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Abstract

This article compares derivation methods for constructing optimal membrane triangles with corner drilling free-

doms. The term ‘‘optimal’’ is used in the sense of exact inplane pure-bending response of rectangular mesh units of

arbitrary aspect ratio. Following a comparative summary of element formulation approaches, the construction of an

optimal three-node triangle using the ANDES formulation is presented. The construction is based upon techniques

developed by 1991 in student term projects, but taking advantage of the more general framework of templates de-

veloped since. The optimal element that fits the ANDES template is shown to be unique if energy orthogonality

constraints are enforced. Two other formulations are examined and compared with the optimal model. Retrofitting the

conventional linear strain triangle element by midpoint-migrating and congruential transformations is shown unable to

produce an optimal element, while rank deficiency is inevitable. Use of the quadratic strain field of the 1988 Allman

triangle, or linear filtered versions thereof, is also unable to reproduce the optimal element. Moreover these elements

exhibit serious aspect ratio lock. These predictions are verified on benchmark examples.

� 2003 Elsevier Science B.V. All rights reserved.

Keywords: Finite elements; Templates; High performance; Drilling freedoms; Triangles; Membrane; Plane stress; Shell; Assumed

natural deviatoric strains; Hierarchical models; Signatures; Clones

1. Introduction

One active area of ‘‘finitelementology’’ is the development of high-performance (HP) elements. The

definition of such creatures is subjective. The writer likes to use a result-oriented definition, as stated in [1]:

‘‘simple elements that provide results of engineering accuracy with coarse meshes.’’

But what are ‘‘simple’’ elements? Again that term is subjective. The writer�s definition is: elements with

only corner nodes and physical degrees of freedom. Following the high-order element frenzy of the late 1960s

and 1970s, the back trend towards simplicity was noted as early as 1986 by the father of NASTRAN: ‘‘The
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limitations of higher order elements set out by Zienkiewicz have proved themselves in application. As a
practical matter, the real choice is between lowest order elements (constant strain, probably with some

linear strain terms) and next-lowest-order elements (linear strain, possibly with some quadratic strain

terms), because these are the ones that developers of finite element programs have found to be commercially

viable’’ [2, p. 89].

The trend has strengthened since that statement because commercial FEM codes are now used by

comparatively more novices, often as backend of CAD studies. These users have at best only a foggy notion

of what goes on inside the black boxes. Hence the writer�s admonition in an introductory FEM course:

‘‘never, never, never use a higher order or special element unless you are absolutely sure of what you are
doing.’’ The attraction of HP elements in the real world is understandable: to get reasonable answers with

models that cannot stray too far from physics.

An optimal element is one whose performance cannot be improved for a given node-freedom configu-

ration. The concept is fuzzy, however, unless one specifies precisely what is the optimality measure. There

are often tradeoffs. For example, passing patch tests on any mesh may conflict with insensitivity to mesh

distortion [2, p. 115].

One of the side effects of interest in high performance is the proliferation of elements with drilling degrees

of freedom (DOFs). These are nodal rotations that are not taken as independent DOFs in conventional
elements. Two well known examples are: (i) corner rotations normal to the plane of a membrane element

(or to the membrane component of a shell element); (ii) three corner rotations added to solid elements. This

paper considers only (i).

Why membrane drilling freedoms? Three reasons are given in the Introduction to [3]:

1. The element performance may be improved without adding midside nodes, keeping model preparation

and mesh generation simple.

2. The extra degree of freedom is ‘‘free of charge’’ in programs that carry six DOFs per node, as is the case
in most commercial codes.

3. It simplifies the treatment of shell intersections as well as connection of shells to beam elements.

The purpose of this paper is to review critically several approaches for the construction of these elements.

To keep the exposition to a reasonable length, only triangular membrane elements with three corner nodes

are studied.

2. Element derivation approaches

The term approach is taken here to mean a combination of methods and empirical tools to achieve a

given objective. In FEM work, isoparametric, stress-assumed-hybrid and assumed natural strain (ANS)

formulations are methods and not approaches. An approach may zig-zag through several methods.

FEM approaches range from heuristic to highly analytical. The experience of the writer in teaching

advanced FEM courses is that even bright graduate students have trouble connecting different construction

methods, much as undergraduates struggle to connect mathematics and laws of nature. To help students the
writer has grouped element derivation approaches into those pictured in Fig. 1.

Fig. 1 makes an implicit assumption: the performance of an element of given geometry, node and

freedom configuration can be improved. There are obvious examples where this is not possible. For ex-

ample, constant-strain elements with translational freedoms only: 2-node bar, 3-node membrane triangle

and 4-node elasticity tetrahedron. Those cases are excluded because it makes no sense to talk about high

performance or optimality under those conditions.
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2.1. Fixing up

Conventional element derivation methods, such as the isoparametric formulation, may produce bad or

mediocre low-order elements. If that is the case two questions may be raised:

(i) Can the element be improved?

(ii) Is the improvement worth the trouble?

If the answer to both is yes, the fix-up approach tries to improve the performance by an array of

remedies that may be collectively called the FEM pharmacy. Cures range from heuristic tricks such as

reduced and selective integration to more scientifically based concoctions.

This approach accounts for most of the current publications in finitelementology. Playing doctor can be

fun. But also frustrating, as trying to find a black cat in a dark cellar at midnight. Inject these incompatible

modes: oops! the patch test is violated. Make the Jacobian constant: oops! it locks in distortion. Reduce the

integration order: oops! it lost rank sufficiency. Split the stress–strain equations and integrate selectively:
oops! it is not observer invariant. And so on.

2.2. Retrofitting

Retrofitting is a more sedated activity. One begins with a irreproachable parent element, free of obvious

defects. Typically this is a higher order iso-P element constructed with a complete or bicomplete polyno-

mial; for example the 6-node quadratic triangle or the 9-node Lagrange quadrilateral. The parent is fine but

too complicated to be an HP element. Complexity is reduced by master–slave constraint techniques so as to
fit the desired node-freedom configuration pattern.

"Parent"
Element

+ +

Improvable 
element

High
Performance

Element

Optimal
ElementDIRECT FABRICATION APPROACH

RETROFITTING APPROACH

FIX-UP APPROACH, 
a.k.a.  "Shooting"

Improve element
by medication

Build from scratch
in stages

Make descendants

Piece 1 Piece 2 ....

Sometimes
possible

Fig. 1. Element derivation approaches, not to be confused with methods.
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This approach commonly makes use of node and freedom migration techniques. For example, drilling
freedoms may be defined by moving translational midpoint or thirdpoint freedoms to corner rotations by

kinematic constraints. The development of ‘‘descendants’’ of the LST element discussed in Section 7 fits this

approach. Discrete Kirchhoff constraints and degeneration (3D! 2D) for plate and shell elements provide

additional examples. Retrofitting has the advantage of being easy to understand and teach. It occasionally

produces useful elements but rarely high performance ones.

2.3. Direct fabrication

This approach relies on divide and conquer. To give an analogy: upon short training a FEM novice

knows that a discrete system is decomposed into elements, which interact only through common freedoms.

Going deeper, an element can be constructed as the superposition of components or pieces, with interac-

tions limited through appropriate orthogonality conditions. (Mathematically, components are multifield

subspaces [4].) Components are invisible to the user once the element is implemented.

Fabrication is done in stages. At the start there is nothing: the element is without form, and void. At each

stage the developer injects another component (¼ subspace). Components may be done through different

methods. The overarching principle is correct performance after each stage. If at any stage the element has
problems (for example: it locks) no retroactive cure is attempted as in the fix-up approach. Instead the

component is trashed and another one picked. One never uses more components than strictly needed:

condensation is forbidden. Components may contain free parameters, which may be used to improve

performance and eventually to try for optimality. One general scheme for direct fabrication is the template

approach [5].

All applications of the direct fabrication method to date have been done in two stages, separating the

element response into basic and higher order. This process is further elaborated in Section 4.3.

2.4. A warning

The classification of Fig. 1 is based on approaches and not methods. A method may appear in more than

one approach. For example, methods based on hybrid functionals may be used to retrofit or to fabricate,

and even (more rarely) to fix up. Methods based on assumed strain or incompatible displacement fields may

be used to do all three. This interweaving of methods and approaches is what makes so difficult to teach

advanced FEM. While it is relatively easy to teach methods, choosing and pursuing an approach is a

synthesis activity that relies on judgement, experience and luck.

3. A gallery of triangles

This article looks at triangular membrane elements in several flavors organized along family lines. To

keep track of parents and siblings it is convenient to introduce the following notational scheme for the

configuration of an element:

xST-n=m½variants�½-application�: ð1Þ
Lead letter x is C, L or Q, which fingers the parent element as indicated below. Integers n and m give the

total number of nodes and freedoms, respectively. Further distinction is made by appending letters to

identify variants. For example QST-10/20C, QST-3/20G and QST-3/20RS identify the QST parent and two

descendants. Here C, G and RS stand for ‘‘conventional freedoms’’, ‘‘gradient freedoms’’ and ‘‘rotational-

plus-strain freedoms,’’ respectively. The reader may see examples of this identification scheme arranged in

Fig. 2.
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The three parent elements shown there are generated by complete polynomials. They are

1. Constant strain triangle or CST. Also called linear triangle and Turner triangle. Developed as plane stress

element by Jon Turner, Ray Clough and Harold Martin in 1952–1953 [6]; published 1956 [7].

2. Linear strain triangle or LST. Also called quadratic triangle and Veubeke triangle. Developed by B. Fraeijs
de Veubeke in 1962–1963 [8]; published 1965 [9].

3. Quadratic strain triangle or QST. Also called cubic triangle. Developed by the writer in 1965; published

1966 [10]. Shape functions for QST-10/20RS to QST-3/18G were presented there but used for plate bend-

ing instead of plane stress; e.g., QST-3/18G clones the BCIZ element [11].

Drilling freedoms in triangles were used in static and dynamic shell analysis in Carr�s thesis under Ray

Clough [12,13], using QST-3/20RS as membrane component. The same idea was independently exploited

for rectangular and quadrilateral elements, respectively, in the theses of Abu-Ghazaleh [14] and Willam
[15], both under Alex Scordelis. A variant of the Willam quadrilateral, developed by Bo Almroth at
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Fig. 2. Node and freedom configuration of triangular membrane element families. Only non-hierarchical models with Cartesian node

displacements are shown.
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Lockheed, has survived in the non-linear shell analysis code STAGS as element 410 [16]. (For access to
pertinent old-thesis material through the writer, see references section.)

The focus of this article is on LST-3/9R, shown in the upper right corner of Fig. 2 and, in 3D view, in

Fig. 3(b). The whole development pertains to the membrane (plane stress) problem. Thus no additional

identifiers are used. Should the model be applied to a different problem, for example plane strain or axi-

symmetric analysis, an application identifier would be necessary under scheme (1).

4. The ANDES triangle with drilling freedoms

As pictured in Fig. 3(b), the LST-3/9R membrane triangle has three corner nodes and three DOFs per

node: two inplane translations and a drilling rotation. In the retrofitting approach studied in Section 7 the

parent element is the conventional LST, which is technically identified as LST-6/12C.

The direct fabrication approach was used in a three-part 1992 paper [3,17,18] to construct an optimal

version of LST-3/9R. (This work grew out of student term projects in an advanced finite element course.)

Two different techniques were used in that development:

EFF: The extended free formulation, which is a variant of the free formulation (FF) of Bergan [19–27].
ANDES: The Assumed Natural DEviatoric Strain formulation, which combines the FF of Bergan and a

variant of the ANS method due to Park and Stanley [28,29]. ANDES has also been used to develop plate

bending and shell elements [30,31].

For the LST-3/9R, these techniques led to stiffness matrices with free parameters: 3 and 7 in the case of

EFF and ANDES, respectively. Free parameters were optimized so that rectangular mesh units are exact in

pure bending for arbitrary aspect ratios, a technique further discussed in Section 5. Surprisingly the same

optimal element was found. In the nomenclature of templates summarized in Section 4.7 the two elements

are said to be clones. This coalescence nurtured the feeling that the optimal form is unique. More recent
studies reported in Section 5.5 verify uniqueness if certain orthogonality constraints are placed on the

higher order response.

4.1. Element description

The membrane (plane stress) triangle shown in Fig. 4 has straight sides joining the corners defined by the

coordinates fxi; yig, i ¼ 1, 2, 3. Coordinate differences are abbreviated xij ¼ xi 	 xj and yij ¼ yi 	 yj. The

signed area A is given by

2A ¼ ðx2y3 	 x3y2Þ þ ðx3y1 	 x1y3Þ þ ðx1y2 	 x2y1Þ ¼ y21x13 	 x21y13 ðand two othersÞ: ð2Þ
In addition to the corner nodes 1, 2 and 3 we shall also use midpoints 4, 5 and 6 for derivations although

these nodes do not appear in the final equations of the LST-3/9R. Midpoints 4, 5, 6 are located opposite

uy
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3

uy
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(a) Parent (LST-6/12C) (b) Descendant (LST-3/9R)

z

Fig. 3. Node and freedom configuration of the membrane triangle LST-3/9R and its parent element LST-6/12C.
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corners 3, 1 and 2, respectively. The centroid is denoted by 0. As shown in Fig. 4, two intrinsic coordinate

systems are used over each side:

n21; s21; n32; s32; n13; s13; ð3Þ

m21; t21; m32; t32; m13; t13: ð4Þ

Here n and s are oriented along the external normal-to-side and side directions, respectively, whereas m and

t are oriented along the triangle median and normal-to-median directions, respectively. The coordinate sets

(3) and (4) align only for equilateral triangles. The origin of these systems is left ‘‘floating’’ and may be

adjusted as appropriate. If the origin is placed at the midpoints, subscripts 4, 5 and 6 may be used instead of
21, 32 and 13, respectively, as illustrated in Fig. 4.

Other intrinsic dimensions of use in element derivations are

‘ij ¼ ‘ji ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
ij þ y2

ij

q
; aij ¼ ak ¼ 2A=‘ij; mk ¼

3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
k0 þ y2

k0

q
; bk ¼ 2A=mk: ð5Þ

Here j and k denote the positive cyclic permutations of i; for example i ¼ 2, j ¼ 3, k ¼ 1. The ‘ij�s are the

lengths of the sides, ak ¼ aij are triangle heights, mk are the lengths of the medians, and bk are side lengths
projected on normal-to-median directions.

The well known triangle coordinates are denoted by f1, f2 and f3, which satisfy f1 þ f2 þ f3 ¼ 1.

The DOFs of LST-3/9R are collected in the node displacement vector

uR ¼ ux1 uy1 h1 ux2 uy2 h2 ux3 uy3 h3½ �T: ð6Þ
Here uxi and uyi denote the nodal values of the translational displacements ux and uy along x and y, re-

spectively, and h � hz are the ‘‘drilling rotations’’ about z (positive counterclockwise when looking down on

the element midplane along 	z). In continuum mechanics these rotations are defined by

h ¼ hz ¼
1

2

ouy
ox

�
	 oux

oy

�
: ð7Þ

The triangle will be assumed to have constant thickness h and uniform plane stress constitutive properties.

