
313

Chapter 8

Vision Pipelines
and Optimizations

“More speed, less haste . . . ”

—Treebeard, Lord of the Rings

This chapter explores some hypothetical computer vision pipeline designs to understand
HW/SW design alternatives and optimizations. Instead of looking at isolated computer
vision algorithms, this chapter ties together many concepts into complete vision
pipelines. Vision pipelines are sketched out for a few example applications to illustrate
the use of different methods. Example applications include object recognition using
shape and color for automobiles, face detection and emotion detection using local
features, image classification using global features, and augmented reality. The examples
have been chosen to illustrate the use of different families of feature description metrics
within the Vision Metrics Taxonomy presented in Chapter 5. Alternative optimizations
at each stage of the vision pipeline are explored. For example, we consider which vision
algorithms run better on a CPU versus a GPU, and discuss how data transfer time
between compute units and memory affects performance.

Note■■   The hypothetical examples in this chapter are sometimes sketchy, not intended
to be complete. Rather, the intention is to explore design alternatives. Design choices are
made in the examples for illustration only; other, equally valid design choices could be
made to build working systems. The reader is encouraged to analyze the examples to find
weaknesses and alternatives. If the reader can improve the examples, we have succeeded.

This chapter addresses the following major topics, in this order:

1.	 General design concepts for optimization across the SOC
(CPU, GPU, memory).

2.	 Four hypothetical vision pipeline designs using different
descriptor methods.

3.	 Overview of SW optimization resources and specific
optimization techniques.

Chapter 8 ■ Vision Pipelines and Optimizations

314

Stages, Operations, and Resources
A computer vision solution can be implemented into a pipeline of stages, as shown
in Figure 8-1. In a pipeline, both parallel and sequential operations take place
simultaneously. By using all available compute resources in the optimal manner,
performance can be maximized for speed, power, and memory efficiency.

Sensor Processing

Image Pre-Processing

Global Metrics

Local Feature Metrics

Classification, Learning

Augment, Render, Control

Vision Pipeline Stages Operations

Point

Line

Area

Algorithmic

Data conversion

DSP Sensor

GPU SIMT/SIMD

CPU Threads

CPU SIMD

CPU General

Memory System

Resources

Math

Figure 8-1.  Hypothetical assignment of vision pipeline stages to operations and to compute
resources. Depending on the actual resource capabilities and optimization targets for
power and performance, the assignments will vary

Optimization approaches vary by system. For example, a low-power system for a
mobile phone may not have a rich CPU SIMD instruction set, and the GPU may have a
very limited thread count and low memory bandwidth, unsuitable to generic GPGPU
processing for vision pipelines. However, a larger compute device, such as a rack-
mounted compute server, may have several CPUs and GPUs, and each CPU and GPU will
have powerful SIMD instructions and high memory bandwidth.

Table 8-1 provides more details on possible assignment of operations to resources
based on data types and processor capabilities. For example, in the sensor processing
stage, point line and area operations dominate the workload, as sensor data is assembled
into pixels and corrections are applied. Most sensor processors are based on a digital
signal processor (DSP) with wide SIMD instruction words, and the DSP may also contain
a fixed-function geometric correction unit or warp unit for correcting optics problems
like lens distortion. The Sensor DSP and the GPU listed in Table 8-1 typically contain a
dedicated texture sampler unit, which is capable of rapid pixel interpolation, geometric
warps, and affine and perspective transforms. If code is straight line with lots of branching
and not much parallel operations, the CPU is the best choice.

Chapter 8 ■ Vision Pipelines and Optimizations

315

As illustrated in Table 8-1, the data type and data layout normally guides
the selection of the best compute resource for a given task, along with the type of
parallelism in the algorithm and data. Also, the programing language is chosen based
on the parallelism, such as using OpenCL vs. C++. For example, a CPU may support
float and double data types, but if the underlying code is SIMT and SIMD parallel
oriented, calling for many concurrent thread-parallel kernel operations, then a GPU
with a high thread count may be a better choice than a single CPU. However, running a
language like OpenCL on multiple CPUs may provide performance as good as a smaller
GPU; for performance information, see reference[544] and vendor information on
OpenCL compilers. See also the section later in this chapter, “SIMD, SIMT, and SPMD
Fundamentals.”

For an excellent discussion of how to optimize fundamental image processing
operations across different compute units and memory, see the PfeLib work by Zinner
et al.[495], which provides a deep dive into the types of optimizations that can be made
based on data types and intelligent memory usage.

To make the assignments from vision processing stages to operations and compute
resources concrete, we look at specific vision pipelines examples later in this chapter.

Compute Resource Budgets
Prior to implementing a vision pipeline, a reasonable attempt should be made to count
the cost in terms of the compute platform resources available, and determine if the
application is matched to the resources. For example, a system intended for a military
battlefield may place a priority on compute speed and accuracy, while an application
for a mobile device will prioritize power in terms of battery life and make tradeoffs with
performance and accuracy.

Since most computer vision research is concerned with breaking ground in handling
relatively narrow and well-defined problems, there is limited research available to guide
a general engineering discussion on vision pipeline analysis and optimizations. Instead,

Table 8-1.  Hypothetical Assignment of Basic Operations to Compute Resources Guided by
Data Type and Parallelism (see also Zinner [495])

Chapter 8 ■ Vision Pipelines and Optimizations

316

we follow a line of thinking that starts with the hardware resources themselves, and we
discuss performance, power, memory, and I/O requirements, with some references to
the literature for parallel programming and other code-optimization methods. Future
research into automated tools to measure algorithm intensity, such as the number of
integer and float operations, the bit precision of data types, and the number of memory
transfers for each algorithm in terms of read/write, would be welcomed by engineers for
vision pipeline analysis and optimizations.

As shown in Figure 8-2, the main elements of a computer system are composed of
I/O, compute, and memory.

DSP memory

GPU memory

System memory

L1 L2

L1 L2

L1 L2

L1 L2

L1 L2
CPU 1
controller

CPU 2
SIMD

CPU 3
SIMD

CPU 4
SIMD

GPU 1
256 SIMT
4 texture
samplers

DSP 2

DSP 1

Camera 1
1080p depth

Camera 2
1080p RGB | depth

MIPI

MIPI
L1 L2

DMA

RF

RF

RF

RF

RF

RF

RF

Figure 8-2.  Hypothetical computer system, highlighting compute elements in the form of
a DSP, GPU, four CPU cores, DMA, and memory architecture using L1 and L2 cache and
register files RF within each compute unit

We assume suitable high bandwidth I/O busses and cache lines interconnecting the
various compute units to memory; in this case, we call out the MIPI camera interface in
particular, which connects directly to the DSP in our hypothetical SOC. In the case of
a simple computer vision system of the near future, we assume that the price, performance,
and power curves continue in the right direction to enable a system-on-a-chip (SOC)
sufficient for most computer vision applications to be built at a low price point, approaching
throw-away computing cost—similar in price to any small portable electronic gadget. This
would thereby enable low-power and high-performance ubiquitous vision applications
without resorting to special-purpose hardware accelerators built for any specific computer
vision algorithms.

Chapter 8 ■ Vision Pipelines and Optimizations

317

Here is a summary description of the SOC components shown in Figure 8-2:

•	 Two 1080p cameras, one for RGB and the other for a
self-contained depth camera, such as a TOF sensor (as discussed
in Chapter 1).

•	 One small low-power controller CPU with a reduced instruction
set and no floating point, used for handling simple things like the
keyboard, accelerometer updates, servicing interrupts from the
DSP, and other periodic tasks, such as network interrupt handlers.

•	 Three full SIMD capable CPUs with floating point, used for heavy
compute, typically thread parallel algorithms such as tiling, but
also for SIMD parallel algorithms.

•	 A GPU capable of running ➤ 256 threads with full integer and
floating point, and four texture samplers. A wide range of area
algorithms map well to the GPU, but the programming model is
SIMT kernels such as compute shaders for DirectX and OpenGL,
or OpenCL.

•	 A DSP with a limited instruction set and VLIW processing
capabilities well suited to pixel processing and sensor processing
in general.

•	 A DMA unit for fast memory transfers; although obvious, DMA
is a simple and effective method to increase memory bandwidth
and reduce power.

Compute Units, ALUs, and Accelerators
There are several types of compute units in a typical system, including CPUs, GPUs, DSPs,
and special-purpose hardware accelerators such as cryptography units, texture samplers,
and DMA engines. Each ALU has a different instruction set tuned to the intended use, so
understanding each compute unit’s ALU instruction set is very helpful.

Generally speaking, computer architecture has not advanced to the point of
providing any standard vision pipeline methods or hardware accelerators. That’s because
there are so many algorithm refinements for computer vision emerging; choosing to
implement any vision accelerators in silicon is an obsolescence risk. Also, creating
computer vision hardware accelerators is difficult, since applications must be portable.
So developers typically choose high-level language implementations that are good
enough and portable, with minimal dependencies on special purpose hardware or API’s.

Instead, reliance on general-purpose languages like C++ and optimizing the software
is a good path to follow to start, as is leveraging existing pixel-processing acceleration
methods in a GPU as needed, such as pixel shaders and texture samplers. The standard
C++ language path offers flexibility to change and portability across platforms, without
relying on any vendor-specific hardware acceleration features.

In the example vision pipelines developed in this section, we make two basic
assumptions. First, the DSP is dedicated to sensor processing and light image pre-
processing to load-balance the system. Second, the CPUs and the GPUs are used

Chapter 8 ■ Vision Pipelines and Optimizations

318

downstream for subsequent sections of the vision pipeline, so the choice of CPU vs. GPU
depends on the algorithm used.

Since the compute units with programmable ALUs are typically where all the tools
and attention for developers are focused, we dedicate some attention to programming
acceleration alternatives later in this chapter in the “Vision Algorithm Optimizations and
Tuning” section; there is also a survey of selected optimization resources and software
building blocks.

In the hypothetical system shown in Figure 8-2, the compute units include general-
purpose CPUs, a GPU intended primarily for graphics and media acceleration and
some GPGPU acceleration, and a DSP for sensor processing. Each compute unit is
programmable and contains a general-purpose ALU with a tuned instruction set. For
example, a CPU contains all necessary instructions for general programming, and
may also contain SIMD instructions (discussed later in this chapter). A GPU contains
transcendental instructions such as square root, arctangent, and related instructions to
accelerate graphics processing. The DSP likewise has an instruction set tuned for sensor
processing, likely a VLIW instruction set.

Hardware accelerators are usually built for operations that are common, such as a
geometric correction unit for sensor processing in the DSP and texture samplers for warping
surface patches in the GPU. There are no standards yet for computer vision, and new
algorithm refinements are being developed constantly, so there is little incentive to add any
dedicated silicon for computer vision accelerators, except for embedded and special-purpose
systems. Instead, finding creative methods of using existing accelerators may prove beneficial.

Later in this chapter we discuss methods for optimizing software on various compute
units, taking advantage of the strengths and intended use of each ALU and instruction set.

Power Use
It is difficult to quantify the amount of power used for a particular algorithm on an SOC or
a single compute device without very detailed power analysis; likely simulation is the best
method. Typically, systems engineers developing vision pipelines for an SOC do not have
accurate methods of measuring power, except crude means such as running the actual
finished application and measuring wall power or battery drain.

The question of power is sometimes related to which compute device is used, such
as CPU vs. GPU, since each device has a different gate count and clock rate, therefore is
burning power at a different rate. Since silicon architects for both GPU and CPU designs
are striving to deliver the most performance per watt per square millimeter, (and we
assume that each set of silicon architects is equally efficient), there is no clear winner in
the CPU vs. GPU power/performance race. The search to save power by using the GPU vs.
the CPU might not even be worth the effort compared to other places to look, such as data
organization and memory architecture.

One approach for making the power and performance tradeoff in the case of SIMD
and SIMT parallel code is to use a language such as OpenCL, which supports running the
same code on either a CPU or a GPU. The performance and power would then need to be
measured on each compute device to quantify actual power and performance; there’s more
discussion on this topic later, in the “Vision Algorithm Optimizations and Tuning” section.

Chapter 8 ■ Vision Pipelines and Optimizations

319

For detailed performance analysis using the same OpenCL code running on a specific
CPU vs. a GPU, as well as clusters, see the excellent research by the National Center
for Super Computing Applications[544]. Also, see the technical computing resources
provided by major OpenCL vendors, such as INTEL, NVIDIA, and AMD, for details on
their OpenCL compilers running the same code across the CPU vs. GPU. Sometimes the
results are surprising, especially for multi-core CPU systems vs. smaller GPUs.

In general, the compute portion of the vision pipeline is not where the power is burned
anyway; most power is burned in the memory subsystem and the I/O fabric, where high
data bandwidth is required to keep the compute pipeline elements full and moving along.
In fact, all the register files, caches, I/O busses, and main memory consume the lion’s share
of power and lots of silicon real estate. So memory use and bandwidth are high-value
targets to attack in any attempt to reduce power. The fewer the memory copies, the higher
the cache hit rates; the more reuse of the same data in local register files, the better.

