors B1 and B2 are not enough to
construct the entire lattice, in particular the white sites. Either a white site or the shift
vector P is also needed.

Fig. 6. Honeycomb Bravais multi-lattice: basis vectors Bi , shift vector P, inner displacements � and bond
vectors Ak .
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In classical crystal elasticity, the Born rule is postulated to a5ect the basis vectors,
while the evolution of the shift vectors is viewed as an internal rearrangement (Cousins,
1978; Zanzotto, 1996). This microstructure is obtained by minimizing the energy with
respect to the shift vectors, for each given macroscopic continuum deformation. Fol-
lowing Tadmor et al. (1999), the inner displacements �k are de(ned in the reference
crystal. Therefore, a bond vector, de(ned as a linear combination of basis and shifts
vectors, A0 = niBi + mkPk , is (rst transformed due to the internal rearrangement into
A = niBi + mk(Pk + �k), and then transformed according to the Born rule by

a = F(niBi + mk(Pk + �k)): (48)

In the present membrane theory, we will include the e5ect of the inner displacements
simply by rewriting Eq. (48) as follows:

a = exp�(X) ◦ F(X)(niBi + mk(Pk + �k)): (49)

Note that by doing this, we only allow for inner rearrangements in the original planar
lattice. Therefore, the inner displacements are viewed as an “in plane” e5ect and the
local rearrangements of the basis atoms cannot move atoms “out of the surface”.
If the approximation to the Exponential Born rule described in Section 5 is adopted,

we have

W =W (C;K; �k): (50)

Thus, the continuum strain energy density depends not only on the local deformation of
the membrane, but also on the internal variables �k . Then, given a local deformation,
the energy is minimized with respect to inner displacements:

�̂k(C;K) = arg
(
min
�k

W (C;K; �k)
)

⇒ 9W
9�k

∣∣∣∣
�̂k

= 0: (51)

After this internal relaxation, the continuum strain energy density can be written ex-
clusively in terms of the local continuum deformation:

W =W (C;K; �̂k(C;K)) = Ŵ (C;K): (52)

Fig. 6 illustrates some of these ideas. The dashed lines denote the original bond net-
work. Then, the shift vector is perturbed by an inner displacement �, translating the
white nuclei with respect to the black ones. Note that the Bravais basis vectors that
allow the generation of nuclear positions are unchanged, yet the microstructure (rela-
tive arrangement of the basis sites) as well as the bond vectors Ai are changed, and
so is the energy of the crystal. Then, a macroscopic deformation can be superimposed
to this microstructural change.
As noted by Tadmor et al. (1999), the derivatives of the resulting strain energy

density with respect to the strain measures, for instance C, can be computed as

9Ŵ
9C =

9W
9C +

9W
9+i

k

9+̂i
k

9C : (53)
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But, using the fact that when evaluated at the relaxed inner displacements the second
part of Eq. (51) holds, we have the simpler expression,

9Ŵ
9C =

9W
9C

∣∣∣∣
�̂k

: (54)

The same holds for the derivatives of the relaxed strain energy Ŵ with respect to the
curvature.

6.2. Non-bonded interactions and body forces

The non-bonded or van der Waals interactions include the attractive London dis-
persion forces as well as the overlap repulsion forces. In the MD=MM literature,
these interactions are accounted for using inter-atomic potentials that only act between
non-bonded pairs of atoms. This di5use interactions are critical in many applications.
For the molecular system we have for instance

Vtot;nb =
∑
i

∑
j¿i; j �∈Bi

Vnb(rij) =
1
2

∑
i

∑
j �∈Bi

Vnb(rij); (55)

where Vnb is the non-bonded potential and Bi is the set of atoms bonded to atom
i. The second version of the total non-bonded potential is provided because it makes
easier the continuum formulation.
A simple argument involving two RVE’s of area S0 containing two nuclei each

allows to write the continuum counterpart as

-nb =
1
2

4
S2
0

∫
�0

∫
�0−BX

Vnb(‖�(X)− �(Y)‖) d�0Y d�0X ; (56)

where BX is a ball centered at X and with a radius which is function of the undeformed
bond length to account for the fact that this potential does not a5ect bonded atoms. If
this non-bonded potential term is evaluated using numerical quadrature, we have