These are defined by the 3� 3 elasticity and compliance matrices arranged in the usual manner:

E ¼
E11 E12 E13

E12 E22 E23

E13 E23 E33

2
4

3
5; C ¼ E	1 ¼
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C13 C23 C33

2
4

3
5: ð8Þ
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Fig. 4. Triangle geometry.
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For later use six invariants of the elasticity tensor are listed here:

JE1 ¼ E11 þ 2E12 þ E22; JE2 ¼ 	E12 þ E33; JE3 ¼ ðE11 	 E22Þ2 þ 4ðE13 þ E23Þ2
;

JE4 ¼ ðE11 	 2E12 þ E22 	 4E33Þ2 þ 16ðE13 	 E23Þ2
;

JE5 ¼ detðEÞ ¼ E11E22E33 þ 2E12E13E23 	 E11E2
23 	 E2

13E22 	 E2
12E33;

JE6 ¼ 2E3
13 þ E12E13E22 	 E13E2

22 þ E2
11E23 þ 2E2

13E23 þ E12E22E23 	 2E13E2
23 	 2E3

23

þ 2E22ðE13 þ E23ÞE33 	 E11ðE12E13 	 E13E22 þ E12E23 þ E22E23 þ 2ðE13 þ E23ÞE33Þ: ð9Þ
Of these JE1, JE2 and JE5 are well known, while the others were found by Mathematica.

4.2. Natural strains

In the derivation of the higher order stiffness by ANDES [17] natural strains play a key role. These are

extensional (direct) strains along three directions intrinsically related to the triangle geometry. Four pos-

sible choices are depicted in Fig. 5. Choice(s): strains along the three side directions, was the one used in [17]

because it matches the direction of neutral axes of the assumed inplane bending modes as discussed in

Section 4.6.

The (s) natural strains are collected in the 3-vector

� ¼ �21 �32 �13½ �T: ð10Þ
Vector � at point i is denoted by �i. The natural strain �jk at point i will be written �jkji, the bar being used for
reading convenience. The natural strains are related to Cartesian strains fexx; eyy ; 2exyg by the ‘‘straingage

rosette’’ transformation

� ¼
�12

�23

�31

2
4

3
5 ¼

x2
21=‘

2
21 y2

21=‘
2
21 x21y21=‘

2
21

x2
32=‘

2
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2
32 x32y32=‘
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x2
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2
13 y2

13=‘
2
13 x13y13=‘

2
13

2
64

3
75 exx

eyy
2exy

2
4

3
5 ¼ T	1

e e; ð11Þ

in which ‘2
ji ¼ x2

ji þ y2
ji. The inverse relation is

exx
eyy
2exy
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3
5 ¼ 1

4A2

y23y13‘
2
21 y31y21‘

2
32 y12y32‘

2
13

x23x13‘
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21 ðy31x12 þ x13y21Þ‘2

32 ðy12x23 þ x21y32Þ‘2
13

2
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3
5 �12

�23

�31

2
4

3
5; ð12Þ

or, in compact matrix notation, e ¼ Te�. Note that Te is constant over the triangle. The natural stress–

strain matrix Enat is defined by

Enat ¼ TT
eETe; ð13Þ

which is also constant over the triangle.
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εm2
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εm3

Fig. 5. Four choices for natural strains. Labels (s) through (t) correlate with the notation (4) and (5). Although the ‘‘natural straingage

rosettes’’ are pictured at the centroid for viewing convenience, they may be placed at any point on the triangle.
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4.3. Hierarchical rotations

Hierarchical drilling freedoms are useful for compactly expressing the higher order behavior of the ele-

ment. Their geometric interpretation is shown in Fig. 6. To extract the hierarchical corner rotations ~hhi from

the total corner rotations hi, subtract the mean or CST rotation h0:

~hhi ¼ hi 	 h0; ð14Þ

where i ¼ 1, 2, 3 is the corner index and

h0 ¼
1

4A
ðx23ux1 þ x31ux2 þ x12ux3 þ y23uy1 þ y31uy2 þ y12uy3Þ: ð15Þ

Applying (14) and (15) to the three corners we assemble the transformation

~hh ¼

~hh1

~hh2

~hh3

2
664

3
775 ¼ 1

4A

x32 y32 4A x13 y13 0 x21 y21 0

x32 y32 0 x13 y13 4A x21 y21 0

x32 y32 0 x13 y13 0 x21 y21 4A

2
64

3
75

ux1

uy1

h1

ux2

uy2

h2

ux3

uy3

h3

2
6666666666666666664

3
7777777777777777775

¼ eTThuuR: ð16Þ

For some developments it is useful to complete this transformation with the identity matrix for the

translational freedoms:

1

1 1

3 3
3

2
2

2

+

CST motion

1

1

3 3

2 2

Total motion

Hierarchical 
motion

θ1
~

θ3
~

θ2
~

Fig. 6. Decomposition of inplane motion into CST (linear displacement) + hierarchical. The same idea (in 2D or 3D) is also important

in corotational formulations.
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~uuR ¼

ux1
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77777777777777775

¼ eTTRuR: ð17Þ

The inverse transformation eTT	1
R that connects uR ¼ eTT	1

R ~uuR is obtained by simply transposing the subscripts

in the coordinate differences; x32 ! 	x32 ¼ x23, etc. The foregoing transformation matrices are constant

over the element.

4.4. The stiffness template

The fundamental element stiffness decomposition of the two-stage direct fabrication method is

K ¼ Kb þ Kh: ð18Þ
Here Kb is the basic stiffness, which takes care of consistency, and Kh is the higher order stiffness, which

takes care of stability (rank sufficiency) and accuracy. This decomposition was found by Bergan and

Nyg�aard [20] as part of the FF, but actually holds for any element that passes the individual element test

(IET) of Bergan and Hanssen [32]. (The IET is a strong form of the patch test that demands pairwise
cancellation of tractions between adjacent elements in constant stress states.) Similar elements were con-

structed by Belytschko and coworkers [33] using a stabilization approach. See also Hughes [34, Section

4.8].

Orthogonality conditions satisfied by Kh are discussed in [4,19,21–27,35–38].

The EFF and ANDES triangles derived in [3] and [17] initially carry along a set of free numerical pa-

rameters, most of which affect the higher order stiffness:

KEFF’91ðab; ah; cÞ ¼ KbðabÞ þ ð1 	 cÞKu
hðahÞ; ð19Þ

KANDES’91ðab; b; q1; . . . ; q5Þ ¼ KbðabÞ þ bKu
hðq1; . . . ; q5Þ; ð20Þ

where Ku
h is the unscaled higher order stiffness. Both Kb and Kh must have rank 3. Algebraic forms such as

(19) and (20) possessing free parameters are called element stiffness templates or simply templates.

The basic stiffness KbðabÞ is identical for both (19) and (20). In fact, patch test and template theory [5,35–

38] says that KbðabÞ must be shared by all elements that pass the IET although ab may vary for different

models. However ab must be the same for all LST-3/9R elements connected in an assembly, for otherwise
the patch test would be violated. This is called a mixability condition. Parameters other than ab may, in

principle, vary from element to element without affecting convergence.

4.5. The basic stiffness

An explicit form of the basic stiffness for the LST-3/9R configuration was obtained in 1984 and pub-

lished the following year [21]. It can be expressed as
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Kb ¼ V 	1LELT; ð21Þ
where V ¼ Ah is the element volume, and L is a 3� 9 matrix that contains a free parameter ab:

L ¼ 1

2
h

y23 0 x32

0 x32 y23

1

6
aby23ðy13 	 y21Þ

1

6
abx32ðx31 	 x12Þ

1

3
abðx31y13 	 x12y21Þ

y31 0 x13

0 x13 y31

1

6
aby31ðy21 	 y32Þ

1

6
abx13ðx12 	 x23Þ

1

3
abðx12y21 	 x23y32Þ

y12 0 x21

0 x21 y12

1

6
aby12ðy32 	 y13Þ

1

6
abx21ðx23 	 x31Þ

1

3
abðx23y32 	 x31y13Þ

2
66666666666666666664

3
77777777777777777775

: ð22Þ

In the FF this is called a force-lumping matrix, hence the symbol L. Under certain conditions L can be

related to the mean strain–displacement matrix B0 or B used in one-point reduced integration schemes:

B0 ¼ LT=V , for specific choices of ab. This matrix also appears in the so-called ‘‘B-bar’’ formulation [34]. If

ab ¼ 0 the basic stiffness reduces to the total stiffness matrix of the CST-3/6C, in which case the rows and

columns associated with the drilling rotations vanish.

One interesting result is that

LT ¼ LTeTTR; ðalso B0 ¼ B0
eTTRÞ; ð23Þ

for any ab, which shows that the transformation (17) projects out the higher order behavior.

The deep significance of this development is: the basic stiffness of any element with this node-freedom

configuration that passes the IET must have the form (21) and (22). Most derivation methods produce the
total stiffness K directly, with Kb concealed behind the scenes. This is one of the reasons accounting for the

capricious nature of the fix-up approach. In the direct fabrication approach the decomposition (18) is

explicitly used in the two-stage construction of the element: first Kb and then Kh.

4.6. The higher order stiffness

We describe here essentially the ANDES form of Kh developed in [17], with some generalizations in the

set of free parameters discussed at the end of this subsection. The higher order stiffness matrix is

Kh ¼ cfac
eTTT

huKh
eTThu; ð24Þ

where Kh is the 3� 3 higher order stiffness in terms of the hierarchical rotations ~hh of (14), T~hhu is the matrix

(16), and cfac is a scaling factor to be determined later. To construct Kh by ANDES one picks deviatoric
natural strain patterns, in which ‘‘deviatoric’’ means change from the constant strain states.

Since the main objective is to have good inplane bending behavior, it is logical to begin by assuming

patterns associated with three bending-like modes. A key question is, along which directions? For a tri-

angle, four choices––already depicted in Fig. 5 as regards the definition of natural strains––satisfy observer

invariance:

Along the side directions s4; s5; s6; ð25Þ

Along the normal directions n4; n5; n6; ð26Þ
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Along the median directions m4;m5;m6; ð27Þ

Along the normal-to-the-median directions t4; t5; t6: ð28Þ
Choice (25) was adopted in [17]. The three bending strain patterns are sketched on the left of Fig. 7 as

displacement modes for visualization convenience. (The bending shapes pictured there were obtained by

integrating the assumed strain fields and adjusting for rigid body motions.) It turns out that the three strain

patterns are not linearly independent: their sum vanishes for any triangle geometry. Thus use of only those
modes would produce a rank deficient Kh.

To attain the correct rank of 3 the ‘‘torsion’’ pattern depicted on the right of Fig. 7 is adjoined. This can

be visualized as produced by applying identical hierarchical rotations ~hh1 ¼ ~hh2 ¼ ~hh3. A cubic displacement

pattern was constructed from the QST-4/20G interpolation. The associated quadratic strain pattern was

transformed to natural strains and filtered to a linear variation by midpoint collocation. Those derivations

are presented in Appendix A for readers interested in the technical details.

To express Kh compactly, introduce the following matrices, which depend on nine free dimensionless

parameters, b1 through b9:

Q1 ¼
2A
3

b1

‘2
21

b2

‘2
21

b3

‘2
21

b4

‘2
32

b5

‘2
32

b6

‘2
32

b7

‘2
13

b8

‘2
13

b9

‘2
13

2
66666664

3
77777775
; Q2 ¼

2A
3

b9

‘2
21

b7

‘2
21

b8

‘2
21

b3

‘2
32

b1

‘2
32

b2

‘2
32

b6

‘2
13

b4

‘2
13

b5

‘2
13

2
66666664

3
77777775
; Q3 ¼

2A
3

b5

‘2
21

b6

‘2
21

b4

‘2
21

b8

‘2
32

b9

‘2
32

b7

‘2
32

b3

‘2
13

b1

‘2
13

b2

‘2
13

2
66666664

3
77777775
: ð29Þ

The scaling by 2A=3 is for convenience in correlating with prior developments. Matrix Qi relates the natural
strains �i at corner i to the deviatoric corner curvatures ~hh. At a point of triangular coordinates ff1; f2; f3g,

� ¼ Q~hh, where Q ¼ Q1f1 þQ2f2 þQ3f3. Evaluate this at the midpoints:

Q4 ¼ 1
2
ðQ1 þQ2Þ; Q5 ¼ 1

2
ðQ2 þQ3Þ; Q6 ¼ 1

2
ðQ3 þQ1Þ: ð30Þ

Then

Kh ¼ hðQT
4EnatQ4 þQT

5EnatQ5 þQT
6EnatQ6Þ; ð31Þ

and Kh ¼ 3
4
b0T

T
huKhThu, where b0 is an overall scaling coefficient. (This coefficient could be absorbed into the

bi but it is left separate to simplify the incorporation of material behavior into the optimal element.) So

finally KR assumes a template form with 11 free parameters: ab; b0; b1; . . . ; b9:

1

3

2

1

3

2

1

3

2

1

3

2

 Bending modes Torsion mode

−θ = θ  =1, θ  =01 2 3
∼ ∼∼ −θ = θ  =1, θ  =02 3 1

∼ ∼∼
−θ = θ  =1, θ  =03 1 2 2
∼ ∼∼ θ = θ  =θ  =11 3

∼ ∼∼

Fig. 7. Patterns chosen to build the higher order stiffness of the ANDES template (32): three bending-along-sides modes plus a torsion

mode. Although pictured as displacement motions for visualization convenience, the bending modes were initially assumed in natural

strains as described in Appendix A. The ‘‘neutral axes’’ of the bending modes are parallel to the sides and pass through the centroid.
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KRðab; b0; b1; . . . ; b9Þ ¼ V 	1LELT þ 3
4
beTTT

huKh
eTThu: ð32Þ

The factor 3
4

in Kh comes from ‘‘historical grandfathering’’: as shown in Section 5 the optimal b0 for iso-
tropic material with m ¼ 0 becomes 1

2
, same as in the 1984 FF element [21]. The template (32) will be called

the ‘‘LST-3/9R ANDES template’’ to distinguish it from others alluded to in Section 4.9.

It is easily checked that if the 3� 3 matrix with fb1; b2; b3g, fb4; b5; b6g and fb7; b8; b9g as rows is non-

singular, then Q1, Q2 and Q3 have full rank for A 6¼ 0 and non-zero side lengths. With the usual restrictions

on the elasticity matrix E, Kh has full rank of 3 and KR is rank sufficient.

As remarked previously, the parameter set in (29) is more general than that used in [17]. That devel-

opment carried only five free parameters in the Qi matrices: q1 through q5, cf. (20), which automatically

enforced the triangular symmetry conditions

b7 ¼ 	b1; b8 ¼ 	b3; b9 ¼ 	b2: ð33Þ
These constraints may be derived, for example, by taking an equilateral triangle in which ‘21 ¼ ‘32 ¼ ‘13 and

looking at symmetries about the medians as the ~hhi are applied to each corner in turn. Furthermore the

torsional mode was not separately parametrized. The present parameter set is able to encompass elements,

such as the retrofitted LST, where that mode is missing.