Memory Use
Memory is the most important resource to manage as far as power and performance are
concerned. Most of the attention on developing a vision pipeline is with the algorithms
and processing flow, which is challenging enough. However, vision applications are
highly demanding of the memory system. The size of the images alone is not so great, but
when we consider the frame rates and number of times a pixel is read or written for kernel
operations through the vision pipeline, the memory transfer bandwidth activity becomes
clearer. The memory system is complex, consisting of local register files next to each
compute unit, caches, I/O fabric interconnects, and system memory. We look at several
memory issues in this section, including:

Pixel resolution, bit precision, and total image size•	

Memory transfer bandwidth in the vision pipeline•	

Image formats, including gray scale and color spaces•	

Feature descriptor size and type•	

Accuracy required for matching and localization•	

Feature descriptor database size•	

To explore memory usage, we go into some detail on a local interest point and
feature extraction scenario, assuming that we locate interest points first, filter the interest
points against some criteria to select a smaller set, calculate descriptors around the
chosen interest points, and then match features against a database.

A reasonable first estimate is that between a lower bound and upper bound of 0.05%
to 1 percent of the pixels in an image can generate decent interest points. Of course, this
depends entirely on: (1) the complexity of the image texture, and (2) the interest point
method used. For example, an image with rich texture and high contrast will generate
more interest points than an image of a far away mountain surrounded by clouds
with little texture and contrast. Also, interest point detector methods yield different
results—for example, the FAST corner method may detect more corners than a SIFT scale
invariant DoG feature, see Appendix A.

Chapter 8 ■ Vision Pipelines and Optimizations

320

Descriptor size may be an important variable, see Table 8-2. A 640x480 image will
contain 307,200 pixels. We estimate that the upper bound of 1 percent, or 3,072 pixels,
may have decent interests points; and we assume that the lower bound of 0.05 percent is
153. We provide a second estimate that interest points may be further filtered to sort out
the best ones for a given application. So if we assume perhaps only as few as 33 percent of
the interest points are actually kept, then we can say that between 153*.33 and 3,072*.33
interest points are good candidates for feature description. This estimate varies widely
out of bounds, depending of course on the image texture, interest point method used, and
interest point filtering criteria. Assuming a feature descriptor size is 256 bytes, the total
descriptor size per frame is 3072x256x.33 = 259,523 bytes maximum—that’s not extreme.
However, when we consider the feature match stage, the feature descriptor count and
memory size will be an issue, since each extracted feature must be matched against each
trained feature set in the database.

Table 8-2.  Descriptor Bytes per Frame (1% Interest Points), adapted from [141]

Descriptor Size in bytes 480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD

Resolution 640 x 480 1920 x 1080 3840 × 2160 7680 x 4320

Pixels 307200 2073600 8294400 33177600

BRIEF 32 98304 663552 2654208 10616832

ORB 32 98304 663552 2654208 10616832

BRISK 64 196608 1327104 5308416 21233664

FREAK
(4 cascades)

64 196608 1327104 5308416 21233664

SURF 64 196608 1327104 5308416 21233664

SIFT 128 393216 2654208 10616832 42467328

LIOP 144 442368 2985984 11943936 47775744

MROGH 192 589824 3981312 15925248 63700992

MRRID 256 786432 5308416 21233664 84934656

HOG
(64x128
block)

3780 n.a. n.a. n.a. n.a.

In general, local binary descriptors offer the advantage of a low memory footprint.
For example, Table 8-2 provides the byte count of several descriptors for comparison,
as described in Miksik and Mikolajczyk [141]. The data is annotated here to add the
descriptor working memory size in bytes per frame for various resolutions.

In Table 8-2, image frame resolutions are in row 1, pixel count per frame is in row 2,
and typical descriptor sizes in bytes are in subsequent rows. Total bytes for selected
descriptors are in column 1, and the remaining columns show total descriptor size per

Chapter 8 ■ Vision Pipelines and Optimizations

321

frame assuming an estimated 1 percent of the pixels in each frame are used to calculate
an interest point and descriptor. In practice, we estimate that 1 percent is an upper-bound
estimate for a descriptor count per frame and 0.05 percent is a lower-bound estimate.
Note that descriptor sizes in bytes do vary from those in the table, based on design
optimizations.

Memory bandwidth is often a hidden cost, and often ignored until the very end of
the optimization cycle, since developing the algorithms is usually challenging enough
without also worrying about the memory access patterns and memory traffic. Table 8-2
includes a summary of several memory variables for various image frame sizes and
feature descriptor sizes. For example, using the 1080p image pixel count in row 2 as a
base, we see that an RGB image with 16 bits per color channel will consume: 

2,073,600
pixels

 *3
channels/RGB

 *2
bytes/pixel

 = 12,441,600 bytes / frame 

And if we include the need to keep a gray scale channel I around, computed from the
RGB, the total size for RGBI increases to: 

2,073,600
pixels

 *4
channels/RGBI

 *2
bytes/pixel

 = 16,588,800 bytes / frame 

If we then assume 30 frames per second and two RGB cameras for depth processing
+ the I channel, the memory bandwidth required to move the complete 4-channel RGBI
image pair out of the DSP is nearly 1GB / second: 

12,441,600
pixels

 *4
channels/RGBI

 *
bytes/pixel

 *30
fps

 *2
stereo

 = 995,328,000
mb/s

 

So we assume in this example a baseline memory bandwidth of about ~1GB/second
just to move the image pair downstream from the ISP. We are ignoring the ISP memory
read/write requirements for sensor processing for now, assuming that clever DSP memory
caching, register file design, and loop-unrolling methods in assembler can reduce the
memory bandwidth.

Typically, memory coming from a register file in a compute unit transfers in a single
clock cycle; memory coming from various cache layers can take maybe tens of clock cycles;
and memory coming from system memory can take hundreds of clock cycles. During
memory transfers, the ALU in the CPU or GPU may be sitting idle, waiting on memory.

Memory bandwidth is spread across the fast register files next to the ALU processors,
and through the memory caches and even system memory, so actual memory bandwidth
is quite complex to analyze. Even though some memory bandwidth numbers are
provided here, it is only to illustrate the activity.

And the memory bandwidth only increases downstream from the DSP, since
each image frame will be read, and possibly rewritten, several times during image
pre-processing, then also read again during interest point generation and feature
extraction. For example, if we assume only one image pre-processing operation using
5x5 kernels on the I channel, each I pixel is read another 25 times, hopefully from
memory cache lines and fast registers.

This memory traffic is not all coming from slow-system memory, and it is mostly
occurring inside the faster-memory cache system and faster register files until there is
a cache miss or reload of the fast-register files. Then, performance drops by an order of

Chapter 8 ■ Vision Pipelines and Optimizations

322

magnitude waiting for the buffer fetch and register reloading. If we add a FAST9 interest
point detector on the I channel, each pixel is read another 81 times (9x9), maybe from
memory cache lines or registers. And if we add a FREAK feature descriptor over maybe
0.05 percent of the detected interest points, we add 41x41 pixel reads per descriptor to get
the region (plus 45*2 reads for point-pair comparisons within the 41x41 region), hopefully
from memory cache lines or registers.

Often the image will be processed in a variety of formats, such as image pre-processing
the RGB colors to enhance the image, and conversion to gray scale intensity I for computing
interest points and feature descriptors. The color conversions to and from RGB are a
hidden memory cost that requires data copy operations and temporary storage for the color
conversion, which is often done in floating point for best accuracy. So, several more GB/
second of memory bandwidth can be consumed for color conversions. With all the memory
activity, there may be cache evictions of all or part of the required images into a slower
system memory, degrading into nonlinear performance.

Memory size of the descriptor, therefore, is a consideration throughout the vision
pipeline. First, we consider when the features are extracted; and second, we look at when
the features are matched and retrieved from the feature database. In many cases, the size
of the feature database is by far the critical issue in the area of memory, since the total
size of all the descriptors to match against affects the static memory storage size, memory
bandwidth, and pattern match rate. Reducing the feature space into a quickly searchable
format during classification and training is often of paramount importance. Besides the
optimized classification methods discussed in Chapter 4, the data organization problems
may be primarily in the areas of standard computer science searching, sorting, and data
structures; some discussion and references were provided in Chapter 4.

When we look at the feature database or training set, memory size can be the
dominant issue to contend with. Should the entire feature database be kept on a cloud
server for matching? Or should the entire feature database be kept on the local device?
Should a method of caching portions of the feature database on the local device from the
server be used? All of the above methods are currently employed in real systems.

In summary, memory, caches, and register files exceed the silicon area of the ALU
processors in the compute units by a large margin. Memory bandwidth across the SOC
fabric through the vision pipeline is key to power and performance, demanding fast
memory architecture and memory cache arrangement, and careful software design.
Memory storage size alone is not the entire picture, though, since each byte needs to be
moved around between compute units. So, careful consideration of memory footprint
and memory bandwidth is critical for anything but small applications.

Often, performance and power can be dramatically improved by careful attention
to memory issues alone. Later in the chapter we cover several design methods to help
reduce memory bandwidth and increase memory performance, such as locking pages
in memory, pipelining code, loop unrolling, and SIMD methods. Future research into
minimizing memory traffic in a vision pipeline is a worthwhile field.

I/O Performance
We lump I/O topics together here as a general performance issue, including data
bandwidth on the SOC I/O fabric between compute units, image input from the camera,
and feature descriptor matching database traffic to a storage device. We touched

Chapter 8 ■ Vision Pipelines and Optimizations

323

on I/O issues above the discussion on memory, since pixel data is moved between
various compute devices along the vision pipeline on I/O busses. One of the major I/O
considerations is feature descriptor data moving out of the database at feature match
time, so using smaller descriptors and optimizing the feature space using effective
machine learning and classification methods is valuable.

Another type of I/O to consider is the camera input itself, which is typically
accomplished via the standard MIPI interface. However, any bus or I/O fabric can be used,
such as USB. If the vision pipeline design includes a complete HW/SW system design
rather than software only on a standard SOC, special attention to HW I/O subsystem design
for the camera and possibly special fast busses for image memory transfers to and from a
HW-assisted database may be worthwhile. When considering power, I/O fabric silicon area
and power exceed the area and power for the ALU processors by a large margin.

The Vision Pipeline Examples
In this section we look at four hypothetical examples of vision pipelines. Each is chosen
to illustrate separate descriptor families from the Vision Metrics Taxonomy presented in
Chapter 5, including global methods such as histograms and color matching, local feature
methods such as FAST interest points combined with FREAK descriptors, basis space
methods such as Fourier descriptors, and shape-based methods using morphology and
whole object shape metrics. The examples are broken down into stages, operations, and
resources, as shown in Figure 8-1, for the following applications:

•	 Automobile recognition, using shape and color

•	 Face recognition, using sparse local features

•	 Image classification, using global features

•	 Augmented reality, using depth information and tracking

None of these examples includes classification, training, and machine learning
details, which are outside the scope of this book (machine learning references are
provided in Chapter 4). A simple database storing the feature descriptors is assumed to
be adequate for this discussion, since the focus here is on the image pre-processing and
feature description stages. After working through the examples and exploring alternative
types of compute resource assignments, such as GPU vs. CPU, this chapter finishes with a
discussion on optimization resources and techniques for each type of compute resource.

Automobile Recognition
Here we devised a vision pipeline to recognize objects such as automobiles or machine
parts by using polygon shape descriptors and accurate color matching. For example,
polygon shape metrics can be used to measure the length and width of a car, while color
matching can be used to measure paint color. In some cases, such as custom car paint
jobs, color alone is not sufficient for identification.

For this automobile example, the main design challenges include segmentation of
automobiles from the roadway, matching of paint color, and measurement of automobile
size and shape. The overall system includes an RGB-D camera system, accurate color

Chapter 8 ■ Vision Pipelines and Optimizations

324

and illumination models, and several feature descriptors used in concert. See Figure 8-3.
We work through this example in some detail as a way of exploring the challenges and
possible solutions for a complete vision pipeline design of this type.

60 feet

RGB-D
Camera

Lamp

FOV

44 feet, 11 feet per lane

Figure 8-3.  Setting for an automobile identification application using a shape-based
and color-based vision pipeline. The RGB and D cameras are mounted above the road
surface, looking directly down

We define the system with the following requirements:

1080p RGB color video (1920x1080 pixels) at 120 fps, horizontally •	
mounted to provide highest resolution in length, 12 bits per color,
65 degree FOV.

1080p stereo depth camera with 8 bits Z resolution at 120 fps, •	
65 degree FOV.

