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Abstract

A new concept is presented for modeling the dynamic interaction between an acoustic fluid and an elastic structure. The coupling of
this multiphysics system is done by inserting a kinematic interface frame between the fluid and the structure, and using node-collocated
Lagrange multipliers to connect the frame to each subsystem. The time-domain response analysis is performed by a partitioned analysis
procedure. The main advantages of this localized Lagrange multiplier (LLM) primal-dual coupling method are: complete localization of
the structure and fluid subsystems, elimination of the conventional predictor in the partitioned time integration method, and the ability
to accommodate non-matching meshes. The standard Newmark time integrator is used on both the fluid and structure models. It is
shown that if the integrator is A-stable and second-order accurate for a monolithic treatment, it retains those properties for both Mortar
and LLM partitioned solution procedures. Infinite and finite piston problems are used to explain and verify the methodology. A sequel
paper under preparation presents and discusses a set of benchmark and application examples that involve the response of existing dams
to seismic excitation.
� 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The dynamic interaction between a fluid and a structure
is a significant concern in many engineering problems.
These include systems as diverse as aircraft, rockets, tur-
bines, marine structures (fixed, floating and submerged),
airbags, parachutes, storage tanks, dams, biomechanical
systems, inkjet printers and suspension bridges. The inter-
action may change the dynamic characteristics of the struc-
ture and consequently its response to transient, periodic
and stochastic excitation. The model-based simulation of
this class of coupled multiphysics systems presents three
technical challenges.

The first is discretization heterogeneity. Effective space
and time discretization methods for the two interacting
0045-7825/$ - see front matter � 2008 Elsevier B.V. All rights reserved.
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components are not necessarily the same. This dilemma is
particularly pressing when one would like to use available
but separate computer codes for the fluid and the structure
treated as individual entities, and use them to solve the cou-
pled problem.

The second is effective treatment of the interaction when
the discrete structure and fluid meshes do not match over
the interface. Non-matching spatial meshes may occur for
various reasons: a component may require a finer mesh for
accurate results; teams using different programs construct
or generate the meshes separately; or the discretization of
one or both components is determined a priori for other rea-
sons, for example incremental simulation of the structure
construction process. If different time-stepping schemes are
used (for example, implicit in the structure and explicit in
the fluid), solutions may not match in time either.

The third is forestalling performance degradation in sim-
ulations. Even if the separate discrete models are satisfactory
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Fig. 1. Concrete dam on a flexible foundation subjected to seismic
excitation.
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as regards to stability and accuracy, the introduction of
interaction may have damaging effects on the coupled
response. Furthermore, if the coupled components have
widely different physical characteristics (stiffness, mass den-
sity, etc.), the coupled system may be scale-mismatched by
orders of magnitude. A poorly scaled discrete model may
produce unacceptable errors, particularly under long-term
periodic or cyclic loading.

This paper presents the development of a primal-dual
coupling method for treating the interaction of an acoustic
fluid with a flexible structure, with emphasis on handling
spatially non-matching meshes. This is called the localized
Lagrange multiplier (LLM) method. A frame is introduced
as ‘‘mediator” device between the fluid and the structure
over the interaction surface. The frame is discretized in
terms of kinematic (primal) variables. A Lagrange multi-
plier field is introduced between the frame and the struc-
ture, and another one between the frame and the fluid.
The function of the multiplier pair is weak enforcement
of kinematic continuity. This configuration completely
decouples the structure and fluid models because each
‘‘talks” to the frame through node-collocated multipliers,
and not directly to each other. Decoupling simplifies the
construction of separate discretizations using different
mesh generation programs, the use of customized solution
methods (in particular methods available in existing codes)
and the implementation of parallel processing.

To advance the solution in time, the LLM interface
treatment is combined with a partitioned solution proce-
dure. The time-stepping computations are organized in a
way that eliminates the conventional local prediction step

characteristic of staggered solution procedures. The next-
step interface variables, Lagrange multipliers and frame
accelerations, are obtained by solving an algebraic system
of equations. Interface forces are fed to advance the fluid
and structure state. The implicit interface treatment fore-
stalls the well known stability degradation caused by con-
ventional prediction schemes while retaining the desirable
localization features of partitioned analysis procedures.
Numerical computations indicate that if A-stable integra-
tion schemes, such as the trapezoidal rule, are chosen for
the fluid and structure, the coupled system retains A-stabil-
ity, and thus the time step is controlled by accuracy only.
This result is proven in Appendix A for the Newark time
integrator under certain restrictions. The use of implicit–
explicit integration schemes and subcycling remains to be
investigated.

2. Driver application problem

The driver application for testing this coupling method
on fluid–structure interaction (FSI) problems is a concrete
dam on flexible soil. The dam is subject to seismic excita-
tion through base ground motion. Fig. 1 depicts a cross
section of a realistic problem of this nature, in which abut-
ments are not shown. (This is not an actual dam configura-
tion, but a composite pieced together from several
construction and site scenarios. Calculations reported in
a sequel paper [46] were carried out on 2D and 3D models
of existing dams.)

Model-based simulations involve the interaction of the
structure, near-field soil and stored water. For seismic
response analysis, the water may be modeled as an acoustic
fluid since no significant flow develops during the time span
of interest. Two ancillary phenomena may occur. First,
water near the vibrating dam may be subject to inertial cav-
itation [10]. This is a highly nonlinear phenomenon caused
by a dynamic pressure drop that overcomes the hydrostatic
pressure. Over the cavitating volume the macroscopic fluid
elastic modulus drops to near zero while the mass density
remains sensibly constant. Repressurization produces
potentially damaging closure shocks. Second, the reservoir
free surface may develop sloshing (gravity wave) oscillations
[16,29]. Although sloshing is included in our fluid model, it
normally has no significant FSI effect given its localized char-
acter and low associated vibration frequencies.

Following standard techniques of partitioned analysis
[15,17,34,35] the problem can be divided into three parti-
tions: structure, soil and fluid, as illustrated in Fig. 2a.
The structure and soil are treated with standard finite ele-
ment discretization procedures of structural mechanics,
which lead to a system of semidiscrete equations of motion
in the nodal displacements. For the acoustic fluid, however,
the displacement potential (a scalar field) is the preferred
primary variable on account of advantages discussed later.
Linking displacement potentials to actual displacements is
not a simple matter, since it requires consideration of fluid
element patches. For this reason the fluid model is initially
formulated in terms of displacements.

In previous FSI work that focused on underwater shock
on submarines [15] and shallow depth attacks on surface
ships [47], matching was done by transforming fluid pressures
to structural node forces and structural velocities to fluid
node forces. These are relayed from fluid to structure and
vice-versa, at each time step of a staggered solution proce-
dure. Such procedures necessarily incorporate predictors
and have to be carefully designed to avoid stability degrada-
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Fig. 2. Dam problem as coupled system: (a) physical partition, (b) LLM interface treatment.
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tion. For example in the original staggered method developed
in [34] for underwater shock, a modification of the fluid equa-
tions was required to attain unconditional stability.

Here the fluid–structure interface is treated by the LLM
method by inserting a kinematic frame between those sub-
systems, as illustrated in Fig. 2b. Two Lagrange multiplier
fields take care of the communication between the frame
and adjacent boundaries. Multipliers are discretized with
delta functions collocated at interface nodes. This arrange-
ment simplifies handling non-matching meshes as well as
evaluation of interface energy integrals. A preliminary ver-
sion of this treatment was presented in [37]. That work did
not cover, however, the use of the displacement potential as
primary fluid variable nor modifications necessary for cav-
itation, silent boundaries and free surface slosh effects.

Since our focus is on the treatment of FSI, no LLM
frame is placed at the soil–structure interface. Nothing pre-
cludes treating that interface as particular case of struc-
ture–structure interaction (SSI). Because this coupling has
been previously studied, with emphasis on contact and fric-
tion effects [36], the development is not repeated here. Fur-
thermore, to avoid interference with the FSI study, soil and
structure are modeled by the same finite element program
using matching meshes. Silent boundaries are needed, how-
ever, to account for truncation of the fluid and soil meshes,
as illustrated in Fig. 2a.
Fluid Structure

λFn λSn

Fig. 3. Linking meshes with LLM treated interface: (a) matching meshes,
(b) non-matching meshes. Only interface ‘‘wet nodes” are shown for
clarity.
3. Localized Lagrange multiplier method for FSI

The LLM treatment is based on a simple variational
rule. The governing functional of the coupled system is that
of the individual components plus their interaction:

PT ¼ PF þPS þPB: ð1Þ
Here PF and PS are space–time functionals for the isolated
fluid and structure, respectively. PB is a functional called the
interface potential that accounts for the fluid–structure inter-
face conditions. Setting dPT ¼ 0 yields the field equations,
boundary and interface conditions as Euler–Lagrange equa-
tions. Upon space discretization of (1), the coupled semidis-
crete equations are obtained by making PT stationary with
respect to the selected degrees of freedom.

While PF and PS can be selected from an assortment of
well known functionals (normally those used in existing
codes for the structure and fluid alone), PB is constructed
to yield the FSI conditions as Euler–Lagrange equations.
The specific form depends on: (i) the chosen interface state
variables, (ii) the kinematic and equilibrium conditions on
the field variables (displacements, tractions) on either side
of the interface, and (iii) interface constitutive assumptions
such as energy dissipation, no-slip, friction, etc. These have
been previously developed for SSI. For the nondissipative
case, examples are provided in [36], whereas friction and
hysteresis models are treated in [49]. For FSI, functional
PB was introduced in [37] with displacement-based fluid
models in mind but without specific applications. It is
extended here to the displacement-potential treatment of
acoustic fluids.

The LLM treatment of FSI is schematized in Figs. 3 and
4. These illustrate both matching and non-matching mesh
scenarios. The interface frame serves as a force transducer
device defined by its displacements uB. The localized
Lagrange multiplier fields kF and kS enforce interface com-
patibility between frame and fluid and frame and structure,
respectively [37]. Multipliers are discretized as point forces
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(delta functions) collocated at the nodes, as shown in that
figure. No dissipation mechanisms, such as friction or
boundary layers, are included in this model. Thermal
effects are ignored.

Ensuing equations are expressed with respect to a rectan-
gular Cartesian system xi (i ¼ 1; 2; 3). Einstein’s summation
convention over repeated indices is adopted unless explicitly
suppressed. Roman indices range over 1,2,3 whereas Greek
indices range over 1,2. Coordinates are often grouped in a
column position vector xT ¼ ½x1 x2 x3� ¼ ½xi�. Unit normal
components are denoted by ni (i ¼ 1; 2; 3), and collected into
vector nT ¼ ½n1 n2 n3� ¼ ½ni�. The spatial partial derivative
abbreviation ð�Þ;i ¼ oð�Þ=oxi is occasionally used. A super-
posed dot denotes time differentiation. A prime denotes
derivative with respect to coordinate x � x1 in spatially
one-dimensional problems. Coordinates are relabeled
x1 ! x, x2 ! y, x3 ! z when appropriate.

3.1. Component functionals

The LLM formulation begins by partitioning the cou-
pled system into individual subsystems, and choosing the
energy functionals in (1). To facilitate software reuse, the
choice for the fluid and structure is often limited to func-
tionals in common use.

The primary variable for the structure in most finite ele-
ment method (FEM) implementations is the displacement
field. For expository expedience the structure functional
is taken to be the total potential energy (TPE) functional.
This is written below in d’Alembertian form with inertial
and damping forces expressed as modified body forces.

