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Chapter 8

Vision Pipelines  
and Optimizations

“More speed, less haste . . . ”

—Treebeard, Lord of the Rings

This chapter explores some hypothetical computer vision pipeline designs to understand 
HW/SW design alternatives and optimizations. Instead of looking at isolated computer 
vision algorithms, this chapter ties together many concepts into complete vision 
pipelines. Vision pipelines are sketched out for a few example applications to illustrate 
the use of different methods. Example applications include object recognition using 
shape and color for automobiles, face detection and emotion detection using local 
features, image classification using global features, and augmented reality. The examples 
have been chosen to illustrate the use of different families of feature description metrics 
within the Vision Metrics Taxonomy presented in Chapter 5. Alternative optimizations 
at each stage of the vision pipeline are explored. For example, we consider which vision 
algorithms run better on a CPU versus a GPU, and discuss how data transfer time 
between compute units and memory affects performance.

Note■■   The hypothetical examples in this chapter are sometimes sketchy, not intended 
to be complete. Rather, the intention is to explore design alternatives. Design choices are 
made in the examples for illustration only; other, equally valid design choices could be 
made to build working systems. The reader is encouraged to analyze the examples to find 
weaknesses and alternatives. If the reader can improve the examples, we have succeeded.

This chapter addresses the following major topics, in this order:

1.	 General design concepts for optimization across the SOC 
(CPU, GPU, memory).

2.	 Four hypothetical vision pipeline designs using different 
descriptor methods.

3.	 Overview of SW optimization resources and specific 
optimization techniques.
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Stages, Operations, and Resources
A computer vision solution can be implemented into a pipeline of stages, as shown 
in Figure 8-1. In a pipeline, both parallel and sequential operations take place 
simultaneously. By using all available compute resources in the optimal manner, 
performance can be maximized for speed, power, and memory efficiency.
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Figure 8-1.  Hypothetical assignment of vision pipeline stages to operations and to compute 
resources. Depending on the actual resource capabilities and optimization targets for  
power and performance, the assignments will vary

Optimization approaches vary by system. For example, a low-power system for a 
mobile phone may not have a rich CPU SIMD instruction set, and the GPU may have a 
very limited thread count and low memory bandwidth, unsuitable to generic GPGPU 
processing for vision pipelines. However, a larger compute device, such as a rack-
mounted compute server, may have several CPUs and GPUs, and each CPU and GPU will 
have powerful SIMD instructions and high memory bandwidth.

Table 8-1 provides more details on possible assignment of operations to resources 
based on data types and processor capabilities. For example, in the sensor processing 
stage, point line and area operations dominate the workload, as sensor data is assembled 
into pixels and corrections are applied. Most sensor processors are based on a digital 
signal processor (DSP) with wide SIMD instruction words, and the DSP may also contain 
a fixed-function geometric correction unit or warp unit for correcting optics problems 
like lens distortion. The Sensor DSP and the GPU listed in Table 8-1 typically contain a 
dedicated texture sampler unit, which is capable of rapid pixel interpolation, geometric 
warps, and affine and perspective transforms. If code is straight line with lots of branching 
and not much parallel operations, the CPU is the best choice.
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As illustrated in Table 8-1, the data type and data layout normally guides 
the selection of the best compute resource for a given task, along with the type of 
parallelism in the algorithm and data. Also, the programing language is chosen based 
on the parallelism, such as using OpenCL vs. C++. For example, a CPU may support 
float and double data types, but if the underlying code is SIMT and SIMD parallel 
oriented, calling for many concurrent thread-parallel kernel operations, then a GPU 
with a high thread count may be a better choice than a single CPU. However, running a 
language like OpenCL on multiple CPUs may provide performance as good as a smaller 
GPU; for performance information, see reference[544] and vendor information on 
OpenCL compilers. See also the section later in this chapter, “SIMD, SIMT, and SPMD 
Fundamentals.”

For an excellent discussion of how to optimize fundamental image processing 
operations across different compute units and memory, see the PfeLib  work by Zinner 
et al.[495], which provides a deep dive into the types of optimizations that can be made 
based on data types and intelligent memory usage.

To make the assignments from vision processing stages to operations and compute 
resources concrete, we look at specific vision pipelines examples later in this chapter.

Compute Resource Budgets
Prior to implementing a vision pipeline, a reasonable attempt should be made to count 
the cost in terms of the compute platform resources available, and determine if the 
application is matched to the resources. For example, a system intended for a military 
battlefield may place a priority on compute speed and accuracy, while an application 
for a mobile device will prioritize power in terms of battery life and make tradeoffs with 
performance and accuracy.

Since most computer vision research is concerned with breaking ground in handling 
relatively narrow and well-defined problems, there is limited research available to guide 
a general engineering discussion on vision pipeline analysis and optimizations. Instead, 

Table 8-1.  Hypothetical Assignment of Basic Operations to Compute Resources Guided by 
Data Type and Parallelism (see also Zinner [495])
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we follow a line of thinking that starts with the hardware resources themselves, and we 
discuss performance, power, memory, and I/O requirements, with some references to 
the literature for parallel programming and other code-optimization methods. Future 
research into automated tools to measure algorithm intensity, such as the number of 
integer and float operations, the bit precision of data types, and the number of memory 
transfers for each algorithm in terms of read/write, would be welcomed by engineers for 
vision pipeline analysis and optimizations.