Image FOV covering 44 feet in width and 60 feet in length over •	
four traffic lanes of oncoming traffic, enough for about three
normal car lengths in each lane when traffic is stopped.

Speed limit of 25 mph, which equals ~37 feet per second.•	

Camera mounted next to overhead stoplight, with a street lamp •	
for night illumination.

Chapter 8 ■ Vision Pipelines and Optimizations

325

Embedded PC with 4 CPU cores having SIMD instruction sets, •	
one GPU, 8GB memory, 80GB disk; assumes high-end PC
equivalent performance (not specified for brevity).

Identification of automobiles in real time to determine make and •	
model; also count of occurrences of each, with time stamp and
confidence score.

Automobile ground truth training dataset provided by major •	
manufacturers to include geometry, and accurate color samples
of all body colors used for stock models; custom colors and
after-market colors not possible to identify.

Average car sizes ranging from 5 to 6 feet wide and 12 to 16 feet long.•	

Accuracy of 99 percent or better.•	

Simplified robustness criteria to include noise, illumination, and •	
motion blur.

Segmenting the Automobiles
To segment the automobiles from the roadway surface, a stereo depth camera operating
at 1080p 120fps (frames per second) is used, which makes isolating each automobile from
the roadway simple using depth. To make this work, a method for calibrating the depth
camera to the baseline road surface is developed, allowing automobiles to be identified
as being higher than the roadway surface. We sketch out the depth calibration method
here for illustration.

Spherical depth differences are observed across the depth map, mostly affecting the
edges of the FOV. To correct for the spherical field distortion, each image is rectified using
a suitable calibrated depth function (to be determined on-site and analytically), then
each horizontal line is processed, taking into consideration the curvilinear true depth
distance, which is greater at the edges, to set the depth equal across each line.

Since the speed limit is 25 mph, or 37 feet per second, imaging at 120 FPS yields
maximum motion blur of about 0.3 feet, or 4 inches per frame. Since the length of a pixel
is determined to be 0.37 inches, as shown in Figure 8-4, the ability to compute car length
from pixels is accurate within about 4 inches/0.37 inches = 11 pixels, or about 3 percent of
a 12-foot-long car at 25 mph including motion blur. However, motion blur compensation
can be applied during image pre-processing to each RGB and depth image to effectively
reduce the motion blur further; several methods exist based on using convolution or
compensating over multiple sequential images [305,492].

Chapter 8 ■ Vision Pipelines and Optimizations

326

Matching the Paint Color
We assume that it is possible to identify a vehicle using paint color alone in many cases,
since each manufacturer uses proprietary colors, therefore accurate colorimetry can be
employed. For matching paint color, 12 bits per color channel should provide adequate
resolution, which is determined in the color match stage using the CIECAM02 model and
the Jch color space [253]. This requires development of several calibrated device models
of the camera with the scene under different illumination conditions, such as full sunlight
at different times of day, cloud cover, low light conditions in early morning and at dusk,
and nighttime using the illuminator lamp mounted above traffic along with the camera
and stop light.

The key to colorimetric accuracy is the device models’ accounting for various
lighting conditions. A light sensor to measure color temperature, along with the
knowledge of time of day and season of the year, is used to select the correct device
models for proper illumination for times of day and seasons of the year. However, dirty
cars present problems for color matching; for now we ignore this detail (also custom paint
jobs are a problem). In some cases, the color descriptor may not be useful or reliable; in
other cases, color alone may be sufficient to identify the automobile. See the discussion of
color management in Chapter 2.

Measuring the Automobile Size and Shape
For automobile size and shape, the best measurements are taken looking directly down
on the car to reduce perspective distortion. As shown in Figure 8-4, the car is segmented
into C (cargo), T (top), and H (hood) regions using depth information from the stereo
camera, in combination with a polygon shape segmentation of the auto shape. To
compute shape, some weighted combination of RGB and D images into a single image
will be used, based on best results during testing. We assume the camera is mounted in
the best possible location centered above all lanes, but that some perspective distortion
will exist at the far ends of the FOV. We also assume that a geometric correction is
applied to rectify the images into Cartesian alignment. Assuming errors introduced by

Mirror

Length

Width
C T H

Figure 8-4.  Features used for automobile identification

Chapter 8 ■ Vision Pipelines and Optimizations

327

the geometric corrections to rectify the FOV are negligible, the following approximate
dimensional precision is expected for length and width, using the minimum car size of 5’
x 12’ as an example: 

FOV Pixel Width:      1080
pixels

 / (44’ * 12”)
inches

 = each pixel is ~0.49 inches wide
FOV Pixel Length:    1920

pixels
 / (60’ * 12”)

inches
 = each pixel is ~0.37 inches long

Automobile Width:    (5’ * 12”) / .49 = ~122 pixels
Automobile Length:  (12’ * 12”) / .37 = ~389 pixels  

This example uses the following shape features:

Bounding box containing all features; width and length are used•	

Centroid computed in the middle of the automobile region•	

Separate width computed from the shortest diameter passing •	
through the centroid to the perimeter

Mirror feature measured as the distance from the front of the car; •	
mirror locations are the smallest and largest perimeter width
points within the bounding box

Shape segmented into three regions using depth; color is measured •	
in each region: cargo compartment (C), top (T), and hood (H)

Fourier descriptor of the perimeter shape computed by •	
measuring the line segments from centroid to perimeter points at
intervals of 5 degrees

Feature Descriptors
Several feature descriptors are used together for identification, and the confidence of
the automobile identification is based on a combined score from all descriptors. The key
feature descriptors to be extracted are as follows:

•	 Automobile shape factors: Depth-based segmentation of each
automobile above the roadway is used for the coarse shape outline.
Some morphological processing follows to clean up the edges
and remove noise. For each segmented automobile, object shape
factors are computed for area, perimeter, centroid, bounding
box, and Fourier descriptors of perimeter shape. The bounding
box measures overall width and height, the Fourier descriptor
measures the roundness and shape factors; some automobiles are
more boxy, some are more curvy. (See Figure 6-32, Figure 2-18,
and Chapter 6 for more information on shape descriptors. See
Chapter 1 for more information on depth sensors.) In addition,
the distance of the mirrors from the front of the automobile is
computed; mirrors are located at width extrema around the object
perimeter, corresponding to the width of the bounding box.

Chapter 8 ■ Vision Pipelines and Optimizations

328

•	 Automobile region segmentation: Further segmentation uses a
few individual regions of the automobile based on depth, namely
the hood, roof, and trunk. A simple histogram is created to gather
the depth statistical moments, a clustering algorithm such as
K-means is performed to form three major clusters of depth: the
roof will be highest, hood and trunk will be next highest, windows
will be in between (top region is missing for convertibles, not
covered here). The pixel areas of the hood, top, trunk, and
windows are used as a descriptor.

•	 Automobile color: The predominant colors of the segmented
hood, roof, and trunk regions are used as a color descriptor. The
colors are processed in the Jch color space, which is part of the
CIECAM system yielding high accuracy. The dominant color
information is extracted from the color samples and normalized
against the illumination model. In the event of multiple paint
colors, separate color normalization occurs for each.
(See Chapter 3 for more information on colorimetry.)

Calibration, Set-up, and Ground Truth Data
Several key assumptions are made regarding scene set-up, camera calibration, and other
corrections; we summarize them here:

•	 Roadway depth surface: Depth camera is calibrated to the road
surface as a reference to segment autos above the road surface; a
baseline depth map with only the road is calibrated as a reference
and used for real-time segmentation.

•	 Device models: Models for each car are created from
manufacturer’s information, with accurate body shape geometry
and color for each make and model. Cars with custom paint
confuse this approach; however, the shape descriptor and the car
region depth segmentation provide a failsafe option that may be
enough to give a good match—only testing will tell for sure.

•	 Illumination models: Models are created for various conditions,
such as morning light, daylight, and evening light, for sunny and
cloudy days; illumination models are selected based on time of
day and year and weather conditions for best matching.

•	 Geometric model for correction: Models of the entire FOV for
both the RGB and depth camera are devised, to be applied at each
new frame to rectify the image.

Chapter 8 ■ Vision Pipelines and Optimizations

329

Pipeline Stages and Operations
Assuming the system is fully calibrated in advance, the basic real-time processing flow
for the complete pipeline is shown in Figure 8-5, divided into three primary stages of
operations. Note that the complete pipeline includes an image pre-processing stage to
align the image in the FOV and segment features, a feature description stage to compute
shape and color descriptors, and a correspondence stage for feature matching to develop
the final automobile label composed of a weighted combination of shape and color
features. We assume that a separate database table for each feature in some standard
database is fine.

No attempt is made to create an optimized classifier or matching stage here; instead,
we assume, without proving or testing, that a brute-force search using a standard
database through a few thousand makes and models of automobile objects works fine for
the ALPHA version.

Note in Figure 8-5 (bottom right) that each auto is tracked from frame to frame, we
do not define the tracking method here.

Capture RGB and D
images

Rectify FOV using 4-point
warp, merge RGB and D

Remove motion blur via
spatio-temporal merging

Segment shape regions
(T,H,C) w/depth+color

Morphological processing
to clean up shape

Segment roadway from
automobile using depth

Compute perimeter, area,
centroid, bounding box

Compute radius lines,
centroid to perimeter

Compute radius length
histogram, normalized

Compute Fourier
Descriptor from radial

Compute mirror distance
from front of automobile

Compute dominant color
of each automobile shape

Classify features

Bounding
Box

Dominant
Color

Mirror
Distance

Radius
Histogram

Fourier
Descriptor

Object classification
score + tracking

Image pre-processing Feature Description Correspondence

Figure 8-5.  Operations in hypothetical vision pipeline for automobile identification using
polygon shape features and color

Chapter 8 ■ Vision Pipelines and Optimizations

330

Operations and Compute Resources
For each operation in the pipeline stages, we now explore possible mappings to the
available compute resources. First, we review the major resources available in our
example system, which contains 8GB of fast memory, we assume sufficient free space to
map and lock the entire database in memory to avoid paging. Our system contains four
CPU cores, each with SIMD instruction sets, and a GPU capable of running 128 SIMT
threads simultaneously with 128GB/s memory bandwidth to shared memory for the
GPU and CPU, considered powerful enough. Let’s assume that, overall, the compute and
memory resources are fine for our application and no special memory optimizations
need to be considered. Next, we look at the coarse-grain optimizations to assign
operations to compute resources. Table 8-3 provides an evaluation of possible resource
assignments.

Table 8-3.  Assignment of Operations to Compute Resources

Criteria for Resource Assignments
In our simple example, as shown in Table 8-3, the main criteria for assigning algorithms to
compute units are processor suitability and load balancing among the processors; power
is not an issue for this application. The operation to resource assignments provided in
Figure 8-5 are a starting point in this hypothetical design exercise; actual optimizations
would be different, adjusted based on performance profiling. However, assuming what
is obvious about the memory access patterns used for each algorithm, we can make a
good guess at resource assignments based on memory access patterns. In a second-order
analysis, we could also look at load balancing across the pipeline to maximize parallel
uses of compute units; however, this requires actual performance measurements.

Chapter 8 ■ Vision Pipelines and Optimizations

331

Here we will tentatively assign the tasks from Table 8-3 to resources. If we look at
memory access patterns, using the GPU for the sequential tasks 2 and 3 makes sense,
since we can map the images into GPU memory space first and then follow with the
three sequential operations using the GPU. The GPU has a texture sampler to which we
assign task 2, the geometric corrections using the four-point warp. Some DSPs or camera
sensor processors also have a texture sampler capable of geometric corrections, but not
in our example. In addition to geometric corrections, motion blur is a good candidate
for the GPU as well, which can be implemented as an area operation efficiently in a
shader. For higher-end GPUs, there may even be hardware acceleration for motion blur
compensation in the media section.

Later in the pipeline, after the image has been segmented in tasks 4 and 5, the
morphology stage in task 6 can be performed rapidly using a GPU shader; however, the
cost of moving the image to and from the GPU for the morphology may actually be slower
than performing the morphology on the CPU, so performance analysis is required for
making the final design decision regarding CPU vs. GPU implementation.

In the case of stages 7 to 11, shown in Table 8-3, the algorithm for area, perimeter,
centroid, and other measurements span a nonlocalized data access pattern. For example,
perimeter tracing follows the edge of the car. So we will make one pass using a single CPU
through the image to track the perimeter and compute the area, centroid, and bounding
box for each automobile. Then, we assign each bounding box as an image tile to a separate
CPU thread for computation of the remaining measurements: radial line segment length,
Fourier descriptor, and mirror distance. Each bounding box is then assigned to a separate
CPU thread for computation of the colorimetry of each region, including cargo, roof, and
hood, as shown in Table 8-3. Each CPU thread uses C++ for the color conversions and
attempts to use compiler flags to force SIMD instruction optimizations.