-nb =
1
2

4
S2
0

∑
i

∑
j �∈Bi

Vnb(‖�(Xi)− �(Xj)‖)wiwj

=
4
S2
0

∑
i

∑
j¿i; j �∈Bi

Vnb(‖�(Xi)− �(Xj)‖)wiwj; (57)

where wi denote the integration weights and Xi the sample points. Note that with the
numerical integration, the structure of the original potential, which loops over inter-
actions and not twice over the domain, is recovered.
When external forces are applied on the nuclei (e.g. electrostatic forces), the

continuum counterpart is a body force, and the corresponding exterior potential is

-ext =
∫
�0

B · � d�0; (58)

where B is the body force per unit undeformed area. If the forces applied on the atomic
system are a certain constant force f acting on each atom, then B is simply given by
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the expression

B=
2
S0
f : (59)

6.3. Variational principle and stress measures

The total potential energy of a given deformation map 0 is

-(0) =-int −-ext +-nb

=
∫
�0

Ŵ (C(0);K(0)) d�0 −
∫
�0

B ·0 d�0

+
1
2

4
S2
0

∫
�0

∫
�0−BX

Vnb(‖0(X)−0(Y)‖) d�0Y d�0X : (60)

The above includes the bonded potentials, non-bonded interactions and body forces,
and assumes that the approximation of the exponential map leads to a local strain
energy density that depends on C and K. The equilibrium deformation maps of the
system are then given by

�= arg
[
inf
0∈C

-(0)
]
; (61)

where C is the appropriate space of deformation maps or trial functions accounting
for essential boundary conditions. According to the principle of stationary energy, the
equilibrium con(gurations of the system � are stationary points of the potential energy
functional, and therefore verify

0 = 
-(�) =
∫
�0

(
9Ŵ
9C : 
C+

9Ŵ
9K : 
K

)
d�0 −

∫
�0

B · 
� d�0 + 
-nb; (62)

where the variations 
� lie in a corresponding space V. The variations of the non-
bonded continuum potential can be written as


-nb =
1
2

4
S2
0

∫
�0

∫
�0−BX

V′
nb

‖�(X)− �(Y)‖ [�(X)− �(Y)]

·[
�(X)− 
�(Y)] d�0Y d�0X : (63)

The stress measures are evaluated at the relaxed inner displacements �̂ and are given
by

n = 2
9Ŵ
9C = 2

9W
9C and m =

9Ŵ
9K =

9W
9K ; (64)

following a similar rationale to that used to obtain Eq. (54). The (rst of these stress
measures corresponds to the Second Piola–Kirchho5 stress, while the second is a
moment-like stress. These stress tensors, when contracted with the appropriate normal
to a curve in the undeformed body, provide tractions expressed as force per unit length
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and moment per unit length, respectively. Unlike classical shell theory, the stress tensors
are not stress resultants, because the body is intrinsically a two-manifold without
thickness, rather than a bulk material with additional kinematic constraints.
Using the Green strain tensor E=1=2(C− I), we can rewrite the principle of virtual

work as

0 =
∫
�0

(n : 
E+m : 
K) d�0 −
∫
�0

B · 
� d�0 + 
-nb: (65)

7. Numerical simulations of carbon nanotubes

In this section, the mechanics of carbon nanotubes are studied with the developed
hyper-elastic membrane. The appendix provides details about the implementation of the
model for carbon nanotubes for a 2-body=3-body potential. The two-body potential Vs

is a Morse potential while the three-body potential V� depends only on the angle and
is harmonic with a sextic correction. The parameters are taken from the MM2 model.
In all the simulations, the inner relaxation is performed by Newton’s method. For

the problem at hand, typical over-estimates of about 15% in the equilibrium energy
and noticeably di5erent equilibrium con(gurations are observed in the absence of the
inner lattice relaxation.
Equilibrium con(gurations are obtained by minimization of the total potential energy

of the continuum system using the Conjugate Gradient method (Gilbert and Nocedal,
1992). These are compared to MM simulations of the atomistic counterpart. The vari-
ational principle described in Eq. (65) is discretized by Galerkin (nite elements (FE).
Thus, the original discrete molecular system is replaced by a continuum model which
is subsequently transformed by the FE method into another discrete system. However,
we are free to construct the FE discretization so that the FE model has far fewer
degrees-of-freedom than the original system.
The variational principle (65) imposes restrictions on the (nite element approxima-