PS ¼ PTPE

¼ 1

2

Z
XS

rij�ij dXS �
Z

XS

uSiðbSi � qS€uSi � dS _uSiÞdXS

�
Z

CS

tSiuSi dCS

¼ 1

2

Z
XS

�ijEijk‘�k‘ dXS �
Z

XS

uSiðbSi � qS€uSi

� dS _uSiÞdXS �
Z

CS

tSiuSi dCS: ð2Þ
Fig. 4. LLM treatment details: (a and b) ma
Here subscript S refers to the structure, rij and �ij denote
the stress and strain tensors, respectively, Eijk‘ the elasticity
tensor, ui the displacements, bi the body forces, q the mass
density, dS the structural damping per unit of volume, tSi

the surface tractions, XS the structural domain and CS

the traction-specified structural boundary. Other function-
als, such as Hellinger–Reissner, Veubeke–Hu–Washizu or
Pian–Tong hybrids, could be selected as well. The only
requirement is that they lead to elements with nodal dis-
placement freedoms as connectors.

Choosing PF is less automatic. The acoustic fluid is
modeled as compressible, irrotational, inviscid, of constant
density, adiabatic and initially at rest. The constitutive
equation that expresses the small compressibility of a liquid
can be written [16,25,29]

p ¼ �K�V ¼ �KuFi;i ¼ �qFc2uFi;i: ð3Þ

Here subscript F refers to the fluid, p is the dynamic pres-
sure (positive if compressive), K the bulk modulus (about
2.1 GPa in water), �V ¼ �ii ¼ uFi;i the volumetric strain
measured from hydrostatic equilibrium, and c ¼

ffiffiffiffiffiffiffiffiffiffiffi
K=qF

p
the speed of sound (about 1480 m/s in water). Three pri-
mary variable choices are possible: displacements, displace-
ment potential, or pressure. To facilitate coupling with PS

we initially pick the fluid displacements uFi as the primary
variables, subject to subsequent transformations to enforce
irrotationality. Using (3) and conservation of energy the
fluid functional emerges as

PF ¼
1

2

Z
XF

qFc2uFi;iuFj;j dXF �
Z

XF

uFiðbFi � qF€uFiÞdXF

�
Z

CF

tFiuFi dCF; ð4Þ

where XF is the fluid domain, CF the traction-specified fluid
boundary, and other terms are as in the structure
functional.

The final ingredient is the interface functional PB. The
procedure described in [36,37] is used as our starting point.
Fluid and structure are separated at the fluid–structure
boundary CB, also known as the ‘‘wet surface”, and an
interface kinematic frame is inserted as illustrated in
Fig. 2b. Frame displacements uBi are introduced as addi-
tching meshes, (c) non-matching meshes.
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tional primary variables. In structure–structure interaction
(SSI), compatibility of the boundary displacements is
enforced with Lagrange multiplier (flux) fields, one on each
frame side [36]. To take care of normal and tangential com-
patibility, such multipliers must have normal and tangen-
tial components. In our problem, however, the fluid is
assumed to be inviscid and only normal displacements need
to match. Denote by ni the normal vector on the wet sur-
face, conventionally selected to be exterior to the fluid.
The appropriate form of the interface functional becomes

PB ¼
Z

CFB

kFiniðuFini � uBiniÞdCFB

þ
Z

CSB

kSiniðuSini � uBiniÞdCSB: ð5Þ

Integration domains CFB and CSB denote boundaries be-
tween fluid and frame and between structure and frame,
respectively. Often CFB ¼ CSB, coincident with the struc-
tural wet surface. The total system functional PT of (1) is
obtained by adding (2), (4) and (5).
3.2. Mortar interface treatment

Since its inception in 1990 [2] the Mortar method has
gained popularity as a dual interfacing scheme for multi-
physics capable of handling non-matched meshes. With
growing use the name has come to designate a loosely
related set of coupling techniques, most of them based on
Galerkin or weighted residual methods; see e.g. [22]. In
the context of this paper the term ‘Mortar’ is used in the
sense of having one Lagrange multiplier field, denoted by
kB, that directly links the fluid and structure interfaces
(i.e. without a frame) within the variational framework of
Eq. (1). The appropriate interface potential to be inserted
there is

PB ¼
Z

CB

kBðuFini � uSiniÞdCB; ð6Þ

in which kB is the primary interface variable. As discussed
in [36], the source of this PB in solid mechanics can be
traced back to Prager [42]. (An equivalent name for Mortar
Fig. 5. Linking meshes with Mortar treated interface: (a
used in that reference is global Lagrange multiplier (GLM)
method, to emphasize contrast to LLM.)

This interfacing technique was used in several of our
application problems as verification and a calibration tool.
To make a fair comparison, the multiplier space for kB also
consists of node-collocated delta functions, as pictured in
Fig. 5. While this choice is easy to implement for matching
meshes, as shown in Fig. 5a, for non-matching meshes, cf.
Fig. 5b, locating multipliers is not obvious. A common
method is to declare one face as master, and collocate delta
functions on the master nodes. This is pictured in Fig. 5c with
the fluid face picked as master. Similar ‘‘master vs. slave”

decisions may be necessary when using distributed Lagrange
multiplier spaces. Regardless of which face is chosen as mas-
ter, the master mesh must know about the boundary shape
functions of the other, and the modularity of LLM is lost.

The equations of motion for the Mortar interface treat-
ment are summarized in Appendix A as the starting point
of the stability analysis of partitioned time integration.

3.3. Structure discretization

The structure is discretized by the usual procedures of
the FEM. Assembly by the direct stiffness method (DSM)
leads to the semidiscrete equations of motion

MS€uS þ CS _uS þ KSuS ¼ fS � BSnkS; ð7Þ

in which MS, CS and KS are the master mass, damping and
stiffness matrices, respectively, uS the vector of node dis-
placements, fS the applied node force vector, kS the vector
of frame-to-structure interaction forces at wet structural
nodes, and BSn is a ‘‘Boolean” matrix that maps kS onto
the full set of structural node forces. (These interaction
forces are identified below with structure-to-frame La-
grange multipliers collocated at structure nodes, hence
the symbol.) BSn is typically a highly sparse matrix.

3.4. Fluid discretization

The acoustic fluid is discretized in two stages. First a
TPE-like, displacement-based functional such as (4) is cho-
sen, element shape functions are assumed, and element
equations in stiffness–mass form are obtained while ignor-
) matching meshes, (b and c) non-matching meshes.
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ing internal damping. For an individual acoustic fluid ele-
ment identified by superscript e the displacement is
expressed as ue

Fi ¼ NFue
Fi, where NF collects the element

shape functions and ue
Fi collects nodal values of the element

in the ith direction. Applied forces include body forces col-
lected in bF and surface tractions collected in tF. The fluid
element matrices are given by

Ke
F ¼ qFc2

Z
Xe

F

ð$NFÞT$NF dXF;

Me
F ¼ qF

Z
Xe

F

NT
FNF dXF;

fe
F ¼

Z
Xe

F

NT
FbF dXF þ

Z
Ce

F

NT
FtF dCF;

ð8Þ

in which Xe
F and Ce

F denote fluid element volume and
boundary, respectively, and $ the gradient operator.
Assembly leads to the semidiscrete fluid equations of
motion

MF€uF þ KFuF ¼ fF � BFnkF: ð9Þ

Here MF, KF and fF are the master mass matrix, stiffness
matrix and applied force vector for the fluid, uF the fluid
displacement vector, kF the array of frame-to-fluid interac-
tion forces at fluid nodes, and BFn a typically sparse Bool-
ean matrix that maps kF to the full set of fluid node forces.
(Those interaction forces are identified below with frame-
to-fluid Lagrange multipliers collocated at structure nodes,
hence the symbol.)

In the second stage the matrix equations (9) are rewrit-
ten in terms of displacement potential variables to preclude
circulation modes. This process is covered in Section 4.

3.5. LLM interface discretization

As outlined in the two foregoing subsections, use of the
interface functional PB of (5) with varied multipliers and
frame displacements allows the structure and fluid to be
independently discretized by standard methods. The new
ingredient is the discretization of PB. This requires deci-
sions on finite element spaces for multipliers and frame dis-
placements. Two choices proven useful in previous
applications to SSI [38] are

(1) Multiplier fields are represented by delta functions
collocated at nodes of the interacting subsystems.
Physically those represent interaction point forces
conjugate to node displacements.

(2) Frame displacements are discretized by piecewise lin-
ear or bilinear shape functions.

Choice (1) offers localization benefits: multiplier node
values are applied directly to structure and fluid meshes
through the interaction force terms BSnkS and BFnkF,
respectively, displayed in (7) and (9). As a result the struc-
ture program need not know anything about the fluid
mesh, and vice-versa: at each time step those programs
receive only node forces from the interface module. A sec-
ond advantage is that computation of the integrals in Eq.
(5) becomes trivial. The tradeoff is that placement of frame
nodes in the case of non-matching meshes becomes a non-
trivial task, as discussed later. If meshes match, frame
nodes can be collocated directly at common nodes, as illus-
trated in Fig. 3a, and the process is considerably simplified.

Node collocation is expressed by relating multiplier
shape functions to a Dirac delta distribution:

kSðxÞ ¼ NkSikSi; kFðxÞ ¼ NkFjkFj with

NkSi ¼ dðx� xkSiÞ; NkFj ¼ dðx� xkFjÞ:
ð10Þ

Here xkSi is the position vector of the ith structural La-
grange multiplier on CSB whereas xkFj is the position vector
for the jth fluid multiplier on CFB. Integration over those
surfaces reduces to evaluation at nodes [24], thus defining
the Boolean matrices BSn and BFn of the semidiscrete equa-
tions of motion (7) and (9) according to the rulesZ

CSB

kSiniuSini dCSB ) kT
S

Z
CSB

NT
kSnnTNS dCSB

� �
uS

¼def
kT

S BSnuS;Z
CFB

kFiniuFini dCFB ) kT
F

Z
CFB

NT
kFnnTNF dCFB

� �
uF

¼def
kT

FBFnuF;

ð11Þ

where n ¼ ½n1n2n3�T is the exterior normal unit vector.
Matrices BSn and BFn are typically sparse because the only
nonzero entries, which are �1 under appropriate axes
alignment at interface nodes, pertain to interface normal
displacements. Thus they can be efficiently represented by
pointer or marker arrays.

To discretize PB it is necessary to discretize the normal
motion of the displacement frame. Frame node locations
are determined through a technique termed the zero-

moment rule [38], which is outlined in Appendix B. As a
result those displacements are interpolated over frame ele-
ments by

ue
Bi ¼ NBue

B; ð12Þ

where NB collects the element shape functions. Inserting
this into PB along with the multiplier representation (10)
the connection matrices LSn and LFn are defined according
to the rulesZ

CB

kSiniuBini dCB ) kT
S

Z
CB

NT
kSnnTNB dCB

� �
uB

¼def
kT

S LSnuB;Z
CB

kFiniuBini dCB ) kT
F

Z
CB

NT
kFnnTNB dCB

� �
uF

¼def
kT

FLFnuB:

ð13Þ

Because of the presence of the delta functions in NkS and NkF,
the integration reduces to evaluation of the frame interpola-
tion function, projected on the interface exterior normal, at
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locations of the structure and fluid interface nodes. Detailed
examples for SSI applications may be found in [38].

For non-matching meshes, LSn and LFn connect multi-
plier forces on both sides of CB. In the particular case of
matching meshes with interface-normal aligned axes, those
become Boolean matrices. Connection matrices are typi-
cally sparse and appropriate formats should be used to take
advantage of that property in production codes.

The solution interface error may be reduced if the
Lagrange multiplier shape functions are piecewise-linearly
interpolated over frame elements [13]. The tradeoff is that
spatial integration of the interface potential becomes sub-
stantially more complicated, especially in three dimensions.

