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Abstract. In Gazprom dobycha Urengoy LLC, as in other oil-and-gas production enterprises, there are 
problems of increased equipment wear due to corrosion. A special role there plays CO2 corrosion. Despite 
the homogeneity of the extracted fluid and even chemical composition of the working medium, the nature 
and intensity of corrosion damage to pipelines and equipment varies over a wide range, due to different 
thermobaric parameters of well operation. To determine parameters influencing the rate of corrosion most 
different methods of statistical analysis were used. The paper provides a methodology for compiling a 
mathematical model and assessing its reliability. As a result, the equation of carbon dioxide corrosion in 
relation to the conditions of Achimov deposits of Urengoy oil, gas and condensate field was obtained. The 
type of the obtained equation was chosen according to the model of the classical de Waard-Milliams 
carbon dioxide corrosion equation. The model proposed by the authors describes the processes of carbon 
dioxide corrosion more reliably than the de Waard-Milliams equation does. The disadvantage of the 
developed model is that it does not reliably describe the speed of corrosion in wells with corrosion rates, 
significantly exceeding the average values for all wells studied. 

1 Introduction
In October 2009, the gas condensate facility was 
launched developing Achimov deposits new for PJSC 
Gazprom. Achimov deposits are characterized by 
abnormally high reservoir parameters: pressure is up to 
60 MPa, and the temperature is up to 106°C. 

After 5 years of operation the first corrosive damage 
to the inner surface of the wellhead equipment elements 
and pipelines were identified. Figure 1 shows one of the 
defects. The cause of these defects was carbon dioxide 
corrosion. 

Fig. 1. Photo of corrosion defect of a tool flange. 

The partial pressure of carbon dioxide at the 
wellhead exceeds 0.21 MPa. Thus, the environment has 
a high degree of aggressiveness in accordance with 
various regulatory documents (NACE SP 0106-2006, 
GOST R 51365-2009, SТО Gazprom 9.3-011-2011) 
[1-3]. In gas collecting pipelines, the partial pressure of 

carbon dioxide is reduced to the level of 0.1 MPa but the 
presence of free water and the stratified flow conditions 
cause the corrosion process along the lower pipe 
generatrix. 

At the facilities of Gazprom dobycha Urengoy LLC 
exposed to carbon dioxide corrosion a corrosion 
monitoring system is implemented, which allows to 
measure the corrosion rate in different parts of the gas 
collection system [4,5]. According to the measurement 
results, the following pattern was noted. In areas up to 
the pressure regulator, characterized by high 
temperatures and pressures, the rate of corrosion flow is 
higher than in the areas after the pressure regulator, 
where thermobaric parameters are lower. This fact is 
explained by the fact that the rate of carbon dioxide 
corrosion depends on the temperature and partial 
pressure of the gas, which in turn depends on the 
operating pressure. 

A large number of theoretical, empirical and semi-
empirical models exist to describe the corresponding 
dependencies [6,7]. The model de Waard-Milliams is 
considered the most popular and - already - classic [8,9]. 
However, the use of this model for the conditions of 
Achimov deposits gives excessive corrosion rates 
relative to the actual corrosion rates. Based on this, the 
authors of the article faced the task of developing their 
own model describing the rate of carbon dioxide 
corrosion in relation to the conditions of Achimov 
deposits. 
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2 Materials and Method 
To carry out a multi-factor analysis assessing the impact 
of various parameters on the corrosion rate, the 
following data were selected: the results of chemical 
analyses of formation water samples, the results of gas 
condensate studies, the average values of pressure, 
temperature and flow rates for each well, corrosion rates 
obtained by gravimetric method. All data were 
summarized in a matrix consisting of 72 rows and 28 
columns, where 72 is the number of observations; 28 - 
the number of factors that could have a possible impact 
on the corrosion rate. 

The generated data array has undergone a 
preprocessing procedure, including: 

1. Elimination of missing observations. As part of
this operation, we removed from the data set 
observations, in which at least one of the factors was 
missing. For example, wells that lack data on the 
chemical composition of water were excluded from the 
data set. 

2. Transformation of qualitative features into
numerical (binary) ones. For example, one of the layers 
from which the fluid was extracted was assigned the 
value 0, the other layer – 1. 

3. Application of bootstrapping method. Due to the
large amount of data available for multi-factor analysis, 
the bootstrapping method was used to artificially 
increase the amount of information and improve the 
quality of the future model [10,11]. The essence of the 
method consists of forming a set of samples based on a 
random selection with repetitions and ultimately the 
entire sample assumes the normal form of distribution, 
which allowed further use of standard methods of 
mathematical statistics and data analysis. 

After preliminary data processing for each analyzed 
factor, mean values and mean square deviation 
(hereinafter referred to as MSD) were found. For some 
factors, the MSD exceeded the average value of the 
factor, which indicates a large level of spread in values. 