tion spaces. The virtual internal work term involves variations of the curvature of the
test functions, and therefore the (nite element space needs to be H 2 (i.e. possess square
integrable second derivatives). For approximation of the deformation, subdivision sur-
faces based on Loop’s scheme are used. This technique originates from the (eld of
computational geometry and has recently been applied to thin shell analysis (Cirak
et al., 2000; Cirak and Ortiz, 2001). In this method, a control mesh of triangular el-
ements with only translational degrees-of-freedom is used to construct a smooth (H 2)
surface. Very simple recursive subdivision rules applied on the control mesh are shown
to lead to smooth surfaces. What makes the technique applicable to thin-shell analysis
is the fact that the limiting process is not required in order to obtain the limit surface.
A closed-form parametrization of the surface can easily be constructed, and therefore
the strain measures can be computed.
In the presented simulations, nanotubes are twisted and bent beyond structural insta-

bilities, after which buckled con(gurations have lower energy than their homogeneous
counterparts. In the case of bending, a characteristic kink or local buckle is observed.
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There is experimental evidence (Chopra et al., 1995; Bernholc et al., 1998; Falvo
et al., 1997) of the existence of such buckled con(gurations.
The numerical experiments are carried out by incrementally rotating with opposing

angles both ends of the nanotube. For the twisting computations, the rotation axis
coincides with that of the nanotube, while in the bending experiments the ends are
rotated with respect to the axis perpendicular to the axis of the nanotube through its
center. The twisting or bending angle is measured as the total rotation angle that each
end of the nanotube undergoes.

7.1. Twisting of a [10-10] nanotube

In our studies of twisting, we consider a [10-10] nanotube (the standard description of
carbon nanotubes and their chirality in terms of two integers is described in Saito et al.,
1992) about 12 nm long (50 hexagonal cells in its length). Note that the chirality of the
nanotube is naturally accounted for in the membrane model through the orientation of
the underlying crystal with respect to the rolling direction used to form the nanotube.
The total twisting angle is 25◦ on each end. The rotation angle increments are of
1◦ for the (nite element membrane and of 0:5◦ for the atomistic system. Smaller
increments are required in the latter for convergence of the minimization procedure.
The atomistic system has 2020 nuclei while the (nite element model 910 nodes. This
example is intended to provide a validation of the hyper-elastic membrane based on the
Exponential Born rule in a large deformation situation. In addition, the same problem
is solved for a membrane based on the standard Born rule to illustrate the pitfalls of
this approach for surfaces.
Fig. 7 shows the evolution of the strain energy relative to the relaxed tube versus

the twisting angle for both the atomistic model and the continuum membrane. The
energy is expressed in atto Joules (1 aJ = 10−18 J). The (gure shows a (rst regime in
which the energy grows roughly quadratically with deformation. This corresponds to a
nearly homogeneous torsion of the tube. In this regime, the agreement between the two
models is almost perfect. Then, at a twisting angle of about 9:5◦, a structural instability
occurs and the nanotube buckles releasing part of its stored deformation energy. After
this point, the growth of the energy is roughly linear. It should be pointed out that
an imperfection is introduced in the continuum membrane model. The unperturbed
membrane buckles later, for a twisting angle of around 15◦.
In the second regime, the agreement between the two models is also excellent, al-

though discrepancies are noticeable. The maximum relative error in the energy is 2.4%
for the largest angle. This error is due both to modeling and (nite element discretiza-
tion errors. In order to evaluate the contribution due to modeling approximations, the
problem was solved with increasingly (ner meshes until convergence was observed.
The asymptotic value of the relative error in energy was found to be 1.9%.
In Fig. 8a, the deformed con(guration of the atomistic model for a twisting angle

of 25◦ is super-imposed onto the deformed continuum membrane. Both models agree
remarkably well: the membrane nearly (ts the nuclear positions, despite the very large
deformations. Fig. 8b shows the strain energy density on the (nite element computa-
tional mesh. It can be observed that highly deformed areas display high strain energy
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Fig. 7. Twisted [10-10] nanotube: comparison of the strain energy relative to the relaxed nanotube as
a function of the twisting angle for molecular mechanics (line), the continuum membrane based on the
Exponential Born rule (EBR, circles) and a continuum membrane based on the standard Born rule (SBR,
diamonds).