As shown in Figure 8-2, the main elements of a computer system are composed of 
I/O, compute, and memory.
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Figure 8-2.  Hypothetical computer system, highlighting compute elements in the form of 
a DSP, GPU, four CPU cores, DMA, and memory architecture using L1 and L2 cache and 
register files RF within each compute unit

We assume suitable high bandwidth I/O busses and cache lines interconnecting the 
various compute units to memory; in this case, we call out the MIPI camera interface in 
particular, which connects directly to the DSP in our hypothetical SOC. In the case of  
a simple computer vision system of the near future, we assume that the price, performance, 
and power curves continue in the right direction to enable a system-on-a-chip (SOC) 
sufficient for most computer vision applications to be built at a low price point, approaching 
throw-away computing cost—similar in price to any small portable electronic gadget. This 
would thereby enable low-power and high-performance ubiquitous vision applications 
without resorting to special-purpose hardware accelerators built for any specific computer 
vision algorithms.
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Here is a summary description of the SOC components shown in Figure 8-2:

•	 Two 1080p cameras, one for RGB and the other for a  
self-contained depth camera, such as a TOF sensor (as discussed 
in Chapter 1).

•	 One small low-power controller CPU with a reduced instruction 
set and no floating point, used for handling simple things like the 
keyboard, accelerometer updates, servicing interrupts from the 
DSP, and other periodic tasks, such as network interrupt handlers.

•	 Three full SIMD capable CPUs with floating point, used for heavy 
compute, typically thread parallel algorithms such as tiling, but 
also for SIMD parallel algorithms.

•	 A GPU capable of running ➤ 256 threads with full integer and 
floating point, and four texture samplers. A wide range of area 
algorithms map well to the GPU, but the programming model is 
SIMT kernels such as compute shaders for DirectX and OpenGL, 
or OpenCL.

•	 A DSP with a limited instruction set and VLIW processing 
capabilities well suited to pixel processing and sensor processing 
in general.

•	 A DMA unit for fast memory transfers; although obvious, DMA 
is a simple and effective method to increase memory bandwidth 
and reduce power.

Compute Units, ALUs, and Accelerators
There are several types of compute units in a typical system, including CPUs, GPUs, DSPs, 
and special-purpose hardware accelerators such as cryptography units, texture samplers, 
and DMA engines. Each ALU has a different instruction set tuned to the intended use, so 
understanding each compute unit’s ALU instruction set is very helpful.

Generally speaking, computer architecture has not advanced to the point of 
providing any standard vision pipeline methods or hardware accelerators. That’s because 
there are so many algorithm refinements for computer vision emerging; choosing to 
implement any vision accelerators in silicon is an obsolescence risk. Also, creating 
computer vision hardware accelerators is difficult, since applications must be portable. 
So developers typically choose high-level language implementations that are good 
enough and portable, with minimal dependencies on special purpose hardware or API’s.

Instead, reliance on general-purpose languages like C++ and optimizing the software 
is a good path to follow to start, as is leveraging existing pixel-processing acceleration 
methods in a GPU as needed, such as pixel shaders and texture samplers. The standard 
C++ language path offers flexibility to change and portability across platforms, without 
relying on any vendor-specific hardware acceleration features.

In the example vision pipelines developed in this section, we  make two basic 
assumptions. First, the DSP is dedicated to sensor processing and light image pre-
processing to load-balance the system. Second, the CPUs and the GPUs are used 
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downstream for subsequent sections of the vision pipeline, so the choice of CPU vs. GPU 
depends on the algorithm used.

Since the compute units with programmable ALUs are typically where all the tools 
and attention for developers are focused, we dedicate some attention to programming 
acceleration alternatives later in this chapter in the “Vision Algorithm Optimizations and 
Tuning” section; there is also a survey of selected optimization resources and software 
building blocks.

In the hypothetical system shown in Figure 8-2, the compute units include general-
purpose CPUs, a GPU intended primarily for graphics and media acceleration and 
some GPGPU acceleration, and a DSP for sensor processing. Each compute unit is 
programmable and contains a general-purpose ALU with a tuned instruction set. For 
example, a CPU contains all necessary instructions for general programming, and 
may also contain SIMD instructions (discussed later in this chapter). A GPU contains 
transcendental instructions such as square root, arctangent, and related instructions to 
accelerate graphics processing. The DSP likewise has an instruction set tuned for sensor 
processing, likely a VLIW instruction set.

Hardware accelerators are usually built for operations that are common, such as a 
geometric correction unit for sensor processing in the DSP and texture samplers for warping 
surface patches in the GPU. There are no standards yet for computer vision, and new 
algorithm refinements are being developed constantly, so there is little incentive to add any 
dedicated silicon for computer vision accelerators, except for embedded and special-purpose 
systems. Instead, finding creative methods of using existing accelerators may prove beneficial.

Later in this chapter we discuss methods for optimizing software on various compute 
units, taking advantage of the strengths and intended use of each ALU and instruction set.

Power Use
It is difficult to quantify the amount of power used for a particular algorithm on an SOC or 
a single compute device without very detailed power analysis; likely simulation is the best 
method. Typically, systems engineers developing vision pipelines for an SOC do not have 
accurate methods of measuring power, except crude means such as running the actual 
finished application and measuring wall power or battery drain.

The question of power is sometimes related to which compute device is used, such 
as CPU vs. GPU, since each device has a different gate count and clock rate, therefore is 
burning power at a different rate. Since silicon architects for both GPU and CPU designs 
are striving to deliver the most performance per watt per square millimeter, (and we 
assume that each set of silicon architects is equally efficient), there is no clear winner in 
the CPU vs. GPU power/performance race. The search to save power by using the GPU vs. 
the CPU might not even be worth the effort compared to other places to look, such as data 
organization and memory architecture.

One approach for making the power and performance tradeoff in the case of SIMD 
and SIMT parallel code is to use a language such as OpenCL, which supports running the 
same code on either a CPU or a GPU. The performance and power would then need to be 
measured on each compute device to quantify actual power and performance; there’s more 
discussion on this topic later, in the “Vision Algorithm Optimizations and Tuning” section.
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For detailed performance analysis using the same OpenCL code running on a specific 
CPU vs. a GPU, as well as clusters, see the excellent research by the National Center 
for Super Computing Applications[544]. Also, see the technical computing resources 
provided by major OpenCL vendors, such as INTEL, NVIDIA, and AMD, for details on 
their OpenCL compilers running the same code across the CPU vs. GPU. Sometimes the 
results are surprising, especially for multi-core CPU systems vs. smaller GPUs.