4.7. Instances, signatures, clones

An element generated by specifying numerical values to the parameters fab; b0; b1; . . . ; b9g is a template

instance. The set of parameter values is the template signature. Two elements with the same signature,

possibly derived through different methods, are called clones.

Table 1 lists triangular elements compared later in this paper. Table 2 defines their signatures if they

happen to be instances of the ANDES template (32).

Table 1

Identifier of triangle element instances

Name Description See

ALL-3I Allman 88 element integrated by 3-point interior rule. Section 8

ALL-3M Allman 88 element integrated by 3-midpoint rule. Section 8

ALL-EX Allman 88 element, exactly integrated. Section 8

ALL-LS Allman 88 element, least-square strain fit. Section 8

CST Constant strain triangle CST-3/6C. Ref. [7]

FF84 1984 Free Formulation element of Bergan and Felippa. Ref. [21]

LST-Ret Retrofitted LST with ab ¼ 4=3. Section 7

OPT Optimal ANDES Template. Sections 5.2 and 5.3

Table 2

Signatures of some LST-3/9R instances befitting the ANDES template (32)

Name ab b0 b1 b2 b3 b4 b5 b6 b7 b8 b9

ALL-3I 1 4/9 1/12 5/12 1/2 0 1/3 )1/3 )1/12 )1/2 )5/12

ALL-3M 1 4/9 1/4 5/4 3/2 0 1 )1 )1/4 )3/2 )5/4

ALL-EX Not an instance of ANDES template

ALL-LS 1 4/9 3/20 3/4 9/10 0 3/5 )3/5 )3/20 )9/10 )3/4

CST 0 Any 0 0 0 0 0 0 0 0 0

FF84 Not an instance of ANDES template

LST-Ret 4/3 1/2 2/3 )2/3 0 0 )4/3 4/3 )2/3 0 2/3

OPT 3/2 See Section 5.2 1 2 1 0 1 )1 )1 )1 )2
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By construction all template instances verify exactly the IET for rigid body modes and uniform strain/
stress states. Here we see the key advantage of the direct fabrication approach: any template instance that

keeps positivity and the correct rank is guaranteed to be consistent and stable. Since surprises are mitigated

the task of optimizing the element, covered in Section 5, is straightforward.

4.8. Energy orthogonality

For future use the following definition is noted. An element with linearly varying higher order strains is

called energy orthogonal in the sense of Bergan [19] if Q ¼ Q1f1 þQ2f2 þQ3f3 vanishes at the centroid
f1 ¼ f2 ¼ f3 ¼ 1=3. This gives the algebraic condition

Q1 þQ2 þQ3 ¼ 0: ð34Þ

For the matrices (29), condition (34) translates to b1 þ b5 þ b9 ¼ b2 þ b6 þ b7 ¼ b3 þ b4 þ b8 ¼ 0. These

conditions are not enforced a priori. The optimal element derived in Section 5, however, is found to satisfy

energy orthogonality.

For more general strain variations energy orthogonality conditions are discussed in [19,21–27,35–38].

4.9. Other templates

Three more templates for Kh may be generated by choosing bending patterns according to the pre-

scriptions (26)–(28) for the bending modes. This has not been done to date and remains an open research

problem. The closest attempt in this direction was the development of the 1984 FF element described in

[21,22] by assuming bending modes along the three median directions. Because the FF was used, the modes

were initially constructed in displacement form. An advantage of this choice is that the three modes are
linearly independent and there is no need to adjoin the torsional mode. But perfect optimality in the sense

discussed below was not attainable. As there are indications that the optimal element derivable from (32) is

unique, there seems to be no compelling incentive for exploring other templates.

5. Finding the best

A template such as (32) generates an infinity of element instances by assigning numeric values to the free
parameters. The obvious question is: among all those instances, is there a best one? Because all template

instances pass the IET for basic modes (rigid body motions and constant strain states) any optimality

criterion must necessarily rely on higher order patch tests. The obvious tests involve the response of regular

mesh units to inplane bending along the side directions. This leads to element bending tests expressed as

energy ratios. These have been used since 1984 to tune up the higher order stiffness of triangular elements

[21,24].

5.1. The bending test

The x-bending test is defined in Fig. 8. A Bernoulli–Euler plane beam of thin rectangular cross-section

with span L, height b and thickness h (normal to the plane of the figure) is bent under applied end moments

Mx. The beam is fabricated of isotropic material with elastic modulus E and Poisson�s ratio m. Except for

possible end effects the exact solution of the beam problem (from both the theory-of-elasticity and beam-

2138 C.A. Felippa / Comput. Methods Appl. Mech. Engrg. 192 (2003) 2125–2168



theory standpoints) is a constant bending moment MðxÞ ¼ Mx along the span. The stress field is

rxx ¼ Mxy=Izz, ryy ¼ rxy ¼ 0, where Izz ¼ 1
12
hb3. Computing the strain field e ¼ E	1r and integrating it one

finds the associated displacement field

ux ¼ 	jxy; uy ¼ 1
2
jðx2 þ my2Þ; ð35Þ

where j is the deformed beam curvature Mx=EIzz. The internal energy taken up by a Bernoulli–Euler beam
segment of length a is Ubeam

x ¼ Mxja ¼ 6aEM2
x =ðb3hÞ.

To test the ANDES template, the beam is modeled with one layer of identical rectangular mesh units

dimensioned a� b and made up of two LST-3/9R triangles, as illustrated in Fig. 9. The aspect ratio a=b is

called c. All rectangles will undergo the same deformations and stresses. We can therefore consider a typical

mesh unit. Both triangles will absorb the same energy so it is sufficient to take one triangle and multiply by

two. For simplicity begin by taking m ¼ 0. Evaluating (35) at nodes 1–2–3 of the triangle shown at the

bottom right of Fig. 8 we get the node displacement vector

utrig
x ¼ 3MxEc2

a2h
	a 1

2
ca 	2c a 1

2
ca 2c a 1

2
ca 	2c

� 
T
: ð36Þ

The strain energy absorbed by the triangle under these applied node displacements is U trig
x ¼ 1

2
ðutrig

x ÞT
Kutrig

x .

That absorbed by the two-triangle mesh unit is Uquad
x ¼ 2U trig

x . The bending energy ratio computed by

Mathematica can be expressed as

r ¼ Uquad
x

Ubeam
x

¼ c0 þ c2c
2 þ c4c

4; ð37Þ

where c0, c2 and c4 are only functions of the free parameters. For the ensuing derivation we use the pa-

rameters of (32), but under the symmetry constraints (33) that effectively reduce the 11 parameters to 8:

ab; b0; b1; . . . ; b6. Introduce the 6-vector b ¼ ½ b1 b2 b3 b4 b5 b6 �. Then a compact form of the coef-

ficients is

c0 ¼
1

3
ðab 	 6Þab þ

b0

64
ðbTC0bÞ; c2 ¼

2

3
ðab 	 3Þab þ

b0

64
ðbTC2bÞ; c4 ¼

b0

64
ðbTC4bÞ; ð38Þ

in which Cj, j ¼ 0, 2, 4, are the symmetric matrices

Fig. 8. Constant-moment inplane bending test along the x direction.
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C0 ¼

13 	11 	1 2 2 	6

	11 13 	1 	2 	2 6

	1 	1 1 0 0 0

2 	2 0 1 1 	3

2 	2 0 1 1 	3

	6 6 0 	3 	3 9

2
666666664

3
777777775
; C2 ¼

26 	20 	4 	10 12 	6

	20 22 	2 8 	14 8

	4 	2 6 0 2 0

	10 8 0 5 	5 1

12 	14 2 	5 9 	5

	6 8 0 1 	5 5

2
666666664

3
777777775
;

C4 ¼

1 1 	3 0 0 0

1 1 	3 0 0 0

	3 	3 9 0 0 0

0 0 0 9 	3 	3

0 0 0 	3 1 1

0 0 0 	3 1 1

2
666666664

3
777777775
: ð39Þ

The energy ratio (37) happens to be the ratio of the exact (beam) displacement solution to that of the 2D

solution. Hence r ¼ 1 means that we get the exact answer, that is, the LST-3/9R element is x-bending exact.

If r > 1 or r < 1 the triangle is overstiff or overflexible in x bending, respectively. In particular, if r � 1 as

a=b ¼ c grows the element is said to experience aspect ratio locking along the x direction.

The treatment of energy balance in y bending for rectangular mesh units stacked in the y direction only
entails replacing c by 1=c. Therefore if the element is x-bending optimal in the sense discussed below it is

also y-bending optimal and the analysis need not be repeated.

5.2. Optimality for isotropic material

If r ¼ 1 for any aspect ratio c the element is called bending optimal. From (37) optimality requires

c0 ¼ 1; c2 ¼ 0; c4 ¼ 0; for all c ¼ a=b and real parameter values: ð40Þ

The last proviso means that complex solutions for template parameters are not admissible. The solution

method is explained in Appendix B. It gives the optimal parameter set

ab ¼ 3
2
; b0 ¼ 1

2
; b1 ¼ b3 ¼ b5 ¼ 1; b2 ¼ 2; b4 ¼ 0; b6 ¼ b7 ¼ b8 ¼ 	1; b9 ¼ 	2; ð41Þ

and the Qi matrices found in [17] are recovered. It is easily verified that r ¼ rb þ rh ¼ 3=4 þ 1=4, where rb

and rh come from energy taken by the basic and higher-order stiffnesses, respectively. That is, for the

optimal element the basic energy accounts for 75% of the exact beam energy.

The symbolic analysis for an arbitrary m is similar and shows that only b0 needs to be changed:

ab ¼ 3
2
; b0 ¼ 1

2
ð1 	 4m2Þ; b1 ¼ b3 ¼ b5 ¼ 1; b2 ¼ 2; b4 ¼ 0; b6 ¼ b7 ¼ b8 ¼ 	1; b9 ¼ 	2:

ð42Þ

In this case rh ¼ 1
4
ð1 	 4m2Þ so for m ¼ 1

2
the basic stiffness takes up all the bending energy. Since for m ¼ 1

2
the

optimal b0 is 0, the higher order stiffness would vanish and the element is rank deficient. To maintain

stability one sets a tiny minimum b0, for example b0 ¼ max 1
2
ð1 	 4m2Þ; 0:01

� �
is used in our shell codes. The

case of a non-isotropic material is treated in the next subsection.

Table 3 gives bending ratios for the elements listed in Table 1, along with numerical values for m ¼ 1=4

and c ¼ 1, 2, 4, 16. Those quoted for elements other than OPT are derived in Sections 7 and 8.
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5.3. Optimality for non-isotropic material

If the elasticity matrix takes up the general form (8) the analysis of bending optimality becomes more

elaborate, but follows essentially the same steps. Only the final results are stated here. For optimal bending

behavior along a direction xu that forms an angle u (positive ccw) from x, the optimal parameter set is still

given by (42) except for the overall scaling parameter b0:

b0u ¼ 2

�
	 3

2
; � ¼ E11uC11u;

E11u ¼ E11c4
u þ 4E13c3

usu þ ð2E12 þ 4E33Þc2
us

2
u þ 4E23cus3

u þ E22s4
u;

C11u ¼ C11c4
u þ 2C13c3

usu þ ð2C12 þ C33Þc2
us

2
u þ 2C23cus3

u þ C22s4
u;

ð43Þ

with su ¼ sin u and cu ¼ cos u. Here E11u and C11u are the elasticity and compliance along xu, respectively,

when (8) are rotated by u. For isotropic material of Poisson�s ratio m, � ¼ 1=ð1 	 m2Þ and the rule (42) is

recovered for any u. Two difficulties, however, arise in the general case:

1. The optimal b0 depends on orientation of bending actions with respect the element axis. That informa-

tion is not likely to be known a priori.

2. There is no guarantee that � < 4=3, so b0u may turn out to be zero or negative.

The first obstacle is overcome by adopting an invariant measure that involves the average of E11uC11u

over a 2p sweep:

� ¼ 1

2p

Z 2p

0

E11uC11u du ¼ W
128 detðEÞ ;

�bb0 ¼
2

�
	 3

2
: ð44Þ

Mathematica gives W as the complicated expression listed in Fig. 12. In terms of the elasticity tensor in-

variants listed in (9), 8W ¼ 9J 3
E1 þ 48J 2

E1JE2 þ JE1ð80J 2
E2 	 10JE3 þ JE4Þ þ 8ð16J 3

E2 	 JE2ðJE3 þ JE4Þ þ 72JE5Þ
so the invariance of �bb0 is confirmed. The second difficulty is handled by checking whether �bb0 is less that a
positive threshold, say, 0.01 and if so setting �bb0 ¼ 0:01.

Table 3

Bending energy ratios r for triangular elements of Table 1

Triangle Bending ratio r for isotropic material
c ¼ 0, m ¼ 1

4
c ¼ 1, m ¼ 1

4
c ¼ 4, m ¼ 1

4
c ¼ 16, m ¼ 1

4

ALL-3I 584 þ ð79 	 91mÞc2 þ 6c4

432ð1 	 m2Þ
1.442 1.595 7.457 1007.901

ALL-3M
24 þ ð5 	 9mÞc2 þ 2c4

16ð1 	 m2Þ 1.600 1.916 38.667 8786.667

ALL-EX
84 þ ð15 	 19mÞc2 þ 2c4

60ð1 	 m2Þ 1.493 1.711 13.511 2378.311

ALL-LS
1672 þ ð263 	 371mÞc2 þ 54c4

1200ð1 	 m2Þ 1.486 1.686 16.196 3185.956

CST
6 þ 3ð1 	 mÞc2

2ð1 	 m2Þ 3.200 4.400 22.400 310.400

FF84
3

4
þ 13

96ð1 	 mÞ þ
13 þ 54c2 þ 119c4 þ 70c6 þ 13c8

96ð1 þ 3c2 þ c4Þ2ð1 þ mÞ
1.039 1.020 1.035 1.039

LST-Ret
34 þ 5ð1 	 mÞc2

27ð1 	 m2Þ 1.343 1.491 3.714 39.269

OPT 1 1.000 1.000 1.000 1.000
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What is the effect of setting a b0 that is not exactly optimal? Choosing ab; b1; . . . ; b9 as listed in (41) or
(42) guarantees that c2 ¼ c4 ¼ 0 for any E. Consequently the element cannot lock as the aspect ratio c
increases. On the other hand c0 will generally differ from one so suboptimal performance can be expected if

the material is not isotropic.

5.4. Multiple element layers

Results of the energy bending test can be readily extended to predict the behavior of 2n (n ¼ 1; 2; . . .)
identical layers of elements symmetrically placed through the beam height. If c stays constant, the energy
ratio becomes

rð2nÞ ¼ 22n 	 1 þ r
22n

; ð45Þ

where r is the ratio (37) for one layer, as in the configuration of Fig. 8. If r � 1, r2n � 1 so bending exactness

is maintained, as can be expected. For example, if n ¼ 1 (two element layers), rð2Þ ¼ ð3 þ rÞ=4. This is
actually the ratio reported in Table 2 of [18].

