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Abstract. The dynamic vibration response of sandwich beams with an anti-tetra-chiral lattice
as a lightweight sandwiched core have been studied by using a nonlinear finite element analysis
(FEA). Since the anti-tetra-chiral structure has a weak shear stiffness, its vibration response
is strongly affected by the shear deformation. In our calculation, a 3-point bending flexural
test was conducted for calculating the effective shear stiffness as well as the effective Young’s
modulus of the chiral core. The natural frequency of the sandwich beam has been calculated by
FEA, and predicted by using the Rayleigh-Ritz method, assuming that the sandwich beam is
composed of composite continuum materials with equivalent Young’s modulus and shear mod-
ulus. Moreover, the natural frequency and damping ration of the sandwich beam produced by
a 3D printer bas been measured through a vibration test, and compared with numerical results
in order to clarify the effectiveness of the chiral sandwich beam as a mechanical component.

1 INTRODUCTION

A chiral structure is composed of asymmetric unit-cells that are in a mirror-image relation-
ship and cannot be overlapped. The structure can be found in many other objects in nature,
and applied in many scientific fields, including physics, biology, and chemistry. Also, due to the
rapid development of additive manufacturing technology, sandwich structures with chiral core
can be easily created, and many research papers regarding the mechanical response of these
structures has been published[1][2]. For example, Davood et al. have investigated the elastic
properties of chiral, anti-chiral and hierarchical honeycombs based on a simple energy-based ap-
proach, and proposed theoretical equations for calculating the equivalent material properties[1].
On the other hand, industrial developments have raised issues related to vibration characteris-
tics, and serious accidents such as train derailments and building damage would occur due to
the resonance phenomenon that occurs when the natural frequency of an object matches the
frequency of an external source. Therefore, a precise prediction and controlling of natural fre-
quencies as well as enhancing the effect of damping vibrations becomes important in the design
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of machines and buildings. The vibration behavior of chiral structure has also been studied by
some researchers, but most of their work is based on experiments, and there are few reports
on the prediction of natural frequencies or the assessment of damped vibrations by numerical
analyses or theoretical investigations[3].

In this paper, we proposed an analytical model to predict the natural frequencies of sandwich
beams with anti-tetra-chiral lattice based on the Rayleigh-Ritz method, and discussed the
effectiveness of the analytical investigation by comparing with numerical results obtained by
a nonlinear finite element analysis (FEA). In addition, the natural frequency as well as the
damping ratio of the chiral sandwich beam produced by a 3D printer were measured in order
to investigate the effectiveness of the chiral sandwich beam as a mechanical component.

2 THEORY AND ANALYTICAL METHOD

2.1 Analytical model

Figure 1 and 2(a)(b) show a schematic of anti-tetra-chiral, auxetic structures investigated
in this study. The unit cell consists of a beam and a cylinder element, defined as a support
and a ligament element (see Fig.2(b)). The dynamic vibration response including the struc-
tural damping have been investigated by using a commercial nonlinear finite element analysis
software, COMSOL Multiphysics 6.0.

Figure 1: Cantilever sandwich beam with anti-tetra-chiral core

In this study, we have prepared three kinds of anti-tetra-chiral samples under the same
relative density ρ. The details of geometrical parameters are shown in Table 1.

2.2 Mechanical properties of anti-tetra-chiral structures

In our calculation, the deformation of the anti-tetra-chiral under in-plane loading was as-
sumed to be a ligament bending, and the mechanical properties are investigated by using the
strain energy analysis in consideration with Euler-Bernoulli beam theory[4]. The geometrical
parameters, t, l, and r, represent the ligament width, ligament length and support radius,
respectively. Following the Davood et al’s work[1], the in-plane mechanical properties of anti-
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(a) Core (b) Unit cell

Figure 2: Schematic of anti-tetra-chiral structure

Table 1: Dimension parameter

Model
1 2 3

Model ratio r/R [-] 0.100 0.158 0.200
Support length r [mm] 1.22 2.00 2.62
Cell length R [mm] 12.2 12.6 13.1

Ligament length l [mm] 12.0 12.0 12.0
Ligament width t [mm] 1.00 0.734 0.380

tetra-chiral structure can be expressed as follows:

E∗ =
t/l

1 + 6(r/l)2/(t/l)2
Es, (1)

for equivalent Young’s modulus, and

G∗ = 0.5

(
t

l

)3

Es, (2)

for equivalent shear modulus, and

νxy = −εy
εx

=
−6(r/l)2

6(r/l)2 + (t/l)2
, (3)

for equivalent Poisson’s ratio. These values would be used for predicting the vibration response
of the anti-tetra-chiral sandwich panel.