In general, the compute portion of the vision pipeline is not where the power is burned 
anyway; most power is burned in the memory subsystem and the I/O fabric, where high 
data bandwidth is required to keep the compute pipeline elements full and moving along. 
In fact, all the register files, caches, I/O busses, and main memory consume the lion’s share 
of power and lots of silicon real estate. So memory use and bandwidth are high-value 
targets to attack in any attempt to reduce power. The fewer the memory copies, the higher 
the cache hit rates; the more reuse of the same data in local register files, the better.

Memory Use
Memory is the most important resource to manage as far as power and performance are 
concerned. Most of the attention on developing a vision pipeline is with the algorithms 
and processing flow, which is challenging enough. However, vision applications are 
highly demanding of the memory system. The size of the images alone is not so great, but 
when we consider the frame rates and number of times a pixel is read or written for kernel 
operations through the vision pipeline, the memory transfer bandwidth activity becomes 
clearer. The memory system is complex, consisting of local register files next to each 
compute unit, caches, I/O fabric interconnects, and system memory. We look at several 
memory issues in this section, including:

Pixel resolution, bit precision, and total image size•	

Memory transfer bandwidth in the vision pipeline•	

Image formats, including gray scale and color spaces•	

Feature descriptor size and type•	

Accuracy required for matching and localization•	

Feature descriptor database size•	

To explore memory usage, we go into some detail on a local interest point and 
feature extraction scenario, assuming that we locate interest points first, filter the interest 
points against some criteria to select a smaller set, calculate descriptors around the 
chosen interest points, and then match features against a database.

A reasonable first estimate is that between a lower bound and upper bound of 0.05% 
to 1 percent of the pixels in an image can generate decent interest points. Of course, this 
depends entirely on: (1) the complexity of the image texture, and (2) the interest point 
method used. For example, an image with rich texture and high contrast will generate 
more interest points than an image of a far away mountain surrounded by clouds 
with little texture and contrast. Also, interest point detector methods yield different 
results—for example, the FAST corner method may detect more corners than a SIFT scale 
invariant DoG feature, see Appendix A.
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Descriptor size may be an important variable, see Table 8-2. A 640x480 image will 
contain 307,200 pixels. We estimate that the upper bound of 1 percent, or 3,072 pixels, 
may have decent interests points; and we assume that the lower bound of 0.05 percent is 
153. We provide a second estimate that interest points may be further filtered to sort out 
the best ones for a given application. So if we assume perhaps only as few as 33 percent of 
the interest points are actually kept, then we can say that between 153*.33 and 3,072*.33 
interest points are good candidates for feature description. This estimate varies widely 
out of bounds, depending of course on the image texture, interest point method used, and 
interest point filtering criteria. Assuming a feature descriptor size is 256 bytes, the total 
descriptor size per frame is 3072x256x.33 = 259,523 bytes maximum—that’s not extreme. 
However, when we consider the feature match stage, the feature descriptor count and 
memory size will be an issue, since each extracted feature must be matched against each 
trained feature set in the database.

Table 8-2.  Descriptor Bytes per Frame (1% Interest Points), adapted from [141]

Descriptor Size in bytes 480p NTSC 1080p HD 2160p 4kUHD 4320p 8kUHD

Resolution 640 x 480 1920 x 1080 3840 × 2160 7680 x 4320

Pixels 307200 2073600 8294400 33177600

BRIEF 32 98304 663552 2654208 10616832

ORB 32 98304 663552 2654208 10616832

BRISK 64 196608 1327104 5308416 21233664

FREAK  
(4 cascades)

64 196608 1327104 5308416 21233664

SURF 64 196608 1327104 5308416 21233664

SIFT 128 393216 2654208 10616832 42467328

LIOP 144 442368 2985984 11943936 47775744

MROGH 192 589824 3981312 15925248 63700992

MRRID 256 786432 5308416 21233664 84934656

HOG  
(64x128 
block)

3780 n.a. n.a. n.a. n.a.

In general, local binary descriptors offer the advantage of a low memory footprint.  
For example, Table 8-2 provides the byte count of several descriptors for comparison, 
as described in Miksik and Mikolajczyk [141]. The data is annotated here to add the 
descriptor working memory size in bytes per frame for various resolutions.

In Table 8-2, image frame resolutions are in row 1, pixel count per frame is in row 2,  
and typical descriptor sizes in bytes are in subsequent rows. Total bytes for selected 
descriptors are in column 1, and the remaining columns show total descriptor size per 
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frame assuming an estimated 1 percent of the pixels in each frame are used to calculate 
an interest point and descriptor. In practice, we estimate that 1 percent is an upper-bound 
estimate for a descriptor count per frame and 0.05 percent is a lower-bound estimate. 
Note that descriptor sizes in bytes do vary from those in the table, based on design 
optimizations.

Memory bandwidth is often a hidden cost, and often ignored until the very end of 
the optimization cycle, since developing the algorithms is usually challenging enough 
without also worrying about the memory access patterns and memory traffic. Table 8-2  
includes a summary of several memory variables for various image frame sizes and 
feature descriptor sizes. For example, using the 1080p image pixel count in row 2 as a 
base, we see that an RGB image with 16 bits per color channel will consume: 

2,073,600
pixels

 *3
channels/RGB

 *2 
bytes/pixel

 = 12,441,600 bytes / frame 

And if we include the need to keep a gray scale channel I around, computed from the 
RGB, the total size for RGBI increases to: 

2,073,600
pixels

 *4 
channels/RGBI

 *2 
bytes/pixel

 = 16,588,800 bytes / frame 

If we then assume 30 frames per second and two RGB cameras for depth processing 
+ the I channel, the memory bandwidth required to move the complete 4-channel RGBI 
image pair out of the DSP is nearly 1GB / second: 

12,441,600
pixels

 *4 
channels/RGBI

 *  
bytes/pixel

 *30
fps

 *2
stereo

 = 995,328,000
mb/s

 

So we assume in this example a baseline memory bandwidth of about ~1GB/second 
just to move the image pair downstream from the ISP. We are ignoring the ISP memory 
read/write requirements for sensor processing for now, assuming that clever DSP memory 
caching, register file design, and loop-unrolling methods in assembler can reduce the 
memory bandwidth.