For future use the discretized version of the total func-
tional (1) can be expressed as

PT ¼ uT
S

1

2
KSuS þ CS _uS þMS€uS � fS

� �
þ uT

F

1

2
KFuF þMF€uF � fF

� �
þ kT

S ðBT
SnuS

� LSnuBÞ þ kT
FðB

T
FnuF � LFnuBÞ: ð14Þ
Fig. 6. A 4-node displacement-potential 2D fluid element.
4. Linkage to fluid displacement potential

The acoustic fluid equations have been initially
expressed in terms of fluid displacements to simplify cou-
pling to the structure through the LLM frame. This choice,
however, brings on a serious computational difficulty: the
appearance of spurious kinematic modes. Since an acoustic
fluid is irrotational and inviscid, its internal energy
responds only to volumetric changes. As a result, displace-
ment-based elements can become highly rank deficient.

As an example, consider an 8-node, 24 degree-of-free-
dom, displacement-assumed fluid brick element with regu-
lar (cubic-like) geometry. Under exact integration (or,
equivalently, Gauss rules 2� 2� 2 or higher) the fluid stiff-
ness matrix KF displays seven volumetric modes and six
rigid-body modes, leaving 24� 7� 6 ¼ 11 spurious modes.
If a reduced one-point integration is used, only three volu-
metric modes are captured, leaving 24� 3� 6 ¼ 15 spuri-
ous modes. These are commonly called circulation modes

or rotational modes in the FEM literature [23]. Since circu-
lation modes can propagate through a mesh, a direct time
integration response calculation or a frequency analysis
can be completely ruined. Two methods have been pro-
posed to deal with this problem:

(1) Keep displacements as primary variables, but enforce
irrotationality by a penalty method.

(2) Use a scalar primary variable field that automatically
enforces irrotationality. Three possible choices are
the pressure p, displacement potential w and velocity
potential u.

Hamdi and Ousset [20] as well as Wilson and Khalvati
[48] favored the penalty treatment by applying irrotational-
ity constraints that force circulation modes to absorb
energy, hoping that only low frequency modes would be
excited. This hope was realized in the problems considered
in those references. However, in irregular meshes circula-
tion modes may in fact display nonzero frequency due to
the use of full integration in the mass matrix, leading to
mode identification problems. To address these issues the
concurrent use of the penalty method and a projected mass
matrix was proposed in [6,23]. This allowed for the reten-
tion of low frequency modes while removing the spurious
modes. In the cases studied in [23] low frequency modes
were attributed to the effect of sloshing. Unfortunately, this
method is complicated and requires iteration to determine
appropriate penalty values [48].

The second approach precludes circulation modes once
and for all and has the additional benefit of requiring only
one freedom per fluid node, reducing the number of fluid
freedoms by half in 2D and by two-thirds in 3D. The
downside is that coupling with displacements is not simple.
Of the choices listed above, in the late 1970s Newton sys-
tematically compared the displacement potential and pres-
sure formulations [30–33]. While little difference was found
in linear problems, the former proved superior when cavi-
tation was considered. Accordingly this formulation was
favored by Felippa and DeRuntz [15], Zienkiewicz et al.
[50], and Sprague and Geers [47] for simulation of strong
shocks that could trigger hull cavitation near underwater
vehicles, or bulk cavitation under surface ships. This choice
was adopted in this study.

4.1. The fluid gradient matrix

The fluid displacement potential field w ¼ wðxi; tÞ is a
scalar function of space and time that generates the dis-
placement field as its gradient: ~u ¼ $w or in index form,
ui ¼ ow=oxi. This field is automatically irrotational since
$�~u ¼ $� $w ¼ 0.

To fix ideas, consider the 4-node quadrilateral displace-
ment-potential-based fluid element pictured in Fig. 6. The
geometry is defined in terms of the usual natural coordi-
nates n and g, as shown in Fig. 6a. The element has four
degrees of freedom, which are the displacement potentials
wi at the corners i ¼ 1; 2; 3; 4, as illustrated in Fig. 6b.

To reduce subscripting clutter, in this section coordi-
nates will be denoted by x and y instead of x1 and x2,
respectively, with ðxi; yiÞ as coordinates of node i. Both
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ðx; yÞ and the displacement potential w are interpolated
isoparametrically:

1

x

y

w

26664
37775 ¼

1 1 1 1

x1 x2 x3 x4

y1 y2 y3 y4

w1 w2 w3 w4

26664
37775

N 1

N 2

N 3

N 4

26664
37775; ð15Þ

with the bilinear shape functions N 1 ¼ 1
4
ð1� nÞð1� gÞ,

N 2 ¼ 1
4
ð1þ nÞð1� gÞ, N 3 ¼ 1

4
ð1þ nÞð1þ gÞ and N 4 ¼

1
4
ð1� nÞð1þ gÞ. Corner coordinate differences are abbrevi-

ated as xij ¼ xi � xj and yij ¼ yi � yj. The Jacobian determi-
nant is J ¼ 1

4
ðAþ A1nþ A2gÞ where A ¼ 1

2
ðx31y42 � x42y31Þ

is the area of the quadrilateral, A1 ¼ 1
2
ðx34y12 � x12y34Þ and

A2 ¼ 1
2
ðx23y14 � x14y23Þ.

In terms of the node displacement 4-vector we ¼
½w1 w2 w3 w4 �

T the Cartesian gradients ux ¼ ow=ox
and uy ¼ ow=oy are given by

ux

uy

� �
¼ 1

8J

y24 y31 y42 y13

x42 x13 x24 x31

� �
þ

y43 y34 y12 y21

x34 x43 x21 x12

� �
n

�
þ

y32 y14 y41 y23

x23 x41 x14 x32

� �
g

�
we: ð16Þ

Evaluating (16) at the nodes yields

ue
F ¼

ux1

uy1

ux2

uy2

ux3

uy3

ux4

uy4

266666666666664

377777777777775
¼ 1

4

y24=J 1 y41=J 1 0 y12=J 1

x42=J 1 x14=J 1 0 x21=J 1

y23=J 2 y31=J 2 y12=J 2 0

x32=J 2 x13=J 2 x21=J 2 0

0 y34=J 3 y42=J 3 y23=J 3

0 x43=J 3 x24=J 3 x32=J 3

y34=J 4 0 y41=J 4 y13=J 4

x43=J 4 0 x14=J 4 x31=J 4

266666666666664

377777777777775

w1

w2

w3

w4

26664
37775

¼ Dewe; ð17Þ

in which J i are the corner Jacobians. These can be rapidly
calculated from

4J 1 ¼ A� A1 � A2 ¼ x14y21 � x21y14 ¼ x42y14 � x14y42;

4J 2 ¼ Aþ A1 � A2 ¼ x21y32 � x32y21 ¼ x13y21 � x21y13;

4J 3 ¼ Aþ A1 þ A2 ¼ x32y43 � x43y32 ¼ x24y32 � x32y24;

4J 4 ¼ A� A1 þ A2 ¼ x43y14 � x14y43 ¼ x31y43 � x43y31:

ð18Þ
The 8� 4 gradient matrix De relates the Cartesian node
displacement components to the node displacement poten-
tials. A similar transformation ue

F ¼ Dewe can be con-
structed for any fluid element geometry based on the
displacement potential element by appropriate differentia-
tion and evaluation at nodes. For the assembled fluid sys-
tem, the transformation reads uF ¼ DFw, where the entries
of DF are obtained by averaging over node patching. Per-
forming the change of basis uF ) w by a congruent trans-
formation, the fluid energy is expressed in terms of w as
energy gives
PF ¼
1

2
wTDT

FKFDFwþ 1

2
€wTDTMFD€w� wTDTfF

¼ 1

2
wTKFwwþ 1

2
€wTMFw

€w� wTfFw; in which

MFw ¼ DT
FMFDF; KFw ¼ DT

FKFDF; fFw ¼ DT
FfF:

ð19Þ

The application of DF through a congruent transformation
is equivalent to projecting the master stiffness, mass and
force onto the subspace of irrotational fluid motions. The
process is systematic and avoids the use of trial-and-error
penalty devices.
4.2. Stabilization of surface-wave modes

In using the foregoing projection scheme circulation
modes are eliminated. If the fluid has a free surface, as in
the driver application problem of Fig. 1, there remain zero
energy modes associated with sloshing (gravity waves) as
pointed out in [48]. These can be converted to finite fre-
quency modes by incorporating a gravity-potential energy
functional in the derivations [16,29]. This is done by mod-
ifying the pressure on the free surface CFs to be
pFsðxi; tÞ ¼ patm � qFgnunðxi; tÞ, in which patm is the atmo-
spheric pressure, gn the acceleration of gravity along the
unit normal ni, and un the displacement normal to CFs. In
the present formulation that modification is done by taking
�qFgnun as a surface traction term working on the normal
displacement un, thus producing a potential 1

2
qFgnu2

n per
unit area. Interpolation by fluid-displacement shape func-
tions and integration over CFs creates an additional ‘‘slosh-
ing stiffness” term that contributes to free-surface fluid
nodes. The additional stiffness is given by

KFs ¼
Z

CFs

qFgnNT
FnnTNF dCFs: ð20Þ

This is added to KF and transformed via (19) to displace-
ment potential node freedoms. If the fluid is fully con-
tained, as in a piston problem, this term vanishes. It may
also be ignored in the case of rapid transients (e.g. under-
water explosions) that would not excite low-frequency
sloshing motions over the simulation time span of interest.
5. LLM Coupled equations of motion

Taking the first variation of (14) with fluid matrices
expressed in terms of displacement potential freedoms as
per (19) gives

dPTðuS;w; kS; kF;uBÞ ¼ duT
S ðMS€uS þ CS _uS þ KSuS

þ BSnkS � fSÞ þ dwTðMFw
€w

þ KFwwþDT
FBFnkF �DT

FfFÞ
þ dkT

S ðBT
SnuS � LSnuBÞ

þ dkT
FðB

T
FnDFw� LFnuBÞ

þ duT
Bð�LT

SnkS � LT
FnkFÞ: ð21Þ
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Setting this variation to zero gives the coupled, semidiscrete
equations of motion:

MS 0 0 0 0

0 MFw 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

26666664

37777775
€uS

€w
€kS

€kF

€uB

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
þ

CS 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

26666664

37777775

�

_uS

_w
_kS

_kF

_uB

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
þ

KS 0 BSn 0 0

0 KFw 0 DT
FBFn 0

BT
Sn 0 0 0 �LSn

0 BT
FnDF 0 0 �LFn

0 0 �LT
Sn �LT

Fn 0

26666664

37777775

�

uS

w

kS

kF

uB

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

fS

DT
FfF

0

0

0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
: ð22Þ

This is not a conventional ordinary differential equation
(ODE) system, but a differential–algebraic equation
(DAE) of index 2 [5]. The first two matrix equations state
discrete force equilibrium for the structure and fluid parti-
tion, respectively. The third and fourth equations represent
interface compatibility conditions weakly enforced through
the Lagrange multipliers. The last equation expresses New-
ton’s third law at the interface frame. A slight generaliza-
tion consists of allowing external forces fB to be applied
directly on interface frame nodes; if so, the last entry of
the right-hand side vector would be replaced by fB.
6. Partitioned time integration

The semidiscrete equations of motion (22) are directly
integrated in time using a partitioned analysis procedure
conceptually based on [37,38]. (Direct integration is pre-
ferred over modal analysis to retain ability to do nonlinear
problems.) The equations for the fluid, structure and inter-
face partitions are processed separately. At each time step,
interface equations receive vector information from the
interacting systems and are algebraically solved for frame
accelerations and Lagrange multipliers. The latter are
broadcast to the fluid and structure partitions to update
displacements and displacement potentials for the next
step. Any convenient solver for the fluid and structure par-
titions may be used, and need not be the same.