5.5. Is the optimal element unique?

To investigate whether the optimal element is unique, the common factor A in the matrices (29) was

replaced by nine values Ajk, j ¼ 1, 2, 3, k ¼ 1, 2, 3. These have dimensions of area but are otherwise ar-

bitrary. Ajk is assigned to the fj; kg entry of Q1 and then cyclically carried through Q2 and Q3. If the energy

orthogonality condition (37) is enforced a priori, a complete symbolic analysis of the bending ratio was
possible with Mathematica. Except for b0 the previous solution (42) re-emerges for r � 1 in the sense that

the Ajk ¼ A and the bi are recovered except for a scaling factor. Absorbing this factor into b0 the same

element is obtained.

If the orthogonality constraint (34) is not enforced a priori, the energy balance conditions become highly

complicated (a system of three quadratic polynomial equations emerges with unknown terms bibjAk‘Amn)

and no simple solution was found. Thus the question of whether non-energy-orthogonal optimal elements

of this configuration exist remains open.

5.6. Morphing

Morphing means transforming an individual element or macroelement into a simpler model using ki-

nematic constraints. Often the simpler element has lower dimensionality. For example a plate bending

macroelement may be morphed to a beam or a torqued shaft [5]. To illustrate the idea consider trans-

forming the rectangular panel of Fig. 9 into the two-node Bernoulli–Euler beam-column element shown on

the right of that figure. The length, cross sectional area and moment of inertia of the beam-column element,

respectively, are denoted by L ¼ a, A ¼ bh and Izz ¼ b3h=12 ¼ a3h=ð12c3Þ, respectively.

Fig. 9. Morphing a 12-DOF two-triangle mesh unit to a 6-DOF beam-column element.
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The transformation between the freedoms of the mesh unit and those of the beam-column is

uR ¼

ux1
uy1

h1

ux2
uy2

h2

ux3
uy3

h3

ux4
uy4

h4

2
6666666666666666664

3
7777777777777777775

¼

1 0
1

2
b 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0
1

2
b

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 	 1

2
b

0 0 0 0 1 0

0 0 0 0 0 1

1 0 	 1

2
b 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

2
666666666666666666666666664

3
777777777777777777777777775

�uux1
�uuy1

�hh1

�uux2
�uuy2

�hh2

2
666666664

3
777777775
¼ Tm�uum; ð46Þ

where a superposed bar distinguishes the beam-column freedoms grouped in array �uum. Let Kunit
R denote the

12� 12 stiffness of the mesh unit of Fig. 9 assembled with two optimal LST-3/9R triangles. For isotropic

material with m ¼ 0 a symbolic calculation gives the morphed stiffness

Km ¼ TT
mK

unit
R Tm ¼ E

L

A 0 0 	A 0 0

0 12c22Izz=L2 6c23Izz=L 0 	12c22Izz=L2 6c23Izz=L
0 6c23Izz=L 4c33Izz 0 	6c23Izz=L 4c33Izz
	A 0 0 A 0 0

0 12c22Izz=L2 6c23Izz=L 0 	12c22Izz=L2 6c23Izz=L
0 6c23Izz=L 4c33Izz 0 	6c23Izz=L 4c33Izz

2
6666664

3
7777775; ð47Þ

in which c22 ¼ c23 ¼ ð1 þ 8c2 þ c4Þ=12 and c33 ¼ ð5 þ 8c2 þ c4Þ=16. The entries in rows/columns 1 and 4

form the well known two-node bar stiffness. Those in rows and columns 2, 3, 5 and 6 are dimensionally
homogeneous to those of a C1 beam, and may be grouped into the following matrix configuration:

Kbeam
m ¼ EIzz

L

0 0 0 0

0 1 0 	1
0 0 0 0

0 	1 0 1

2
664

3
775

0
BB@ þ �bb

12=L2 6=L 	12=L2 6=L
6=L 3 	6=L 3

	12=L2 	6=L 12=L2 	6=L
6=L 3 	6=L 3

2
664

3
775
1
CCA ð48Þ

with �bb ¼ c22 ¼ c23 ¼ ð4c33 	 1Þ=3 ¼ ð1 þ 8c2 þ c4Þ=12. For arbitrary Poisson�s ratio, �bb ¼ ðð1 	 4m2Þð1þ
c4Þ þ c2ð8 	 9m þ 8m2 	 12m3ÞÞ=ð12ð1 	 m2ÞÞ.

Now (48) happens to be the universal template of a prismatic beam, first presented in [4] and further

studied, for the C1 case, in [39,40] using Fourier methods. The basic stiffness on the left characterizes the

pure-bending symmetric response to a uniform bending moment, whereas the higher-order stiffness on the

right characterizes the antisymmetric response to a linearly-varying, bending moment of zero mean. For
the C1 Bernoulli–Euler beam constructed with cubic shape functions, �bb ¼ 1. For the C0 Timoshenko beam,

the exact equilibrium model [41, p. 80] is matched by �bb ¼ 1=ð1 þ /Þ, / ¼ 12EIz=ðGAsL2Þ, in which

As ¼ 5bh=6 is the shear area and G ¼ 1
2
E=ð1 þ mÞ the shear modulus.

As c grows the morphed beam template shows that the antisymmetric response, as scaled by �bb, stiffens

rapidly. However, the symmetric response is exact for any c, which confirms the optimality of the two-

triangle macroelement. Observe also that what was a higher order patch test on the two-triangle mesh unit
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becomes a basic (constant-moment) patch test on the morphed element. This is typical of morphing
transformations that reduce spatial dimensionality.

What is the difference between morphing and retrofitting? They share reduction techniques but have

different goals: the morphed element is not used as a product but as a way to learn about the source element.

5.7. Strain and stress recovery

Once node displacements are computed, element strains and stresses can be recovered using the fol-

lowing scheme. Let ue denote the compute node displacements. The Cartesian stresses at a point ff1; f2; f3g
are r ¼ Ee, in which the Cartesian strains are computed from

e ¼ ðLT=AhÞue þ Teb
e
0ðQ1f1 þQ2f2 þQ3f3ÞT~hhuu

e: ð49Þ
Here L is the lumping matrix (22) with ab ¼ 3=2, and Qi are the matrices (29) computed with the optimal

parameters (42). However be
0 is not that recommended for KðeÞ. Least-square fit studies using the method

outlined in [42] suggest using be
0 ¼ 3=2 for isotropic material. (For the non-isotropic case the best be

0 is still

unknown.) This value is used in the stress results reported in Sections 9.

6. A Mathematica implementation

Fig. 10 lists a Mathematica implementation of (32) as Module LST39RMembTemplateStiffness.

The four module arguments are the node coordinates xycoor ordered {{x1,y1},{x2,y2},{x3,y3}},

LST39RMembTemplateStiffness [xycoor_,Emat_,h_,fpars_]:=Module[
 {x1,y1,x2,y2,x3,y3,x12,y12,x21,y21,x23,y23,x32,y32,x31,y31,
 x13,y13,A,A4,V,LL21,LL32,LL13,αb,β0,β1,β2,β3,β4,β5,β6,β7,β8,β9,
 Te,Tθu,Q1,Q2,Q3,Q4,Q5,Q6,c,L,Enat,Kθ,Kh,Kb,Ke},
 {{x1,y1},{x2,y2},{x3,y3}}=xycoor; 
 {αb,β0,β1,β2,β3,β4,β5,β6,β7,β8,β9}=fpars;
 x12=x1-x2; x23=x2-x3; x31=x3-x1; x21=-x12; x32=-x23; x13=-x31;
 y12=y1-y2; y23=y2-y3; y31=y3-y1; y21=-y12; y32=-y23; y13=-y31;
 A=(y21*x13-x21*y13)/2;  A2=2*A; A4=4*A; 
 L= {{y23,0,x32},{0,x32,y23},
     {y23*(y13-y21),x32*(x31-x12),(x31*y13-x12*y21)*2}*αb/6,
     {y31,0,x13},{0,x13,y31},
     {y31*(y21-y32),x13*(x12-x23),(x12*y21-x23*y32)*2}*αb/6,
     {y12,0,x21},{0,x21,y12},
     {y12*(y32-y13),x21*(x23-x31),(x23*y32-x31*y13)*2}*αb/6}*h/2;
 Kb=(L.Emat.Transpose[L])/(h*A);
 Tθu={{x32,y32,A4,x13,y13, 0,x21,y21, 0},
      {x32,y32, 0,x13,y13,A4,x21,y21, 0},
      {x32,y32, 0,x13,y13, 0,x21,y21,A4}}/A4;
 LL21=x21^2+y21^2; LL32=x32^2+y32^2; LL13=x13^2+y13^2;
 Te={{y23*y13*LL21,   y31*y21*LL32,   y12*y32*LL13},
     {x23*x13*LL21,   x31*x21*LL32,   x12*x32*LL13},
     {(y23*x31+x32*y13)*LL21,(y31*x12+x13*y21)*LL32,
      (y12*x23+x21*y32)*LL13}}/(A*A4);
 Q1={{β1,β2,β3}/LL21,{β4,β5,β6}/LL32,{β7,β8,β9}/LL13}*A2/3;
 Q2={{β9,β7,β8}/LL21,{β3,β1,β2}/LL32,{β6,β4,β5}/LL13}*A2/3;
 Q3={{β5,β6,β4}/LL21,{β8,β9,β7}/LL32,{β2,β3,β1}/LL13}*A2/3;
 Q4=(Q1+Q2)/2; Q5=(Q2+Q3)/2; Q6=(Q3+Q1)/2; 
 Enat=Transpose[Te].Emat.Te;
 Kθ=(3/4)*β0*h*A*(Transpose[Q4].Enat.Q4+Transpose[Q5].Enat.Q5+
                  Transpose[Q6].Enat.Q6);
 Kh=Transpose[Tθu].Kθ.Tθu; 
 Return[{Kb,Kh}]];

Fig. 10. A Mathematica implementation of the LST-3/9R ANDES template (32). A f77 version clocked at over 350 000 triangles per

second on a 3 GHz P4 is available from the writer by e-mail.
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the 3� 3 stress–strain matrix Emat, the thickness h and the set of free parameters ordered fab; b0; b1;
b2; . . . ; b9g. The module returns matrices Kb and Kh as list {Kb,Kh}, a separate return of the two matrices

being useful for research work.

This implementation emphasizes readibility and may be further streamlined. A carefully coded Fortran

or C implementation can form Kb þ Kh in about 500 floating point operations. A f77 version is available

from the writer by e-mail. On a 3 GHz P4 processor under SUSE Linux, that version was clocked at over

350 000 triangles per second. A 18-DOF shell element using this triangle as membrane component can be

formed in roughly 2400 floating-point operations.

To expedite ‘‘cloning tests’’ discussed in Section 10, the optimal stiffness of a triangle with x1 ¼ y1 ¼ 0,
x2 ¼ 4:08, y2 ¼ 	3:44, x3 ¼ 3:4, y3 ¼ 1:14, E ¼ 120, m ¼ 1=4 and h ¼ 1=8 is formed and displayed by the

statements of Fig. 11. (Module LST39ANDESTemplateSignature referenced therein is listed in Fig.

12.) SetPrecision keeps output entries down to five significant places so matrices fit across the page.

The results are

 xycoor=N[{{0,0},{102/25,-86/25},{85/25,285/250}}];
 Print["xycoor=",xycoor];
 Em=120; ν=1/4; h=1/8;
 Emat=Em/(1-ν^2)*{{1,ν,0},{ν,1,0},{0,0,(1-ν)/2}}; 
 fpars=  LST39RANDESTemplateSignature["OPT", Emat];
 {Kb,Kh}=LST39RMembTemplateStiffness [xycoor,Emat,h,fpars];
 Print["Kb=",SetPrecision[N[Kb],5]//MatrixForm]; 
 Print["Kh=",SetPrecision[N[Kh],5]//MatrixForm];
 Print["Ke=",SetPrecision[N[Kb+Kh],5]//MatrixForm];
 Print["eigs of Ke=",Chop[Eigenvalues[N[Kb+Kh]]]];

Fig. 11. Test statements that produce the matrices (50)–(52).

 LST39RANDESTemplateSignature[name_,Emat_]:=Module[{fpars,
    E11,E22,E33,E12,E13,E23,Edet,W,E11C11avg,β0},
    fpars={0,0,0,0,0,0,0,0,0,0,0}; (* CST *)
    If [name=="OPT",
       {{E11,E12,E13},{E12,E22,E23},{E13,E23,E33}}=Emat;
        Edet=E11*E22*E33+2*E12*E13*E23-E11*E23^2-E22*E13^2-E33*E12^2;
        W=-6*E12^3+5*E11^2*E22-5*E12^2*E22-E22*(75*E13^2+
        14*E13*E23+3*E23^2)+2*E12*(7*E13^2+46*E13*E23+7*E23^2)-

E11*(5*E12^2+3*E13^2-6*E12*E22-5*E22^2+14*E13*E23+75*E23^2)+
        (3*E11^2+82*E11*E22+3*E22^2-4*(6*E12^2+5*E13^2-6*E13*E23+
        5*E23^2))*E33+4*(5*E11-6*E12+5*E22)*E33^2;
        E11C11avg=W/(128*Edet); β0=Max[2/E11C11avg-3/2,1/100];
        fpars={3/2,β0,1,2,1,0,1,-1,-1,-1,-2}];
    If [name=="ALL3I",
        fpars={ 1,4/9,1/12,5/12,1/2,0,1/3,-1/3,-1/12,-1/2,-5/12}];
    If [name=="ALL3M",
        fpars={ 1,4/9,1/4,5/4,3/2,0,1,-1,-1/4,-3/2,-5/4}];
    If [name=="ALLLS",
        fpars={ 1,4/9,3/20,3/4,9/10,0,3/5,-3/5,-3/20,-9/10,-3/4}];
    If [name=="LSTRet",       
        fpars={4/3,1/2,2/3,-2/3,0,0,-4/3,4/3,-2/3,0,2/3}];
    Return[fpars]];

Fig. 12. Module to return signature given a template instance name.
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Kb ¼

10:350 0:95258 7:7327 	2:1309 1:7629 2:1745 	8:2194 	2:7155 	9:9073

0:95258 4:0758 8:1695 2:7629 0:17327 	5:7458 	3:7155 	4:2491 	2:4237

7:7327 8:1695 19:723 3:9414 1:3377 	9:4943 	11:674 	9:5072 	10:229

	2:1309 2:7629 3:9414 2:7575 	1:1855 	4:1179 	0:62660 	1:5774 0:17657

1:7629 0:17327 1:3377 	1:1855 5:8957 	4:6390 	0:57737 	6:0690 3:3013

2:1745 	5:7458 	9:4943 	4:1179 	4:6390 13:777 1:9434 10:385 	4:2825

	8:2194 	3:7155 	11:674 	0:62660 	0:57737 1:9434 8:8460 4:2928 9:7307

	2:7155 	4:2491 	9:5072 	1:5774 	6:0690 10:385 4:2928 10:318 	0:87754

	9:9073 	2:4237 	10:229 0:17657 3:3013 	4:2825 9:7307 	0:87754 14:512

2
66666666666664

3
77777777777775
;