Tracking the automobile from frame to frame is possible using shape and color
features; however, we do not develop the tracking algorithm here. For correspondence
and matching, we rely on a generic database from a third party, running in a separate
thread on a CPU that is executing in parallel with the earlier stages of the pipeline.
We assume that the database can split its own work into parallel threads. However, an
optimization phase later could rewrite and create a better database and classifier, using
parallel threads to match feature descriptors.

Face, Emotion, and Age Recognition
In this example, we design a face, emotion, and age recognition pipeline that uses local
feature descriptors and interest points. Face recognition is concerned with identifying the
unique face of a unique person, while face detection is concerned with determining only
where a face is located and interesting characteristics such as emotion, age, and gender.
Our example is for face detection, and finding the emotions and age of the subject.

For simplicity, this example uses mugshots of single faces taken with a stationary
camera for biometric identification to access a secure area. Using mugshots simplifies
the example considerably, since there is no requirement to pick out faces in a crowd from
many angles and distances. Key design challenges include finding a reliable interest point
and feature descriptor method to identify the key facial landmarks, determining emotion
and age, and modeling the landmarks in a normalized, relative coordinate system to
allow for distance ratios and angles to be computed.

Chapter 8 ■ Vision Pipelines and Optimizations

332

Excellent facial recognition systems for biometric identification have been deployed
for several decades that use a wide range of methods, achieving accuracies of close to
100 percent. In this exercise, no attempt is made to prove performance or accuracy. We
define the system with the following requirements:

1080p RGB color video (1920x1080 pixels) at 30 fps, horizontally •	
mounted to provide highest resolution in length, 12 bits per color,
65 degree FOV, 30 FPS

Image FOV covers 2 feet in height and 1.5 feet in width, enough •	
for a complete head and top of the shoulder

Background is a white drop screen for ease of segmentation•	

Illumination is positioned in front of and slightly above the •	
subject, to cast faint shadows across the entire face that highlight
corners around eyes, lips, and nose

For each face, the system identifies the following landmarks:•	

Eyes: two eye corners and one center of eye•	

Dominant eye color: in CIECAM02 JCH color coordinates•	

Dominant face color: in CIECAM02 JCH color coordinates•	

Eyebrows: two eyebrow endpoints and one center of •	
eyebrow arc, used for determining emotions

Nose: one point on nose tip and two widest points by •	
nostrils, used for determining emotions and gender

Lips: two endpoints of lips, two center ridges on upper lip•	

Cheeks: one point for each cheek center•	

Chin: one point, bottom point of chin, may be unreliable due •	
to facial hair

Top of head: one point; may be unreliable due to hairstyle•	

Unique facial markings: these could include birthmarks, •	
moles, or scars, and must fall within a bounding box
computed around the face region

A FREAK feature is computed at each detected landmark on the •	
original image

Accuracy is 99 percent or better•	

Simplified robustness criteria to include scale only•	

Note that emotion, age, and gender can all be estimated from selected relative distances
and proportional ratios of facial features, and we assume that an expert in human face
anatomy provides the correct positions and ratios to use for a real system. See Figure 8-6.

Chapter 8 ■ Vision Pipelines and Optimizations

333

The set of features computed for this example system includes:

1.	 Relative positions of facial landmarks such as eyes, eyebrows,
nose, and mouth

2.	 Relative proportions and ratios between landmarks to
determine age, sex, and emotion

3.	 FREAK descriptor at each landmark

4.	 Eye color

Calibration and Ground Truth Data
The calibration is simple: a white backdrop is used in back of the subject, who stands
about 4 feet away from the camera, enabling a shot of the head and upper shoulders. (We
discuss the operations used to segment the head from the background region later in this
section.) Given that we have a 1080p image, we allocate the 1920 pixels to the vertical
direction and the 1080 pixels to the horizontal.

Assuming the cameraman is good enough to center the head in the image so that
the head occupies about 50 percent of the horizontal pixels, and about 50 percent of the
vertical pixels, we have pixel resolution for the head of ~540 pixels horizontal and ~960
pixels vertical, which is good enough for our application and corresponds to the ratio of
head height to width. Since we assume that average head height is about 9 inches and
width as 6 inches across for male and female adults, using our assumptions for a four-foot
distance from the camera, we have plenty of pixel accuracy and resolution: 

9” / (1920
pixels

 * .5) = 0.009” vertical pixel size

6” / (1080
pixels

 * .5) = 0.01” horizontal pixel size 

The ground truth data consists of: (1) mugshots of known people, and (2) a set of
canonical eye landmark features in the form of correlation templates used to assist in

Figure 8-6.  (Left) Proportional ratios based on a bounding box of the head and face regions
as guidelines to predict the location of facial landmarks. (Right) Annotated image with
detected facial landmark positions and relative angles and distances measured between
landmarks. The relative measurements are used to determine emotion, age, and gender

Chapter 8 ■ Vision Pipelines and Optimizations

334

locating face landmarks (a sparse codebook of correlation temlpates). There are two sets
of correlation templates: one for fine features based on a position found using a Hessian
detector, and one for coarse features based on a position found using a steerable filter based
detector (the fine and coarse detectors are described in more detail later in this example).

Since facial features like eyes and lips are very similar among people, the canonical
landmark feature correlation templates provide only rough identification of landmarks
and their location. Several templates are provided covering a range of ages and genders
for all landmarks, such as eye corners, eyebrow corners, eyebrow peaks, nose corners,
nose bottom, lip corners, and lip center region shapes. For sake of brevity, we do not
develop the ground truth dataset for correlation templates here, but we assume the
process is accomplished using synthetic features created by warping or changing real
features and testing them against several real human faces to arrive at the best canonical
feature set. The correlation templates are used in the face landmark identification stage,
discussed later.

Interest Point Position Prediction
To find the facial landmarks, such as eyes, nose, and mouth, this example application
is simplified by using mugshots, making the position of facial features predictable and
enabling intelligent search for each feature at the predicted locations. Rather than resort
to scientific studies of head sizes and shapes, for this example we use basic proportional
assumptions from human anatomy (used for centuries by artists) to predict facial feature
locations and enable search for facial features at predicted locations. Facial feature ratios
differ primarily by age, gender, and race; for example, typical adult male ratios are shown
in Table 8-4.

Table 8-4.  Basic Approximate Face and Head Feature Proportions

Head height head width X 1.25

Head width head height X .75

Face height head height X .8

Face width head height X .8

Eye position eye center located 30% in from left/right edges, 50% from top

Eye length head width X 1.25

Eye spacing head width X .5

Nose position 25% higher than lip corners

Nose length head height X .25

Lip corners about eye center x, about 15% higher than chin y

Mouth/lip width head width X .07

Chapter 8 ■ Vision Pipelines and Optimizations

335

Note■■   The information in Table 8-4 is synthesized for illustration purposes from
elementary artists’ materials and is not guaranteed to be accurate.

The most basic coordinates to establish are the bounding box for the head. From the
bounding box, other landmark facial feature positions can be predicted.

Segmenting the Head and Face Using the Bounding Box
As stated earlier, the mugshots are taken from a distance of about 4 feet against a white
drop background, allowing simple segmentation of the head. We use thresholding on
simple color intensity as RGBI-I, where I = (R=G + B) / 3 and the white drop background
is identified as the highest intensity.

The segmented head and shoulder region is used to create a bounding box of
the head and face, discussed next. (Note: wild hairstyles will require another method,
perhaps based on relative sizes and positions of facial features compared to head shape
and proportions.) After segmenting the bounding box for the head, we proceed to
segment the facial region and then find each landmark. The rough size of the bounding
box for head is computed in two steps:

1.	 Find the top and left, right sides of the head— Top
xy

, Left
xy

,
Right

xy—
which we assume can be directly found by making a

pass through the image line by line and recording the rows
and columns where the background is segmented to meet the
foreground of head, to establish the coordinates. All leftmost
and rightmost coordinates for each line can be saved in a
vector, and sorted to find the median values to use as
Right

x
 / Left

x
 coordinates. We compute head width as: 

H
w

 = Right
x
 - Left

x
 

2.	 Find the chin to assist in computing the head height H
h
. The

chin is found by first predicting the location of the chin, then
performing edge detection and some filtering around the
predicted location to establish the chin feature, which we
assume is simple to find based on gradient magnitude of the
chin perimeter. The chin location prediction is made by using
the head top coordinates Top

xy
 and the normal anatomical

ratio of the head height H
h
 to head width H

w
, which is known

to be about 0.75. Since we know both Top
xy

 and H
w

 from
step 1, we can predict the x and y coordinates of the chin as
follows: 

Chin
y
 = (.25 * H

w
) + Top

y

Chin
x
 = Top

x
 

Chapter 8 ■ Vision Pipelines and Optimizations

336

Actually, hair style makes the segmentation of the head difficult in some cases,
since the hair may be piled high on top or extend widely on the sides and cover the ears.
However, we can either iterate the chin detection method a few times to find the best
chin, or else assume that our segmentation method will solve this problem somehow via
a hair filter module, so we move on with this example for the sake of brevity.

To locate the chin position, a horizontal edge detection mask is used around the
predicted location, since the chin is predominantly a horizontal edge. The coordinates
of the connected horizontal edge maxima are filtered to find the lowest y coordinates of
the horizontal edge set, and the median of the lowest x/y coordinates is used as the initial
guess at the chin center location. Later, when the eye positions are known, the chin x
position can be sanity-checked with the position of the midpoint between the eyes and
recomputed, if needed. See Figure 8-7.

Figure 8-7.  Location of facial landmarks. (Left) Facial landmarks enhanced using largest
eigenvalues of Hessian tensor [493] in FeatureJ1; note the fine edges that provide extra
detail. (Center) Template-based feature detector using steerable filters with additional
filtering along the lines of the Canny detector [400] to provide coarse detail. (Right)
Steerable filter pattern used to compute center image. Both images are enhanced using
contrast window remapping to highlight the edges

1FeatureJ plug-in for ImageJ used to generate eigenvalues of Hessian (FeatureJ developed by Erik
Meijering).

The head bounding box, containing the face, is assumed to be:

BoundingBoxTopLeftx = Leftx

BoundingBoxTopLefty = Topy

BoundingBoxBottomRightx = Rightx

BoundingBoxBottomRighty = Chiny

Face Landmark Identification and Compute Features
Now that the head bounding box is computed, the locations of the face landmark feature
set can be predicted using the basic proportional estimates from Table 8-4. A search is
made around each predicted location to find the features; see Figure 8-6. For example,
the eye center locations are ~30 percent in from the sides and about 50 percent down
from the top of the head.

Chapter 8 ■ Vision Pipelines and Optimizations

337

In our system we use an image pyramid with two levels for feature searching,
a coarse-level search down-sampled by four times, and a fine-level search at full
resolution to relocate the interest points, compute the feature descriptors, and take the
measurements. The coarse-to-fine approach allows for wide variation in the relative size
of the head to account for mild scale invariance owing to distance from the camera
and/or differences in head size owing to age.

We do not add a step here to rotate the head orthogonal to the Cartesian coordinates
in case the head is tilted; however, this could be done easily. For example, an iterative
procedure can be used to minimize the width of the orthogonal bounding box, using
several rotations of the image taken every 2 degrees from -10 to +10 degrees. The
bounding box is computed for each rotation, and the smallest bounding box width is
taken to find the angle used to correct the image for head tilt.

In addition, we do not add a step here to compute the surface texture of the skin,
useful for age detection to find wrinkles, which is easily accomplished by segmenting
several skin regions, such as forehead, eye corners, and the region around mouth, and
computing the surface texture (wrinkles) using an edge or texture metric.

The landmark detection steps include feature detection, feature description, and
computing relative measurements of the positions and angles between landmarks, as follows:

1.	 Compute interest points: Prior to searching for the facial
features, interest point detectors are used to compute likely
candidate positions around predicted locations. Here we use a
combination of two detectors: (1) the largest eigenvalue of the
Hessian tensor [493], and (2) steerable filters [388] processed
with an edge detection filter criteria similar to the Canny
method [400], as illustrated in Figure 8-7. Both the Hessian and
the Canny-like edge detectors images are followed by contrast
windowing to enhance the edge detail. The Hessian style and
Canny-style images are used together to vote on the actual
location of best interest points during the correlation stage next.

2.	 Compute landmark positions using correlation: The final
position of each facial landmark feature is determined using
a canonical set of correlation templates, described earlier,
including eye corners, eyebrow corners, eyebrow peaks,
nose corners, nose bottom, lip corners, and lip center region
shapes. The predicted location to start the correlation search
is the average position of both detectors from step 1: (1) The
Hessian approach provides fine-feature details, (2) while
the steerable filter approach provides coarse-feature details.
Testing will determine if correlation alone is sufficient without
needing interest points from step 1.

3.	 Describe landmarks using FREAK descriptors: For each
landmark location found in step 2, we compute a FREAK
descriptor. SIFT may work just as well.