The time integrator chosen is the Newmark method,
which is widely used in earthquake engineering simulations
[7,8,21]. Its generic expression is

unþ1 ¼ un þ Dt _unþ1 þ 1

2
ðDtÞ2½2b€unþ1 þ ð1� 2bÞ€un�;

_unþ1 ¼ _un þ Dt½c€unþ1 þ ð1� cÞ€un�:
ð23Þ
Here n and nþ 1 denote the current and next time step in-
dex, respectively, Dt ¼ tnþ1 � tn the time stepsize, while b
and c are parameters that determine stability and accuracy
characteristics. For simplicity in linear problems ðb; cÞ are
often taken to be the same for both fluid (u � w) and struc-
ture (u � uSÞ.

When (23) is used to integrate a conventional second-
order, linear ODE system monolithically (that is, without
partitioning), it is well known (see e.g. [21]) that A-stability
requires c P 1=2 and 2b P c, whereas global second-order
accuracy is achieved if c ¼ 1=2. Appendix A shows that
those conditions also hold for both Mortar and LLM par-
titioned integration methods as presented here. Along with
c ¼ 1=2, popular choices for b are 1/4, 1/6, 1/12 and 0,
which pertain to instances known as the Trapezoidal Rule
(TR), Linear Acceleration, Fox–Goodwin and Central Dif-
ference, respectively. Of these only TR (also called Average
Acceleration in the Newmark context) is A-stable.

Suppose computations have proceeded until t ¼ tn. On
inserting (23) into the first two matrix equations of (22)
and moving next-step accelerations to the left side yieldsbKS€unþ1

S ¼ gnþ1
S � BSnk

nþ1
S ; bKF

€wnþ1 ¼ gnþ1
F �DT

FBFnk
nþ1
F ;

ð24Þ
in whichbKS ¼MS þ DtcCS þ ðDtÞ2bKS; bKF ¼MFw þ ðDtÞ2bKFw;

gnþ1
S ¼ fnþ1

S � CS½ _un
S þ Dtð1� cÞ€un

S�

� KS un
S þ Dt _un

S þ
1

2
ðDtÞ2ð1� 2bÞ€un

S

� �
;

gnþ1
F ¼ DT

Ffnþ1
F � KFw wn þ Dt _wn þ 1

2
ðDtÞ2ð1� 2bÞ€wn

� �
:

ð25Þ
The dynamic force vectors gnþ1

S and gnþ1
F are known quanti-

ties because they depend on past values and the next-step
force. The dynamic stiffness matrices bKS and bKF are assumed
to be nonsingular. To set up the interface equations, €unþ1

S and
€wnþ1 are solved from (24) and substituted in the third and
fourth matrix equations (the weak interface compatibility
conditions) of (22) evaluated at t ¼ tnþ1. For brevity intro-
duce GS ¼ BT

Sn
bK�1

S , GF ¼ BT
FnDF

bK�1
F , PS ¼ BT

Sn
bK�1

S BSn ¼
GSBSn, and PF ¼ BT

FnDF
bK�1

F DT
FBFn ¼ GFDT

FBFn. The matrix
compatibility equations become

PSk
nþ1
S þ LSn€u

nþ1
B ¼ GSgnþ1

S ; PFknþ1
F þ LFn€u

nþ1
B ¼ GFgnþ1

F :

ð26Þ
Appending the sign-reverted last matrix equation of

(22), evaluated at t ¼ tnþ1, to the foregoing ones the follow-
ing algebraic system emerges:

PS 0 LSn

0 PF LFn

LT
Sn LT

Fn 0

264
375 knþ1

S

knþ1
F

€unþ1
B

8><>:
9>=>; ¼

GSgnþ1
S

GFgnþ1
F

0

8><>:
9>=>;: ð27Þ

This will be referred to as the interface equation. It connects
freedoms on CB, and in 2D and 3D production problems it



Fig. 7. Flowchart of the time-stepping procedure for LLM partitioned
analysis.
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typically has a small dimension compared to that of the
fluid and structure state vectors. Although matrix inverses
are shown for notational simplicity, in an actual implemen-
tation bKS and bKF are factored and solved for multiple
right-hand sides while forming PS and PF. In linear prob-
lems this is done only if Dt changes. Similarly, the ‘‘arrow-
head” coefficient matrices in (27) need to be refactored only
when PS and/or PF change.

To carry out the transient response, multipliers knþ1
S and

knþ1
F are solved from (27). (The frame acceleration €unþ1

B ,
which appears as ‘‘multiplier glue” in (27), is also obtained
as a byproduct but not needed for subsystem computa-
tions.) Multipliers are inserted into (24) to get €unþ1

S and
€wnþ1, and displacements and velocities are updated through
(23). Since the fluid and structure systems become fully
uncoupled upon solving the interface equation, different
solvers and integration methods may be used if appropri-
ate. Furthermore the two solutions may be done in parallel
on a multiprocessing computer. The process is repeated
until the simulation time span of interest is covered.
Fig. 7 flowcharts the time-stepping procedure.

For problems involving ‘‘hard” local nonlinearities,
such as fluid cavitation or structural fracture, an explicit
integrator may be attractive for the partition that exhibits
nonlinearities. The Central Difference (CD) form of (23)
given by b ¼ 0 and c ¼ 1=2 is explicit but as the analysis
of Appendix A shows, unstable if used on both partitions.

A notable difference of this time-stepping scheme with
respect to conventional staggered procedures is that there

is no explicit localized predictor that directly transfers infor-
mation from one partition to the other. Prediction is
replaced by the solution of the interface equation. This
injects coupling implicitness. As a result the Newmark A-
stability with ðc P 1=2; 2b P cÞ is preserved. However,
care must be taken in solving (27), because it can be ill-con-
ditioned. To alleviate this concern, the interface equation
may be scaled as described in [45].

7. Silent boundaries

In applications such as the dam problem of Fig. 1, fluid
and solid silent boundaries (SB) are necessary to account
for truncation of fluid and soil meshes to finite extent.
Their locations are sketched in Fig. 2. Ideally a SB should
radiate outgoing waves of arbitrary incident angles with no
spurious reflections. This section focuses on the SB imple-
mentation for the fluid mesh, since the dual use of fluid dis-
placements and their potential brings in some novel
derivation points. The soil SB is directly selected from
the available geotechnical literature.

The perfectly matched layer (PML) method [1] is gener-
ally considered the most accurate SB for computational
acoustics and electromagnetics done in the frequency
domain. Work has been recently done to extend it to the
time domain [43]. For the application problems considered
in the present study, however, it was found that the imple-
mentation burden of the PML, which requires substantial
tuning, would not be justified and that a simpler one would
be sufficient. The simplest SB derivation technique makes
use of the plane wave approximation (PWA), which fol-
lows directly from the Sommerfeld radiation condition.
For a plane truncation boundary under an incident plane
wave this condition, first introduced in acoustics by Mind-
lin and Bleich [28], reads

op
on
¼ 1

c
op
ot

) p ¼ qFc _un; ð28Þ

in which p is the pressure at the truncation boundary and
_un the normal fluid velocity there. The right side relation
is the PWA [14]. The foregoing condition can be used to
create a fluid damping matrix if the fluid equations are ex-
pressed in terms of the fluid displacement:

CF ¼
Z

CFSB

qFcNTnnTNdCFSB
; ð29Þ

in which CFSB
is the silent boundary, n the normal vector

there, and N a standard linear shape function. To pass to
the displacement potential as the fluid state variable, this
fluid damping matrix is congruentially transformed by
the gradient matrix (DF) as previously done for the fluid
stiffness and mass matrices, which yields CFw ¼ DT

FCFDF.
The term multiplying dw in the total first variation of PT

in (21) changes to dwTðMFw
€wþCFw

_wþKFwwþDT
FBFnkF�

DT
FfFÞ and a damping submatrix CFw appears in the second

term of (22). The fluid contributions in (25) change to

gnþ1
F ¼ DT

Ffnþ1
F � CFw½ _un

F þ Dtð1� cÞ€un
F�

� KF un
F þ Dt _wn þ Dt2

2
ð1� 2bÞ€wn

� �
;

bKF ¼MFw þ DtcCFw þ Dt2bKFw:

ð30Þ

With those changes the transient analysis can be performed
as described in Section 6.

A silent boundary for the soil foundation, which is
included in the structure partition, was constructed by
the viscous damping boundary method (VDB) of [26].
The VDB is similar to the PWA in that it uses the idea
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of adjoining viscous dampers to boundary element free-
doms. However, for an elastic media such as soil one must
take into account the presence of both primary (compres-
sional) and secondary (shear) waves that travel through
the media, and the appropriate wave speeds used instead
of the speed of sound. Benchmark verification of the fluid
SB accuracy and related modeling guidelines are discussed
in [45].

8. Fluid cavitation

Inertial (also called transient) cavitation occurs in a
liquid medium when the effective pressure (atmospheric
plus hydrostatic plus dynamic) drops under a vaporization
pressure threshold, leading to localized rupture and forma-
tion of tiny gas bubbles. The inception of this physical pro-
cess is similar to boiling. A cavitating region may be
macroscopically characterized as being roughly under a
uniform gas–vapor pressure and bulk modulus near zero.
The condition persists until the pressure is increased again
by the collapse of the cavitated region [50], a rapid tran-
sient process that produces closure shocks. A simple but
satisfactory macroscopic constitutive model is a bilinear
one [3], in which the bulk modulus K is that of the liquid
considered as an acoustic medium when the effective pres-
sure is over the vaporization threshold, and zero otherwise.
For simplicity, the threshold is often taken to be zero.

To incorporate this bilinear model, the effective pressure
must be calculated at each time step over each element.
Under the assumption of small liquid compressibility, the
constitutive equation of Eq. (3) states that p ¼ �K�V ¼
�KuFi;i ¼ �qFc2uFi;i. At a certain location in a fluid element
e constructed with shape functions NF, the dynamic pres-
sure is determined by

pe ¼ �qFc2Bvsu
e
F; ð31Þ

where ue
F is extracted from the global displacements

(uF ¼ DFw), and Bvs is the displacement-to-volumetric-
strain matrix Bvs ¼ $NF; cf. [10]. The effective pressure is
then easily calculated by adding atmospheric and hydro-
static contributions.

This process can be implemented during the calculation
of the stiffness matrix of the fluid. If reduced integration
(one-point Gauss–Legendre rule) is used, only the pressure
at the center of the element will be recovered by colloca-
tion. To obtain a smoother solution, the pressure is found
at Gauss points for full integration (2� 2 rule in 2D quad-
rilaterals or 2� 2� 2 rule in 3D bricks). The element pres-
sure is determined by interpolating to the center of the
element and averaging, since recovered stresses are usually
most accurate at locations within an element rather than on
its boundaries [9].

When the effective pressure in the element drops below
the vapor pressure, the stiffness matrix is modified to sup-
press rigidity for the element by setting c ¼ 0. To reduce
computational cost, the cavitation effect of each element
on the matrix KFw is determined during the preprocessing
phase, and that matrix adjusted accordingly. Furthermore,
an explicit time integration scheme may be beneficial for
two reasons. First, to accurately account for cavitation
short time steps are needed to capture the high-frequency
behavior, which makes an explicit scheme more attractive.
Second, the computational cost is reduced since the
dynamic fluid stiffness matrix, bKFw, lacks the contribution
of KFw, and may be reused for many steps as long as the
timestep Dt is not changed.

Studies in the article series [30–32], show that the occur-
rence of cavitation can induce growing spurious pressure
oscillations. These oscillations eventually cause fragmenta-
tion of the cavitation region, a phenomenon called frothing.
The implementation for submarine hull cavitation [15]
resolved this problem by the addition of an artificial damp-
ing term proportional to the apparent frequency. In the
present study a Rayleigh damping matrix proportional to
the fluid velocity was added to alleviate frothing and
smooth out the solution:

CFd ¼ aKKFw þ aM MFw: ð32Þ

The coefficients in (32) were adjusted to damp out high fre-
quency frothing while preserving overall low frequency
behavior.