density. This (gure also illustrates the fact that the resolution of the (nite element
system is not dictated by the underlying crystal spacing, but can rather be adjusted
depending on the deformation. In this example, the (nite element simulations were
one order of magnitude faster than the atomistic ones.
We next consider a membrane constructed from the standard Born rule without

the proposed exponential extension. In this case the resulting hyper-elastic potential is
non-convex. Indeed, as indicated in Section 2.2, the energy of such a model is invariant
under isometric deformations, i.e. the model has zero bending sti5ness. This causes a
severe mesh dependence in the numerical solutions: since the discrete FE space can-
not represent all isometric deformations, the discrete problem is still solvable, but as
the mesh is re(ned, the numerical method provides solutions with increasingly (ne
features. Fig. 7 shows the strain energy evolution for this de(cient model. It can be
observed that energy predictions are adequate in the (rst few steps because for this par-
ticular example the homogeneous twisting solution is membrane dominant. However,
a spurious instability occurs very early in the computation and the predicted energy
is one order of magnitude smaller than the correct energy. Actually, if the boundary
conditions were compatible with an isometric deformation, the predicted energy would
be nearly zero, as shown in Arroyo and Belytschko (2001). Fig. 8c shows the equi-
librium con(guration for this model. It clearly di5ers both from the atomistic and the
Exponential Born rule models, displaying unrealistic (ne features.

7.2. Bending of a [5-5] nanotube

We consider a [5-5] carbon nanotube about 4:7 nm long (19.5 hexagonal cells in
length). The tube is bent to an angle of 30◦ at each end. This nanotube was chosen
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Fig. 8. Twisted [10-10] nanotube: (a) super-imposed MM (black spheres) and exponential Born rule based
continuum membrane (gray surface) deformed con(gurations at a twisting angle of 25

◦
; (b) map of the strain

energy density (clear gray represents high strain energy density) for the (nite element solution, illustrating
the computational mesh and (c) deformed con(guration for a membrane based on the standard Born rule.

because it poses a particularly stringent test to the continuum membrane model: it has
only a few atoms around the circumference and very localized deformations occur. The
limits of applicability of the membrane are thus explored. This example however does
not exploit the computational savings that the continuum model can provide compared
with full atomistic simulations.
Fig. 9 compares the deformation of the continuum membrane based on the Exponen-

tial Born rule to that of the atomistic model. The molecular mechanics results are dis-
played with spheres and segments representing atomic sites and covalent bonds, while
the membrane results are post-processed as a translucent smooth surface. The qualita-
tive agreement is very good. Before the buckle forms, at an angle of 10◦, the atomic
sites lie on the surface almost exactly. Then, as the buckle develops, the deformed
geometries diverge slightly. However, even for very severe and localized deformations,
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Fig. 9. Bent [5-5] nanotube: super-imposed MM (spheres and segments) and continuum membrane (translu-
cent surface) deformed con(gurations.

the shape of the buckle is predicted remarkably well. Actually, the discrepancy can be
partially explained by the fact that this nanotube is not symmetric while the buckle
is symmetric. Therefore, in the molecular mechanics simulation the buckle does not
appear in the center of the nanotube. The continuum membrane model cannot capture
this asymmetric molecular arrangement and produces a buckle in the center of the
nanotube.
Fig. 10 shows the evolution of the strain energy plotted against the bending angle

for both models. The energies obtained with both models are undistinguishable until
buckling occurs. Before this happens, the di5erence in energy between the two models
is below 0.15%. When the tube kinks, the energy evolution changes roughly from
quadratic to linear. The angle at which the tube buckles is well predicted (around 11◦).
After this point, there is some discrepancy while the buckle fully develops. The larger
di5erence in energy is 5.5% for an angle of 13◦. Once the buckle has fully formed, the
prediction of the membrane becomes excellent again, until the angle increases beyond
24◦. At this point, a local energy release mechanism develops in the atomistic model.
This mechanism is illustrated in Fig. 11, a zoom in on the buckle at angles of 24◦
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Fig. 10. Bent [5-5] nanotube: comparison of the strain energy relative to the relaxed nanotube for MM and
the continuum membrane as a function of the bending angle.

Fig. 11. Zoom in of the buckle: a local instability spanning two atomic spacings.

and 25◦. A secondary buckle spanning only two bonds develops inside the kinked
area. Such (ne atomistic features are not captured by the continuum membrane model,
and this explains the discrepancy in the energy for angles ¿ 24◦. Although this local
energy release mechanism of the atomistic system was not observed in all the bending
experiments performed on [5-5] nanotubes, it illustrates the limitations of the membrane
model in some situations.
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Fig. 12. Bent [10-10] nanotube: comparison of the strain energy relative to the relaxed nanotube for several
MM and continuum simulations as a function of the bending angle.