Chapter 8 ■ Vision Pipelines and Optimizations

338

4.	 Measure dominant eye color using CIECAM02 JCH: We use
a super-pixel method [257,258] to segment out the regions
of color around the center of the eye, and make a histogram
of the colors of the super-pixel cells. The black pupil and the
white of the eye should cluster as peaks in the histogram, and
the dominant color of the eye should cluster in the histogram
also. Even multi-colored eyes will be recognized using our
approach using histogram correspondence.

5.	 Compute relative positions and angles between landmarks: In
step 2 above, correlation was used to find the location of each
feature (to sub-pixel accuracy if desired [468]). As illustrated
in Figure 8-6, we use the landmark positions as the basis for
measuring the relative distances of several features, such as:

a.	 Eye distance, center to center, useful for age and gender

b.	 Eye size, corner to corner

c.	 Eyebrow angle, end to center, useful for emotion

d.	 Eyebrow to eye angle, ends to center positions, useful for
emotion

e.	 Eyebrow distance to eye center, useful for emotion

f.	 Lip or mouth width

g.	 Center lip ridges angle with lip corners, useful for emotion

Pipeline Stages and Operations
The pipeline stages and operations are shown in Figure 8-8. For correspondence, we
assume a separate database table for each feature. We are not interested in creating an
optimized classifier to speed up pattern matching; brute-force searching is fine.

Chapter 8 ■ Vision Pipelines and Optimizations

339

Capture RGB and D
images

Segment out background
from head

Bounding box:
Compute head width, head

Predict face landmark
positions relative to

Compute Hessian and
Canny detector image set

Bounding box:
Predict chin position

Correlation templates at
each feature landmark to

Compute relative angles
and distances between

Compute super -pixel
segmentation of eye

Create histogram of
super-pixel region JCH

Compute SIFT descriptor
at each landmark location

Classify features

Head
width/height

Eye Color

Face
landmarks

SIFT features

Object classification score

Image pre-processing Feature Description Correspondence

Figure 8-8.  Operations in hypothetical vision pipeline for face, emotion, and age detection
using local features

Operations and Compute Resources
For this example, there is mostly straight-line code best suited for the CPU. Following
the data access patterns as a guide, the bounding box, relative distances and ratios,
FREAK descriptors and correspondence are good candidates for the CPU. In some cases,
separate CPU threads can be used, such as computing the FREAK descriptors at each
landmark in separate threads (threads are likely overkill for this simple application). We
assume feature matching using a standard database. Our application is assumed to have
plenty of time to wait for correspondence.

Some operations are suited for a GPU; for example the area operations, including
the Hessian and Canny-like interest point detectors. These methods could be combined
and optimized into a single shader program using a single common data read loop and
combined processing loop, which produce output into two images, one for each detector.
In addition, we assume that the GPU provides an API to a fast, HW accelerated correlation
block matcher in the media section, so we take advantage of the HW accelerated correlation.

Criteria for Resource Assignments
In this example, performance is not a problem, so the criteria for using computer resources
are relaxed. In fact, all the code could be written to run in a single thread on a single CPU,
and the performance would likely be fast enough with our target system assumptions.

Chapter 8 ■ Vision Pipelines and Optimizations

340

However, the resource assignments shown in Table 8-5 are intended to illustrate
reasonable use of the resources for each operation to spread the workload around the SOC.

Table 8-5.  Assignments of Operations to Compute Resources

Image Classification
For our next example, we design a simple image classification system intended for mobile
phone use, with the goal of identifying the main objects in the camera’s field of view,
such as buildings, automobiles, and people. For image classification applications, the
entire image is of interest, rather than specific local features. The user will have a simple
app which allows them to point the camera at an object, and wave the camera from side
to side to establish the stereo baseline for MVS depth sensing, discussed later. A wide
range of global metrics can be applied (as discussed in Chapter 3), computed over the
entire image, such as texture, histograms of color or intensity, and methods for connected
component labeling. Also, local features (as discussed in Chapter 6) can be applied to
describe key parts of the images. This hypothetical application uses both global and local
features.

We define the system with the following requirements:

1080p RGB color video (1920x1080 pixels) at 30 fps, 12 bits per •	
color, 65 degree FOV, 30 FPS

Image FOV covers infinite focus view from a mobile phone •	
camera

Unlimited lighting conditions (bad and good)•	

Accuracy of 90 percent or better•	

Simplified robustness criteria, including scale, perspective, •	
occlusion

Chapter 8 ■ Vision Pipelines and Optimizations

341

•	 For each image, the system computes the following features:

•	 Global RGBI histogram, in RGB-I color space

•	 GPS coordinates, since the phone has a GPS

•	 Camera pose via MVS depth sensing, using the accelerometer
data for geometric rectification to an orthogonal FOV plane
(the user is asked to wave the camera while pointed at
the subject, the camera pose vector is computed from the
accelerometer data and relative to the main objects in the
FOV using ICP)

•	 SIFT features, ideally between 20 and 30 features stored for
each image

•	 Depth map via monocular dense depth sensing, used to
segment out objects in the FOV, depth range target 0.3
meters to 30 meters, accuracy within 1 percent at 1 meter,
and within 10 percent at 30 meters

•	 Scene labeling and pixel labeling, based on attributes of
segmented regions, including RGB-I color and LBP texture

Scene recognition is a well-researched field, and several grand challenge
competitions are held annually to find methods for increased accuracy using established
ground truth datasets, as shown in Appendix B. The best accuracy achieved for various
categories of images in the challenges ranges from 50 to over 90 percent. In this exercise,
no attempt is made to prove performance or accuracy.

Segmenting Images and Feature Descriptors
For this hypothetical vision pipeline, several methods for segmenting the scene into
objects will be used together, instead of relying on a single method, as follows:

1.	 Dense segmentation, scene parsing, and object labeling:
A depth map generated using monocular MVS is used to
segment common items in the scene, including the ground
or floor, sky or ceiling, left and right walls, background, and
subjects in the scene. To compute monocular depth from the
mobile phone device, the user is prompted by the application
to move the camera from left to right over a range of arm’s
length covering 3 feet or so, to create a series of wide baseline
stereo images for computing depth using MVS methods (as
discussed in Chapter 1). MVS provides a dense depth map.
Even though MVS computation is compute-intensive, this
is not a problem, since our application does not require
continuous real-time depth map generation – just a single
depth map; 3 to 4 seconds to acquire the baseline images
and generate the depth map is assumed possible for our
hypothetical mobile device.

Chapter 8 ■ Vision Pipelines and Optimizations

342

2.	 Color segmentation and component labeling using super-
pixels: The color segmentation using super-pixels should
correspond roughly with portions of the depth segmentation.

3.	 LBP region segmentation: This method is fairly fast to
compute and compact to represent, as discussed in Chapter 6.

4.	 Fused segmentation: The depth, color, and LBP
segmentation regions are combined using Boolean masks
and morphology and some logic into a fused segmentation.
The method uses an iterative loop to minimize the differences
between color, depth, and LBP segmentation methods into a
new fused segmentation map. The fused segmentation map is
one of the global image descriptors.

5.	 Shape features for each segmented region: basic shape
features, such as area and centroid, are computed for each
fused segmentation region. Relative distance and angle
between region centroids is also computed into a composite
descriptor.

In this hypothetical example, we use several feature descriptor methods together for
additional robustness and invariance, and some pre-processing, summarized as follows:

1.	 SIFT interest points across the entire image are used as
additional clues. We follow the SIFT method exactly, since
SIFT is known to recognize larger objects using as few as three
or four SIFT features [161]. However, we expect to limit the
SIFT feature count to 20 or 30 strong candidate features per
scene, based on training results.

2.	 In addition, since we have an accelerometer and GPS sensor
data on the mobile phone, we can use sensor data as hints
for identifying objects based on location and camera pose
alone, for example assuming a server exists to look up the GPS
coordinates of landmarks in an area.

3.	 Since illumination invariance is required, we perform RGBI
contrast remapping in an attempt to normalize contrast
and color prior to the SIFT feature computations, color
histograms, and LBP computations. We assume a statistical
method for computing the best intensity remapping limits is
used to spread out the total range of color to mitigate dark and
oversaturated images, based on ground truth data testing, but
we do not take time to develop the algorithm here; however,
some discussion on candidate algorithms is provided in
Chapter 2. For example, computing SIFT descriptors on dark
images may not provide sufficient edge gradient information
to compute a good SIFT descriptor, since SIFT requires
gradients. Oversaturated images will have washed-out color,
preventing good color histograms.

Chapter 8 ■ Vision Pipelines and Optimizations

343

4.	 The fused segmentation combines the best of all the color,
LBP, and depth segmentation methods, minimizing the
segmentation differences by fusing all segmentations into
a fused segmentation map. LBP is used also, which is less
sensitive to both low light and oversaturated conditions,
providing some balance.

Again, in the spirit of a hypothetical exercise, we do not take time here to develop the
algorithm beyond the basic descriptions given above.

Pipeline Stages and Operations
The pipeline stages are shown in Figure 8-9. They include an image pre-processing stage
primarily to correct image contrast, compute depth maps and segmentation maps. The
feature description stage computes the RGBI color histograms, SIFT features, a fused
segmentation map combining the best of depth, color, and LBP methods, and then
labels the pixels as connected components. For correspondence, we assume a separate
database table for each feature, using brute-force search; no optimization attempted.

Capture wide baseline
images

RGBI contrast remapping

Compute MVS depth map

Color segmentation map

LBP texture segmentation
map

Compute RGBI color
histograms

Compute SIFT features

Compute fused -
segmentation

Labeling segmented
objects

Classify features

Histograms

GPS, camera
pose

Segmented
Objects

SIFT features

Object classification score

Image pre-processing Feature Description Correspondence

Figure 8-9.  Operations in hypothetical image classification pipeline using global features

Mapping Operations to Resources
We assume that the DSP provides an API for contrast remapping, and since the DSP is
already processing all the pixels from the sensor anyway and the pixel data is already
there, contrast remapping is a good match for the DSP.

The MVS depth map computations follow a data pattern of line and area operations.
We use the GPU for the heavy-lifting portions of the MVS algorithm, like left/right image

Chapter 8 ■ Vision Pipelines and Optimizations

344

pair pattern matching. Our algorithm follows the basic stereo algorithms, as discussed in
Chapter 1. The stereo baseline is estimated initially from the accelerometer, then some
bundle adjustment iterations over the baseline image set are used to improve the baseline
estimates. We assume that the MVS stereo workload is the heaviest in this pipeline and
consumes most of the GPU for a second or two. A dense depth map is produced in the
end to use for depth segmentation.

The color segmentation is performed on RGBI components using a super-pixel
method [257,258]. A histogram of the color components is also computed in RGBI for
each superpixel cell. The LBP texture computation is a good match for the GPU since it
is an area operation amenable to shader programming style. So, it is possible to combine
the color segmentation and the LBP texture segmentation into the same shader to
leverage data sharing in register files and avoid data swapping and data copies.

The SIFT feature description can be assigned to CPU threads, and the data can be tiled
and divided among the CPU threads for parallel feature description. Likewise, the fused
segmentation can be assigned to CPU threads and the data tiled also. Note that tiled data
can include overlapping boundary regions or buffers, see later Figure 8-12 for an illustration
of overlapped data tiling. Labeling can also be assigned to parallel CPU threads in a similar
manner, using tiled data regions. Finally, we assume a brute-force matching stage using
database tables for each descriptor to develop the final score, and we weight some features
more than others in the final scoring, based on training against ground truth data.

Criteria for Resource Assignments
The basic criterion for the resource assignments is to perform the early point processing
on the DSP, since the data is already resident, and then to use the GPU SIMT SIMD model
to compute the area operations as shaders to create the depth maps, color segmentation
maps, and LBP texture maps. The last stages of the pipeline map nicely to thread parallel
methods and data tiling. Given the chosen operation to resource assignments shown
in Table 8-6, this application seems cleanly amenable to workload balancing and
parallelization across the CPU cores in threads and the GPU.

Table 8-6.  Assignments of Operations to Compute Resources

Chapter 8 ■ Vision Pipelines and Optimizations

345

Augmented Reality
In this fourth example, we design an augmented reality application for equipment
maintenance using a wearable display device such as glasses or goggles and wearable
cameras. The complete system consists of a portable, wearable device with camera and
display connected to a server via wireless. Processing is distributed between the wearable
device and the server. (Note: this example is especially high level and leaves out a lot of
detail, since the actual system would be complex to design, train and test.)

The server system contains all the CAD models of the machine and provides
on-demand graphics models or renderings of any machine part from any viewpoint.
The wearable cameras track the eye gaze and the position of the machine. The wearable
display allows a service technician to look at a machine and view augmented reality
overlays on the display, illustrating how to service the machine. As the user looks at a
given machine, the augmented reality features identify the machine parts and provide
overlays and animations for assisting in troubleshooting and repair. The system uses a
combination of RGB images as textures on 3D depth surfaces and a database of 3D CAD
models of the machine and all the component machine parts.