Typically, memory coming from a register file in a compute unit transfers in a single 
clock cycle; memory coming from various cache layers can take maybe tens of clock cycles; 
and memory coming from system memory can take hundreds of clock cycles. During 
memory transfers, the ALU in the CPU or GPU may be sitting idle, waiting on memory.

Memory bandwidth is spread across the fast register files next to the ALU processors, 
and through the memory caches and even system memory, so actual memory bandwidth 
is quite complex to analyze. Even though some memory bandwidth numbers are 
provided here, it is only to illustrate the activity.

And the memory bandwidth only increases downstream from the DSP, since  
each image frame will be read, and possibly rewritten, several times during image  
pre-processing, then also read again during interest point generation and feature 
extraction. For example, if we assume only one image pre-processing operation using  
5x5 kernels on the I channel, each I pixel is read another 25 times, hopefully from 
memory cache lines and fast registers.

This memory traffic is not all coming from slow-system memory, and it is mostly 
occurring inside the faster-memory cache system and faster register files until there is 
a cache miss or reload of the fast-register files. Then,  performance drops by an order of 
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magnitude waiting for the buffer fetch and register reloading. If we add a FAST9 interest 
point detector on the I channel, each pixel is read another 81 times (9x9), maybe from 
memory cache lines or registers. And if we add a FREAK feature descriptor over maybe 
0.05 percent of the detected interest points, we add 41x41 pixel reads per descriptor to get 
the region (plus 45*2 reads for point-pair comparisons within the 41x41 region), hopefully 
from memory cache lines or registers.

Often the image will be processed in a variety of formats, such as image pre-processing 
the RGB colors to enhance the image, and conversion to gray scale intensity I for computing 
interest points and feature descriptors. The color conversions to and from RGB are a 
hidden memory cost that requires data copy operations and temporary storage for the color 
conversion, which is often done in floating point for best accuracy. So, several more GB/
second of memory bandwidth can be consumed for color conversions. With all the memory 
activity, there may be cache evictions of all or part of the required images into a slower 
system memory, degrading into nonlinear performance.

Memory size of the descriptor, therefore, is a consideration throughout the vision 
pipeline. First, we consider when the features are extracted; and second, we look at when 
the features are matched and retrieved from the feature database. In many cases, the size 
of the feature database is by far the critical issue in the area of memory, since the total 
size of all the descriptors to match against affects the static memory storage size, memory 
bandwidth, and pattern match rate. Reducing the feature space into a quickly searchable 
format during classification and training is often of paramount importance. Besides the 
optimized classification methods discussed in Chapter 4, the data organization problems 
may be primarily in the areas of standard computer science searching, sorting, and data 
structures; some discussion and references were provided in Chapter 4.

When we look at the feature database or training set, memory size can be the 
dominant issue to contend with. Should the entire feature database be kept on a cloud 
server for matching? Or should the entire feature database be kept on the local device? 
Should a method of caching portions of the feature database on the local device from the 
server be used? All of the above methods are currently employed in real systems.

In summary, memory, caches, and register files exceed the silicon area of the ALU 
processors in the compute units by a large margin. Memory bandwidth across the SOC 
fabric through the vision pipeline is key to power and performance, demanding fast 
memory architecture and memory cache arrangement, and careful software design. 
Memory storage size alone is not the entire picture, though, since each byte needs to be 
moved around between compute units. So, careful consideration of memory footprint 
and memory bandwidth is critical for anything but small applications.

Often, performance and power can be dramatically improved by careful attention 
to memory issues alone. Later in the chapter we cover several design methods to help 
reduce memory bandwidth and increase memory performance, such as locking pages 
in memory, pipelining code, loop unrolling, and SIMD methods. Future research into 
minimizing memory traffic in a vision pipeline is a worthwhile field.

I/O Performance
We lump I/O topics together here as a general performance issue, including data 
bandwidth on the SOC I/O fabric between compute units, image input from the camera, 
and feature descriptor matching database traffic to a storage device. We touched 
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on I/O issues above the discussion on memory, since pixel data is moved between 
various compute devices along the vision pipeline on I/O busses. One of the major I/O 
considerations is feature descriptor data moving out of the database at feature match 
time, so using smaller descriptors and optimizing the feature space using effective 
machine learning and classification methods is valuable.

Another type of I/O to consider is the camera input itself, which is typically 
accomplished via the standard MIPI interface. However, any bus or I/O fabric can be used, 
such as USB. If the vision pipeline design includes a complete HW/SW system design 
rather than software only on a standard SOC, special attention to HW I/O subsystem design 
for the camera and possibly special fast busses for image memory transfers to and from a 
HW-assisted database may be worthwhile. When considering power, I/O fabric silicon area 
and power exceed the area and power for the ALU processors by a large margin.

The Vision Pipeline Examples
In this section we look at four hypothetical examples of vision pipelines. Each is chosen 
to illustrate separate descriptor families from the Vision Metrics Taxonomy presented in 
Chapter 5, including global methods such as histograms and color matching, local feature 
methods such as FAST interest points combined with FREAK descriptors, basis space 
methods such as Fourier descriptors, and shape-based methods using morphology and 
whole object shape metrics. The examples are broken down into stages, operations, and 
resources, as shown in Figure 8-1, for the following applications:

•	 Automobile recognition, using shape and color

•	 Face recognition, using sparse local features

•	 Image classification, using global features

•	 Augmented reality, using depth information and tracking

None of these examples includes classification, training, and machine learning 
details, which are outside the scope of this book (machine learning references are 
provided in Chapter 4). A simple database storing the feature descriptors is assumed to 
be adequate for this discussion, since the focus here is on the image pre-processing and 
feature description stages. After working through the examples and exploring alternative 
types of compute resource assignments, such as GPU vs. CPU, this chapter finishes with a 
discussion on optimization resources and techniques for each type of compute resource.