7.3. Bending of a [10-10] nanotube

The last example considered is the bending of [10-10] nanotubes, 40 hexagonal
cells in length. This nanotube is relatively more compliant than the [5-5] nanotube,
and for a similar aspect ratio, the buckle forms at earlier stages. The results for three
continuum membrane simulations with di5erent load step-sizes are reported. Similarly,
three atomistic simulations with di5erent bending angle increments are considered.
Fig. 12 shows the energy growth with loading for the three molecular models (MM1,

MM2 and MM3) as well as for the (nite element membrane models (C+FE1, C+FE2
and C+FE3). The six curves are indistinguishable until the buckling point. After this
moment, they all remain very close. The energy di5erences between the continuum
membrane simulations are within 1%, while the atomistic simulations di5er ¡ 2:5%.
The maximum di5erences between all six models is below 4.5%, and at the (nal stages
the energy of the atomistic models is noticeably lower than that of the (nite element
membrane models.
Fig. 13 shows the (nal deformed con(guration for the di5erent continuum membrane

models, while the deformed atomistic models MM1, MM2 and MM3 are displayed in
Fig. 14. These (gures show a wide variety of buckling con(gurations. The continuum
membrane follows di5erent equilibrium paths depending on the perturbations introduced
by the numerical method (no deliberate perturbations were introduced). Either two or
three buckles are observed. Note that these con(gurations are almost identical from the
energetic point of view. This bending test is very sensitive to perturbations because a
large portion of the nanotube reaches a critical compressive stress state at the onset
of the instability, allowing for multiple buckling patterns with similar energetics. A
similar situation is observed for the atomistic simulations that display di5erent buckling
patterns.
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Fig. 13. Bent [10-10] nanotube: deformed con(gurations for three (nite element simulations (C+FE1, C+FE2
and C+FE3 from top to bottom).

Fig. 14. Bent [10-10] nanotube: deformed con(gurations for three molecular mechanics simulations (MM1,
MM2 and MM3 from top to bottom) and for (nite element simulation C+FE4.

This issue is further investigated with a fourth continuum membrane simulation,
C+FE4. In this case, the initial guess at each loading stage is perturbed randomly. By
doing this, we are able to access lower energy paths, and we actually obtain a deformed
con(guration with a very similar buckling structure to that of atomistic simulation MM3
(see Fig. 14), with a central buckle facing the observer, and two lateral buckles facing
the other side of the nanotube. By perturbing the continuum membrane in this fashion,
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we also come closer to simulation MM3 from the energetic point of view, with a
relative error of only 1.5%.

8. Summary and discussion

A methodology to construct continuum models for crystalline sheets of atoms has
been presented. The proposed model is a hyper-elastic membrane whose material prop-
erties depend exclusively on the atomistic description of the system. The major contri-
bution is an extension of Born rule to the case in which the crystal is not space-(lling
but rather a curved (lm. This extension is based on the exponential map. We have
shown by physical arguments and numerical results that in the absence of the expo-
nential map, the behavior of a continuum membrane does not reproduce the molecular
mechanics model.
The exponential map is approximated locally to derive practical models. The strain

energy of the membrane depends on the Green deformation tensor and on the pull-back
of the curvature tensor, and is frame-indi5erent. This elastic potential depends on these
strain measures in a non-linear fashion that derives naturally from the Exponential
Born rule. The membrane has no thickness. This contrasts with the usual elastic shell
models found in the literature that assign a thickness to the crystalline (lm. In addition,
a continuum formulation of the non-bonded interactions is derived.
We have used molecular mechanics solutions for carbon nanotubes as a benchmark

since our primary aim was to mimic such discrete models with a continuum membrane.
The continuum is discretized with subdivision (nite elements, providing a smooth rep-
resentation of the surface. Twisting, bending deformations of carbon nanotubes have
been tested and excellent agreement between the two models has been observed even
in the case of small nanotubes and very large deformations. Both the deformed con(g-
urations and the equilibrium energies were compared, and in most cases the agreement
was excellent.
This continuum=(nite element approach has advantages over atomistic simulations