ð50Þ

Kh ¼

0:041538 	0:27977 	0:63728 0:20769 0:069638 	0:52781 	0:24923 0:21014 	0:83208

	0:27977 1:8844 4:2923 	1:3989 	0:46903 3:5549 1:6786 	1:4153 5:6043

	0:63728 4:2923 12:833 	3:1864 	1:0684 7:7151 3:8237 	3:2239 10:092

0:20769 	1:3989 	3:1864 1:0385 0:34819 	2:6390 	1:2462 1:0507 	4:1604

0:069638 	0:46903 	1:0684 0:34819 0:11675 	0:88485 	0:41783 0:35229 	1:3950

	0:52781 3:5549 7:7151 	2:6390 	0:88485 7:9515 3:1668 	2:6701 9:7104

	0:24923 1:6786 3:8237 	1:2462 	0:41783 3:1668 1:4954 	1:2608 4:9925

0:21014 	1:4153 	3:2239 1:0507 0:35229 	2:6701 	1:2608 1:0630 	4:2093

	0:83208 5:6043 10:092 	4:1604 	1:3950 9:7104 4:9925 	4:2093 20:204

2
66666666666664

3
77777777777775
;

ð51Þ

KR ¼ Kb þ Kh

¼

10:392 0:67281 7:0955 	1:9232 1:8325 1:6467 	8:4687 	2:5053 	10:739

0:67281 5:9602 12:462 1:3640 	0:29577 	2:1909 	2:0368 	5:6644 3:1805

7:0955 12:462 32:557 0:75498 0:26929 	1:7792 	7:8504 	12:731 	0:13702

	1:9232 1:3640 0:75498 3:7959 	0:83734 	6:7570 	1:8728 	0:52670 	3:9838

1:8325 	0:29577 0:26929 	0:83734 6:0125 	5:5238 	0:99520 	5:7167 1:9063

1:6467 	2:1909 	1:7792 	6:7570 	5:5238 21:728 5:1102 7:7147 5:4278

	8:4687 	2:0368 	7:8504 	1:8728 	0:99520 5:1102 10:341 3:0320 14:723

	2:5053 	5:6644 	12:731 	0:52670 	5:7167 7:7147 3:0320 11:381 	5:0869

	10:739 3:1805 	0:13702 	3:9838 1:9063 5:4278 14:723 	5:0869 34:716

2
66666666666664

3
77777777777775
:

ð52Þ

The eigenvalues of KR to five places are 52:913 43:834 26:434 11:181 1:8722 0:64900 0 0 0½ �.
When doing element comparison studies as in Section 9 it is convenient to pass from a user supplied

mnemonic name to the set of free parameters (template signature). Module LST39ANDESTemplate-

Signature, listed in Fig. 12, returns the template signature given a type name. The second argument,

which is the stress–strain matrix E, is only used for type 00OPT00. For example LST39ANDESTemplate-
Signature[00LSTRet00,0] returns f4=3; 1=2; 2=3;	2=3; 0; 0;	4=3; 4=3;	2=3; 0; 2=3g as the set of free

parameters for the retrofitted LST derived in the next section.

7. Retrofitting LST

The process of building templates by direct fabrication may look like black magic to the uninitiated. By

comparison, retrofitting a well known ‘‘parent’’ element appears straightforward because kinematic con-
straints and congruential transformations are taught in introductory FEM courses.

2146 C.A. Felippa / Comput. Methods Appl. Mech. Engrg. 192 (2003) 2125–2168



7.1. Midpoint migration migraines

The idea explored in this section is to start with the conventional LST depicted in Fig. 3(a). The LST-

3/12C has 12 DOFs arranged as

uC ¼ ux1 uy1 ux2 uy2 ux3 uy3 ux4 uy4 ux5 uy5 ux6 uy6½ �T: ð53Þ
The triangle has straight sides, with nodes 4, 5 and 6 at the midpoints. (It makes no sense to start with the

more general curved-side iso-P element since these nodes are eventually eliminated.) The stiffness of this

superparametric triangle is readily computed in closed form since the Jacobian is constant. For constant E

and h, a very simple expression, discovered in 1966 [10], is

KC ¼ 1
3
Ah BT

1EB1

�
þ BT

2EB2 þ BT
3EB3

�
; ð54Þ

in which A is the triangle area and

B1 ¼
1

2A

y32 0 y31 0 y12 0 2y23 0 2y32 0 2y23 0

0 x23 0 x13 0 x21 0 2x32 0 2x23 0 2x32

x23 y32 x13 y31 x21 y12 2x32 2y23 2x23 2y32 2x32 2y23

2
64

3
75;

B2 ¼
1

2A

y23 0 y13 0 y12 0 2y31 0 2y31 0 2y13 0

0 x32 0 x31 0 x21 0 2x13 0 2x13 0 2x31

x32 y23 x31 y13 x21 y12 2x13 2y31 2x13 2y31 2x31 2y13

2
64

3
75;

B3 ¼
1

2A

y23 0 y31 0 y21 0 2y21 0 2y12 0 2y12 0

0 x32 0 x13 0 x12 0 2x12 0 2x21 0 2x21

x32 y23 x13 y31 x12 y21 2x12 2y21 2x21 2y12 2x21 2y12

2
64

3
75:

ð55Þ

Next, establish by some method a ‘‘midpoint migration’’ 12� 9 transformation matrix TCR that links

uC ¼ TCRuR, where the latter is configured as per (6). Then the LST-3/9R stiffness is

KL ¼ TT
CRKCTCR; ð56Þ

where the subscript distinguishes this stiffness from that derived in the previous section. One advantage of

this technique is that TCR can be reused to produce consistent mass, geometric stiffness matrices and

consistent forces from those of the LST-6/12C, which are well known and available in many codes.

If this sounds too good to be true, it is. Three things may go wrong. First, there is no guarantee that (56)

will pass the patch test. Generally it will not: as shown below, the TCR form that does it while avoiding the

second problem is very special. Second, the transformation may ‘‘blow up’’ for some triangle geometries.
Third, the element may be rank deficient.

There are no easy cures for any of those mishaps. Repeated failures during the 1970s prompted Irons

and Ahmad to proclaim, a bit prematurely, that trying to construct membrane elements with drilling

freedoms was a waste of time [43, p. 289]. To be fair, some of the tools used here were not known at the

time. In particular the fundamental decomposition (18), which facilitates passing the patch test a priori,

came after their book.

7.2. Divide and conquer

Begin by decomposing the stiffness KC of (54) into basic and higher order: KC ¼ KCb þ KCh. It is easily

checked that for constant E and h

KCb ¼ AhBT
0EB0; KCh ¼ 1

3
Ah BT

h1EBh1

�
þ BT

h2EBh2 þ BT
h3EBh3

�
; ð57Þ

in which B0 ¼ 1
3
ðB1 þ B2 þ B3Þ and Bhi ¼ Bi 	 B0, i ¼ 1, 2, 3. Explicit forms of the strain–displacement

matrices are
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B0 ¼
1

6A

y23 0 y31 0 y12 0 4y21 0 4y32 0 4y13 0

0 x32 0 x13 0 x21 0 4x12 0 4x23 0 4x31

x32 y23 x13 y31 x21 y12 4x12 4y21 4x23 4y32 4x31 4y13

2
64

3
75;

Bh1 ¼
1

3A

2y32 0 y31 0 y12 0 2y13 þ y23 0 y32 0 2y21 þ y23 0

0 2x23 0 x13 0 x21 0 x13 þ 2x23 0 x23 0 2x12 þ x32

2x23 2y32 x13 y31 x21 y12 x13 þ 2x23 2y13 þ y23 x23 y32 2x12 þ x32 2y21 þ y23

2
64

3
75;

Bh2 ¼
1

3A

y23 0 2y13 0 y12 0 y31 þ 2y32 0 2y21 þ y31 0 y13 0

0 x32 0 2x31 0 x21 0 x13 þ 2x23 0 2x12 þ x13 0 x31

x32 y23 2x31 2y13 x21 y12 x13 þ 2x23 y31 þ 2y32 2x12 þ x13 2y21 þ y31 x31 y13

2
64

3
75;

Bh3 ¼
1

3A

y23 0 y31 0 2y21 0 y21 0 2y3 þ y12 0 y12 þ 2y32 0

0 x32 0 x13 0 2x12 0 x12 0 x21 þ 2x31 0 x21 þ 2x23

x32 y23 x13 y31 2x12 2y21 x12 y21 x21 þ 2x31 2y3 þ y12 x21 þ 2x23 y12 þ 2y32

2
64

3
75:

ð58Þ
While B0 is unique, there are several Bhi matrices that produce the same KCh through the formula in (57).

This indeterminacy causes no problems, however, since KCh is unique because KC and KCb are. Insertion of

KC ¼ KCb þ KCh into (56) shows that

KL ¼ KLb þ KLh; KLb ¼ TT
CRKCbTCR; KLh ¼ TT

CRKChTCR: ð59Þ
Next, we make use of the hierarchical form of the LST introduced in [44, p. 222]. This variant, labelled LST-

6/20CH, has the same nodes as the LST-6/12C but the midpoint freedoms are deviations from linearity:

~uuC ¼ ux1 uy1 ux2 uy2 ux3 uy3 ~uux4 ~uuy4 ~uux5 ~uuy5 ~uux6 ~uuy6

� 
T
; ð60Þ

where ~uux4 ¼ ux4 	 1
2
ðux1 þ ux2Þ, ~uuy4 ¼ uy4 	 1

2
ðuy1 þ uy2Þ, etc. The freedoms of the conventional and hierar-

chical LST are related by the transformation

uC ¼ TCH~uuC; ~uuC ¼ THCuC; ð61Þ
in which

TCH ¼

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0
1

2
0

1

2
0 0 0 1 0 0 0 0 0

0
1

2
0

1

2
0 0 0 1 0 0 0 0

0 0
1

2
0

1

2
0 0 0 1 0 0 0

0 0 0
1

2
0

1

2
0 0 0 1 0 0

1

2
0 0 0

1

2
0 0 0 0 0 1 0

0
1

2
0 0 0

1

2
0 0 0 0 0 1

2
666666666666666666666666666664

3
777777777777777777777777777775

: ð62Þ
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The inverse THC ¼ T	1
CH is obtained by changing all 1

2
to 	 1

2
. It follows thateKKC ¼ TT

HCKCTHC ¼ eKKCb þ eKKCh; eKKCb ¼ TT
HCKCbTHC; eKKCh ¼ TT

HCKChTHC: ð63Þ
From the FF let us borrow a couple of modal-basis matrices:

GCb ¼

1 0 y1 x1 0 y1

0 1 	x1 0 y1 x1

1 0 y2 x2 0 y2

0 1 	x2 0 y2 x2

1 0 y3 x3 0 y3

0 1 	x3 0 y3 x3

1 0 y4 x4 0 y4

0 1 	x4 0 y4 x4

1 0 y5 x5 0 y5

0 1 	x5 0 y5 x5

1 0 y6 x6 0 y6

0 1 	x6 0 y6 x6

2
66666666666666664

3
77777777777777775

; GRb ¼

1 0 y1 x1 0 y1

0 1 	x1 0 y1 x1

0 0 1 0 0 0
1 0 y2 x2 0 y2

0 1 	x2 0 y2 x2

0 0 1 0 0 0
1 0 y3 x3 0 y3

0 1 	x3 0 y3 x3

0 0 1 0 0 0

2
66666666664

3
77777777775

ð64Þ

and their hierarchical counterparts:

eGGCb ¼ GCbTCR ¼

1 0 y1 x1 0 y1

0 1 	x1 0 y1 x1

1 0 y2 x2 0 y2

0 1 	x2 0 y2 x2

1 0 y3 x3 0 y3

0 1 	x3 0 y3 x3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

; eGGRb ¼ GRbTu~uu ¼

1 0 y1 x1 0 y1

0 1 	x1 0 y1 x1

0 0 0 0 0 0
1 0 y2 x2 0 y2

0 1 	x2 0 y2 x2

0 0 0 0 0 0
1 0 y3 x3 0 y3

0 1 	x3 0 y3 x3

0 0 0 0 0 0

2
66666666664

3
77777777775
: ð65Þ

The first three columns of each matrix span the rigid body modes and the last three the constant strain

modes evaluated at the nodes (these bases are not orthonormalized since that property is not required here).

Collectively these six columns are called the basic kinematic modes, hence the subscript.

The hierarchical form of TCR is eTTCR, connecting eKKL ¼ eTTT
CRKR

eTTCR. This 12� 9 matrix has 108 entries.

But 90 are immediately set to 1 or 0 by the obvious assumption: the hierarchical rotations ~hhi, i ¼ 1, 2, 3 are

defined only by the hierarchical midpoint displacements ~uuxm, ~uuym, m ¼ 4, 5, 6. Consequently eTTCR must have
the form

eTTCR ¼

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 q12 0 0 q21 0 0 q33

0 0 p21 0 0 p12 0 0 p33

0 0 q11 0 0 q23 0 0 q32

0 0 q11 0 0 p32 0 0 p23

0 0 q13 0 0 q22 0 0 q31

0 0 p31 0 0 p22 0 0 p13

2
666666666666666664

3
777777777777777775

: ð66Þ
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Here pij and qij are 18 undetermined coefficients with dimension of length. Now eTTCR must preserve rigid

body modes and constant strain states in the hierarchical elements. This requirement is expressed as

eGGCb ¼ eTTCR
eGGRb; ð67Þ

which gives six non-trivial conditions. These are satisfied by taking q11 ¼ 	ðq23 þ q32Þ, p11 ¼ 	ðp23 þ p32Þ,
q22 ¼ 	ðq13 þ q31Þ, p22 ¼ 	ðp13 þ p31Þ, q33 ¼ 	ðq12 þ q21Þ and p33 ¼ 	ðp12 þ p21Þ.

Transforming to non-hierarchical freedoms gives TCR ¼ THC
eTTCR. Matrix TCR gains twelve 1

2
entries at

midpoint locations but still has 12 undetermined coefficients.

Finally, require that the IET be passed by forcing the basic stiffness matrices to coalesce: TT
RCKCbTRC ¼

V TT
RCB

T
0EB0TRC ¼ V 	1LELT. Hence V B0TRC ¼ LT, where L is given by (22). The solution for pij and qij

contain denominators that can vanish for certain triangular geometries unless one sets p21 ¼ 	p12,

q21 ¼ 	q12, p32 ¼ 	p23, q32 ¼ 	q23, p31 ¼ 	p13 and q31 ¼ 	q13, whence p11 ¼ q11 ¼ p22 ¼ q22 ¼
p33 ¼ q33 ¼ 0. On doing that the unique solution is found to be p12 ¼ 1

8
abx12, p23 ¼ 1

8
abx23, p13 ¼ 1

8
abx13,

q12 ¼ 1
8
aby12, q13 ¼ 1

8
aby13, q23 ¼ 1

8
aby23. Hence the only transformation that avoids singularities while sat-

isfying the IET is

TCR ¼

1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0
1

2
0

1

8
aby12 0 0

1

8
aby21

1

2
0 0

0
1

2

1

8
abx21 0 0

1

8
abx12 0

1

2
0

0 0 0
1

2
0

1

8
aby23

1

2
0

1

8
aby32

0 0 0 0
1

2

1

8
abx32 0

1

2

1

8
abx23

1

2
0

1

8
aby13 0 0 0

1

2
0

1

8
aby31

0
1

2

1

8
abx31 0 0 0 0

1

2

1

8
abx13

2
6666666666666666666666666666666664

3
7777777777777777777777777777777775

: ð68Þ

By inspection, if ab 6¼ 0 this matrix has the non-trivial null vector:

Tunull
R ¼ 0; unull

R ¼ ½ 0 0 1 0 0 1 0 0 1 �T: ð69Þ

If ab ¼ 0 the dimension of the null space grows to three.