9. Concept verification: infinite piston problem

A motion-driven, flexible-shaft piston compressing an
infinite column of air is a benchmark problem that has
been often used in computational aeroelasticity [4,11–
13,27,41] to assess stability and accuracy of numerical sim-
ulations of gas dynamics coupled to a flexible structure. In
this section, that problem is adjusted to capture features of
target application problems [46]. The contained fluid is no
longer a gas, but a liquid with parameters corresponding to
water and terminated by a silent boundary (SB). The piston
device is harmonically driven through a flexible shaft.
Assuming 1D behavior, this problem has an exact analyti-
cal solution given below. This solution was used to verify
the Mortar and LLM FSI interface treatments as well as
the SB performance.

The problem is defined in Fig. 8, which also provides
geometric and physical properties. Those are chosen to
match roughly the properties of the gravity dam problem
discussed in the sequel paper [46]. Here the spring stiffness
is chosen to match the first natural frequency of the dam
given a piston mass of 1.0 kg. The excitation frequency
x ¼ 18 rad/s is near the dominant frequency of the El Cen-
tro earthquake used in that problem.

9.1. Analytical solution

An analytical solution is possible by assuming that the
fluid is acoustic, that its displacement uF � u is a function
of x and t only, and that body forces are neglected. A
PWA silent boundary expressed as _uðL; tÞ ¼ �cu0ðL; tÞ is
placed at a distance x ¼ L, as shown in Fig. 8. Under those



  

 

Fig. 8. Infinite piston benchmark problem.
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assumptions, the fluid problem is governed by the bidirec-
tional wave partial differential equation (PDE) [19]:

o2u
ot2
¼ c2 o2u

ox2
or €u ¼ c2u00; in which u ¼ uðx; tÞ;

x P 0; t > 0; ð33Þ

to be solved under the initial and boundary conditions

uðx; 0Þ ¼ 0; _uðx; 0Þ ¼ 0; _uðL; tÞ ¼ �cu0ðL; tÞ; ð34Þ
m€uð0; tÞ � qFc2AFu0ð0; tÞ þ kuð0; tÞ ¼ kX 0 sinðxtÞ: ð35Þ

Of these (34) state the initial rest conditions and the SB at
x ¼ L, whereas (35) expresses the FSI equilibrium condi-
tion at the piston interface x ¼ 0. The solution of (33)–
(35) is worked out in [45] using the Laplace transform
method. In transform space t! s, u! U one gets

Uðs; tÞ ¼ kxX 0 expð�sx=cÞ
ðs2 þ x2Þðk þ qFcAFsþ ms2Þ : ð36Þ

Back-transforming to physical space yields

uðx; tÞ ¼ kX 0x
d

a1a2 þ
fe

x
sin x t � x

c

� �h i	
�fd cos x t � x

c

� �h io
H t � x

c

� �
; ð37Þ
Fig. 9. Infinite piston problem with LLM
in which fd ¼ qFcAF, fe ¼ k � mx2, fg ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2

d � 4km
p

, a0 ¼
exp½ðt � x=cÞfg=m�, a1 ¼ exp½�ððt � x=cÞðfd þ fgÞÞ=ð2mÞ�
=ð2f gÞ, a2 ¼ ða0 � 1Þðf 2

d � 2f emÞ þ ða0 þ 1Þfdfg, d ¼ f 2
e þ

f 2
d x2, and H is the Heaviside unit step function. The piston

displacement uð0; tÞ ¼ u0ðtÞ is obtained by taking x ¼ 0. Note
that the distance L to the SB has disappeared from (36) and
(37). This shows that the PWA condition _uðL; tÞ ¼
�cu0ðL; tÞ, which precludes wave reflections, is exact for this
model and could be applied at any L, including L ¼ 0.

9.2. Matched mesh analysis verification

The benchmark problem is FEM-discretized in 3D by
using a combination of solid and fluid bilinear brick ele-
ments with springs as illustrated in Fig. 9a. This figure
shows an instance of matching fluid–structure meshes.
The stiffness of the piston brick element is chosen suffi-
ciently high so that the four springs control the structural
flexibility. The excitation frequency is x ¼ 18 rad/s. The
analytical solution was verified first against the CASE spec-
tral FSI code [47] and a pressure formulation discussed by
Cook et al. [9]. These three models show excellent agree-
ment as illustrated in Fig. 9b. The LLM interface treatment
was then applied in conjunction with the Trapezoidal Rule
(TR) version of Newmark and a timestep of 0.02 s. Excel-
lent agreement is obtained as shown in Fig. 9c.
-treated, matching-mesh interface.
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9.3. Non-matching mesh analysis verification

Fig. 10a shows a 2� 2 structure interface mesh linked to
a 3� 3 fluid interface mesh, where the fluid characteristic
length, Lc, equals 1

30
m. Each fluid element is a cube with

an edge length of Lc. Again the stiffness of the piston brick
elements is chosen so high so that the five springs effectively
govern the shaft flexibility. The excitation frequency is
x ¼ 18 rad/s. The TR was used for both fluid and structure
with a timestep of Dt ¼ 0:01 s. Response errors with respect
to the analytical solution (37) at x ¼ 0 were assessed with
the C-error measure presented in [47].

The transient response for the model illustrated in
Fig. 10a was carried out with two choices for the interface
frame nodes: one based on the zero moment rule (ZMR, cf.
Appendix B) as depicted in Fig. 10b, and one with frame
nodes coincident with the fluid nodes. Both piston response
histories showed no visible errors when plotted against the
analytical solution. Fig. 11a shows the transient history for
the second case. The C-errors were 0.0038 and 0.0083,
respectively. In engineering calculations, C-errors less than
0.1 are typically considered satisfactory.

To further assess the performance of LLM for the non-
matching case, the characteristic length Lc of the fluid mesh
was systematically reduced, such that each fluid element
remained a cube with an edge length of Lc while keeping
Fig. 10. Infinite piston problem with LLM-treated, non-matching m
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Fig. 11. Infinite piston response histories. (a) analytical versus LLM (frame nod
for varying characteristic lengths, Lc.
the structure mesh fixed. Reduction of Lc increased the
number of fluid interface nodes. The characteristic length,
Lc, was varied from 1

20
m down to 1

150
m. Two interface

frames were tested: (1) that produced by ZMR (this will
be different for each Lc), and (2) one with nine frame nodes
collocated at the structure nodes, a configuration labeled
‘‘matching coarse mesh.”

C-error results for both interface frames are shown in
Fig. 11b. Here we can observe an advantage of the
ZMR: an interface discretized by the ZMR will converge
faster.

10. Conclusions

We have presented the formulation of the primal-dual
LLM method for treating the dynamic interaction between
an acoustic fluid and a flexible structure. This treatment
introduces additional interface variables, which include
the frame kinematics and two multiplier sets. In a parti-
tioned solution analysis procedure, those variables are
algebraically solved separately at each time step, and mul-
tipliers are fed back into the fluid and structure equations.
The increase in the number of variables and the implicit
treatment of the interface equation is compensated by var-
ious advantages: (1) complete localization of fluid and
structure models, (2) ability to handle non-matching
esh interface: (a) meshes for Lc ¼ 1
30

m, (b) ZMR for Lc ¼ 1
30

m.

0.01 0.015 0.02 0.025 0.03 0.035 0.04

0.01

0.009

0.008

0.007

0.006

0.005

0.004

0.003

0.002

Matching Coarse Mesh
Zero Moment Rule 

C
-e

rr
or

Characteristic Length (m)

es collocated at fluid nodes) piston displacements for Lc ¼ 1
30

m; (b) C-error



3070 M.R. Ross et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3057–3079
meshes, and (3) retention of the stability and accuracy of
the monolithic treatment. A welcome consequence of the
first two advantages is additional freedom in making deci-
sions at the modeling and solution stages, e.g., use of sep-
arate mesh generators, existing software for the separate
partitions, and custom treatment of local nonlinearities.

A sequel paper [46] discusses the application and evalu-
ation of this FSI method on a variety of problems that
include a two-dimensional gravity dam and a three-dimen-
sional arch dam, both under seismic action. In addition to
transient response analysis the 2D dam problem includes
vibration analysis and model reduction, while the 3D
dam problem illustrates a mapping scheme to construct
the LLM frame on doubly curved interfaces.
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Appendix A. Stability and accuracy of mortar and LLM

partitioned analysis

The following stability and accuracy analyses of parti-
tioned analysis with Mortar and LLM interfacing treat-
ments follow closely the spectral techniques of the paper
that introduced FSI staggered solution methods [34]. The
analysis relies on the construction of model systems that
couple dry-vibration mode pairs of the structure and the
fluid. In the following investigation, the fluid and structure
semidiscrete equations are assumed to be expressed in
terms of node displacement variables. Results for displace-
ment-potential fluid variables are analogous and not
included for brevity.

The analysis is first carried out for the Mortar method
since the model equations are simpler. The conclusions
are found to be directly applicable to the LLM method.

A.1. Mortar model system

The undamped, semidiscrete equations of motion of the
FSI system linked by the Mortar method are

KS 0 BS

0 KF �BF

BT
S �BT

F 0

264
375 uS

uF

kB

8><>:
9>=>;þ

MS 0 0

0 MF 0

0 0 0

264
375 €uS

€uF

€kB

8><>:
9>=>;

¼
fS

fF

0

8><>:
9>=>;: ðA:1Þ

This is the analog of (22), with only one set of connection
matrices, and omitted gradient and damping matrices. The
dimension of uS, uF and kB are nS, nF and nk, respectively.
Matrices KS and KF are assumed to be symmetric and non-
negative, whereas MS and MF are symmetric and positive
definite. The vibration eigenproblems associated with the
isolated fluid and structure (kB ¼ 0) are

KSvSi ¼ x2
SiMSvSi ði ¼ 1; . . . nSÞ;

KFvFj ¼ x2
FjMFvFj ðj ¼ 1; . . . nFÞ: ðA:2Þ

Here xSi and xFj are uncoupled vibration frequencies,
whereas vS and vF are associated modes orthonormalized
with respect to the respective mass matrices. Let matrices
VS and VF be formed by collecting the vSi and vFj modes,
respectively, as columns. Because of the chosen eigenvector
orthonormalization, VT

S MSVS ¼ IS and VT
FMFVF ¼ IF, in

which IS and IF are the identity matrices of order nS and
nF, respectively. The transformation equations to pass to
normal coordinates are

uS

uF

kB

8><>:
9>=>; ¼

VS 0 0

0 VF 0

0 0 R

264
375 qS

qF

qk

8><>:
9>=>;;

€uS

€uF

€kB

8><>:
9>=>; ¼

VS 0 0

0 VF 0

0 0 R

264
375 €qS

€qF

€qk

8><>:
9>=>;; ðA:3Þ

in which qS, qF and qk are normal coordinates and where R
is a nk � nk multiplier-scaling matrix. Applying (A.3) for a
congruent transformation on (A.1) gives the normal system

X2
S 0 S

0 X2
F �F

ST �FT 0

264
375 qS

qF

qk

8><>:
9>=>;þ

IS 0 0

0 IF 0

0 0 0

264
375 €qS

€qF

€qk

8><>:
9>=>;¼

pS

pF

0

8><>:
9>=>;
ðA:4Þ

in which X2
S ¼ VT

S KSVS ¼ diag½x2
Si�, X2

F ¼ VT
FKFVF ¼

diag½x2
Fj�, S ¼ VT

S BSR, F ¼ VT
FBFR, pS ¼ VT

S fS and pF ¼
VT

FfS. Although matrices XS, XF, IS and IF are diagonal,
for a general R both S and F will be generally full, implying
that each structural mode will generally be coupled to all
fluid modes. Following behavioral assumptions similar to
those of Appendix A of [34] the interaction of a mode pair,
namely the ith structure mode and the jth fluid mode can be
represented by the 3� 3 model coupled system

x2
Si 0 uSij

0 x2
Fj �uFij

uSij �uFij 0

264
375 qSi

qFj

kij

8><>:
9>=>;þ

1 0 0

0 1 0

0 0 0

264
375 €qSi

€qFj

€kij

8><>:
9>=>;