2.3 Effective shear modulus G∗

It is widely known that the effective shear modulus, G∗, derived by Eq.(2), is only applicable
for square shape (L=h), and not applied for rectangle one (L ̸= h) [4]. Following the Yamashita
et al’s work, we have prepared another FE model for 3-point bending test, and calculated the
effective Young’s modulus E∗ and the effective shear modulus G∗ of the chiral structure. The
details of the numerical procedure was given in [4], and the dependence of the model aspect
ratio L/h on these modules, E∗ and G∗, would be discussed in Section 3.1.
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2.4 Calculation of natural frequency based on the Rayleigh-Ritz method [5]

In this section, the prediction procedure for natural vibration frequencies of chiral-cored
sandwich beams is introduced. the preduction scheme is based on the Reyleigh-Ritz method,
and the following assumptions were considered;

Figure 3: Schematic of displacement field of three-layered sandwich beam with chiral core

• The shear strain in faceplates is negligible

• The longitudinal direct stress in the core is negligible

• The transverse displacement at all points of the cross-section is constant

The strain energy stored in the face plates and the chiral core can be expressed by the
following equation:

U = Uf + Uc

=
G∗

cb(tc + tf )
2

2tc

∫ L

0

(
∂w

∂x

)2

dx+
Esbt

3
f

12

∫ L

0

(
∂2w

∂x2

)2

dx+
G∗

cb

2tc

∫ L

0

(u2
1 + u2

3)dx

+
Esbtf
2

∫ L

0

(
∂u1

∂x

)2

dx+
Esbtf
2

∫ L

0

(
∂u3

∂x

)2

dx− G∗
cb

tc

∫ L

0

u1u3dx

+
G∗

cb(tc + tf )

tc

∫ L

0

(u3 − u1)
∂w

∂x
dx.

(4)

Here, subscripts f and c denote the face plate and the chiral core, respectively. Also. u1 and
u3 represent the displacements for the top and bottom face plates along the x-direction, and w
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represents the displacement at the center of the chiral core along the y-direction. The kinetic
energy of the chiral cored sandwich beam T can be given by:

T = Tx + Ty

=
bω2

n

2
ρstf

∫ L

0

(
u2
1 + u2

3

)
dx+

bω2
n

2
(ρctc + 2ρstf )

∫ L

0

w2dx.
(5)

Now, Hamilton’s principle can be applied in order to calculate the natural frequency of the
beam by using Eq.(4) and (5). The principle is expressed as follows:

δ

∫ t2

t1

(T − U) dt = 0, (6)

where δ is the variational operator and t1 and t2 define the time interval for a single period.
The displacements w, u1 and u3 are assumed to be expressed in terms of a series of admissible

functions as follows:

w(x, t) = w̃(x)ejωnt, u1(x, t) = ũ1(x)e
jωnt, u3(x, t) = ũ3(x)e

jωnt, (7)

here, j2 = −1, and ωn denotes the natural frequency(= 2π/(t2 − t1)). Also, it is assumed that
the functions w̃, ũ1 and ũ3 can be expressed as a series of polynomials as follows:

w̃(x) =
N∑
i=1

Aifi(x), ũ1(x) =
N∑
i=1

Bigi(x), ũ3(x) =
N∑
i=1

Cigi(x), (8)

here, fi(x) and gi(x) are the polynomial function which satisfy the geometrical boundary con-
ditions for a given problem. For example, as for the clamped-free beam problem, the fuctions
fi(x) and gi(x) can be written by:

fi(x) = gi(x) = xi+1. (9)

Also, N represents the number of terms in the series.
Here we have introduced the potential V as follows:

V =
ωn

π

∫ t2

t1

(T − U) dt. (10)

In order to solve Eq.(6), the following equation must be satisfied:

∂V

∂Ai

=
∂V

∂Bi

=
∂V

∂Ci

. (11)

Substituting Eqs.(7), (8) into Eqs.(4), (5), (6) and (11), the simultaneous linear equations in
3N unknowns Ai, Bi and Ci(i = 1, 2, ..., N) can be given as follows:

(D − ω2
nF )x = 0, (12)

where，x = (A1,A2, · · · ,AN ,B1,B2, · · · ,BN ,C1 C2, · · · ,CN)
T is unknown paratemers，and D

and F are symmetric and diagonal matrix, respectively. The condition in which Eq.(12) does
not have trivial solutuion for x, can be written as:

det(D − ω2
nF ) = 0. (13)

By calculating Eq.(13), n-th order natural frequency of chiral sandwich beam ωn can be ob-
tained. Finally, the frequency fn(=ωn/(2π)) of the beam can be calculated.
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2.5 Experimental set-up