The next step was to conduct a factor analysis, the 
purpose of which is to find the factors that most affect 
the corrosion rate. For its implementation, the principal 
component method was chosen as the most frequently 
used due to ease of use and transparency. This method 
was used to exclude the maximum number of factors 
from the model, because a large number of variables in 
the mathematical model makes it variable, and the 
reliability of such a model may be in doubt. 

In the RStudio software product, a diagram was built 
(Figure 2), estimating the contribution of the total 
variance in each of the main components. 

The higher the resulting column, the more variations 
include the main component being analyzed. The main 
components are ordered in descending order. Thus, the 
first two main components account for about 60% of the 
total number of variations. 

 

Fig. 2. Main components with percentage of total variation in 
data. 

Further, the contribution (in percent) of each of the 
analyzed factors to the first two main components was 
estimated, in other words, how strongly the analyzed 
factor affects the main components. After that, a 
correlation map was drawn in the software system 
(Figure 3). 

Fig. 3. Correlation map. 

The correlation map indicates positively correlated 
factors (grouped together), negatively correlated (located 
in opposite quadrants), as well as the level of variability 
and significance of factors: the location closer to the 
edge of the circle indicates greater variability, while the 
location closer to the center indicates lesser variability. 
The obtained diagram shows that the corrosion rate in 
2016 (Vcorr16) and in 2017 (Vcorr17) has a relationship 
with the temperature (Ту) and flow rate (Qpl), also has a 
positive correlation with the first main component with 
the operating pressure (Pу) and, accordingly, the partial 
pressure of carbon dioxide (PСО2). Some other factors 
that have a positive correlation with the corrosion rate 
(water content – QH2O, the content of hydrocarbon 
components C5+в – PС5В) have an overestimated mean 
square deviation and cannot be included in the model. 
Thus, the hypothesis that the maximum influence on the 
corrosion rate is exerted by the temperature, pressure and 
flow rate of wells was previously formulated. To 
confirm this hypothesis, we started the construction of a 
multidimensional regression model. 
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Further, also using RStudio software, a model was 
compiled. For this, all factors included in the original 
matrix were used. The result of this work was a 
multidimensional regression model presented in the form 
of a table indicating the regression coefficients, MSD for 
each factor, the values of the Student's t-test, p-values 
(significance level) for each criterion. All of the above 
criteria allow us to estimate the statistical significance of 
each factor and further exclude the least significant 
factors from the model. 

On the basis of the obtained model, it was decided to 
reduce the model, in particular, all factors were excluded 
from the model except for the temperature, pressure and 
flow rate of the well. After that, a model was built that 
includes only the above factors (Table1). 

Table 1. The results of calculating the parameters of the linear 
regression model in the first approximation. 

Estimate Std. Error t value Pr(>|t|) 
Intercept -0.3318 0.0911 -3.642 0.0004 

Temperature 0.0098 0.0029 3.358 0.0011 
Pressure 0.0021 0.0029 0.728 0.4680 

Flow rate 0.0021 0.0030 0.684 0.4953 

The next stage of the study was to assess the 
reliability of the model. In this stage, we built three 
diagrams. 

Using the Gauss – Markov theorem, an array of data 
was formed, on which the first diagram was built (Figure 
4), which allows us to evaluate the correctness of the 
choice of the model type. 

 

Fig. 4. The dependence of predicted values of rate of corrosion 
on the standardized residues. 

The resulting dependence indicates that the model 
type (linear relationship) was chosen correctly. In the 
case of a different nature of the desired dependence, the 
trend line (red line) would have a geometry that is 
different from the linear one. Also on this diagram, it is 
clearly visible that there are anomalous points (No. 1, 11, 
22) that do not fall on the model. The greater the spread
of points from the trend line, the less adequate is the 
resulting model. 

The following diagram (Figure 5) is a scattering 
diagram of observed and expected (standardized) values 
with a corresponding specified distribution. If the 
observed values fall on a straight line, then the 

theoretical distribution is well suited with the observed 
data. 

 
Fig. 5. Q-Q diagram of the model before detecting anomalous 
values. 

A very close correlation with the line, except for the 
anomalous points (№ 11, 22, 111), indicates that the 
distribution of samples is normal. 

The third diagram (Figure 6) shows the dependence 
of the degree of influence of each observation on the 
result of the corrosion rate on the error for each 
observation. 

Fig. 6. Graphic interpretation of Cook’s distance for the model. 

In addition, the diagram shows a dotted line of 
Cook's distance (in the upper right corner). The closer to 
these lines the observation is, the more this observation 
shifts the predicted corrosion rate from the actual value. 
In accordance with this diagram, there are anomalous 
observations (№ 11, 22, 111), which coincide with the 
previous two diagrams. 