¼
fSi

fFj

0

8><>:
9>=>;: ðA:5Þ

Here uSij and uFij are scalars in the range 0 through 1 that
characterize the strength of the interaction whereas kij is a
modal interaction multiplier obtained by appropriately
choosing the ith and jth rows of R. If uSij ¼ uFij ¼ 0 the
modes do not interact and (A.5) uncouples into two scalar
ODEs. It is therefore sufficient to investigate the time-
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discretized stability and accuracy of the model system (A.5)
for arbitrary but nonnegative frequencies xSi P 0 and
xFj P 0 as well as coupling factors 0 6 uSi 6 1 and
0 6 uFj 6 1. This is done below for the Newmark time
integration scheme.
A.2. Stability of mortar model system

To reduce clutter, modal indices i and j will be dropped.
Forcing terms do not affect stability and are set to zero.
Accordingly we consider the model system

x2
S 0 uS

0 x2
F �uF

uS �uF 0

264
375 qS

qF

k

264
375þ 1 0 0

0 1 0

0 0 0

264
375 €qS

€qF

€k

8><>:
9>=>; ¼

0

0

0

8><>:
9>=>;:

ðA:6Þ

This is not a conventional ODE, but a differential algebraic
equation (DAE) of index 2 [5]. The computed values
qk

S; q
k
F; . . ., where k is the step index, are assumed to satisfy

exactly (A.6) except for roundoff, that is

x2
Sqk

S þ uSk
k þ €qk

S ¼ 0; x2
Fqk

S � uFkk þ €qk
F ¼ 0;

uSqk
S � uFqk

F ¼ 0; ðA:7Þ

for k ¼ 0; 1; 2 . . . In particular the initial conditions at
k ¼ 0 (t ¼ t0 ¼ 0) are taken to satisfy (A.7) exactly. For
further use introduce the state 6-vectors

zn ¼ ½ qn
S _qn

S €qn
S qn

F _qn
F €qn

F �
T
;

znþ1 ¼ qnþ1
S _qnþ1

S €qnþ1
S qnþ1

F _qnþ1
F €qnþ1

F


 �T
:

ðA:8Þ

Computations have proceeded for n steps of constant step-
size h ¼ Dt up to tn ¼ nh. The Newmark formulas for dis-
placements and velocities at the next time step
tnþ1 ¼ tn þ h are

qnþ1
S ¼ qn

S þ h _qn
S þ

1

2
h2½2b€qnþ1

S þ ð1� 2bÞ€qn
S�;

_qnþ1
S ¼ _qn

S þ h½c€qnþ1
S þ ð1� cÞ€qn

S�;

qnþ1
F ¼ qn

F þ h _qn
F þ

1

2
h2½2b€qnþ1

F þ ð1� 2bÞ€qn
F�;

_qnþ1
F ¼ _qn

S þ h½c€qnþ1
S þ ð1� cÞ€qn

S�;

ðA:9Þ

in which for simplicity the same parameters b and c are se-
lected for both fluid and structure. The following combina-
tions of displacements, velocities and accelerations are used
below:

q̂n
S ¼ qn

S þ h _qn
S þ

1

2
ð1� bÞh2€qn

S;

q̂n
F ¼ qn

F þ h _qn
F þ

1

2
ð1� bÞh2€qn

F;

�qn
S ¼ h _qn

S þ ð1� cÞh2€qn
S;

�qn
F ¼ h _qn

F þ ð1� cÞh2€qn
F:

ðA:10Þ

In the partitioned approach the interface force value knþ1 is
obtained from the model equations (A.7) evaluated at tnþ1,
in conjunction with (A.9). The result can be compactly ex-
pressed as

knþ1 ¼ 1

v
uSvF �uFvS½ �

q̂n
S

q̂n
F

� �
; ðA:11Þ

in which vS ¼ 1þ h2bx2
S, vF ¼ 1þ h2bx2

F, v ¼ 2bh2ðu2
SvFþ

u2
FvSÞ, and the last vector contains the combinations de-

fined in (A.10). Substituting into (A.7) with k ¼ nþ 1,
along with (A.11), yields the next-step state values

qnþ1
S

_qnþ1
S

€qnþ1
S

qnþ1
F

_qnþ1
F

€qnþ1
F

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ 2

v

h2bu2
F h2buFuS

�hcjS hcuFuS

�jS uFuS

h2buFuS h2bu2
S

hcuFuS �hcjF

uFuS �jF

2666666664

3777777775
q̂n

S

q̂n
F

	 �

þ

0 0

1=h 0

0 0

0 0

0 1=h

0 0

2666666664

3777777775
�qn

S

�qn
F

	 �
; ðA:12Þ

in which jS ¼ u2
SvF þ h2bu2

Fx2
S and jF ¼ h2bu2

Sx
2
F þ u2

FvS.
The coupling between fluid and structure variables in
(A.12) is entirely due to the previous elimination of knþ1.
From this equation it is easy to build, via entry-by-entry
identification, the amplification relation

znþ1 ¼

qnþ1
S

_qnþ1
S

€qnþ1
S

qnþ1
F

_qnþ1
F

€qnþ1
F

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼

A11 A12 A13 A14 A15 A16

A21 A22 A23 A24 A25 A26

A31 A32 A33 A34 A35 A36

A41 A42 A43 A44 A45 A46

A51 A52 A53 A54 A55 A56

A61 A62 A63 A64 A65 A66

2666666664

3777777775

�

qn
S

_qn
S

€qn
S

qn
F

_qn
F

€qn
F

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
¼ Azn: ðA:13Þ

Defining the FSI-coupled frequency

~x2 ¼ u2
Sx

2
F þ u2

Fx2
S

u2
F þ u2

S

; ðA:14Þ

the characteristic polynomial of A can be presented in the
compact form

P AðfÞ ¼ detðA� fIÞ ¼ f2wð2ðf� 1Þ2 þ h2w~x2Þ
4bð1þ h2b~x2Þ

; ðA:15Þ

in which w ¼ 1þ f� 2cð1� fÞ þ 2bð1� fÞ2. The six char-
acteristic roots fi are the (generally complex) roots of
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P A ¼ 0. Since b > 0, these will be the roots of the numera-
tor. A-stability requires jfij 6 1 for any h and ~x. The two
f ¼ 0 roots may be ignored and it is sufficient to examine
the quartic polynomial wð2ðf� 1Þ2 þ h2w~x2Þ. Through
the involutory transformation �f ¼ ð1þ fÞ=ð1� fÞ, P A is
mapped to the Routh-Hurwitz polynomial

P H ¼ h2 ~x2 þ 16ĉh2 ~x2�fþ 16ð1þ ð2b̂þ ĉ2Þh2 ~x2Þ�f2

þ 32ðĉþ 2b̂ĉh2 ~x2Þ�f3 þ 64b̂ð1þ b̂h2 ~x2Þ�f4 ðA:16Þ

in which ĉ ¼ c� 1
2

and b̂ ¼ 2b� c. The Routh–Hurwitz sta-
bility conditions, omitting numeric coefficients, are
h2 ~x2 P 0, ĉh2 ~x2 P 0, h2ĉ~x2ð1þ 2ðb̂þ ĉ2Þh2 ~x2ÞP 0,
h2ĉ2 ~x2ð1þ 2ĉ2h2 ~x2ð1þ2b̂h2 ~x2ÞÞP 0 and b̂ð1þh2b̂~x2ÞP 0.
By inspection these are met for any ~x and h if and only if ĉ
and b̂ are nonnegative, or equivalently

2b P c; c P
1

2
: ðA:17Þ

These are the same A-stability conditions that hold for the
Newmark method applied to a single oscillator with fre-
quency ~x. In particular, the trapezoidal rule (TR) equiva-
lent: b ¼ 1

4
and c ¼ 1

2
, satisfies (A.17).

A deeper spectral analysis of P AðfÞ shows that the model
coupled system (A.6) has three conjugate root pairs of dif-
ferent nature:

(1) A zero root pair associated with acceleration-only
eigenvectors.

(2) A principal root pair dependent on h and ~x that is
identical to the principal pair of the Newmark
method for a one-DOF oscillator. This pair is associ-
ated with the q̂ modes of (A.10).

(3) A fh; ~xg-independent, parasitic root pair ð4b� 2c�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ 2cÞ2 � 16b

q
Þ=ð4bÞ, associated with the �q

modes of (A.10). These roots satisfy jfij 6 1 if
(A.17) holds. For TR, the pair coalesces at f ¼ �1.
If either of (A.17) is violated, one of these roots strays
outside the unit circle, and the scheme is unstable for
any h.
A.3. Accuracy of mortar model system

The exact solution of the DAE (A.6) is that of a free
oscillator moving at the coupled frequency ~x defined by
(A.14). Assuming uF 6¼ 0 and initial conditions qSð0Þ ¼
q0

S, _qSð0Þ ¼ _q0
S, qFð0Þ ¼ ðuS=uFÞq0

S and _qFð0Þ ¼ ðuS=uFÞ _q0
S,

the exact response is

qex
S ¼ q0

S cos ~xt þ _q0
S sin ~xt; qex

F ¼
uS

uF

qex
S ;

kex ¼ uSðx2
F � x2

SÞ
u2

F þ u2
S

qex
S : ðA:18Þ

To evaluate the local truncation error, take q0
S and _q0

S in
(A.18) to be the computed values qn

S and _qn
S, respectively.

Set t ¼ h, subtract that solution from that delivered by
znþ1 ¼ Azn, and expand in h series at t ¼ tn, retaining the
first nonzero term. Only the TR results b ¼ 1
4
; c ¼ 1

2

 �
are

displayed for brevity:

T qS
¼� 1

12
_qn

S ~x3h3þOðh4Þ; T _qS
¼ 1

12
qn

S ~x4h3þOðh4Þ;

T €qS
¼ 1

12
_qn

S ~x5h3þOðh4Þ; T qF
¼� 1

12uF

_qn
SuS ~x3h3þOðh4Þ;

T _qF
¼ 1

12uF

qn
SuS ~x4h3þOðh4Þ; T €qF

¼ 1

12uF

_qn
SuS ~x5h3þOðh4Þ;

T k¼
1

12ðu2
Fþu2

SÞ
_qn

SuS ~x3ðx2
S�x2

FÞh
3þOðh4Þ: ðA:19Þ

This agrees with the accuracy of the TR-equivalent New-
mark method applied to a single oscillator of frequency
~x. More generally, if c ¼ 1

2
and b P 1

4
all truncation errors

in displacements, velocities, acceleration and interface
forces are Oðh3Þ; consequently, the propagated (global) er-
ror is second order.