The shape functions of this element are obtained on postmultiplying the shape functions of the LST-6/12

by TCR. The interpolation is

ux ¼ Nxx1ux1 þ Nxy2uy1 þ Nxh1h1 þ � � � þ Nxh3h3;

uy ¼ Nyx1ux1 þ Nyy2uy1 þ Nyh1h1 þ � � � þ Nyh3h3;
ð70Þ

where Nxxi ¼ Nyyi ¼ fi (i ¼ 1, 2, 3), Nxyi ¼ Nyxi ¼ 0 (i ¼ 1, 2, 3), Nxh1 ¼ af1ðy12f2 	 y31f3Þ=2, Nxh2 ¼
af2ðy23f3 	 y12f1Þ=2, Nxh3 ¼ af3ðy31f1 	 y23f2Þ=2, Nyh1 ¼ af1ðx21f2 	 x13f3Þ=2, Nyh1 ¼ af2ðx32f3 	 x21f1Þ=2,

Nyh1 ¼ af3ðx13f1 	 x32f2Þ=2. The shape functions for the three freedoms of corner node 1 are plotted in
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Fig. 13. Note that the translational node displacement shape functions are the same as those of the CST-3/

6C, and thus conforming. The shape functions for the rotational freedoms are quadratic and non-conforming.

7.3. Stiffness matrix assessment

It is easily verified that KL is an instance of the ANDES template (32), with

ab ¼ a; b0 ¼ 1
2
; b1 ¼ b9 ¼ 1

2
a; b2 ¼ b7 ¼ 	b1; b3 ¼ b4 ¼ b8 ¼ 0; b5 ¼ 	a; b6 ¼ a: ð71Þ

Computing the bending energy ratio for an isotropic material gives

r ¼ c0 þ c2c
2; with c0 ¼

144 	 96ab þ 25a2
b

48ð1 	 m2Þ ; c2 ¼
144 	 192ab þ 73a2

b

96ð1 þ mÞ : ð72Þ

The ab roots of c2 ¼ 0 are imaginary, so the element cannot be bending optimal. However, the dependence

of r on c is fairly mild compared to that of elements with c4 6¼ 0. Coefficient c2 is minimized by taking

ab ¼ 96=73 ¼ 1:31507 � � � � 4=3.

Because of (69) the element is rank deficient by one for all ab > 0, with unull
R as spurious mode. This could

be cured by adding the torsional mode of Fig. 7 as stabilization mode. This stabilization leads to the cubic
elements studied in the next Section. The bad news is that stabilization worsens aspect ratio locking sig-

nificantly.

7.4. Deriving a mass matrix

An advantage previously noted for the retrofitting approach is that it readily produces mass matrices,

geometric stiffness matrices and consistent load vectors from those of the parent element. We give here an

application of this approach for deriving a mass matrix. The consistent mass matrix of a LST-6/12C tri-
angle of uniform thickness and mass density q is

MC ¼ hAq
180

6 0 	1 0 	1 0 0 0 	4 0 0 0
0 6 0 	1 0 	1 0 0 0 	4 0 0
	1 0 6 0 	1 0 0 0 0 0 	4 0
0 	1 0 6 0 	1 0 0 0 0 0 	4
	1 0 	1 0 6 0 	4 0 0 0 0 0
0 	1 0 	1 0 6 0 	4 0 0 0 0
0 0 0 0 	4 0 32 0 16 0 16 0
0 0 0 0 0 	4 0 32 0 16 0 16
	4 0 0 0 0 0 16 0 32 0 16 0
0 	4 0 0 0 0 0 16 0 32 0 16
0 0 	4 0 0 0 16 0 16 0 32 0
0 0 0 	4 0 0 0 16 0 16 0 32

2
6666666666666664

3
7777777777777775

: ð73Þ

u   = 1x1

u   = 1y1

θ   = 11

Fig. 13. Shape functions for corner 1 of retrofitted LST, ab ¼ 1.
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Using the transformation (68), a possible mass matrix for the LST-6/12R configuration is

ML ¼ TT
CRMCTCR; ð74Þ

which is easily obtained in closed form. This mass matrix has a rank deficiency of one if a 6¼ 0, with the null

eigenvector (69). However rank deficiency of mass matrices is not that important as in stiffness matrices,

unless they are used in explicit transient analysis.

The mass matrix ML depends on the parameter a present in TRC. To find the best value aM when this

mass is paired to the OPT stiffness it is convenient to morph the mass into that of a Bernoulli–Euler beam

following the technique outlined in Section 5.6: Mbeam ¼ TT
mMLTm. Then the plane-wave Fourier analysis

described in [39,40] on a repeating beam lattice is carried out. The end result for the computed non-

dimensional acoustic frequency is the dispersion relation

x2
a ¼ k4 þ 1 þ ð17 þ 2aÞc2 þ ð16a 	 23Þc4 þ ð2a 	 3Þc6

12c2ð1 þ 8c2 þ c4Þ k6 þ Oðk8Þ; ð75Þ

where k is the wavenumber. The exact non-dimensional acoustic-branch frequency is x2
a ¼ k4. Because of

the dependence on c, the term in k6 cannot be made to vanish for a specific a. But it rapidly tends to zero for

c � 1 if aM ¼ a ¼ 3=2, which is the recommended value. (Note that this differs from the recommended
value for the retrofitted stiffness, which is ab ¼ 4=3. But the mass-stiffness pairing of ML is not with KL, but

with that of the optimal element.)

8. The Allman 1988 triangle

In 1984 Allman published [45] a drilling freedom triangle based on quadratic shape functions. This

element is a clone of that presented in Section 7 if one takes ab ¼ 1. It is therefore rank deficient. This was
corrected in a subsequent publication [46].

8.1. Shape functions

The displacement interpolation used by Allman in the 1988 element is

ux ¼ Nxx1ux1 þ Nxy1uy1 þ Nxh1h1 þ � � � þ Nxh3h3;

uy ¼ Nyx1ux1 þ Nyy1uy1 þ Nyh1h1 þ � � � þ Nyh3h3;
ð76Þ

where the shape functions are

Nxx1 ¼ f1 	 x23xr0; Nxy1 ¼ 	y23xr0; Nxx2 ¼ f2 	 x31xr0; Nxy2 ¼ 	y31xr0;

Nxx3 ¼ f3 	 x12xr0; Nxy3 ¼ 	y12xr0; Nxh1 ¼ 1
2
ð	g1f12 þ g5f31 þ g1f1221 þ g5f3113Þ;

Nxh2 ¼ 1
2
ð	g3f23 þ g1f12 þ g3f2332 þ g1f1221Þ; Nxh3 ¼ 1

2
ð	g5f31 þ g3f23 þ g5f3113 þ g3f2332Þ;

Nyx1 ¼ 	x23yr0; Nyy1 ¼ f1 	 y23yr0; Nyx2 ¼ 	x31yr0; Nyy2 ¼ f2 	 y31yr0;

Nyx3 ¼ 	x12yr0; Nyy3 ¼ f3 	 y12yr0; Nyh1 ¼ 1
2
ð	g2f12 þ g6f31 þ g2f1221 þ g6f3113Þ;

Nyh2 ¼ 1
2
ð	g4f23 þ g2f12 þ g4f2332 þ g2f1221Þ; Nyh3 ¼ 1

2
ð	g6f31 þ g4f23 þ g6f3113 þ g4f2332Þ;

ð77Þ
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in which

f12 ¼ f1f2; f23 ¼ f2f3; f31 ¼ f3f1; f1221 ¼ f12ðf2 	 f1Þ; f2332 ¼ f23ðf3 	 f2Þ;
f3113 ¼ f31ðf1 	 f3Þ;
a12 ¼ 2A=L12; b12 ¼ ðx12x13 þ y12y13Þ=L12; a23 ¼ 2A=L23;

b23 ¼ ðx23x21 þ y23y21Þ=L23; a31 ¼ 2A=L31; b31 ¼ ðx31x32 þ y31y32Þ=L31;

xp12 ¼ x21b12=L12 þ x1; yp12 ¼ y21b12=L12 þ y1; xp23 ¼ x32b23=L23 þ x2;

yp23 ¼ y32b23=L23 þ y2; xp31 ¼ x13b31=L31 þ x3; yp31 ¼ y13b31=L31 þ y3;

g1 ¼ L12ðxp12 	 x3Þ=a12; g2 ¼ L12ðyp12 	 y3Þ=a12; g3 ¼ L23ðxp23 	 x1Þ=a23;

g4 ¼ L23ðyp23 	 y1Þ=a23; g5 ¼ L31ðxp31 	 x2Þ=a31; g6 ¼ L31ðyp31 	 y2Þ=a31;

xr0 ¼ ðg1f1221 þ g3f2332 þ g5f3113Þ=ð4AÞ; yr0 ¼ ðg2f1221 þ g4f2332 þ g6f3113Þ=ð4AÞ:

ð78Þ

The shape functions for the three freedoms of corner node 1 are plotted in Fig. 14. In contrast to those of

Fig. 13, all shape functions are non-conforming. The strain–displacement matrix e ¼ Bu is readily com-

puted by differentiation of the shape functions. The stiffness matrix is then obtained as

KA ¼
Z

Xe
hBTEBdX; ð79Þ

where dX is the element of area. Variants of this element result according to the integration rule adopted in

(79). These are studied next.

8.2. Variants

Since the shape functions (76) are cubic, the derived strains vary quadratically. For uniform E and h the

integrand of (79) varies quadratically. Exact integration may be achieved with the 7-point Gauss rule for

triangles. For an isotropic material the exactly integrated element has the bending energy ratio listed in

Table 3 under label ALL-EX. This has c4 growth and rapidly locks for high aspect ratios.

Since the optimal element of Section 5 has linearly varying strains, it is of interest to see whether filtering

the strains to a linear variation improves the bending behavior. One way to linearize strains is by reducing

the integration rule. Consider the 3-point triangle quadrature rule defined parametrically byZ
A
F ðf1; f2; f3ÞdA � A

3
½F ðn; n; 1 	 2nÞ þ F ðn; 1 	 2n; nÞ þ F ð1 	 2n; n; nÞ�; ð80Þ

where 06 n6 1
2
. The two useful rules of this type are n ¼ 1=6 (the interior-three-point rule) and n ¼ 1=2 (the

midpoint rule), both of which exhibit quadratic accuracy. But in the present context it is instructive to leave

u   = 1x1

u   = 1y1

θ   = 11

Fig. 14. Shape functions for corner 1 of Allman 1988 triangle.
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initially n free. A symbolic analysis with Mathematica shows that if the 1988 Allman element is numerically

integrated by (80), the stiffness matrix is an instance of the ANDES template (32) with

ab ¼ 4nð2 	 3nÞ; b0 ¼ 4
9
; b1 ¼ 1

2
n; b2 ¼ 5

2
n; b3 ¼ 3n; b4 ¼ 0; b5 ¼ 2n;

b6 ¼ 	2n; b7 ¼ 	1
2
n; b8 ¼ 	3n; b9 ¼ 	5

2
n: ð81Þ

Inserting these into (37)–(39) the bending energy ratio r is readily obtained. Results for the particular cases
n ¼ 1=2 and n ¼ 1=6 are listed in Table 3 under labels ALL-3M and ALL-3I, respectively.

Yet another way to fit a linear strain pattern to Allman�s quadratic strain fit is by minimizing a dislo-

cation potential, which results in a least-square-like fit [42]. The resulting element is called ALL-LS. One

finds that this element is an instance of the template (32) with the parameters shown in Table 2. The energy

ratio is given in Table 3.

It can be seen that all variants of the Allman element exhibit catastrophic aspect ratio locking with r
growing as c4 for c � 1. Of the four variants shown in Tables 1–3, ALL-3I is preferable since it has the

lowest r as c grows. But all of them are worse than the humble CST when c > 9.

9. Numerical examples

Refs. [17,21] contain extensive comparisons of triangular elements with drilling freedoms, as does the

thesis of Nyg�aard [23] for both triangles and quadrilaterals. Only three numerical examples are presented

here. The first two are standard benchmarks that focus on the effect of aspect ratio on the bending response.

The third (Cook�s problem) is included since there are published results for many element types.

9.1. Example 1: Cantilever under end moment

The slender cantilever beam of Fig. 15 is subjected to an end moment M ¼ 100. The modulus of elasticity

is set to E ¼ 768 so that the exact tip deflection dtip ¼ ML=ð2EIÞ is 100. Regular meshes ranging from 32� 2

to 2� 2 are used, each rectangle mesh unit being composed of four half-thickness overlaid triangles. The

element aspect ratios vary from 1:1 through 16:1. The root clamping condition is imposed by setting

ux1 ¼ ux2 ¼ ux3 ¼ 0; uy2 ¼ 0; hx1 ¼ hx2 ¼ hx3 ¼ 0; ð82Þ
where 1, 2, 3 are the root nodes, numbered from the top. It is important to leave uy1 and uy3 unrestrained for

m 6¼ 0. This allows for the Poisson�s contraction at the root and makes the exact solution merge with the

displacement solution given in Section 5.1 over the entire beam.

Fig. 15. Slender cantilever beam under end moment: root contraction allowed; four-overlaid-triangle mesh units; a 32 � 2 mesh is

shown in (b).
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Table 4 reports computed tip deflections (y displacement at C) for several element types and five aspect
ratios. The identifiers in the ‘‘load lumping’’ column define ways in which the applied tractions at the free

end are transformed to node forces; this topic is elaborated upon in [18].

Because two elements through the height are used, the computed deflections should be 100=rð2Þ, where

rð2Þ ¼ ð3 þ rÞ=4 as per Eq. (45). This provides a valuable numerical confirmation of the energy ratios listed

in Table 3. Discrepancies from that prediction are due to load lumping schemes. For example, the results

for OPT should be exactly 100.00 for any c. And in fact they are if another load lumping scheme labeled

EBZ in [18] is used. But the effect of the load lumping is slight, affecting only the fourth place of the

computed deflections. The tiny deviations from 100.00 are due to scheme EBQ not being in exact energy
balance, as explained in that reference.