In this study, two types of chiral sandwich specimens with different beam length L and height
h were manufactured by using a Stereolithography (SLA) based 3D printer (Form3, Formlab
Ltd.). The material used in this study was a light curable resin, with elastic modulus El=4.7
GPa, density ρ=1179.5 kg/m3, and poisson’s ratio ν =0.35. Also, regarding the modeling
dimensions, the following values were applied: the thickness of the ligament t=0.5 mm, the
support length r=0.667 mm, the cell length R=4.22 mm and the ligament length l=4.00 mm.
Moreover, the depth in the z-direction was set to 15 mm. Figure 4(a)(b) show photographs of
manufactured specimens attached with strain gages. Free vibration tests were conducted under
impulse load, and the natural frequencies and the damping ratio were measured by the change
in electrical resistance.

(a) beam’s length-to-thickness ratio L/h=6.0 (b) beam’s length-to-thickness ratio L/h=8.0

Figure 4: Photograph of actural specimen made of curable resin fabricated by 3D printer

3 RESULT AND DISCUSSION

3.1 Equivalent elastic moduluses, E∗ and G∗

In this section, the influence of the aspect ratio L/h and the ligament ratio r/R on these
effective modules, E∗, G∗, were investigated. Figure 5(a)(b) show deformed shapes of an
anti-tetra-chiral unit cell subjected to uniaxial tension and shear load. Figure 6(a) shows
comparisons of equivalent Young’s modulus, E∗, for some cases of the ligament ratio r/R and
the aspect ratio L/h obtained by FEA. As can be found from Fig.6(a) that the modulus E∗

keeps a constant value regardless of the scale of L/h, and increases as the ratio r/R decreases.
Also, these values obtained by FEA agree well with analytical prediction obtained by Eq.(1).

On the contrary, as for the equivalent shear modulus, G∗, it is anticipated that the modulus
depends significantly on the aspect ratio L/h of the beam. Figure 6(b) shows the variation
of the equivalent shear modulus obtained by FEA with beam’s aspect ratio L/h. Also in
this figure, the results for three kinds of the ratio r/R at the ligament part were plotted and
compared with the analytical results obtained by Eq.(2). When the ratio L/h equals to 1, the
result obtained by FEA agrees well with analytical prediction. Also, as the ratio L/h increases,
the value of the modulus rises and drops gradually and converges to a constant value. In other
words, there are mainly three regions.

Region (a): The modulus G∗ increases rapidly as the aspect ratio L/h reaches 2.
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Region (b): The modulus G∗ decreases around the aspect ratio of 10 and reach an extreme
value.

Region (c): The modulus G∗ converges to a constant value.

(a) subjected to uniaxial compressive load (b) subjected to shear load

Figure 5: Deformed shape of a chiral unit model
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Figure 6: Effects of beam geometries on the effective elasitic modules E∗ and G∗

3.2 Vibration response

Figure 7(a)-(d) show the first order vibration mode for a chiral-cored sandwich beam with
different aspect ratio L/h=4.0, 8.0, 14 and 20. Here the ratio of the ligament part r/R is
0.158. It can be seen from these figures that as the aspect ratio L/h increases, the dominant
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deformation mode shifts from shear in a chiral core to a bending of a whole beam. Figure
8 shows variations of the fritst order natural frequency f1 with the aspect ratio L/h for the
sandwich beams with different ligament ratio r/R. In this figure, marks show numerial results
obtained by FEA, and curves show predictions derived from Eq.(13). Since the effective shear
modulus G∗ depends strongly on these ratios, r/R and L/h, the natural frequencies obtained
by FEA also vary with these ratios. However, the analytixal predictions obtained by Eq.(13)
agree well with FE results regardless of the values of L/h and r/R.

(a) for the case of L/h=4.0 (b) for the case of L/h=8.0

(c) for the case of L/h=14 (d) for the case of L/h=20

Figure 7: Comparisons of deformed shape of the first order vibration mode for chiral-cored sandwich
beams with the same ratio r/R=0.158 at the ligament part

Figure 9(a) and (b) show an example of undeformed and deformed shape during vibraion
of the chiral-cored sandwich beam with ratios r/R=0.158, L/h=8.0. Each colored rectangle
represent the corresponding unit-cell before and after the movement. The size of the area of
each rectangle can be calculated from the positions of the four surrounding points. In this
study, the size of the area for all cells in a beam were measured from FE results, and calculated
the area ratio S̃ determined by the following equation.