A.4. Stability and accuracy of LLM model system

The undamped, semidiscrete equations of motion of the
FSI system linked by the LLM method to be investigated
here are

KS 0 BS 0 0

0 KF 0 BF 0

BT
S 0 0 0 �LSn

0 BT
F 0 0 �LFn

0 �LT
Sn �LT

Fn 0 0

26666664

37777775
uS

uF

kS

kF

uB

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

þ

MS 0 0 0 0

0 MF 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

26666664

37777775
€uS

€uF

€kS

€kF

€uB

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

fS

fF

0

0

0

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
: ðA:20Þ

This is a transcription of (22) that omits gradient and
damping matrices. Following a spectral procedure similar
to that discussed for the Mortar method, the following un-
forced model system is obtained:

x2
S 0 uS 0 0

0 x2
F 0 uF 0

uS 0 0 0 �mS

0 uF 0 0 �mF

0 0 �mS �mF 0

26666664

37777775
qS

qF

kS

kF

qB

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;

þ

1 0 0 0 0

0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

26666664

37777775
€qS

€qF

€kS

€kF

€qB

8>>>>>><>>>>>>:

9>>>>>>=>>>>>>;
¼

0

0

0

0

0

26666664

37777775 ðA:21Þ

in which the scalars uS, uF, mS and mF characterize the mod-
al coupling strength. This is a DAE system of index 2, dis-
cretized at times tn ¼ nh for n ¼ 0; 1; . . ., with qS and qF



Fig. A.1. Summary of stability results for the Newmark integrator: (a)
Monolithic solution; (b) Mortar and LLM partitioned solution with same
ðb; cÞ used for fluid and structure. Labels TR, LA and CD mark the
trapezoidal rule, linear acceleration and central difference instances,
respectively.
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treated by the Newmark integrator shown above. For fur-
ther use define the FSI coupled frequency

~x2 ¼ m2
Fu2

Sx
2
F þ m2

Su
2
Fx2

S

m2
Su

2
F þ m2

Fu2
S

: ðA:22Þ

Computations have proceeded until tn. The interface
values knþ1

S , knþ1
F and unþ1

B are obtained by solving the model
equation (A.22) evaluated at tn, in conjunction with the
Newmark formulas (A.9). The result is

knþ1
S

knþ1
F

€qnþ1
B

264
375 ¼ 1

v

m2
FuSvF �mFmSuFvS

�mFmSuSvF m2
SuFvS

bmSu2
FuS bmFuFu2

S

264
375 q̂n

S

q̂n
F

	 �
; ðA:23Þ

in which vS ¼ 1þ h2bx2
S, vF ¼ 1þ h2bx2

F, v ¼ bh2ðm2
Fu2

SvFþ
m2

Su
2
FvSÞ, and the q̂ displacements are defined in (A.10).

Replacing into (A.21) at tnþ1 provides the entries of znþ1

and the amplification matrix A relating znþ1 ¼ Azn. This
one is more complicated than (A.13), but its characteristic
polynomial turns out to be

P AðfÞ ¼ detðA� fIÞ ¼ f2wð2ðf� 1Þ2 þ h2w~x2Þ
4bð1þ h2b~x2Þ

; ðA:24Þ

in which w ¼ 1þ f� 2cð1� fÞ þ 2bð1� fÞ2. This polyno-
mial is exactly that found for the Mortar method, except
that ~x is defined by (A.22) instead of (A.14). (They are
identical if mS ¼ mF ¼ 1.) Consequently all conclusions
reached for stability of the Mortar method hold without
change for LLM. The accuracy analysis reveals that the
truncation error is again Oðh3Þ for c ¼ 1

2
; consequently,

the propagated global error is second order.
Fig. A.1 summarizes our stability results on Mortar and

LLM partitioned analysis with the Newmark time integra-
tor. In that figure ‘‘C stable” means ‘‘conditionally stable”;
that is, stable for a finite hx range that includes h ¼ 0.

Appendix B. The zero moment rule for placement of frame

nodes

For non-matching meshes treated by LLM, the placement
of frame nodes should obey conservation conditions that
guarantee correct transmission of constant stress states across
the interface. The set of those conditions is briefly referred to
as the Interface Patch Test, or IPT. The problem was initially
considered in the context of elastic contact [38,44]. In that
application the frame materializes as bodies initially touch
and is updated as a result of spreading contact and slip.

Suppose that it is desired to transmit a constant stress
state rc across an interface CB treated by LLM. The inter-
face separates partitions labeled as m ¼ 1; . . . ;M ; usually
M ¼ 2. The preparatory steps listed in [38] are as follows.

(1) Select a layer of elements over each partition with
nodes that contribute to the interface B.

(2) Given a typical element (e), obtain the strain-dis-
placement relation Be. Evaluate at the element cen-
troid of position xe

c to get Be
c ¼ Beðxe

cÞ.
(3) The contribution of the element to the interface node

forces is fe
c ¼ V ðBe

cÞ
T
rc, where V denotes the volume,

area or length of the element depending on its
dimensionality.

(4) Assemble the node interface forces in the usual man-
ner over each partition to get fm

c , m ¼ 1; . . . ;M . The
interface multipliers are km

c ¼ �fm
c . Collect all these

in a vector fc.

Next assume that the frame CB is FEM discretized by
placing N B nodes xBi on it, and appropriately choosing
low-order conforming shape functions NB over CB. If the
frame is one-dimensional (coupling two-dimensional ele-
ments), frame elements are line elements with piecewise lin-
ear shape functions. If the frame is two-dimensional
(coupling three-dimensional elements), frame elements are
triangles or quadrilaterals with piecewise linear or bilinear
shape functions, respectively. The degrees of freedom of
the frame are displacements collected in uB.

Consider an arbitrary virtual displacement duB of the
frame. The points of application of the interface multiplier
delta functions will move by amounts determined by the
frame discretization. Collect those motions in dum

k so that
dPBc ¼ duT

Bfc is the virtual work spent on the boundary.
Satisfaction of the IPT requires

dPBc ¼ 0; ðB:1Þ

for all admissible constant stress states rc and frame virtual
displacements duB. Meeting this requirement generally
leads to a difficult inverse problem since the number and
location of the frame nodes is not known in advance. An
iterative process appears unavoidable. Fortunately, for a
1D frame that separates two 2D bodies, the problem can
be solved directly using the Zero Moment Rule (ZMR)
summarized below. Applying the ZMR in a tensor product
form over 2D frame surfaces separating two 3D bodies of-
ten provides a good initial solution (or even the actual con-
figuration if the frame surface has rectangular geometry, as
illustrated in Fig. 10b for the infinite piston problem.)

The concept of the ZMR is best illustrated through an
example. Consider the 2D fluid and structure non-matching
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partitions pictured in Fig. B.1a. For this problem, the only
stress of interest in the IPT is that normal to the interface
AB. Points on the frame are mapped to the isoparametric
coordinate n that ranges from n ¼ �1 at A through n ¼ þ1
at B. The step-by-step process listed above produces the node
forces shown as a consistent lumping from the normal-to-
interface constant stress state. Only the numeric factors
affecting those forces are given since that is sufficient to deter-
mine the frame node locations. This set satisfies translational
and rotational self-equilibrium, as may be verified by inspec-
tion. The negated force set is applied to the frame viewed as
an isolated object, as shown in Fig. B.1b. Consider now the
frame as a Bernoulli-Euler beam, and compute the moment
diagram MðnÞ, which is drawn in Fig. B.1c. The eight zero-
moment points are candidates for frame node locations.
Fig. B.1d shows possible frame configurations according to
this rule. Of these, the latter would normally be chosen for
a conventional dynamic analysis. Configurations with less
nodes, which function like low-pass filters, may be of interest
for model reduction and system identification studies [40].
Some extensions are discussed in [38].

The ZMR may be proven in various ways that range
from physical arguments through purely mathematical
manipulations. The following proof, based on that given
in [39], is entirely algebraic and relies only on the principle
of virtual work (PVW). It has the advantage of not asking
where the interaction forces come from, and thus is extend-
ible beyond FEM. Suppose the interface is a straight line
segment that extends from x ¼ 0 through x ¼ L. For the
ensuing manipulations it is convenient to extend the frame
outside the interface proper so that its end points A;B are
at xA ¼ �a and xB ¼ Lþ b, where a and b are arbitrary
positive values. The frame nodes are located at xn,
n ¼ 1; . . . ;N with 0 6 xn 6 L. Also xnþ1 > xn, so no coinci-
dent nodes are allowed. Coordinates x1 and xN are taken as
location of the first and last frame nodes, respectively, a
Fig. B.1. Zero momen
decision subject to a posteriori verification. For brevity call
the transverse displacement of the frame wðxÞ, which is
taken to be C0 continuous and piecewise-linear between
frame nodes. This is conventionally prolonged with con-
stant values to cover the remainder of the frame, so that
wðxÞ ¼ wðx1Þ for xA 6 x 6 x1, and wðxÞ ¼ wðxN Þ for
xN 6 x 6 xB. The PVW test function is dw.

Call V ¼ V A þ
R x

A qðxÞdx and MðxÞ ¼ MA þ
R x

0
V ðxÞdx so

that q ¼ d2M=dx2 ¼ M 00, where ð�Þ0 � dð�Þ=dx. From those
definitions V ðxÞ and MðxÞ are the transverse shear and
bending moment functions, respectively, associated with
the force system qðxÞ.

The frame virtual work is dW ¼
R B

A qðxÞdwðxÞdx. Setting
dw to be a linear function in x 2 ½0; L� requires the applied
forces to satisfy global translational and rotational equilib-
rium, but places no conditions on frame node locations. To
do that dW is integrated twice by parts:

dW ¼MAdw0A�MBdw0BþV BdwB�V AdwAþ
Z B

A
MðxÞw00dx:

ðB:2Þ
However, dw0A ¼ dw0B ¼ 0 since wðxÞ is constant there.
Next, take dwA ¼ dw1 ¼ 1, dwB ¼ dwN ¼ 0, and interpolate
linearly between w1 and wN ; then dW ¼ V A ¼ 0 because
there are no forces between xA and x1 ¼ 0. Likewise take
dwA ¼ dw1 ¼ 0, dwB ¼ dwN ¼ 1, and a linear interpolation
between w1 and wN ; then dW ¼ V B ¼ 0 because there are
no forces between xN ¼ L and xB. Consequently all bound-
ary terms in (B.2) vanish. Since wðxÞ is piecewise linear be-
tween frame nodes so is dwðxÞ. At a frame node n the
following weighted-finite-difference relation holds:

dw00n ¼
dwnþ1 � dwn

Dxþn
� dwn � dwn�1

Dx�n
; ðB:3Þ
t rule: an example.
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where Dxþn ¼ xnþ1 � xn > 0 and Dx�n ¼ xn � xn�1 > 0. For
the first node (n ¼ 1), xn�1 ¼ x0 is conventionally taken to
be at A; for the last node (n ¼ N ), xnþ1 is taken to be at
B. At location other than nodes, dw00 ¼ 0. Hence

dW ¼
X

n

MðxnÞdw00ðnÞ

¼
X

n

MðxnÞ
dwnþ1 � dwn

Dxþn
� dwn � dwn�1

Dx�n

� �
¼ 0: ðB:4Þ

At nodes n ¼ 2; . . . ;N � 1 take dwnþ1 ¼ dwn�1 ¼ 0,
dwn ¼ 1; since Dxþn > 0 and Dx�n > 0, (B.4) requires
MðxnÞ ¼ 0. At node 1 take dwA ¼ dw1 ¼ 1 and dw2 ¼ 0,
which requires Mðx1Þ ¼ 0. At node N take dwN ¼ dwB ¼ 1
and dwN�1 ¼ 0, which requires MðxN Þ ¼ 0. Therefore MðxÞ
must vanish at all frame nodes. We note that
Mðx1Þ ¼ MðxN Þ ¼ 0 because there are no forces to the left
of x ¼ x1 and to the right of x ¼ xN , thus justifying the a priori

choice of those locations as first and last frame nodes, respec-
tively. Consequently the one-dimensional ZMR is proved.
Appendix C. FSI modeling example: finite piston

This Appendix gives a 1D tutorial example intended for
readers unfamiliar with (1) multiplier-based FSI treatment
and (2) displacement potential variables. To help with (1),
three interface treatments are shown: monolithic, Mortar
and LLM. To help with (2) the transformation from fluid
node displacements to displacement potential freedoms is
worked out in detail. Unlike the verification problem of
Section 9, the piston is finite so that no SB intrudes as a
complicating factor. The discretization is sufficiently coarse
so that all matrix equations can be explicitly displayed.