Automobile Recognition
Here we devised a vision pipeline to recognize objects such as automobiles or machine 
parts by using polygon shape descriptors and accurate color matching. For example, 
polygon shape metrics can be used to measure the length and width of a car, while color 
matching can be used to measure paint color. In some cases, such as custom car paint 
jobs, color alone is not sufficient for identification.

For this automobile example, the main design challenges include segmentation of 
automobiles from the roadway, matching of paint color, and measurement of automobile 
size and shape. The overall system includes an RGB-D camera system, accurate color 
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and illumination models, and several feature descriptors used in concert. See Figure 8-3. 
We work through this example in some detail as a way of exploring the challenges and 
possible solutions for a complete vision pipeline design of this type.

60 feet

RGB-D 
Camera

Lamp

FOV

44 feet, 11 feet per lane

Figure 8-3.  Setting for an automobile identification application using a shape-based  
and color-based vision pipeline. The RGB and D cameras are mounted above the road 
surface, looking directly down

We define the system with the following requirements:

1080p RGB color video (1920x1080 pixels) at 120 fps, horizontally •	
mounted to provide highest resolution in length, 12 bits per color, 
65 degree FOV.

1080p stereo depth camera with 8 bits Z resolution at 120 fps,  •	
65 degree FOV.

Image FOV covering 44 feet in width and 60 feet in length over •	
four traffic lanes of oncoming traffic, enough for about three 
normal car lengths in each lane when traffic is stopped.

Speed limit of 25 mph, which equals ~37 feet per second.•	

Camera mounted next to overhead stoplight, with a street lamp •	
for night illumination.
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Embedded PC with 4 CPU cores having SIMD instruction sets, •	
one GPU, 8GB memory, 80GB disk; assumes high-end PC 
equivalent performance (not specified for brevity).

Identification of automobiles in real time to determine make and •	
model; also count of occurrences of each, with time stamp and 
confidence score.

Automobile ground truth training dataset provided by major •	
manufacturers to include geometry, and accurate color samples 
of all body colors used for stock models; custom colors and  
after-market colors not possible to identify.

Average car sizes ranging from 5 to 6 feet wide and 12 to 16 feet long.•	

Accuracy of 99 percent or better.•	

Simplified robustness criteria to include noise, illumination, and •	
motion blur.

Segmenting the Automobiles
To segment the automobiles from the roadway surface, a stereo depth camera operating 
at 1080p 120fps (frames per second) is used, which makes isolating each automobile from 
the roadway simple using depth. To make this work, a method for calibrating the depth 
camera to the baseline road surface is developed, allowing automobiles to be identified 
as being higher than the roadway surface. We sketch out the depth calibration method 
here for illustration.

Spherical depth differences are observed across the depth map, mostly affecting the 
edges of the FOV. To correct for the spherical field distortion, each image is rectified using 
a suitable calibrated depth function (to be determined on-site and analytically), then 
each horizontal line is processed, taking into consideration the curvilinear true depth 
distance, which is greater at the edges, to set the depth equal across each line.

Since the speed limit is 25 mph, or 37 feet per second, imaging at 120 FPS yields 
maximum motion blur of about 0.3 feet, or 4 inches per frame. Since the length of a pixel 
is determined to be 0.37 inches, as shown in Figure 8-4, the ability to compute car length 
from pixels is accurate within about 4 inches/0.37 inches = 11 pixels, or about 3 percent of 
a 12-foot-long car at 25 mph including motion blur. However, motion blur compensation 
can be applied during image pre-processing to each RGB and depth image to effectively 
reduce the motion blur further; several methods exist based on using convolution or 
compensating over multiple sequential images [305,492].
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Matching the Paint Color
We assume that it is possible to identify a vehicle using paint color alone in many cases, 
since each manufacturer uses proprietary colors, therefore accurate colorimetry can be 
employed. For matching paint color, 12 bits per color channel should provide adequate 
resolution, which is determined in the color match stage using the CIECAM02 model and 
the Jch color space [253]. This  requires development of several calibrated device models 
of the camera with the scene under different illumination conditions, such as full sunlight 
at different times of day, cloud cover, low light conditions in early morning and at dusk, 
and nighttime using the illuminator lamp mounted above traffic along with the camera 
and stop light.

The key to colorimetric accuracy is the device models’ accounting for various 
lighting conditions. A light sensor to measure color temperature, along with the 
knowledge of time of day and season of the year, is used to select the correct device 
models for proper illumination for times of day and seasons of the year. However, dirty 
cars present problems for color matching; for now we ignore this detail (also custom paint 
jobs are a problem). In some cases, the color descriptor may not be useful or reliable; in 
other cases, color alone may be sufficient to identify the automobile. See the discussion of 
color management in Chapter 2.