in a wide range of applications. The computational cost of the simulations can be dra-
matically reduced for wide and long nanotubes, multi-walled nanotubes and nanoropes.
The continuum approach can also serve as an inexpensive way to obtain initial esti-
mates of optimized structures to be re(ned with more sophisticated atomistic methods.
We have also explored the range of validity of the continuum membrane model. The

twisting example illustrates that the atomistic system is more sensitive to buckling than
the continuum membrane model. This is not unexpected, since the continuum mem-
brane model cannot represent displacement (elds with mode lengths of the order of
the atomic spacing unless the (nite element mesh is comparably re(ned. Furthermore,
the behavior of cylindrical con(gurations is particularly susceptible to imperfections
and perturbations, since these con(gurations are replete of symmetry-breaking modes.
These phenomena are also illustrated by the bending example of [10-10] nanotubes,
which displays energetically very close equilibrium paths with di5erent buckling pat-
terns. In the bending simulations of the [5-5] nanotube, we observed the inability of the
continuum membrane to mimic a local energy release mechanism spanning two atomic
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spacings encountered in the atomistic system. Although these results are illustrative,
the range of validity of this continuum membrane model needs to be investigated in
more precise terms. In particular, it would be desirable to quantify the errors intro-
duced by the approximation of the exponential map. Obviously, phenomena such as
bond realignment, bond breaking and dislocations render the model in its present form
inapplicable. However, we have demonstrated that the model is robust and accurate
over a useful range of situations.
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Appendix A. 2-body=3-body potentials for graphene sheets

A.1. Crystal structure

Carbon nanotubes can be viewed as graphene sheets rolled into a tube. The un-
deformed bond network can be characterized by the three bond vectors of length A0

forming an angle of 22=3 between them: Ai
0; i = 1; 2; 3. The bond vectors a5ected by

the inner displacements are (see Fig. 6):

Ai = Ai
0 + �: (A.1)

The relative orientation of the original bond vectors Ai
0 determines the chirality of the

nanotube. For instance, when one of these vectors is parallel to the nanotube axis,
it is called a zig-zag nanotube (Saito et al., 1992). On the other hand, when one is
perpendicular to the axis, we have an arm-chair nanotube.

A.2. Strain energy density

To develop an expression for the strain energy density of the nanotube based on the
inter-atomic potentials, a homogenization process at the level of the RVE is carried out.
The strain energy density considered is per unit reference area. The homogenization
process is performed in the reference state, that corresponds to the graphene sheet in
equilibrium. We will consider the instance in which the atomic system is governed by
potentials of the type described in Eq. (43).
The hexagonal cell of the crystal is a RVE for the closest neighbor interaction

potentials considered. The area of the hexagonal cell in the undeformed graphene sheet
is S0 = (3

√
3=2)A2

0. In each cell there is one bond of each type and two angles of each
type. Indeed, it is easy to show from the expressions in the paper that, on the one
hand, the length of the deformed bonds corresponding to Ai and to −Ai is the same,
and on the other hand the angle that the deformed bonds corresponding to Ai and Aj

form is equal to the angle corresponding to −Ai and −Aj.
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Therefore, recalling Eq. (46), the strain energy is

W (C;K; �) =
1
S0

[
3∑

l=1

Vs(‖al‖) + 2
3∑

k=1

V�(� k ; ‖ai‖; ‖aj‖)
]
; (A.2)

where {i; j; k} is an even permutation of {1; 2; 3}. Its dependence on the continuum
strain measures C and K and the inner displacements � has been stressed, and can be
traced through Eqs. (A.1) and (40). Now it suMces to follow the procedure described in
Section 6.1.3 to eliminate the inner displacements (now these are a continuum internal
variable) and obtain Ŵ (C;K).