The FF84 element maintains good but not perfect accuracy. The Allman 88 triangles perform well for

unit aspect ratios but rapidly become overstiff for c > 2; all variants are inferior to the CST for c > 9. Of the

four variants listed in Table 4 ALL-3I is consistently superior.

9.2. Example 2: The shear-loaded short cantilever

The shear-loaded cantilever beam defined in Fig. 16 has been selected as a test problem for plane stress
elements by many investigators since originally proposed in [10]. A full root-clamping condition is im-

plemented by constraining both displacement components to zero at nodes located at the root section x ¼ 0.

Drilling rotations must not be constrained at the root because the term ouy=ox in the continuum-mechanics

Table 4

Tip deflections (exact ¼ 100) for cantilever under end moment

Element Load lumping Mesh: x-subdivisions� y-subdivisions

32� 2 (c ¼ 1) 16� 2 (c ¼ 2) 8� 2 (c ¼ 4) 4� 2 (c ¼ 8) 2� 2 (c ¼ 16)

ALL-3I EBQ 87.08 76.48 38.32 5.42 0.39

ALL-3M EBQ 81.36 53.57 9.59 0.71 0.04

ALL-EX EBQ 84.90 69.09 24.23 2.47 0.16

ALL-LS EBQ 85.36 68.25 20.83 1.89 0.12

CST LI 54.05 36.36 15.75 4.82 1.28

FF84 EBQ 98.36 97.17 96.58 96.34 96.27

LST-Ret EBQ 89.05 81.04 59.58 28.93 9.46

OPT EBQ 99.99 99.99 99.99 99.96 100.07

Fig. 16. Cantilever under end shear: E ¼ 30000, m ¼ 1=4, h ¼ 1; root contraction not allowed; four-overlaid-triangle mesh units; a

8� 2 mesh is shown in (b).
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definition (7) is non-zero there. The applied shear load varies parabolically over the end section and is

consistently lumped at the nodes.

The comparison value is the tip deflection dC ¼ uyC at the center of the end-loaded cross section. One

perplexing question concerns the analytical value of dC. An approximate solution derived from 2-D elas-

ticity, based on a polynomial Airy stress function, gives del ¼ 0:34133 þ 0:01400 ¼ 0:35533, where the first

term comes from the bending deflection PL3=3EIzz, Izz ¼ hH 3=12, and the second from a y-quadratic shear

field. The shear term coefficient in the second term results from assuming a warping-allowed root-clamping

condition that is more ‘‘relaxed’’ than the fully-clamped prescription for the FE model. Consequently in
[10] it was argued that del should be an upper bound, which was verified by the conforming FE models

tested at that time. The finest grid results in [21] gave, however, dC � 0:35587, which exceeds that ‘‘bound’’

in the fourth place. The finest OPT mesh ran here (128� 32) gave a still larger value: 0.35601. The apparent

explanation for this paradox is that if m 6¼ 0, a mild singularity in ryy and sxy , induced by the restraint

uy jx¼0 ¼ 0, develops at the corners of the root section, as depicted in Fig. 17. This singularity ‘‘clouds’’

convergence of digits 4–5. (In retrospect it would have been better to allow for lateral contraction effects as

in Example 1 to avoid this singularity.) The percentage results in Tables 3–5 of [21] therefore contain errors

in the 4th place.
Table 5 gives computed deflections for rectangular mesh units with aspect ratios of 1, 2 and 4. Mesh

units consist of four half-thickness overlaid triangles. For reporting purposes the load was scaled by 100/

0.35601 so that the ‘‘theoretical solution’’ becomes 100.00.

The data in Table 5 generally follows the patterns of the previous example; the main difference being the

lack of drastically small deflections because element aspect ratios only go up to 4:1. Of the four Allman

triangle versions again ALL-3I outperformed the others. The results for FF84 and OPT triangles are very

similar, without the latter displaying the clear advantages of Example 1. The data for FF84 and CST

changes slightly from that of Tables 3–5 of [21] on two accounts: four-triangle, rather than two-triangle,
macroelements are used to eliminate y-directionality, and the normalizing ‘‘theoretical’’ solution changes by

+0.00014 as explained above.

Fig. 17. Intensity contour plot of rxy given by the 64� 16 OPT mesh. Stress node values averaged between adjacent elements. The root

singularity pattern is visible.
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Fig. 18. Distributions of rxx, ryy and rxy at x ¼ 12 given by the 16� 64 OPT mesh. Stress node values averaged between adjacent

elements. Note different stress scales. Deviations at y ¼ �6 (free edges) due to ‘‘upwinded’’ y averaging.
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Fig. 18 plots averaged node stress values at section x ¼ 12 computed from the 64� 16 OPT mesh. The

recovery is based on (49) with be
0 ¼ 3=2. The agreement with the standard beam stress distribution (the

section is sufficiently away from the root) is very good at interior points but less so at the free edges y ¼ �6

since the averaging becomes biased.

9.3. Example 3: Cook’s problem

Table 6 gives results computed for the plane stress problem defined in Fig. 19. This problem was pro-

posed by Cook [47] as a test case for non-rectangular quadrilateral elements. There is no known analytical

solution but the OPT results for the 64� 64 mesh may be used for comparison purposes. (Extrapolation of

the OPT results using Wynn�s � algorithm [48] yields uyC ¼ 23:956.) The last six lines in Table 6 pertain to

quadrilateral elements. Results for HL, HG and Q4 are taken from [47] whereas those for Q6 and QM6 are

taken from [49]. Results for the free formulation quadrilateral FFQ are taken from Nyg�aard�s thesis [23].

Further data on other elements is provided in [50].

For triangle tests, quadrilaterals were assembled with two triangles in the shortest-diagonal-cut layout as
illustrated in Fig. 16 for a 2� 2 mesh. Cutting the quadrilaterals the other way or using four-overlaid-

triangle macroelements yields stiffer results.

Table 5

Tip deflections (exact ¼ 100) for short cantilever under end shear

Element Mesh: x-subdivisions� y-subdivisions

8� 2 16� 4 32� 8 64� 16 128� 32

ALL-3I 96.41 98.59 99.59 99.91 99.99

ALL-3M 82.70 94.78 98.57 99.62 99.91

ALL-EX 89.43 96.88 99.16 99.79 99.96

ALL-LS 89.72 96.94 99.17 99.79 99.96

CST 55.09 82.59 94.90 98.65 99.66

FF84 99.15 99.71 99.87 99.96 99.99

LST-Reta 70.86 91.10 97.90 99.56 99.90

OPT 101.68 100.30 100.03 100.00 100.00

4� 2 8� 4 16� 8 32� 16 64� 32

ALL-3I 82.27 93.22 97.86 99.38 99.83

ALL-3M 54.23 81.84 94.52 98.50 99.61

ALL-EX 70.71 89.63 96.93 99.15 99.77

ALL-LS 69.97 89.30 96.94 99.17 99.79

CST 37.85 69.86 90.04 97.25 99.28

FF84 94.27 97.85 99.23 99.74 99.92

LST-Reta 79.58 93.53 98.14 99.49 99.83

OPT 96.68 98.44 99.37 99.78 99.93

2� 2 4� 4 8� 8 16� 16 32� 32

ALL-3I 42.53 72.66 90.72 97.32 99.27

ALL-3M 12.39 31.81 63.68 87.24 96.41

ALL-EX 26.16 56.93 83.54 95.14 98.69

ALL-LS 23.02 52.37 80.84 94.22 98.45

CST 17.83 43.84 75.01 92.13 97.86

FF84 89.26 96.37 98.66 99.50 99.83

LST-Reta 56.71 83.79 95.14 98.63 99.62

OPT 92.24 96.99 98.70 99.48 99.81

a Requires one drilling freedom to be fixed, else stiffness is singular.
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Since element aspect ratios are of order unity near the root (where the action is), the performance of the
seven LST-3/9R models tested can be expected to be similar, and indeed it was. Of the seven ALL-3I is best

followed closely by LST-Ret, OPT and FF84. It should be noted that accuracy of the FF84 and OPT

triangles for this problem is dominated by the basic stiffness response. Consequently the deflection values

provided by the FF84 and OPT elements, which share the same basic stiffness, are very close.

The overall stress distribution for this problem is rarely reported. Fig. 20 displays a Mathematica-

generated intensity contour plot of the von Mises stress computed from the 32� 32 OPT mesh, using the

recovery formula (49) with be
0 ¼ 3=2. A singularity pattern at point fx ¼ 0; y ¼ 44g, which is located at a

fixed entrant corner, is evident.

Table 6

Results for Cook�s problem

Element Vertical deflection at C for subdivision

2� 2 4� 4 8� 8 16� 16 32� 32 64� 64

ALL-3I 21.61 23.00 23.66 23.88 23.94

ALL-3M 16.61 21.05 23.02 23.69 23.87

ALL-EX 19.01 21.83 23.43 23.81 23.91

ALL-LS 19.43 22.32 23.44 23.82 23.92

CST 11.99 18.28 22.02 23.41

FF84 20.36 22.42 23.41 23.79 23.91

LST-Reta 19.82 22.62 23.58 23.86 23.94

OPT 20.56 22.45 23.43 23.80 23.91 23.95

FFQ 21.66 23.11 23.79 23.88 23.94

HL 18.17 22.03 23.81

HG 22.32 23.23 23.91

Q4 11.85 18.30 23.43

Q6 22.94 23.48

QM6 21.05 23.02

a Requires one drilling DOF to be fixed, else stiffness is singular.

Fig. 19. Cook�s problem: clamped trapezoid under end shear. A 8� 8 mesh is shown.
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10. Discussion and conclusions

The conclusions are posted below in a Q&A format so that readers can scan subjects quickly.

Has the OPT triangle been used much?

The optimal LST-3/9R element has been used since 1991 as membrane component of a shell element
with six DOF per corner. The presence of the drilling freedoms facilitates modeling of surface intersections

and stiffeners. In fact the shell element is so fast and versatile that it has largely replaced beams in modeling

complete aircraft structures. Fig. 21 shows portion of the interior structure of an F-16 used in aeroelastic

studies by Farhat�s team [51]: note that triangles are used for any thin wall component. A corotational

version developed by Haugen [52] is used in the FEDEM multibody dynamics system. The FF84 ancestor is

used in codes developed at Trondheim by P�aal Bergan and his colleagues.

When is exact pure-bending response important?

Bending response exactness for any aspect ratio c is important in modeling thin and composite aerospace
structures, such as the stiffened panel depicted in Fig. 22. If the longitudinal direction called x in the bending

test is set along the panel, that Figure shows a very high c in a flange and a small c in a joint. Aspect ratio

locking in such mesh units can adversely affect the response of the whole structure.

What are the main advantages of templates?

The obvious one is the possibility of searching for optimal or custom element instances, without worry as

to fixing up bad elements along the way. They are also useful in research studies because a template spans

an infinity of possible elements including elements already published. This unification facilitates compar-

ison of previous and new elements using a single implementation, as in Fig. 10.
Why are strains good choice for higher order trial spaces?

Strains are intermediate variables between displacements and stresses. Unlike them, no boundary con-

ditions can be applied on strains. This mediatory nature tends to produce elements of balanced behavior:

Fig. 20. von Mises stress intensity distribution from 32� 32 OPT element mesh. Peak occurs at upper left corner.
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neither too stiff nor too flexible. In non-mechanical problems, the same role can be assigned to the inter-

mediate variable that appears in Tonti diagrams of the variational formulation [4].

Do templates supersede conventional element derivation methods?
No. The template configuration, by which it is meant the sequence of matrix products and the functional

dependence of matrix entries on geometry and constitutive properties, has to be established by conventional

methods. For example, the ANDES formulation leads to the forms (29)–(32), which would be difficult to

guess in advance. Parameters are injected as weights of algebraic terms as appropriate.

Fig. 21. Internal structure of an F-16 modeled with triangle shell elements (courtesy Greg Brown).

joint:  γ <<1

flange: γ >>1

Fig. 22. Stiffened panels modeled by facet shell elements are a common source of high aspect ratio elements.
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I have derived an allegedly new LST-3/9R triangle. How do I check if it is optimal?
The first step is to run the bending ratio test of Section 5.1, numerically or (better) symbolically. If: (i) the

ratio r ¼ 1 for all c, (ii) the element passes the ordinary patch tests and (iii) is rank sufficient, it is indeed

optimal. But is it new? The next step should be to try the test geometry of Section 6 and compare K to (52).

If it matches, the ‘‘new triangle’’ is likely a clone of the OPT element. This can be rigorously proven by

extracting its template signature, which is not a easy process if the element was fabricated as a whole. If it

does not match you have a different optimal element. As discussed in Section 5.5, this cannot happen if the

element is energy orthogonal.

Should parameters be left as arguments of element implementations?
Only for research studies, and to find clones (as in the scenario of the foregoing question). In production

implementations parameters should be hardwired to a name, as illustrated by the module listed in Fig. 12.

Few users have the knowledge or interest to play around with parameter values.

Why is it worth republishing the optimal element?

Two reasons. First, the fact that a membrane element with this freedom configuration that is insensitive

to aspect ratio can be constructed does not seem to be generally known. Second, the derivation can be now

comfortably placed within the framework of finite element templates, which was an embryonic concept ten

years ago. As a result, several elements in common use can be exhibited as instances of the ANDES
template, facilitating unified implementation and testing.

The paper discusses three LST-3/9R models, but more have been published. Why the omissions?

The three models are intended to illustrate the derivation approaches of Fig. 1. The ANDES template

exemplifies the direct fabrication approach. The retrofitted LST is a textbook example of, well, the retro-

fitting approach. The Allman 1988 triangle displays the typical tribulations of the fix-up approach in that

several variants are tried but none cures aspect ratio locking. Including more models would have length-

ened the exposition without achieving appreciable benefits.
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Appendix A. The higher order strain field

For completeness the construction of the higher order strain field carried out in Ref. [17] is summarized

here. Split the hierarchical rotations into mean and deviatoric: ~hh1 ¼ �hh þ h0
1, h2 ¼ �hh þ h0

2, h3 ¼ �hh þ h0
3, where

�hh ¼ 1
3
ð~hh1 þ ~hh2 þ ~hh3Þ. In matrix form: ~hh ¼ �hh þ h0 where �hh ¼ �hh½ 1 1 1 �T and h0 ¼ ½ h0

1 h0
2 h0

3 �
T
. The devi-

atoric corner rotations define the linear deviatoric-rotation field:

h0 ¼ h0
1f1 þ h0

2f2 þ h0
3f3; ðA:1Þ

which integrates to zero over the element. For subsequent use we note the matrix relation

h0
1

h0
2

h0
3

�hh

2
66664

3
77775 ¼

1 0 0

0 1 0

0 0 1
1

3

1

3

1

3

2
66664

3
77775

0
BBBB@ 	 1

3

1 1 1

1 1 1

1 1 1

0 0 0

2
6664

3
7775
1
CCCA

~hh1

~hh2

~hh3

2
64

3
75 ¼ 1

3

2 	1 	1

	1 2 	1

	1 	1 2

1 1 1

2
6664

3
7775

~hh1

~hh2

~hh3

2
64

3
75: ðA:2Þ
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The splitting (A.2) translates to a similar decomposition of the higher order strains: ed ¼ eb þ et, where

subscripts �b� and �t� identify ‘‘pure bending’’ and ‘‘torsional’’ strain fields, respectively. These are generated

by the deviatoric rotations h0 and the mean hierarchical rotation �hh, respectively.