Measuring the Automobile Size and Shape
For automobile size and shape, the best measurements are taken looking directly down 
on the car to reduce perspective distortion. As shown in Figure 8-4, the car is segmented 
into C (cargo), T (top), and H (hood) regions using depth information from the stereo 
camera, in combination with a polygon shape segmentation of the auto shape. To 
compute shape, some weighted combination of RGB and D images into a single image 
will be used, based on best results during testing. We assume the camera is mounted in 
the best possible location centered above all lanes, but that some perspective distortion 
will exist at the far ends of the FOV. We also assume that a geometric correction is 
applied to rectify the images into Cartesian alignment. Assuming errors introduced by 

Mirror

Length

Width
C T H

Figure 8-4.  Features used for automobile identification



Chapter 8 ■ Vision Pipelines and Optimizations 

327

the geometric corrections to rectify the FOV are negligible, the following approximate 
dimensional precision is expected for length and width, using the minimum car size of 5’ 
x 12’ as an example: 

FOV Pixel Width:      1080
pixels

 / (44’ * 12”)
inches

 = each pixel is ~0.49 inches wide
FOV Pixel Length:    1920

pixels
 / (60’ * 12”)

inches
 = each pixel is ~0.37 inches long

Automobile Width:    (5’ * 12”) / .49 = ~122 pixels
Automobile Length:  (12’ * 12”) / .37 = ~389 pixels  

This example uses the following shape features:

Bounding box containing all features; width and length are used•	

Centroid computed in the middle of the automobile region•	

Separate width computed from the shortest diameter passing •	
through the centroid to the perimeter

Mirror feature measured as the distance from the front of the car; •	
mirror locations are the smallest and largest perimeter width 
points within the bounding box

Shape segmented into three regions using depth; color is measured •	
in each region: cargo compartment (C), top (T), and hood (H)

Fourier descriptor of the perimeter shape computed by •	
measuring the line segments from centroid to perimeter points at 
intervals of 5 degrees

Feature Descriptors
Several feature descriptors are used together for identification, and the confidence of 
the automobile identification is based on a combined score from all descriptors. The key 
feature descriptors to be extracted are as follows:

•	 Automobile shape factors: Depth-based segmentation of each 
automobile above the roadway is used for the coarse shape outline. 
Some morphological processing follows to clean up the edges 
and remove noise. For each segmented automobile, object shape 
factors are computed for area, perimeter, centroid, bounding 
box, and Fourier descriptors of perimeter shape. The bounding 
box measures overall width and height, the Fourier descriptor 
measures the roundness and shape factors; some automobiles are 
more boxy, some are more curvy. (See Figure 6-32, Figure 2-18, 
and Chapter 6 for more information on shape descriptors. See 
Chapter 1 for more information on depth sensors.) In addition, 
the distance of the mirrors from the front of the automobile is 
computed; mirrors are located at width extrema around the object 
perimeter, corresponding to the width of the bounding box.
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•	 Automobile region segmentation: Further segmentation uses a 
few individual regions of the automobile based on depth, namely 
the hood, roof, and trunk. A simple histogram is created to gather 
the depth statistical moments, a clustering algorithm such as 
K-means is performed to form three major clusters of depth: the 
roof will be highest, hood and trunk will be next highest, windows 
will be in between (top region is missing for convertibles, not 
covered here). The pixel areas of the hood, top, trunk, and 
windows are used as a descriptor.

•	 Automobile color: The predominant colors of the segmented 
hood, roof, and trunk regions are used as a color descriptor. The 
colors are processed in the Jch color space, which is part of the 
CIECAM system yielding high accuracy. The dominant color 
information is extracted from the color samples and normalized 
against the illumination model. In the event of multiple paint 
colors, separate color normalization occurs for each.  
(See Chapter 3 for more information on colorimetry.)

Calibration, Set-up, and Ground Truth Data
Several key assumptions are made regarding scene set-up, camera calibration, and other 
corrections; we summarize them here:

•	 Roadway depth surface: Depth camera is calibrated to the road 
surface as a reference to segment autos above the road surface; a 
baseline depth map with only the road is calibrated as a reference 
and used for real-time segmentation.

•	 Device models: Models for each car are created from 
manufacturer’s information, with accurate body shape geometry 
and color for each make and model. Cars with custom paint 
confuse this approach; however, the shape descriptor and the car 
region depth segmentation provide a failsafe option that may be 
enough to give a good match—only testing will tell for sure.

•	 Illumination models: Models are created for various conditions, 
such as morning light, daylight, and evening light, for sunny and 
cloudy days; illumination models are selected based on time of 
day and year and weather conditions for best matching.

•	 Geometric model for correction: Models of the entire FOV for 
both the RGB and depth camera are devised, to be applied at each 
new frame to rectify the image.



Chapter 8 ■ Vision Pipelines and Optimizations 

329

Pipeline Stages and Operations 
Assuming the system is fully calibrated in advance, the basic real-time processing flow 
for the complete pipeline is shown in Figure 8-5, divided into three primary stages of 
operations. Note that the complete pipeline includes an image pre-processing stage to 
align the image in the FOV and segment features, a feature description stage to compute 
shape and color descriptors, and a correspondence stage for feature matching to develop 
the final automobile label composed of a weighted combination of shape and color 
features. We assume that a separate database table for each feature in some standard 
database is fine.

No attempt is made to create an optimized classifier or matching stage here; instead, 
we assume, without proving or testing, that a brute-force search using a standard 
database through a few thousand makes and models of automobile objects works fine for 
the ALPHA version.

Note in Figure 8-5 (bottom right) that each auto is tracked from frame to frame, we 
do not define the tracking method here.

Capture RGB and D 
images

Rectify FOV using 4-point 
warp, merge RGB and D

Remove motion blur via 
spatio-temporal merging

Segment shape regions 
(T,H,C) w/depth+color

Morphological processing 
to clean up shape 

Segment roadway from 
automobile using depth

Compute perimeter, area, 
centroid, bounding box

Compute radius lines, 
centroid to perimeter

Compute radius length 
histogram, normalized 

Compute Fourier 
Descriptor from radial 

Compute mirror distance 
from front of automobile

Compute dominant color 
of each automobile shape 

Classify features

Bounding 
Box

Dominant 
Color 

Mirror 
Distance

Radius 
Histogram

Fourier 
Descriptor

Object classification  
score + tracking

Image pre-processing Feature Description Correspondence

Figure 8-5.  Operations in hypothetical vision pipeline for automobile identification using 
polygon shape features and color
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Operations and Compute Resources
For each operation in the pipeline stages, we now explore possible mappings to the 
available compute resources. First, we review the major resources available in our 
example system, which contains 8GB of fast memory, we assume sufficient free space to 
map and lock the entire database in memory to avoid paging. Our system contains four 
CPU cores, each with SIMD instruction sets, and a GPU capable of running 128 SIMT 
threads simultaneously with 128GB/s memory bandwidth to shared memory for the 
GPU and CPU, considered powerful enough. Let’s assume that, overall, the compute and 
memory resources are fine for our application and no special memory optimizations 
need to be considered. Next, we look at the coarse-grain optimizations to assign 
operations to compute resources. Table 8-3 provides an evaluation of possible resource 
assignments.