The system will have the following requirements:

1080p RGB color video camera (1920x1080 pixels) at 30 fps, 12 bits •	
per color, 65 degree FOV, 30 FPS

1080p stereo depth camera with 8 bits Z resolution at 60 fps, •	
65 degree FOV; all stereo processing performed in silicon in the
camera ASIC with a depth map as output

480p near infra-red camera pointed at eyes of technician, used for •	
gaze detection; the near-infrared camera images better in the
low-light environment around the head-mounted display

1080p wearable RGB display•	

A wearable PC to drive the cameras and display, descriptor •	
generation, and wireless communications with the server; the
system is battery powered for mobile use with an 8-hour battery life

A server to contain the CAD models of the machines and parts; •	
each part will have associated descriptors pre-computed into
the data base; the server can provide either graphics models or
complete renderings to the wearable device via wireless

Server to contain ground truth data consisting of feature •	
descriptors computed on CAD model renderings of each part +
normalized 3D coordinates for each descriptor for machine parts

Simplified robustness criteria include perspective, scale, and •	
rotation

Chapter 8 ■ Vision Pipelines and Optimizations

346

Calibration and Ground Truth Data
We assume that the RGB camera and the stereo camera system are calibrated with
correct optics to precisely image the same FOV, since the RGB camera and 3D depth map
must correspond at each pixel location to enable 2D features to be accurately associated
with the corresponding 3D depth location. However, the eye gaze camera will require
some independent calibration, and we assume a simple calibration application is
developed to learn the technician’s eye positions by using the stereo and RGB cameras to
locate a feature in the FOV, and then overlay an eye gaze vector on a monitor to confirm
the eye gaze vector accuracy. We do not develop the calibration process here.

However, the ground truth data takes some time to develop and train, and requires
experts in repair and design of the machine to work together during training. The ground
truth data includes feature sets for each part, consisting of 2D SIFT features along
corners, edges, and other locations such as knobs. To create the SIFT features, first a set of
graphics renderings of each CAD part model is made from representative viewpoints the
technician is likely to see, and then the 2D SIFT features are computed on the graphics
renderings, and the geometry of the model is used to create relative 3D coordinates for
each SIFT feature for correspondence.

The 2D SIFT feature locations are recorded in the database along with relative 3D
coordinates, and associated into objects using suitable constraints such as angles and
relative distances, see Figure 8-10. An expert selects a minimum set of features for each
part during training—primarily strongest features from corners and edges of surfaces.
The relative angles and distances in three dimensions between the 2D SIFT features are
recorded in the database to provide for perspective, scale, and rotation invariance. The
3D coordinates for all the parts are normalized to the size of the machine. In addition,
the dominant color and texture of each part surface is computed from the renderings
and stored as texture and color features. This system would require considerable training
and testing.

Feature and Object Description
In actual use in the field, the RGB camera is used to find the 2D SIFT, LBP and color
features, and the stereo camera is used to create the depth map. Since the RGB image and
depth map are pixel-aligned, each feature has 3D coordinates taken from the depth map,
which means that a 3D coordinate can be assigned to a 2D SIFT feature location. The 3D
angles and 3D distances between 2D SIFT feature locations are computed as constraints,
and the combined LBP, color and 2D SIFT features with 3D location constraints are stored
as SIFT vertex features and sent to the server for correspondence. See Figure 8-10 for an
illustration of the layout of the SIFT vertex descriptors and parts objects. Note that the
3D coordinate is associated with several descriptors, including SIFT, LBP texture, ands
RGB color, similar to the way a 3D vertex is represented in computer graphics by 3D
location, color, and texture. During training, several SIFT vertex descriptors are created
from various views of the parts, each view associated by 3D coordinates in the database,
allowing for simplified searching and matching based on 3D coordinates along with the
features.

Chapter 8 ■ Vision Pipelines and Optimizations

347

Overlays and Tracking
In the server, SIFT vertex descriptors in the scene are compared against the database to
find parts object. The 3D coordinates, angles, and distances of each feature are normalized
relative to the size of the machine prior to searching. As shown in Figure 8-10, the SIFT
features are composed at a 3D coordinate into a SIFT vertex descriptor, with an associated
2D SIFT feature, LBP texture, and color. The SIFT vertex descriptors are associated into
part objects, which contain the list of vertex coordinates describing each part, along with
the relative angles and distances between SIFT vertex features.

Assuming that the machine part objects can be defined using a small set of SIFT
vertex features, sizes and distance can be determined in real time, and the relative
3D information such as size and position of each part and the whole machine can
be continually computed. Using 3D coordinates of recognized parts and features,
augmented reality renderings can be displayed in the head-mounted display, highlighting
part locations and using overlaying animations illustrating the parts to remove, as well as
the path for the hand to follow in the repair process.

The near infrared camera tracks the eyes of the technician to create a 3D gaze vector
onto the scene. The gaze vector can be used for augmented reality “help” overlays in
the head-mounted display, allowing for gaze-directed zoom or information, with more
detailed renderings and overlay information displayed for the parts the technician is
looking at.

Multivariate Descriptor Layout

SIFT vertex descriptor
*3D coordinate
*2D SIFT
*LBP texture
*RGB color

Part object
*Name of part
*SIFT vertex list
*Angles between SIFT vertex list items
*Distance between SIFT vertex list items
*Service & technical information

Figure 8-10.  SIFT vertex descriptor is similar to a computer graphics vertex using 3D
location, color, and texture. The SIFT vertex descriptor contains the 2D SIFT descriptor
from the RGB camera, the 3D coordinate of the 2D SIFT descriptor generated from the
depth camera, the RGB color at the SIFT vertex, and the LBP texture at the SIFT vertex.
The Part object contains a list of SIFT vertex descriptors, along with relative angles and
distances between each 3D coordinate in the SIFT vertex list

Chapter 8 ■ Vision Pipelines and Optimizations

348

Pipeline Stages and Operations
The pipeline stages are shown in Figure 8-11. Note that the processing is divided between
the wearable device (primarily for image capture, feature description, and display), and
a server for heavy workloads, such as correspondence and augmented reality renderings.
In this example, the wearable device is used in combination with the server, relying on
a wireless network to transfer images and data. We assume that data bandwidth and
data compression methods are adequate on the wireless network for all necessary data
communications.

Align RGB + stereo images

Compute 2D SIFT
descriptors

3D info: Add 3D coordinate
to 2D SIFT

Compute LBP texture + RGB
color

Send 2DSIFT, 3D info,
texture & color to server

3D info: Compute 3D angles
& distances

Convert 3D info to relative
coordinates

Match 2D SIFT descriptors

Match 3D info with SIFT 3D
coordinates

Match RGB-I texture + RGB
color

Classify features

Object classification score

Feature Description
(device)

Correspondence
(server)

Augment & Track
(server)

Update gaze pose vector

Determine augmented
rendering coordinates

Render overlay & animation
images

Send graphics geometry to
device

Render augmentation to
head-mounted display

Figure 8-11.  Operations in hypothetical augmented reailty pipeline

Mapping Operations to Resources
We make minimal use of the GPU for GPGPU processing and assume the server has many
CPUs available, and we use the GPU for graphics rendering at the end of the pipeline.
Most of the operations map well into separate CPU threads using data tiling. Note that a
server commonly has many high-power and fast CPUs, so using CPU threads is a good
match. See Table 8-7.

Chapter 8 ■ Vision Pipelines and Optimizations

349

Criteria for Resource Assignments
On the mobile device, the depth map is computed in silicon on the depth camera. We use
the GPU to perform the RGB and depth map alignment using the texture sampler, then
perform SIFT computations on the CPU, since the SIFT computations must be done first
to have the vertex to anchor and compute the multivariate descriptor information. We
continue and follow data locality and perform the LBP and color computations for each
2D SIFT point in separate CPU threads using data tiling and overlapped regions. See later
Figure 8-12 for an illustration of overlapped data tiling.

Table 8-7.  Assignments of Operations to Compute Resources

Chapter 8 ■ Vision Pipelines and Optimizations

350

On the server, we have assigned the CAD database and most of the heavy portions
of the workload, including feature matching and database access, since the server is
expected to have large storage and memory capacity and many CPUs available. In
addition, we wish to preserve battery life and minimize heat on the mobile device, so the
server is preferred for the majority of this workload.

Acceleration Alternatives
There are a variety of common acceleration methods that can be applied to the vision
pipeline, including attention to memory management, coarse-grained parallelism using
threads, data-level parallelism using SIMD and SIMT methods, multi-core parallelism,
advanced CPU and GPU assembler language instructions, and hardware accelerators.

There are two fundamental approaches for acceleration:

1.	 Follow the data

2.	 Follow the algorithm

Optimizing algorithms for compute devices, such as SIMD instruction sets or SIMT
GPGPU methods, also referred to as stream processing, is oftentimes the obvious choice
designers consider. However, optimizing for data flow and data residency can yield

Tile 1

Tile 2

Tile 3

Tile 4

16

16

16 16

Figure 8-12.  Data tiling into four overlapping tiles. The tiles overlap a specific amount,
16 pixels in this case, allowing for area operations such as convolutions to read, not write,
into the overlapped region for assembling convolution kernel data from adjacent regions.
However, each thread only writes into the nonoverlapped region within its tile. Each tile
can be assigned to a separate thread or CPU core for processing

Chapter 8 ■ Vision Pipelines and Optimizations

351

better results. For example, bouncing data back and forth between compute resources
and data formats is not a good idea; it eats up time and power consumed by the copy
and format conversion operations. Data copying in slow-system memory is much
slower than data access in fast-register files within the compute units. Considering the
memory architecture hierarchy of memory speeds, as was illustrated in Figure 8-2, and
considering the image-intensive character of computer vision, it is better to find ways to
follow the data and keep the data resident in fast registers and cache memory as long as
possible, local to the compute unit.

Memory Optimizations
Attention to memory footprint and memory transfer bandwidth are the most often
overlooked areas when optimizing an imaging or vision application. As shown in Table 8-2
and the memory discussion following, a vision pipeline moves several GB/S of data through
the system between compute units and system memory. In addition, area processes like
interest point detection and image pre-processing move even more data in complex routes
through the register files of each compute unit, caches, and system memory.

Why optimize for memory? By optimizing memory use, data transfers are reduced,
performance is improved, power costs are reduced, and battery life is increased. Power
is costly; in fact, a large Internet search company has built server farms very close to the
Columbia River’s hydroelectric systems to guarantee clean power and reduce power
transmission costs.

For mobile devices, battery life is a top concern. Governments are also beginning
to issue carbon taxes and credits to encourage power reductions. Memory use, thus,
is a cost that’s often overlooked. Memory optimization APIs and approaches will be
different for each compute platform and operating system. A good discussion on memory
optimization methods for Linux is found in reference[494].

Minimizing Memory Transfers Between Compute Units
Data transfers between compute units should be avoided, if possible. Workload
consolidation should be considered during the optimization and tuning stage in order to
perform as much processing as possible on the same data while it is resident in register
files and the local cache of a given compute unit. That is, follow the data.

For example, using a GPGPU shader for a single-area operation, then processing the
same data on the CPU will likely be slower than performing all the processing on the CPU.
That’s because GPGPU kernels require device driver intervention to set up the memory
for each kernel and launch each kernel, while a CPU program accesses code and data
directly, with no driver set-up required other than initial program loading. One method
to reduce the back-and-forth between compute units is to use loop coalescing and task
chaining, discussed later in this section.

Chapter 8 ■ Vision Pipelines and Optimizations

352

Memory Tiling
When dividing workloads for coarse-grained parallelism into several threads, the image
can be broken into tiled regions and each tile assigned to a thread. Tiling works well
for point, line, and area processing, where each thread performs the same operation
on the tiled region. By allowing for an overlapped read regions between tiles, the hard
boundaries are eliminated and area operations like convolution can read into adjacent
tiles for kernel processing, as well as write finished results into their tile.

DMA, Data Copy, and Conversions
Often, multiple copies of an image are needed in the vision pipeline, and in some cases,
the data must be converted from one type to another. Converting 12-bit unsigned
color channel data stored in a 16-bit integer to a 32-bit integer allowing for more
accurate numerical precision downstream in computations is one example. Also, the
color channels might be converted into a chosen color space, such as RGBI, for color
processing in the I component space (R*G*B)/3 = I; then, the new I value is mixed
and copied back into the RGB components. Careful attention to data layout and data
residency will allow more efficient forward and backward color conversions.