A.1. The pure bending field

This field is produced by the deviatoric corner rotations h0
i, i ¼ 1, 2, 3, inducing the side-aligned natural

strains

�b ¼ ½ �b21 �b32 �b13 �T; ðA:3Þ
pertaining to choice (s) in Fig. 5. The straingage locations are chosen at the triangle corners. The natural

strain �jk at corner i is written �jkji, the bar being used for reading convenience. Vector �b at corner i is

denoted by �bi. The goal is to construct the 3� 3 matrices Qbi that relate natural straingage readings to the

deviatoric rotations:

�b1 ¼ Qb1h
0; �b2 ¼ Qb2h

0; �b3 ¼ Qb3h
0: ðA:4Þ

Once these are known the natural bending strains can be obtained by linear interpolation over the triangle:

�b ¼ ðQb1f1 þQb2f2 þQb3f3Þh0 ¼ Qbh
0. Consider �b21ðP Þ at an arbitrary point P of the triangle. Denote by

d21jP the signed distance from the centroid to P measured along the internal normal to side 21, and specialize

P to corners:

d21j3 ¼
4A
3‘21

; d21j1 ¼ d21j2 ¼ 	 1

2
d21j3 ¼ 	 2A

3‘12

: ðA:5Þ

Assume that �b21jP depends only on d21jP divided by the side length ‘21, which introduces a distance scaling.

These dimensionless ratios will be called v21jP ¼ d21jP=‘21, which specialized to the corners become

v21j3 ¼
4A
3‘2

21

; v21j1 ¼ v21j2 ¼ 	 2A
3‘2

21

: ðA:6Þ

Formulas for the other strain components are obtained by cyclic permutation. According to the foregoing

assumption, the natural straingage readings �b21ji at corner i depend only on v21ji, multiplied by as yet
unknown weighting factors. In matrix form:

�b1 ¼
�b21j1

�b32j1

�b13j1

2
4

3
5 ¼ 2A

3

w1

‘2
21

w2

‘2
21

w3

‘2
21

w4

‘2
32

w5

‘2
32

w6

‘2
32

w7

‘2
13

w8

‘2
13

w9

‘2
13

2
66666664

3
77777775

h0
1

h0
2

h0
3

2
64

3
75 ¼ Qb1h

0: ðA:7Þ

Here w1 through w9 are dimensionless weight parameters. [In Ref. [17] five parameters called q1 through q5

were used instead as shown in Eq. (20); these account a priori for the triangular symmetries (33).] Relations
for corners 2 and 3 are constructed by cyclic permutation.

Pictures of the unweighted bending modes are shown in Fig. 7. These were obtained by integrating the

strain field into displacements, which is possible because both natural and Cartesian strains vary linearly.

A.2. The torsional field

The higher order stiffness produced by the pure bending field alone is rank deficient by one because of

the deviatoric constraint h0
1 þ h0

2 þ h0
3 ¼ 0. To get rank sufficiency it is necessary to build a strain field
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associated with ~hhi ¼ �hh, others zero. This may be viewed as forcing each corner of the triangle to rotate by
the same amount while the corner displacements are precluded. A displacement-based solution to this

problem is provided by the cubic field of the QST4-20G shown in the center of Fig. 2. From [10, p. 30] the

shape function interpolation for ux is

uxðf1; f2; f3Þ ¼

ux1
ux;xj1
ux;yj1
ux2
ux;xj2
ux;yj2
ux3
ux;xj3
ux;yj3
ux0

2
666666666666666664

3
777777777777777775

T
f2

1ð3 	 2f1Þ 	 7f1f2f3

f2
1ðx21f2 	 x13f3Þ þ ðx13 	 x21Þf1f2f3

f2
1ðy21f2 	 y13f3Þ þ ðy13 	 y21Þf1f2f3

f2
2ð3 	 2f2Þ 	 7f1f2f3

f2
2ðx32f3 	 x21f1Þ þ ðx21 	 x32Þf1f2f3

f2
2ðy32f3 	 y21f1Þ þ ðy21 	 y32Þf1f2f3

f2
3ð3 	 2f3Þ 	 7f1f2f3

f2
3ðx13f1 	 x32f2Þ þ ðx32 	 x13Þf1f2f3

f2
3ðy13f1 	 y32f2Þ þ ðy32 	 y13Þf1f2f3

27f1f2f3

2
666666666666666664

3
777777777777777775

; ðA:8Þ

where ux;xji and ux;yji denote oux=ox and oux=oy, respectively, evaluated at node i, with i ¼ 0 for the centroid.

The same shape functions interpolate uyðf1; f2; f3Þ. The torsional mode with unit rotations hi ¼ �hh ¼ 1 is

imposed by setting the nodal displacements to

uxi ¼ uyi ¼ ux;xjj ¼ uy;yjj ¼ 0; ux;yjj ¼ 	�hh; uy;xjj ¼ �hh; i ¼ 0; 1; 2; 3; j ¼ 1; 2; 3: ðA:9Þ

Differentiating the QST interpolation with respect to x and y, collapsing freedoms via (A.9) and trans-

forming to natural strains via (11) yields

�t ¼
�t21

�t32

�t13

2
4

3
5 ¼ 3

v21j3ðf1 	 f2Þf3

v32j1ðf2 	 f3Þf1

v13j2ðf3 	 f1Þf2

2
4

3
5�hh: ðA:10Þ

This quadratic field was found unable to produce optimal elements in conjunction with the foregoing

bending field. A midpoint-filtered fit that permits optimality is obtained by collocating (A.10) at the
midpoints and interpolating linearly over the triangle:

�m
t ¼

�m
t21

�m
t32

�m
t13

2
4

3
5 ¼ 3

2

v21j3ðf1 	 f2Þ
v32j1ðf2 	 f3Þ
v13j2ðf3 	 f1Þ

2
4

3
5�hh ¼def 4A

3
w0

ðf1 	 f2Þ=‘2
21

ðf2 	 f3Þ=‘2
32

ðf3 	 f1Þ=‘2
13

2
4

3
5�hh: ðA:11Þ

The effect of this strain filtering is pictured in Fig. 23 using integrated displacement patterns.
As indicated on the right of (A.11) the field is scaled by a weight coefficient w0 chosen so that w0 ¼ 1 for

the parameter set that produces the optimal element. Evaluating (A.11) at corner 1, combining with (A.7)

and using the rotational transformation (A.2) gives

�1 ¼
2A
3

w1

‘2
21

w2

‘2
21

w3

‘2
21

4w0

‘2
21

w4

‘2
32

w5

‘2
32

w6

‘2
32

0

w7

‘2
13

w8

‘2
13

w9

‘2
13

	4w0

‘2
13

2
66666664

3
77777775

h0
1

h0
2

h0
3

�hh

2
66664

3
77775 ¼ 2A

3

b1

‘2
21

b2

‘2
21

b3

‘2
21

b4

‘2
32

b5

‘2
32

b6

‘2
32

b7

‘2
13

b8

‘2
13

b9

‘2
13

2
66666664

3
77777775

~hh1

~hh2

~hh3

2
64

3
75 ¼ Q1

~hh; ðA:12Þ

in which b1 ¼ 1
3
ð4w0 þ 2w1 	 w2 	 w3Þ, b2 ¼ 1

3
ð4w0 	 w1 þ 2w2 	 w3Þ, b3 ¼ 1

3
ð4w0 	 w1 	 w2 þ 2w3Þ, b4 ¼

1
3
ð2w4 	 w5 	 w6Þ, b5 ¼ 1

3
ð	w4 þ 2w5 	 w6Þ, b6 ¼ 1

3
ð	w4 	 w5 þ 2w6Þ, b7 ¼ 1

3
ð	4w0 þ 2w7 	 w8 	 w9Þ,
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b8 ¼ 1
3
ð	4w0 	 w7 þ 2w8 	 w9Þ and b9 ¼ 1

3
ð	4w0 	 w7 	 w8 þ 2w9Þ. Matrices Q2 and Q3 are obtained by

cyclic permutation. These matrices are used in Section 4.6 to construct the ANDES template (32).

Appendix B. Solving polynomial equations for template optimality

In early work with HP elements (1984–1990) the writer searched for optimal free parameters using

mathematical programming methods, by minimizing squared deviations of energy ratios from unity. This

approach has a serious disadvantage: numerical studies require specific material and geometric data. The
MP libraries gave answers but no solutions. The following approach has been found to be highly effective in

symbolic work, which provides complete solutions.

Let p ¼ ½ p1 p2 . . . pn �T be a n-vector of template parameters. While seeking template optimality

under high order patch tests one must usually deal with a polynomial energy ratio of the form

rðpÞ ¼ c0 þ c2c
2 þ � � � þ ckck; ðB:1Þ

where k is even, c is an element aspect ratio, and coefficients cj ¼ cjðpÞ for j ¼ 0; 2; . . . ; k, take on one of the

quadratic forms

cj ¼ pTAjp; cj ¼ pTAjpþ 2bT
j p; or cj ¼ pTAipþ 2bT

j pþ dj: ðB:2Þ

The kernel matrices Aj, are n� n symmetric matrices whereas bj is an n-vector. The second and third forms

of (B.2) may be reduced to the homogeneous form by the obvious augmentation

p ! p̂p ¼ ½ 1 p1 p2 � � � pk �; Aj ! bAAj ¼
dj bj
bT
j Aj

� �
; cj ¼ p̂pT bAAjp̂p: ðB:3Þ

The optimality conditions are c0 ¼ 1 and cj ¼ 0 for j ¼ 2; . . . ; k. One is interested only in solutions p ¼
½ p1 . . . pn �T or p̂p ¼ ½ 1 p̂p1 . . . p̂pn �

T
with real entries. Preferably the solutions should be rational if the

entries of Aj, bj and dj are, as is often the case. If nðk þ 2Þ > 4, a brute force solution as a system of

polynomial equations in exact rational arithmetic may be hopeless. It is observed in practice, however, that

matrices Aj or bAAj are highly singular and non-negative. This allows an efficient staged reduction scheme in

which most of the steps involve only the solution of linear equations. The method will be explained by
example, using the optimization of the ANDES template undertaken in Section 5.2 as case study.

The coefficients of the energy ratio r of (37)–(39): r ¼ c0 þ c2c2 þ c4c4 can be expressed as

c0 	 1 ¼ pTA0p; c2 ¼ pTA2p; c4 ¼ pTA4p; ðB:4Þ
in which p is the 8-vector ½ 1 ab b1 b2 b3 b4 b5 b6 �. This is actually the augmented vector denoted

by p̂p above, with the hat suppressed for brevity, and likewise over the Ajs. The kernel matrices are

Before filtering: After filtering:

Fig. 23. The torsional displacement mode before and after strain filtering. Filtered patterns were obtained by integrating the strain

field (A.11). Note that for an equilateral triangle the filtered pattern becomes a bubble mode.
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A0 ¼
1

3

9 	3 0 0 0 0 0 0

	3 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
666666666664

3
777777777775
þ b0

32

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 13 	11 	1 2 2 	6

0 0 	11 13 	1 	2 	2 6

0 0 	1 	1 1 0 0 0

0 0 2 	2 0 1 1 	3

0 0 2 	2 0 1 1 	3

0 0 	6 6 0 	3 	3 9

2
666666666664

3
777777777775
; ðB:5Þ

A2 ¼
1

6

	9 	6 0 0 0 0 0 0

	6 4 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

2
666666666664

3
777777777775
þ b0

32

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 26 	20 	4 	10 12 	6

0 0 	20 22 	2 8 	14 8

0 0 	4 	2 6 0 2 0

0 0 	10 8 0 5 	5 1

0 0 12 	14 2 	5 9 	5

0 0 	6 8 0 1 	5 5

2
666666666664

3
777777777775
; ðB:6Þ

A4 ¼
b0

64

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 	3 0 0 0

0 0 1 1 	3 0 0 0

0 0 	3 	3 9 0 0 0

0 0 0 0 0 9 	3 	3

0 0 0 0 0 	3 1 1

0 0 0 0 0 	3 1 1

2
666666666664

3
777777777775
: ðB:7Þ

The optimality conditions are c0 	 1 ¼ 0, c2 ¼ 0, c4 ¼ 0. Taking the higher order scaling factor b0 ¼ 1=2 for

convenience, matrices A0, A2 and A4 have the eigenvalues

eigs of A0 : 10=3 3=64 ð35 þ
ffiffiffiffiffiffiffiffi
521

p
Þ=128 ð35 	

ffiffiffiffiffiffiffiffi
521

p
Þ=128 0 0 0 0

� 

;

eigs of A2 : 13=6 8053=8904 1063=6333 1774=25955 0 0 0 0½ �;

eigs of A4 : 11=64 11=64 0 0 0 0 0 0 0 0½ �:

ðB:8Þ

(For A2 the listed eigenvalues #2 through #4 are rational approximants within 10	8.) Consequently the

conditions stated previously are met. Begin with A4, which has rank 2, rank deficiency 6, and spectral

decomposition

A4 ¼ V4K4V
T
4 ; K4 ¼

11

64
0

0
11

64

2
64

3
75; V4 ¼

1ffiffiffiffiffi
11

p 0 0 	1 	1 3 0 0 0
0 0 0 0 0 	3 1 1

� �T

: ðB:9Þ

Since K4 is positive definite the only real solutions of c4 ¼ pTA4p ¼ pTV4K4V
T
4 p ¼ 0 are those of VT

4 p ¼ 0.

This is an underdetermined linear system of two equations in eight variables, from which two entries in p

are designated as dependent and eliminated: b1 ¼ 3b3 	 b2 and 3b4 ¼ b5 þ b6. Replacing these relations

into c2 ¼ pTA2p ¼ 0 reduces p to six entries and A2 to 6� 6. The reduced A2 is non-negative definite and has
rank 4. This allows four more variables to be eliminated. Repeating the spectral analysis yields ab ¼ 3=2,
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b2 ¼ 	2b6, b3 ¼ 	b6 and b5 ¼ 	b6. Finally, replacing into c0 	 1 ¼ 0 gives b2
6 ¼ 1. Choosing b6 ¼ 	1 the

complete solution is

ab ¼ 3
2
; b0 ¼ 1

2
; b1 ¼ b3 ¼ b5 ¼ 1; b2 ¼ 2; b4 ¼ 0; b6 ¼ b7 ¼ b8 ¼ 	1; b9 ¼ 	2; ðB:10Þ

which is used in Section 5.2.

It is not always necessary to do the complete eigenspectral analysis of the Ajs. It is sufficient to get a full-
rank basis Vj for the range spaces. This is easily done by getting the null space through the appropriate

function of Mathematica or Maple, and then forming V as the orthogonal complement by Gram-Schmidt.

This alternative path is useful for systems treated by exact arithmetic if the eigenvalues are complicated

functions of the matrix coefficients.
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