Table 8-3.  Assignment of Operations to Compute Resources

  

Criteria for Resource Assignments
In our simple example, as shown in Table 8-3, the main criteria for assigning algorithms to 
compute units are processor suitability and load balancing among the processors; power 
is not an issue for this application. The operation to resource assignments provided in 
Figure 8-5 are a starting point in this hypothetical design exercise; actual optimizations 
would be different, adjusted based on performance profiling. However, assuming what 
is obvious about the memory access patterns used for each algorithm, we can make a 
good guess at resource assignments  based on memory access patterns. In a second-order 
analysis, we could also look at load balancing across the pipeline to maximize parallel 
uses of compute units; however, this requires actual performance measurements.
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Here we will tentatively assign the tasks from Table 8-3 to resources. If we look at 
memory access patterns, using the GPU for the sequential tasks 2 and 3 makes sense, 
since we can map the images into GPU memory space first and then follow with the 
three sequential operations using the GPU. The GPU has a texture sampler to which we 
assign task 2, the geometric corrections using the four-point warp. Some DSPs or camera 
sensor processors also have a texture sampler capable of geometric corrections, but not 
in our example. In addition to geometric corrections, motion blur is a good candidate 
for the GPU as well, which can be implemented as an area operation efficiently in a 
shader. For higher-end GPUs, there may even be hardware acceleration for motion blur 
compensation in the media section.

Later in the pipeline, after the image has been segmented in tasks 4 and 5, the 
morphology stage in task 6 can be performed rapidly using a GPU shader; however, the 
cost of moving the image to and from the GPU for the morphology may actually be slower 
than performing the morphology on the CPU, so performance analysis is required for 
making the final design decision regarding  CPU vs. GPU implementation.

In the case of stages 7 to 11, shown in Table 8-3, the algorithm for area, perimeter, 
centroid, and other measurements span a nonlocalized data access pattern. For example, 
perimeter tracing follows the edge of the car. So we will make one pass using a single CPU 
through the image to track the perimeter and compute the area, centroid, and bounding 
box for each automobile. Then, we assign each bounding box as an image tile to a separate 
CPU thread for computation of the remaining measurements: radial line segment length, 
Fourier descriptor, and mirror distance. Each bounding box is then  assigned to a separate 
CPU thread for computation of the colorimetry of each region, including cargo, roof, and 
hood, as shown in Table 8-3. Each CPU thread uses C++ for the color conversions and 
attempts to use compiler flags to force SIMD instruction optimizations.

Tracking the automobile from frame to frame is possible using shape and color 
features; however, we do not develop the tracking algorithm here. For correspondence 
and matching, we rely on a generic database from a third party, running in a separate 
thread on a CPU that is executing in parallel with the earlier stages of the pipeline. 
We assume that the database can split its own work into parallel threads. However, an 
optimization phase later could rewrite and create a better database and classifier, using 
parallel threads to match feature descriptors.

Face, Emotion, and Age Recognition
In this example, we design a face, emotion, and age recognition pipeline that uses local 
feature descriptors and interest points. Face recognition is concerned with identifying the 
unique face of a unique person, while face detection is concerned with determining only 
where a face is located and interesting characteristics such as emotion, age, and gender. 
Our example is for face detection, and finding the emotions and age of the subject.

For simplicity, this example uses mugshots of single faces taken with a stationary 
camera for biometric identification to access a secure area. Using mugshots simplifies 
the example considerably, since there is no requirement to pick out faces in a crowd from 
many angles and distances. Key design challenges include finding a reliable interest point 
and feature descriptor method to identify the key facial landmarks, determining emotion 
and age, and modeling the landmarks in a normalized, relative coordinate system to 
allow for distance ratios and angles to be computed.
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Excellent facial recognition systems for biometric identification have been deployed 
for several decades that use a wide range of methods, achieving accuracies of close to  
100 percent. In this exercise, no attempt is made to prove performance or accuracy. We 
define the system with the following requirements:

1080p RGB color video (1920x1080 pixels) at 30 fps, horizontally •	
mounted to provide highest resolution in length, 12 bits per color, 
65 degree FOV, 30 FPS

Image FOV covers 2 feet in height and 1.5 feet in width, enough •	
for a complete head and top of the shoulder

Background is a white drop screen for ease of segmentation•	

Illumination is positioned in front of and slightly above the •	
subject, to cast faint shadows across the entire face that highlight 
corners around eyes, lips, and nose

For each face, the system identifies the following landmarks:•	

Eyes: two eye corners and one center of eye•	

Dominant eye color: in CIECAM02 JCH color coordinates•	

Dominant face color: in CIECAM02 JCH color coordinates•	

Eyebrows: two eyebrow endpoints and one center of •	
eyebrow arc, used for determining emotions

Nose: one point on nose tip and two widest points by •	
nostrils, used for determining emotions and gender

Lips: two endpoints of lips, two center ridges on upper lip•	

Cheeks: one point for each cheek center•	

Chin: one point, bottom point of chin, may be unreliable due •	
to facial hair

Top of head: one point; may be unreliable due to hairstyle•	

Unique facial markings: these could include birthmarks, •	
moles, or scars, and must fall within a bounding box 
computed around the face region

A FREAK feature is computed at each detected landmark on the •	
original image

Accuracy is 99 percent or better•	

Simplified robustness criteria to include scale only•	

Note that emotion, age, and gender can all be estimated from selected relative distances 
and proportional ratios of facial features, and we assume that an expert in human face 
anatomy provides the correct positions and ratios to use for a real system. See Figure 8-6.
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The set of features computed for this example system includes:

1.	 Relative positions of facial landmarks such as eyes, eyebrows, 
nose, and mouth

2.	 Relative proportions and ratios between landmarks to 
determine age, sex, and emotion

3.	 FREAK descriptor at each landmark

4.	 Eye color

Calibration and Ground Truth Data
The calibration is simple: a white backdrop is used in back of the subject, who stands 
about 4 feet away from the camera, enabling a shot of the head and upper shoulders. (We 
discuss the operations used to segment the head from the background region later in this 
section.) Given that we have a 1080p image, we allocate the 1920 pixels to the vertical 
direction and the 1080 pixels to the horizontal.