When copying data, it is good to try using the direct memory access (DMA) unit for
the fastest possible data copies. The DMA unit is implemented in hardware to directly
optimize and control the I/O interconnect traffic in and out of memory. Operating
systems provide APIs to access the DMA unit [494]. There are variations for optimizing
the DMA methods, and some interesting reading comparing cache performance against
DMA in vision applications are found in references[497,495].

Register Files, Memory Caching, and Pinning
The memory system is a hierarchy of virtual and physical memories for each processor,
composed of slow fixed storage such as file systems, page files, and swap files for
managing virtual memory, system memory, caches, and fast-register files inside compute
units, and with memory interconnects in between. If the data to process is resident in the
register files, it is processed by the ALU at processor clock rates. Best-case memory access
is via the register files close to each ALU, so keeping the data in registers and performing
all possible processing before copying the data is optimal, but this may require some code
changes (discussed later in this section).

If the cache must be accessed to get the data, more clock cycles are burned (power
is burned, performance is lost) compared to accessing the register files. And if there is a
cache miss and much slower system memory must be accessed, typically many hundreds
of clock cycles are required to move the memory to register files through the caches for
ALU processing.

Operating systems provide APIs to lock or pin the data in memory, which usually
increases the amount of data in cache, decreasing paging and swapping. (Swapping is a
hidden copy operation carried out by the operating system automatically to make more
room in system memory). When data is accessed often, the data will be resident in the
faster cache memories, as was illustrated in Figure 8-2.

Chapter 8 ■ Vision Pipelines and Optimizations

353

Data Structures, Packing, and Vector vs. Scatter-Gather
Data Organization
The data structures used contribute to memory traffic. Data organization should allow serial
access in contiguous blocks as much as possible to provide best performance. From the
programming perspective, data structures are often designed with convenience in mind, and
no attention is given to how the compiler will arrange the data or the resulting performance.

For example, consider a data structure with several fields composed of bytes,
integers, and floating point data items; compilers may attempt to rearrange the positions
of data items in the data structures, and even pack the data in a different order for various
optimizations. Compilers usually provide a set of compiler directives, such as in-line pragmas
and compiler switches, to control the data packing behavior; these are worth looking into.

For point processing, vectors of data are the natural structure, and the memory
system will operate at peak performance in accessing and processing contiguous vectors.
For area operations, rectangles spanning several lines are used, and the rectangles cause
memory access patterns that can generate cache misses. Using scatter-gather operations
for gathering convolution kernel data allows a large data structure to be split apart into
vectors of data, increasing performance. Often, CPU and GPU memory architectures pay
special attention to data-access patterns and provide hidden methods for optimizations.

Scatter-gather operations, also referred to as vectored I/O or strided memory access,
can be implemented in the GPU or CPU silicon to allow for rapid read/write access to
noncontiguous data structure patterns. Typically, a scatter operation writes multiple
input buffers into a contiguous pattern in a single output buffer, and a gather operation
analogously reads multiple input buffers into a contiguous pattern in the output buffer.

Operating systems and compute languages provide APIs for scatter-gather
operations. For Linux-style operating systems, see the readv and writev function specified
in the POSIX 1003.1-2001 specification. The async_work_group_strided_copy function
is provided by OpenCL for scatter-gather.

Coarse-Grain Parallelism
A vision pipeline can be implemented using coarse-grain parallelism by breaking up the
work into threads, and also by assigning work to multiple processor cores. Coarse-grained
parallelism can be achieved by breaking up the compute workload into pipelines of
threads, or by breaking up the memory into tiles assigned to multiple threads.

Compute-Centric vs. Data-Centric
Coarse-grain parallelism can be employed via compute-centric and data-centric
approaches. For example, in a compute-centric approach, vision pipeline stages can be
split among independent execution threads and compute units along the lines of pipeline
stages, and data is fed into the next stage a little at a time via queues and FIFOs. In a data-
centric approach, an image can be split into tiles, as was shown in Figure 8-12, and each
thread processes an independent tile region.

Chapter 8 ■ Vision Pipelines and Optimizations

354

Threads and Multiple Cores
Several methods exist to spread threads across multiple CPU cores, including reliance on
the operating system scheduler to make optimum use of each CPU core and perform load
balancing. Another is by assigning specific tasks to specific CPU cores. Each operating
system has different controls available to tune the process scheduler for each thread,
and also may provide the capability to assign specific threads to specific processors.
(We discuss programming resources, languages and tools for coarse-grained threading
later in this chapter.) Each operating system will provide an API for threading, such as
pthreads. See Figure 8-13.

0

5

10

15

20

25

30

35

40

Gaussian
Pyramid

n30%

DoG 7% Scale Space
Extrema

14%

Feature
Orientation

7%

Compute
Descriptor

36%

0

1000

2000

3000

4000

5000

6000

ORB
(15.3ms)

SURF
(217.3ms)

SIFT
(5228.7ms)

Figure 8-13.  (Left) Typical SIFT descriptor pipeline compute allocation [180]. (Right)
Reported compute times [120] for ORB, SURF, and SIFT, averaged over twenty-four 640x480
images containing about 1,000 features per image. Retrofitting ORB for SIFT may be a good
choice in some applications

Fine-Grain Data Parallelism
Fine-grain parallelism refers to the data organization and the corresponding processor
architectures exploiting parallelism, traditionally referred to as array processors or vector processors.
Not all applications are data parallel. Deploying non-data-parallel code to run on a data-parallel
machine is counterproductive; it’s better to use the CPU and straight-line code to start.

A data-parallel operation should exhibit common memory patterns, such as large
arrays of regular data like lines of pixels or tiles of pixels, which are processed in the same
way. Referring back to Figure 8-1, note that some algorithms operate on vectors of points,
lines, and pixel regions. These data patterns and corresponding processing operations are
inherently data-parallel. Examples of point operations are color corrections and data-
type conversions, and examples of area operations are convolution and morphology.
Some algorithms are straight-line code, with lots of branching and little parallelism.
Fine-grained data parallelism is supported directly via SIMD and SIMT methods.

Chapter 8 ■ Vision Pipelines and Optimizations

355

SIMD, SIMT, and SPMD Fundamentals
The supercomputers of yesterday are now equivalent to the GPUs and multi-core CPUs of
today. The performance of SIMD, SIMT, and SPMD machines, and their parallel programming
languages, is of great interest to the scientific community. It has been developed over decades,
and many good resources are available that can be applied to inexpensive SOCs today; see the
National Center for Supercomputing Applications[544] for a starting point.

SIMD instructions and multiple threads can be applied when fine-grained
parallelism exists in the data layout in memory and the algorithm itself, such as with
point, line, and area operations on vectors. Single Instruction Multiple Data (SIMD)
instructions process several data items in a vector simultaneously. To exploit fine-grained
parallelism at the SIMD level, both the computer language and the corresponding ALUs
should provide direct support for a rich set of vector data types and vector instructions.
Vector-oriented programming languages are required to exploit data-parallelism, as
shown in Table 8-8; however, sometimes compiler switches are available to exploit
SIMD. Note that languages like C++ do not directly support vector data types and vector
instructions, while data-parallel languages do, as shown in Table 8-8.

Table 8-8.  Common Data-Parallel Language Choices

Language Name Standard or Proprietary OS Platform Support

Pixel Shader GLSL Standard OpenGL Several OS platforms

Pixel Shader HLSL Direct3D Microsoft OS

Compute Shader Direct3D Microsoft OS

Compute Shader Standard OpenGL Several OS platforms

RenderScript Android Google OS

OpenCL Standard Several OS platforms

C++ AMP Microsoft Microsoft OS platforms

CUDA Only for NVIDIA GPUs Several OS platforms

OpenMP Standard Several OS platforms

In some cases, the cost of SIMT outweighs its benefit, especially considering run-
time overhead for data set-up and tear-down, thread management, code portability
problems, and scalability across large and small CPUs and GPUs.

In addition to SIMD instructions, a method for launching and managing large
groups of threads running the same identical code must be provided to exploit data-
parallelism, referred to as Single Instruction Multiple Threading (SIMT), also known as
Single Program Multiple Data (SPMD). The SIMT programs are referred to as shaders,
since historically the pixel shaders and vertex shaders used in computer graphics were
the first programs widely used to exploit fine-grained data parallelism. Shaders are also
referred to as kernels.

Chapter 8 ■ Vision Pipelines and Optimizations

356

Both CPUs and GPUs support SIMD instructions and SIMT methods—for example,
using languages like OpenCL. The CPU uses the operating system scheduler for managing
threads; however, GPUs use hardware schedulers, dispatchers, and scoreboarding logic to
track thread execution and blocking status, allowing several threads running an identical
kernel on different data to share the same ALU. For the GPU, each shader runs on the ALU
until it is blocked on a memory transfer, a function call, or is swapped out by the GPU
shader scheduler when its time slice expires.

Note that both C++ AMP and CUDA seem to provide language environments closest
to C++. The programming model and language for SIMT programming contains a run-
time execution component to marshal data for each thread, launch threads, and manage
communications and completion status for groups of threads. Common SIMT languages
are shown in Table 8-8.

Note that CPU and GPU execution environments differ significantly at the hardware
and software level. The GPU relies on device drivers for set-up and tear-down, and
fixed-function hardware scheduling, while CPUs rely on the operating system scheduler
and perhaps micro-schedulers. A CPU is typically programmed in C or C++, and the
program executes directly from memory and is scheduled by the operating system,
while a GPU requires a shader or kernel program to be written in a SIMT SIMD-friendly
language such as a compute shader or pixel shader in DirectX or OpenGL, or a GPGPU
language such as CUDA or OpenCL.

Furthermore, a shader kernel must be launched via a run-time system through a
device driver to the GPU, and an execution context is created within the GPU prior to
execution. A GPU may also use a dedicated system memory partition where the data
must reside, and in some cases the GPU will also provide a dedicated fast-memory unit.

GPGPU programming has both memory data set-up and program set-up overhead
through the run-time system, and unless several kernels are executed sequentially in
the GPU to hide the overhead, the set-up and tear-down overhead for a single kernel can
exceed any benefit gained via the GPU SIMD/SIMT processing.

The decision to use a data parallelism SIMT programming model affects program
design and portability. The use of SIMT is not necessary, and in any case a standard
programming language like C++ must be used to control the SIMT run-time environment,
as well as the entire vision pipeline. However, the performance advantages of a
data-parallel SIMT model are in some cases dramatically compelling and the best choice.
Note, however, that GPGPU SIMT programming may actually be slower than using
multiple CPU cores with SIMD instructions, coarse-grained threading, and data tiling,
especially in cases where the GPU does not support enough parallel threads in hardware,
which is the case for smaller GPUs.

Shader Kernel Languages and GPGPU
As shown in Table 8-8, there are several alternatives for creating SIMD SIMT data-parallel
code, sometimes referred to as GPGPU or stream processing. As mentioned above, the
actual GPGPU programs are known as shaders or kernels. Historically, pixel shaders and
vertex shaders were developed as data-parallel languages for graphics standards like
OpenGL and DirectX. However, with the advent of CUDA built exclusively for NVIDIA
GPUs, the idea of a standard, general-purpose compute capability within the GPU

Chapter 8 ■ Vision Pipelines and Optimizations

357

emerged. The concept was received in the industry, although no killer apps existed
and pixel shaders could also be used to get equivalent results. In the end, each GPGPU
programming language translates into machine language anyway, so the choice of high-
level GPGPU language may not be significant in many cases.

However, the choice of GPGPU language is sometimes limited for a vendor operating
system. For example, major vendors such as Google, Microsoft, and Apple do not agree
on the same approach for GPGPU and they provide different languages, which means
that industry-wide standardization is still a work in progress and portability of shader
code is elusive. Perhaps the closest to a portable standard solution is OpenCL, but
compute shaders for DirectX and OpenGL are viable alternatives.

Advanced Instruction Sets and Accelerators
Each processor has a set of advanced instructions for accelerating specific operations.
The vendor processor and compiler documentation should be consulted for the latest
information. A summary of advanced instructions is shown in Table 8-9.

Table 8-9.  Advanced Instruction Set Items

Instruction Type Description

Trancendentals GPU’s have special assembler instructions to compute common
transcendental math functions for graphics rendering math
operations, such as dot product, square root, cosine, and logarithms.
In some cases, CPUs also have transcendental functions.

Fused
instructions

Common operations such as multiply and add are often
implemented in single fused MADD instruction, where both
multiply and add are performed in a single clock cycle; the
instruction may have three or more operands.

SIMD
instructions

CPUs have SIMD instruction sets, such as the Intel SSE and Intel
AVX instructions, similar SIMD for AMD processors, and NEON for
ARM processors.

Advanced data
types

Some instruction sets, such as for GPU’s, provide odd data types
not supported by common language compilers, such as half-byte
integers, 8-bit floating point numbers, and fixed-point numbers.
Special data types may be supported by portions of the instruction
set, but not all.