A.3. Summary of the evaluation of the strain energy density

Recall that the undeformed body is planar and described with Euclidean coordinates
{X1; X2}. Because of this, cova- and contra- components of tensors are indistinguishable,
and so are the tensors C and C[. Their matrix representation in the orthonormal basis
BR2 associated to {X1; X2}, [C] = [C[] is symmetric, as well as [K]. To keep the
notation simple, we do not distinguish between the vectors and tensors themselves and
their representation in this Euclidean coordinate system of �0. Also, the notation {·}A
means extracting the Ath component of a vector in this Euclidean coordinate system. In
our total Lagrangian formulation, all quantities are expressed in the undeformed body.
Assume we are given the strain measures C and K at a point X∈�0, whose

components are denoted as

C=
[
E F
F G

]
and K =

[
L M
M N

]
: (A.3)

Suppose we are also given the inner displacements � at the point X of the undeformed
solid. Finally, the orientation of the undeformed lattice is given with respect to the
coordinate system, and therefore the three undeformed bond vectors Ai

0 are known.
The bond vectors perturbed with the inner displacements are denoted Ai =Ai

0 + �, and
Ai denotes the length of each of these vectors. Three unit vectors are then de(ned,

Ei =
1
Ai A

i : (A.4)

The mean and the Gaussian curvatures of the deformed membrane can be computed
as

H =
1
2
trace(C−1K) =

1
2
C−1 :K and K =

detK
detC

(A.5)

and the principal curvatures as

kI; II = H ±
√

H 2 − K: (A.6)

The principal directions expressed in �0 are then obtained from Eq. (24):

VI; II =

{
−M + kI; IIF

L− kI; IIE

}
+ 6I; II

{
−N + kI; IIG

M − kI; IIF

}
; (A.7)
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where the scalar parameters 6I; II are set, for instance, to zero or one, to ensure VI; II

are not (close to) zero. If the deformed surface is planar, the above expression does
not work, and any two C-orthogonal vectors of �0 can be chosen.

In Section 5.1, we introduced the auxiliary quantities wI;II , the components of the
deformed tangent vectors in a local coordinate system of the tangent of the deformed
body. Now, each of the three bond vectors has a corresponding deformed tangent vector
wi = FAi, and their components are,

wi
I; II = Ai VI; IICE

i√
VI; IICVI; II

= Ai 〈VI; II |Ei〉C
‖VI; II‖C : (A.8)

Recalling Eq. (40), where the deformed lattice vector a was expressed in an ortho-
normal basis, we can compute the scalar products between the three deformed bond
vectors,

〈ai|aj〉=wi
IQ(kIw

i
I )w

j
IQ(kIw

j
I ) + wi

IIQ(kIIw
i
II )w

j
IIQ(kIIw

j
II )

+
[
kI (wi

I )
2

2
Q2(kIwi

I =2) +
kII (wi

II )
2

2
Q2(kIIwi

II =2)
]

×
[
kI (w

j
I )

2

2
Q2(kIw

j
I =2) +

kII (w
j
II )

2

2
Q2(kIIw

j
II =2)

]
: (A.9)

Finally, the lengths and angles of the deformed bond vectors can be computed from
these scalar products:

‖al‖=
√

〈al|al〉 and � k = arccos
〈ai|aj〉

‖ai‖ ‖aj‖ ; (A.10)

where {i; j; k} is an even permutation of {1; 2; 3}. Then, these quantities can be plugged
into Eq. (A.2) to obtain the strain energy density of the elastic solid.

A.4. Stress tensors

Recalling the expression of the strain energy density (A.2) and evaluating everything
at the relaxed inner displacements �̂, the stress measures can be written as

n= 2
9Ŵ
9C = 2

9W
9C

=
2
S0

[
3∑

l=1

V′
s
9‖al‖
9C + 2

3∑
k=1

(
9V�

9�
9�k

9C

+
9V�

9r1
9‖ai‖
9C +

9V�

9r2
9‖aj‖
9C

) ]
; (A.11)
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and

m=
9Ŵ
9K =

9W
9K

=
1
S0

[
3∑

l=1

V′
s
9‖al‖
9K + 2

3∑
k=1

(
9V�

9�
9�k

9K +
9V�

9r1
9‖ai‖
9K

+
9V�

9r2
9‖aj‖
9K

) ]
: (A.12)

In the following, several expressions needed in the computation of the stress measures
are provided. The derivatives of the mean and the Gaussian curvatures with respect to
the strain measures can be written as

9H
9C =−1

2
C−1KC−1;

9K
9C =−KC−1;

9H
9K =

1
2
C−1;

9K
9K = KK−1:

The derivatives of the principal curvatures with respect to the strain measures are then:

9kI; II
9Z =

9H
9Z ± 1

2
√
H 2 − K

(
2H

9H
9Z − 9K

9Z

)
; (A.13)

where Z denotes either C or K.
When it comes to the derivatives of the principal directions, let us introduce the

following matrices:

M1 =
[

0 1=2
1=2 0

]
; M2 =

[
1 0
0 0

]
and M3 =

[
0 0
0 1

]
: (A.14)

The derivative with respect to the Green deformation tensor is then

9VI; II

9C =




F
9kI; II
9C + kI; IIM1

−E
9kI; II
9C − kI; IIM2


+ 6I; II




G
9kI; II
9C + kI; IIM3

−F
9kI; II
9C − kI; IIM1


 (A.15)

and that with respect to the curvature is

9VI; II

9K =




F
9kI; II
9K −M1

−E
9kI; II
9K +M2


+ 6I; II




G
9kI; II
9K −M3

−F
9kI; II
9K +M1


 : (A.16)34



Noting the following expressions:

9‖VI; II‖C
9C =

1
‖VI; II‖C

[
9{VI; II}A
9C {CVI; II}A + 1

2
VI; II ⊗ VI; II

]
; (A.17)

9〈VI; II |Ei〉C
9C =

9{VI; II}A
9C {CEi}A + 1

2
(VI; II ⊗ Ei + Ei ⊗ VI; II ); (A.18)

9‖VI; II‖C
9K =

1
‖VI; II‖C

9{VI; II}A
9K {CVI; II}A (A.19)

and

9〈VI; II |Ei〉C
9K =

9{VI; II}A
9K {CEi}A; (A.20)

where the summation convention applies to the index A= 1; 2, the derivatives of wi
I; II

with respect to the Green deformation and curvature tensors can be computed as

9wi
I; II

9Z = Ai 1
‖VI; II‖2C

(
‖VI; II‖C 9〈VI; II |Ei〉C

9Z − 〈VI; II |Ei〉C 9‖VI; II‖C
9Z

)
; (A.21)

where Z denotes either C or K.
The above expressions can be used to compute the derivatives of the scalar products

〈ai|aj〉 with respect to the strain measures, and therefore readily obtain the correspond-
ing stress tensors. There is however one more detail to be addressed. Remark 4 stressed
the need of a careful implementation of the function Q(x)=sin x=x as x is close to zero.
Similarly, the derivative of this function Q′(x)=(cos x−sin x=x)=x, which appears in the
(nal formula for the stresses, needs to be implemented with care to avoid numerical
inaccuracy. Also in this case, a Taylor series expansion is used when x is smaller than
a certain threshold.

A.5. Inner stress

The derivative of the strain energy density W (C;K; �) with respect to the inner
displacements is needed for the local relaxation that yields Ŵ (C;K), and can be
called “inner stress”:

h =
9W
9� =

1
S0

[
3∑

l=1

V′
s
9‖al‖
9� + 2

3∑
k=1

(
9V�

9�
9�k

9�

+
9V�

9r1
9‖ai‖
9� +

9V�

9r2
9‖aj‖
9�

)]
: (A.22)

In this section, several useful expressions for its computation are provided.
It can be easily seen that

9Ai

9� = Id2×2: (A.23)
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Recall that the quantities wi
I; II are the components of the vector wi = FAi in the basis

BTx� = {iI ; iII} introduced in Section 5.1. Therefore,

wi
I; II = 〈wi|iI; II 〉=

〈
wi

∣∣∣∣ 1
‖vI; II‖vI; II

〉
=

1
‖VI; II‖C 〈A

i|VI; II 〉C

=
1

‖VI; II‖CA
iCVI; II : (A.24)

Consequently, one can show that, irrespective of the bond index i, we have
9wi

I; II

9� =
1

‖VI; II‖CCVI; II : (A.25)

This can be used to compute the derivative the deformed bond vector a expressed in
the orthonormal basis described in Section 5.4:

9[a]BR3

9� =




[QI + kIwIQ
′
I ]
9wI

9�

[QII + kIIwIIQ
′
II ]
9wII

9�

kIwIQI=2[QI=2 + kIwI
2 Q′

I=2]
9wI

9� + kIIwIIQII=2[QII=2 + kII wII
2 Q′

II=2]
9wII

9�




;

(A.26)

where the following notations have been used:

QI; II = Q(kI; IIwI; II ); QI; II=2 = Q(kI; IIwI; II =2); (A.27)

Q′
I; II = Q′(kI; IIwI; II ); Q′

I; II=2 = Q′(kI; IIwI; II =2): (A.28)

With these expressions, the calculation of the “inner stress” h becomes straightforward.
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