Further, using the Cook’s distance determination 
method [12], anomalous corrosion rate values were 
revealed, creating a high variability of the regression 
model. Cook's distance shows the difference between the 
calculated coefficients of the regression equation and the 
values that would be obtained by excluding the 
corresponding observation. If all Cook’s distances are 
not the same, which indicates the adequacy of the model, 
we can assume that this observation shifts the estimates 
of the regression coefficients. Figure 7 shows the results 
of the algorithm in identifying anomalous values for 
corrosion rates. Numeric designations correspond with 
the index identifier of a well with an anomaly. Through 
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this method, four anomalous observations located above 
the red line were excluded from the model. 

Fig. 7. Graphic interpretation of the Cook's distance for the 
model. 

The next step was a similar construction of the 
regression model in the absence of anomalous 
observations (Table 2).  

Table 2. The results of calculating the parameters of the linear 
regression model after eliminating anomalous observations. 

Estimate Std. Error t value Pr(>|t|) 
Intercept -0.2011 0.0538 -3.737 0.0003 
Temperature 0.0064 0.0017 3.633 0.0004 
Pressure 0.0030 0.0018 1.685 0.0951 
Flow rate -0.0001 0.0018 -0.060 0.9524 

Based on the evaluation of the statistical significance 
of each factor, it was decided to exclude the flow rate 
from the model due to the lack of a sufficient level of 
significance for the above predictor - 0.9524. After that, 
the model was rebuilt and its reliability was evaluated 
similarly to the original model. After rebuilding, the 
dispersion of the actual values from the predicted 
corrosion rates visually decreased, which is an indicator 
of the adequacy of the model obtained. 

It is known that in the classical equation of an 
estimation of carbonic acid corrosion of de Waard-
Milliams (1) there are the same variables as in the model 
obtained by authors. The only difference is that in the de 
Waard-Milliams equation, the pressure is represented as 
the partial pressure of carbon dioxide but because the 
CO2 content is the same for all wells, respectively, the 
operating pressure is directly proportional to the partial 
pressure of CO2. 

lg𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 = 5.8 −
1710
𝑇𝑇

+ 0.67 lg𝑃𝑃𝐶𝐶𝐶𝐶2 (1) 

Therefore, the next stage of the work was the 
construction of a model according to the type of the de 
Waard-Milliams equation. Refined model parameters are 
presented in Table 3. 

Table 3. Parameters of the regression model built by the type 
of the de Waard-Milliams equation. 

Estimate Std. Error t value Pr(>|t|) 
Intercept 6.37 1.9966 3.191 0.0019 

1/T -2377 612.0577 3.885 0.0001 
ln(P) 0.52 0.2974 1.754 0.0826 

3 Results 
Thus the equation describing the dependence of 
corrosion rate on the pressure and temperature 
conditions for Area 2 of the Achimov deposits in the 
Urengoy oil, gas and condensate field can be written in 
the form proposed by de Waard-Milliams as follows: 

lg𝑉𝑉𝑐𝑐𝑐𝑐𝑐𝑐 = 6.37 −
2377
𝑇𝑇

+ 0.52 lg𝑃𝑃𝐶𝐶𝐶𝐶2 (2) 

Figures 8-9 show a graphical comparative analysis of 
the actually measured corrosion rates with the predicted 
corrosion rates for the two models. 

Fig. 8. Dependence of the predicted corrosion rate according to 
the de Waard-Milliams model from the temperature. 

Fig. 9. Dependence of the predicted corrosion rate of the 
developed model on temperature. 

4 Discussion 
In the model, all members are statistically significant 
predictors. The value of the determination coefficient 
(R2) for the obtained model is 0.47. Taking into account 
the fact that all the initial data were obtained in field 
conditions, the model can be considered sufficiently 
adequate. 

The model developed by the authors describes the 
processes of carbon dioxide corrosion in relation to 
objects of Achimov deposits with a better correlation 
than the de Waard-Milliams model, despite the fact that 
the de Waard-Milliams equation has a theoretical basis 
on which the results of laboratory studies are imposed. 

The resulting equation is of practical importance at 
the stage of commissioning of new wells to predict 
corrosion rates until it is possible to actually measure the 
corrosion rate. 
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5 Conclusion
1. A model describing the processes of carbon

dioxide corrosion in relation to objects of Achimov 
deposits of the Urengoy oil, gas and condensate field 
was developed; 

2. To identify the main factors affecting the corrosion
rate, a statistical analysis was carried out using the 
principal component method and the construction of 
multidimensional regression models. It is established 
that the factors most correlated with the corrosion rate 
for the conditions of Achimov deposits are temperature 
and pressure; 

3. An anomaly search algorithm was implemented
based on the Cook's Distance determination. Using this 
algorithm, four observations were excluded from the 
total sample; 

4. After exclusion of the anomalous wells an updated
regression model was built by the type of de Waard-
Milliams equations; 

5. The proposed model describes the processes of
carbon dioxide corrosion more accurately than the de 
Waard-Milliams equation; 

6. The disadvantage of the developed model is that it
does not describe the corrosion rate in wells with 
abnormal values of the corrosion rate. 

List of symbols 
Vcor corrosion rate, mm/y 
PCO2 partial pressure, bar 
T temperature, K 
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