The problem is illustrated in Fig. C.1a. A cylinder of
acoustic fluid enclosed in a rigid vessel is compressed by
a rigid piston restrained by an elastic spring. All of the
structural mass mS is lumped at the piston. The system is
excited by a time-harmonic force P ¼ P 0ejxpt applied on
the piston, where P 0 are xp are the driving amplitude and
frequency, respectively. Geometric and physical properties
are given in the figure. The only characteristic length of the
problem is the enclosed cylinder length L.

The structure and the fluid are discretized as shown in
Fig. C.1b. The structure may be discretized with a single
bar element. For the fluid, two elements is the minimum
Fig. C.1. Finite element model of finite piston problem.
discretization when the displacement potential w is picked
as the primary variable. After establishing the basic rela-
tions the dynamic equations of motion will be set up with
monolithic, LLM and Mortar treatments with two choices
of primary variables for the fluid. The dynamic piston
impedance will be compared between these combinations.

C.1. Fluid displacement formulation

For convenience, define kF ¼ qFc2AF=L as equivalent
fluid stiffness and mF ¼ qFAFL as total fluid mass, respec-
tively. Then, the structural and fluid mass and stiffness
matrices in terms of freedoms fuS1; uS2g and
fuF1; uF2; uF2g are given by

KS ¼ kS

1 �1

�1 1

� �
; KF ¼ 2kF

1 �1 0

�1 2 �1

0 �1 1

264
375;

MS ¼ mS

0 0

0 1

� �
; MF ¼ ð1� lÞMFC þ lMFL;

MFC ¼
mF

12

2 1 0

1 4 1

0 1 2

264
375; MFL ¼

mF

4

1 0 0

0 2 0

0 0 1

264
375; ðC:1Þ

in which the fluid mass matrix has been expressed as a lin-
ear combination of the consistent and lumped mass matri-
ces MFC and MFL. The optimal mass matrix is known to be
given by l ¼ 1=2 [18].

The monolithic treatment of the interaction is displayed
in Fig. C.2(a). Here uS2 ¼ uF1 ¼ u2. Using (C.1) with
l ¼ 1=2 and applying the fixed end conditions
uS1 ¼ uF3 ¼ 0 gives the equations of motion

kS þ 2kF �2kF

�2kF 4kF

� �
u2

u3

� �
þ

mS þ 5
24

mF
1
24

mF

1
24

mF
10
24

mF

" #
€u2

€u3

� �
¼ fT

¼ P 0ejxpt

0

� �
: ðC:2Þ
Fig. C.2. Fluid displacement models of a finite piston problem: (a)
monolithic formulation; (b) Mortar (aka global Lagrange multiplier)
formulation; (c) localized Lagrange multiplier (LLM) formulation.
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It is convenient to reduce these to dimensionless form. To
do that we introduce the following definitions, originally
used in [34]:

n ¼ mS

mF

; U2 ¼ kSL2

nmSc2
; s ¼ ct

L
; ð�Þ

�

� dð�Þ
ds

;

l ¼ u=L; X ¼ xL
c
; Xp ¼

xpL
c
; /0 ¼

P 0

kFL
:

ðC:3Þ

Here n is a structure-to-fluid mass ratio, U is a ratio of in-
vacuo structural frequency to acoustic frequency scaled by
1=

ffiffiffi
n
p

, s is a reduced or dimensionless time (s ¼ 1 is the
time needed by a fluid sound wave to travel the character-
istic length L), l is a displacement normalized to L, X and
XP are dimensionless frequencies, and /0 is a scaled piston
force amplitude. A darker dot denotes derivative respect to
s. All stiffness–mass ratios are collected in the following
table:
X2
1

X2
2

¼
2

num
den
 kS
4ð22þ 48nþ
kF
5n2U2 �
ffiffi
2

q

mS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
88þ 1152n�

49þ 24
mF
kS
 1
 1=ðn2U2Þ
 L2=ðnc2U2Þ
 L2=ðn2c2U2Þ

kF
 n2U2
 1
 nL2=c2
 L2=c2
mS
 nc2U2=L2
 c2=ðnL2Þ
 1
 1=n

mF
 n2c2U2=L2
 c2=L2
 n
 1
On dividing (C.2) by mFL and using (C.3) as well as the
foregoing table the equations of motion are put in dimen-
sionless form

n2U2 þ 2 �2

�2 4

" #
l1

l2

� �
þ

nþ 5
24

1
24

1
24

10
24

" #
€l1

€l2

� �
¼ /0ejXps

0

� �
:

ðC:4Þ
Assuming a periodic motion li ¼ l̂ie

jXs for the unforced
system we obtain the characteristic equation

det
n2U2 þ 2 �2

�2 4

" #
� X2 nþ 5

24
1
24

1
24

10
24

" # !
¼ 0; ðC:5Þ

which gives two dimensionless natural frequencies
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
480n3U2 þ 25n4U4 þ 24n2ð96þ U2ÞÞ
0n

; ðC:6Þ
and the piston admittance

G11 ¼
48ð5X2 � 48Þ

48ð5X2 � 48ÞnðnU2 � X2Þ þ 1056X2 � 49X4 � 2304
:

ðC:7Þ

This has poles at X ¼ X1 and X ¼ X2. Results (C.6) and
(C.7) are taken as reference for subsequent comparisons.

Mortar treatment. The interaction treatment by Mortar
is schematized in Fig. C.2b. On adjoining multiplier kB the
equations of motion become
n2U2 0 0 1

0 2 �2 �1

0 �2 4 0

1 �1 0 0

26664
37775

lS2

lF1

lF2

kB

26664
37775þ

n 0 0 0

0 5
24

1
24

0

0 1
24

5
12

0

0 0 0 0

26664
37775

€lS2

€lF1

€lF2

€kB

26664
37775

¼

/SejXps

0

0

0

26664
37775: ðC:8Þ

In compact matrix form: KGuG þMG€uG ¼ fG. It may be
verified that the characteristic equation detðKG � X2MGÞ ¼
0 is quadratic in X2. It yields the same natural frequencies
as (C.6). The piston admittance is identical to (C.7).

LLM treatment. The interaction treatment by LLM is
schematized in Fig. C.2c. On adjoining a frame (actually
just one point in this problem) with axial displacement uB

and two Lagrange multipliers kF and kF that connect the
frame to the structure and fluid, respectively, the equations
of motion become

n2U2 0 0 �1 0 0

0 2 �2 0 �1 0

0 �2 4 0 0 0

�1 0 0 0 0 1

0 �1 0 0 0 1

0 0 0 1 1 0

2666666664

3777777775

lS2

lF1

lF2

kS

kF

lB

2666666664

3777777775

þ

n 0 0 0 0 0

0 5
24

1
24

0 0 0

0 1
24

5
12

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2666666664

3777777775

€lS2

€lF1

€lF2

€kS

€kF

€lB

2666666664

3777777775
¼

/0ejXps

0

0

0

0

0

2666666664

3777777775
: ðC:9Þ

In compact matrix form: KLuL þML€uL ¼ fL. It may be
verified that the characteristic equation detðKL � X2MLÞ ¼
0 is quadratic in X2 and yields the same natural frequencies
as (C.6). The piston admittance is identical to (C.7).
C.2. Displacement potential formulation

Next, a dimensionless version of the displacement
potential wðxÞ is adopted as the fluid primary variable.
The definition is

lðxÞ ¼ uðxÞ
L
¼ dwðxÞ

dx
¼ w0: ðC:10Þ

For pointwise correspondence with piecewise linear dis-
placement elements one would need 3-node, piecewise-qua-



M.R. Ross et al. / Comput. Methods Appl. Mech. Engrg. 197 (2008) 3057–3079 3077
dratic displacement potential elements. However in the
present context only piecewise-linear 2-node elements in
w will be considered. This decision in turn suggests adding
a fictitious element and a fictitious node outside the piston,
as pictured in Fig. C.3. The fluid nodal freedoms are w1

through w4. If the fictitious element and node are omitted,
previous results are not recovered because the model be-
comes kinematically overconstrained: no fluid DOFs
remain.

The finite difference gradient matrix to pass from fluid
displacements to displacement potential freedoms is

uF1

uF2

uF3

264
375 ¼ 1

L

�2 2 0 0

�1 0 1 0

0 �1 0 1

264
375

w1

w2

w3

w4

26664
37775: ðC:11Þ

The boundary condition uF3 ¼ 0 is enforced (as an essential
condition) by setting w4 ¼ w2. Furthermore, one of the wi

values may be set to an arbitrary constant, say zero. We
chose w3 ¼ 0, whence the transformation contracts to

uF1

uF2

� �
¼ 1

L

�2 2

�1 0

� �
w1

w2

� �
¼ DFw: ðC:12Þ

Note that applying this transformation to the monolithic
treatment makes no sense since uF1 and uS2 coalesce. There-
fore we consider below only the multiplier-coupled systems.

Mortar treatment. The Mortar interface coupling is pic-
tured in Fig. C.4a. Applying the congruential transforma-
tion gives the fluid stiffness and mass in terms of
displacement potentials, whence the equations of motion
become
Fig. C.4. Displacement potential formulation of piston problem. Additional
results from the displacement treatment.

Fig. C.3. Displacement potential formulation of piston problem. Addi-
tional (fictitious) fluid element and node are appended to permit
correlation to results from the displacement treatment.
n2U2 0 0 1

0 4 �4 2

0 �4 8 �2

1 2 �2 0

26664
37775

lS2

wF1

wF2

kB

26664
37775

þ

n 0 0 0

0 17
12

� 11
12

0

0 � 11
12

5
6

0

0 0 0 0

26664
37775

€lS2

€wF1

€wF2

€kB

26664
37775 ¼

/0ejXps

0

0

0

26664
37775: ðC:13Þ

Multiplier kB couples now to two fluid nodes 1F and 2F, so
the picture in Fig. C.4(a) is somewhat idealized. In compact
matrix form: Kw

GuL þMw
G€uw

G ¼ fw
G. It may be verified that the

characteristic equation detðKw
G � X2Mw

GÞ ¼ 0 is quadratic in
X2 and yields the same natural frequencies as (C.6). The
piston admittance is identical to (C.7).

LLM treatment. The LLM interface coupling is shown
in Fig. C.4b. Applying the congruential transformation
gives the fluid stiffness and mass in terms of displacement
potentials, whence the equations of motion become

n2U2 0 0 �1 0 0

0 4 �4 0 2 0

0 �4 8 0 �2 0

�1 0 0 0 0 1

0 2 �2 0 0 1

0 0 0 1 1 0

2666666664

3777777775

lS2

wF1

wF2

kS

kF

lB

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;

þ

n 0 0 0 0 0

0 17
12

� 11
12

0 0 0

0 � 11
12

5
6

0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2666666664

3777777775

€lS2

€wF1

€wF2

€kS

€kF

€lB

2666666664

3777777775
¼

/0ejXps

0

0

0

0

0

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
:

ðC:14Þ

Multiplier kF couples now to two fluid nodes 1F and 2F,
so the picture in Fig. C.4(b) is somewhat idealized. In com-
pact matrix form: Kw

L uL þMw
L €uw

G ¼ fw
L . It may be verified

that the characteristic equation detðKw
L � X2Mw

L Þ ¼ 0 is
quadratic in X2 and yields the same natural frequencies
as (C.6). The piston admittance is identical to (C.7).
(fictitious) fluid element and node are appended to permit correlation to
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