S̃ =
(cross-sectional area after deformation)

.
(cross-sectional area before deformation) (14)

This parameter S̃ indicates how much the shear deformation is dominant in a beam. Figure
10 shows the variation of the area ratio S̃ for some cases of r/R with beam’s aspect ratio
L/h. As can be found from Figure 10 that when the beam is relatively short, for instance,
the aspect ratio L/h is less than 10, the area ratio S̃ deviates from 1. This tendency becomes
signigficant for the larger value of r/R, since the effective shear stiffness G∗ decreases as the
ratio r/R increases. In this region, it can be understood that a shear observed in a chiral core
is a dominant deformration. On the contrary, when the beam is sufficiently long, the ratio S̃ is
almost equals to 1 regardless of the ratio r/R at the ligament part. It can be concluded that a
bending of a whole beam is a dominant deformration in this region,
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Figure 8: Effects of beam geometries on the first order natural frequency f1

(a) undeformed shape (b) deformed shape

Figure 9: Comparison of undeformed and deformed shape of the chiral-cored sandwich beam under
the condition of r/R=0.158 and L/h=8.0
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Figure 10: Variation of the area ratio S̃ with beam’s aspect ratio L/h

3.3 Observation of vibration response

Figure 11(a)(b) show the variation of the voltage measured from the strain gages with the
observation time for two specimens with different aspect ratio, L./h=6.0 and 8.0. It can be
found in Fig.11 that the strong damping response was observed. The vibration experiment was
condacuted three times for each specimen. Table 2 shows comparisons of the natural frequency
measured by experiment and numeraical results obtained by FEA. As can be seen in Table 2
that these values show a similar trend, but with quantitative errors. The main cause of such
discrepancy would lilely lie in the following two points. Firstly, it is anticipated that there are
several close eigenfrequency modes exist. Figures 12(a)(b) and 13(a)(b) show the in-plane and
out-of-plane vibration modes for sandwich beams with L/h =6 and 8 calcultated by FEA. As
can be found that the value of eigenfrequency for out-of-plane mode is always smaller than that
for in-plane mode. Secondly, it is anticipated there are unexpected irregularities in shape in
a real specimen. Figure 14(a)(b) show the actural specimens. It can be seen that there is a
upward slewing was observed for both specimens. Such a geometial imperfection would cause
the error. In the next work, we must design sufficient supports and investigate appropriate UV
condition for drying in order to minimize the occerence of geometrical imperfection.

Table 2: Comparisons of 1st order natural frequency f1 of the chiral-cored sanwich beams with
L/h=6.0 and 8.0 observed by experiment with FE results

aspect ratio Experiment [Hz] FEA [Hz]
L/h No.1 No.2 No.3 Ave. —
6.0 263.1 251.5 261.8 257.9 334.6
8.0 164.7 166.8 168.0 160.4 212.2
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Figure 11: Comparisons of damping waveform of chiral-cored sandwich beams

(a) out-of-plane mode (freq.=317.1 Hz) (b) in-plane mode (freq.=349.6 Hz)

Figure 12: Comprarisons of eigenequencies of the chiral-cored sanwich beams with L/h=6.0

(a) out-of-plane mode (freq.=179.3 Hz) (b) in-plane mode (freq.=223.3 Hz)

Figure 13: Comprarisons of eigenequencies of the chiral-cored sanwich beams with L/h=8.0

(a) for the case of L/h=6.0 (b) for the case of L/h=8.0

Figure 14: Observed geometical imperfection in 3D-printed sandwich beams
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4 CONCLUSIONS

In this paper, the dynamic vibration response of sandwich beams with an anti-tetra-chiral
lattice as a lightweight sandwiched core was studied by using a nonlinear finite element analysis
(FEA). Also, the response was predicted by using the Rayleigh-Ritz method, assuming that the
sandwich beam is composed of composite continuum materials with equivalent Young’s modulus
and shear modulus. Theoretical equations for these modules have already been reported by oher
researchers, but the influence of beam geometries on these modules has not been clarified. In
our calculation, the equivalent of these modules were caluclated by FEA for a 3-point bending
model. In particular, it is found that the equivalent shear modulus depend significantly on
the aslect ratio (length-to-thickness ratio L/h) of a beam. Also the prediction of the natural
frequency of the beam obtained by the Rayleigh-Ritz method agrees well with FE results. Since
a chical-cored sandwich beam can be easily fabricated by a 3D printer, the vibration response
can be designed by changing the micro-architecture of the beam. In our study, two kinds of
chiral-cored sandwich beams were manufactured by our in-house 3D printer, and its vibration
response was measured by experiment. The observed eigenfrequency showed a similar trend
to the prediction, but with quantitative errors, which is due to the several close vibration
modes found in a particular frequency as well as the gemetrical imperfecition existed in a real
specimen.
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