Memory access
modifiers

Some processors provide strided memory access capability to
support scatter-gather operations, bit-swizzling operations to allow
for register contents to be moved and copied in programmable
bit patterns, and permuted memory access patterns to support
cross-lane patterns. Intel processors also provide MPX memory
protection instructions for pointer checking.

(continued)

Chapter 8 ■ Vision Pipelines and Optimizations

358

Instruction Type Description

Security Cryptographic accelerators and special instructions may be
provided for common ciphers such as SHA or AES ciphers; for
example, INTEL AES-NI. In addition, Intel offers the INTEL SGX
extensions to provide curtained memory regions to execute secure
software; the curtained regions cannot be accessed by malware.

Hardware
accelerators

Common accelerators include GPU texture samplers for image
warping and sub-sampling, and DMA units for fast memory copies.
Operating systems provide APIs to access the DMA unit [494].
Graphics programming languages such as OpenGL and DirectX
provide access to the texture sampler, and GPGPU languages such
as OpenCL and CUDA also provide texture sampler APIs.

APIs provided by operating system vendors may or may not use the special
instructions. Compilers from each processor vendor will optimize all code to take
best advantage of the advanced instructions; other compilers may or may not
provide optimizations. However, each compiler will provide different flags to control
optimizations, so code tuning and profiling are required. Using assembler language is the
best way to get all the performance available from the advanced instruction sets.

Vision Algorithm Optimizations and Tuning
Optimizations can be based on intuition or on performance profiling, usually a
combination of both. Assuming that the hot spots are identified, a variety of optimization
methods can be applied as discussed in this section. Performance hotspots can be
addressed from the data perspective, the algorithm perspective, or both. Most of the time
memory access is a hidden cost, and not understood by the developer (the algorithms
are hard enough). However memory optimizations alone can be the key to increasing
performance. Table 8-11 summarizes various approaches for optimizations, which are
discussed next.

Data access patterns for each algorithm can be described using the Zinner, Kubinger,
and Isaac taxonomy [494] shown in Table 8-10. Note that usually the preferred data access
pattern is in-place (IP) computations, which involve reading the data once into fast
registers, processing and storing the results in the registers, and writing the final results
back on top of the original image. This approach takes maximal advantage of the cache
lines and the registers, avoiding slower memory until the data is processed.

Table 8-9.  (continued)

Chapter 8 ■ Vision Pipelines and Optimizations

359

Compiler And Manual Optimizations
Usually a good compiler can automatically perform many of the optimizations listed
in Table 8-11; however, check the compiler flags to understand the options. The goal of
the optimizations is to keep the CPU instruction execution pipelines full, or to reduce
memory traffic. However, many of the optimizations in Table 8-11 require hand coding to
boil down the algorithm into tighter loops with more data sharing in fast registers and less
data copying.

Table 8-10.  Image Processing Data Access Pattern Taxonomy (from Zinner et al.[494])

Type Description Source Images Destination Images READ WRITE

(1S) 1 source, 0
destination

1 0 Source
image

no

(2S) 2 source, 0
destination

2 0 Source
images

no

(IP) In-place* 1 0 Source
image

Source
image

(1S1D) 1 source, 1
destination

1 1 Source
image

Destination
image

(2S1D) 2 source, 1
destination

2 1 Source
images

Destination
image

*IP processing is usually the simplest way to reduce memory read/write bandwidth and
memory footprint.

Table 8-11.  Common Optimization Techniques, Manual And Compiler Methods

Name Description

Sub-function inlining Eliminating function calls by copying the function code in-line

Task chaining Feeding the output of a function into a waiting function piece
by piece

Branch elimination Re-coding to eliminate conditional branches, or reduce
branches by combining multiple branch conditions together

Loop coalescing Combining inner and outer loops into fewer loops using more
straight line code

Packing data Rearranging data alignment within structures and adding
padding to certain data items for better data alignment to
larger data word or page boundaries to allow for more efficient
memory read and write

(continued)

Chapter 8 ■ Vision Pipelines and Optimizations

360

Tuning
After optimizing, tuning a working vision pipeline can be accomplished from several
perspectives. The goal is to provide run-time controls. Table 8-12 provides some examples
of tuning controls that may be implemented to allow for run-time or compile-time tuning.

Name Description

Loop unrolling Reducing the loop iteration count by replicating code inside
the loop; may be accomplished using straight line code
replication or by packing multiple iterations into a VLIW

Function coalescing* Rewriting serial functions into a single function, with a single
outer loop to read and write data to system memory; passing
small data items in fast registers between coalesced functions
instead of passing large images buffers

ROS-DMA* Double-buffering DMA overlapped with processing; DMA
and processing occur in parallel, DMA the new data in during
processing, DMA the results out

* Function coalescing and ROS-DMA are not compiler methods, and may be performed at
the source code level.

Note: See references[498,499] for more information on compiler optimizations, and see each
vendor’s compiler documentation for information on available optimization controls.

Table 8-11.  (continued)

Table 8-12.  Run-Time Tuning Controls for a Vision Pipeline

Image Resolution Allowing variable resolution over an octave scale or other scale
to reduce workload

Frames per second Skipping frames to reduce the workload

Feature database size
and accuracy

Finding ways to reduce the size of the database, for example
have one data base with higher accuracy, and another database
with lower accuracy, each built using a different classier

Feature database
organization and
speed

Improving performance through better organization and
searching, perhaps have more than one database, each using a
different organization strategy and classifier

Feature Descriptor Retrofit, Detectors, Distance Functions
As discussed in Chapter 6, many feature descriptor methods such as SIFT can be retro-fitted
to use other representations and feature descriptions. For example, the LBP-SIFT retrofit
discussed in Chapter 6 uses a local binary pattern in place of the gradient methods used
by SIFT for impressive speedup, while preserving the other aspects of the SIFT pipeline.

Chapter 8 ■ Vision Pipelines and Optimizations

361

The ROOT-SIFT method is another SIFT acceleration alternative discussed in Chapter 6.
Detectors and descriptors can be mixed and matched to achieve different combinations
of invariance and performance, see the REIN framework [397].

In addition to the descriptor extractor itself, the distance functions often consume
considerable time in the feature matching stage. For example, local binary descriptors
such as FREAK and ORB use fast Hamming distance, while SIFT uses the Euclidean
distance, which is slower. Retro-fitting the vision pipeline to use a local binary descriptor
is an example of how the distance function can have a significant performance impact.

It should be pointed out that the descriptors reviewed in Chapter 6 are often based
on academic research, not on extensive engineering field trials and optimizations. Each
method is just a starting point for further development and customization. We can be
sure that military weapon systems have been using similar, but far more optimal feature
description methods for decades within vision pipelines in deployed systems. See
Figure 8-13.

Boxlets and Convolution Acceleration
Convolution is one of the most common operations in feature description and image
pre-processing, so convolution is a key target for optimizations and hardware
acceleration. The boxlet method [392] approximates convolution and provides a speed
vs. accuracy tradeoff. Boxlets can be used to optimize any system that relies heavily on
convolutions, such as the convolutional network approach used by LeCun and others
[85,336,339]. The basic approach is to approximate a pair of 2D signals, the kernel and the
image, as low-degree polynomials, which quantizes each signal and reduces the data size;
and then differentiating the two signals to obtain the impulse functions and convolution
approximation. The full convolution can be recovered by integrating the result of the
differentiation.

Another convolution and general area processing acceleration method is to reuse
as much overlapping data as possible while it exists in fast registers, instead of reading
the entire region of data items for each operation. When performing area operations, it
is possible to program to use sliding windows and pointers in an attempt to reuse data
items from adjacent rectangles that are already in the register files, rather than copying
complete new rectangles into registers for each area operation. This is another area suited
for silicon acceleration.

Also, scatter-gather instructions can be used to gather the convolution data into
memory for accelerated processing in some cases, and GPUs often optimize the memory
architecture for fast area operations.

Data-Type Optimizations, Integer vs. Float
Software engineers usually use integers as the default data type, with little thought about
memory and performance. Often, there is low-hanging fruit in most code in the area of
data types. For example, conversion of data from int32 to int16, and conversion from
double to float, are obvious space-savings items to consider when the extra bit precision
is not needed.

Chapter 8 ■ Vision Pipelines and Optimizations

362

In some cases, floating-point data types are used when an integer will do equally
well. Floating-point computations in general require nearly four times more silicon
area, which consumes correspondingly more power. The data types consume more
memory and may require more clock cycles to compute. As an alternative to floating
point, some processors provide fixed-point data types and instructions, which can be
very efficient.

Optimization Resources
Several resources in the form of software libraries and tools are available for computer
vision and image processing optimizations. Some are listed in Table 8-13.

Table 8-13.  Vision Optimization Resources

Method Acceleration Strategy Examples

Threading libraries Coarse-grained parallelism Intel TBB, pthreads

Pipeline building
tools

Connect functions into pipelines PfeLib Vision Pipeline
Library [495]

Halide [543]*

Primitive
acceleration libraries

Functions are pre-optimized Intel IPP, NVIDIA NPP,
Qualcomm FastCV

GPGPU languages Develop SIMT SIMD code CUDA, OpenCL, C++ AMP,
INTEL CILK++, GLSL,
HLSL, Compute Shaders
for OpenGL and Direct3D,
RenderScript

Compiler flags Compiler optimizes for each
processor; see Table 8-10

Vendor-specific

SIMD instructions Directly code in assembler, or
use compiler flags for standard
languages, or use GPGPU
languages.

Vendor-specific

Hardware
accelerators

Silicon accelerators for complex
functions

Texture Samplers; others
provided selectively by
vendors

Advanced
instruction sets

Accelerate complex low-level
operations, or fuse multiple
instructions; see Table 8-9

INTEL AVX, ARM NEON,
GPU instruction sets

*Open source available.

Chapter 8 ■ Vision Pipelines and Optimizations

363

Summary
This chapter ties together the discussions from previous chapters into complete vision
systems by developing four purely hypothetical high-level application designs. Design
details such as compute resource assignments and optimization alternatives are
discussed for each pipeline, intended to generate a discussion about how to design
efficient systems (the examples are sketchy at times). The applications explored include
automobile recognition using shape and color features, face and emotion detection using
sparse local features, whole image classification using global features, and augmented
reality. Each example illustrates the use of different feature descriptor families from the
Vision Metrics Taxonomy presented in Chapter 5, such as polygon shape methods, color
descriptors, sparse local features, global features, and depth information. A wide range of
feature description methods were used in the examples to illustrate the challenges in the
pre-processing stage.

In addition, a general discussion of design concepts for optimizations and load
balancing across the compute resources in the SOC fabric (CPU, GPU, and memory)
was provided to explore HW/SW system challenges, such as power reductions. Finally,
an overview of SW optimization resources and specific optimization techniques was
presented.

	Chapter 8: Vision Pipelines and Optimizations
	Stages, Operations, and Resources
	Compute Resource Budgets
	Compute Units, ALUs, and Accelerators
	Power Use
	Memory Use
	I/O Performance

	The Vision Pipeline Examples
	Automobile Recognition
	Segmenting the Automobiles
	Matching the Paint Color
	Measuring the Automobile Size and Shape
	Feature Descriptors
	Calibration, Set-up, and Ground Truth Data
	Pipeline Stages and Operations
	Operations and Compute Resources
	Criteria for Resource Assignments

	Face, Emotion, and Age Recognition
	Calibration and Ground Truth Data
	Interest Point Position Prediction
	Segmenting the Head and Face Using the Bounding Box
	Face Landmark Identification and Compute Features
	Pipeline Stages and Operations

	Operations and Compute Resources
	Criteria for Resource Assignments

	Image Classification
	Segmenting Images and Feature Descriptors
	Pipeline Stages and Operations
	Mapping Operations to Resources
	Criteria for Resource Assignments

	Augmented Reality
	Calibration and Ground Truth Data
	Feature and Object Description
	Overlays and Tracking
	Pipeline Stages and Operations
	Mapping Operations to Resources
	Criteria for Resource Assignments

	Acceleration Alternatives
	Memory Optimizations
	Minimizing Memory Transfers Between Compute Units
	Memory Tiling
	DMA, Data Copy, and Conversions
	Register Files, Memory Caching, and Pinning
	Data Structures, Packing, and Vector vs. Scatter-Gather Data Organization

	Coarse-Grain Parallelism
	Compute-Centric vs. Data-Centric
	Threads and Multiple Cores

	Fine-Grain Data Parallelism
	SIMD, SIMT, and SPMD Fundamentals
	Shader Kernel Languages and GPGPU

	Advanced Instruction Sets and Accelerators

	Vision Algorithm Optimizations and Tuning
	Compiler And Manual Optimizations
	Tuning
	Feature Descriptor Retrofit, Detectors, Distance Functions
	Boxlets and Convolution Acceleration
	Data-Type Optimizations, Integer vs. Float

	Optimization Resources
	Summary