Assuming the cameraman is good enough to center the head in the image so that 
the head occupies about 50 percent of the horizontal pixels, and about 50 percent of the 
vertical pixels, we have pixel resolution for the head of ~540 pixels horizontal and ~960 
pixels vertical, which is good enough for our application and corresponds to the ratio of 
head height to width. Since we assume that average head height is about 9 inches and 
width as 6 inches across for male and female adults, using our assumptions for a four-foot 
distance from the camera, we have plenty of pixel accuracy and resolution: 

9” / (1920
pixels

 * .5) = 0.009” vertical pixel size

6” / (1080
pixels

 * .5) = 0.01” horizontal pixel size 

The ground truth data consists of: (1) mugshots of known people, and (2) a set of 
canonical eye landmark features in the form of correlation templates used to assist in 

Figure 8-6.  (Left) Proportional ratios based on a bounding box of the head and face regions 
as guidelines to predict the location of facial landmarks. (Right) Annotated image with 
detected facial landmark positions and relative angles and distances measured between 
landmarks. The relative measurements are used to determine emotion, age, and gender
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locating face landmarks (a sparse codebook of correlation temlpates). There are two sets 
of correlation templates: one for fine features based on a position found using a Hessian 
detector, and one for coarse features based on a position found using a steerable filter based 
detector (the fine and coarse detectors are described in more detail later in this example).

Since facial features like eyes and lips are very similar among people, the canonical 
landmark feature correlation templates provide only rough identification of landmarks 
and their location. Several templates are provided covering a range of ages and genders 
for all landmarks, such as eye corners, eyebrow corners, eyebrow peaks, nose corners, 
nose bottom, lip corners, and lip center region shapes. For sake of brevity, we do not 
develop the ground truth dataset for correlation templates here, but we assume the 
process is accomplished using synthetic features created by warping or changing real 
features and testing them against several real human faces to arrive at the best canonical 
feature set. The correlation templates are used in the face landmark identification stage, 
discussed later.

Interest Point Position Prediction
To find the facial landmarks, such as eyes, nose, and mouth, this example application 
is simplified by using mugshots, making  the position of facial features predictable and 
enabling intelligent search for each feature at the predicted locations. Rather than resort 
to scientific studies of head sizes and shapes, for this example we use basic proportional 
assumptions from human anatomy (used for centuries by artists) to predict facial feature 
locations and enable search for facial features at predicted locations. Facial feature ratios 
differ primarily by age, gender, and race; for example, typical adult male ratios are shown 
in Table 8-4.

Table 8-4.  Basic Approximate Face and Head Feature Proportions

Head height head width X 1.25

Head width head height X .75

Face height head height X .8

Face width head height X .8

Eye position eye center located 30% in from left/right edges, 50% from top

Eye length head width X 1.25

Eye spacing head width X .5

Nose position 25% higher than lip corners

Nose length head height X .25

Lip corners about eye center x, about 15% higher than chin y

Mouth/lip width head width X .07



Chapter 8 ■ Vision Pipelines and Optimizations 

335

Note■■   The information in Table 8-4 is synthesized for illustration purposes from 
elementary artists’ materials and is not guaranteed to be accurate.

The most basic coordinates to establish are the bounding box for the head. From the 
bounding box, other landmark facial feature positions can be predicted.

Segmenting the Head and Face Using the Bounding Box
As stated earlier, the mugshots are taken from a distance of about 4 feet against a white 
drop background, allowing simple segmentation of the head. We use thresholding on 
simple color intensity as RGBI-I,  where I = (R=G + B) / 3 and the white drop background 
is identified as the highest intensity.

The segmented head and shoulder region is used to create a bounding box of 
the head and face, discussed next. (Note: wild hairstyles will require another method, 
perhaps based on relative sizes and positions of facial features compared to head shape 
and proportions.) After segmenting the bounding box for the head, we  proceed to 
segment the facial region and then find each landmark. The rough size of the bounding 
box for head is computed in two steps:

1.	 Find the top and left, right sides of the head— Top
xy

, Left
xy

, 
Right

xy—
which we assume can be directly found by making a 

pass through the image line by line and recording the rows 
and columns where the background is segmented to meet the 
foreground of head, to establish the coordinates. All leftmost 
and rightmost coordinates for each line can be saved in a 
vector, and sorted to find the median values to use as  
Right

x
 / Left

x
 coordinates. We compute head width as: 

H
w

  =  Right
x
 - Left

x
 

2.	 Find the chin to assist in computing the head height H
h
. The 

chin is found by first predicting the location of the chin, then 
performing edge detection and some filtering around the 
predicted location to establish the chin feature, which we 
assume is simple to find based on gradient magnitude of the 
chin perimeter. The chin location prediction is made by using 
the head top coordinates Top

xy
 and the normal anatomical 

ratio of the head height H
h
 to head width H

w
, which is known 

to be about 0.75. Since we know both Top
xy

  and H
w

  from 
step 1, we can predict the x and y coordinates of the chin as 
follows: 

Chin
y
 = ( .25 *  H

w
 ) + Top

y

Chin
x
 = Top

x
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Actually, hair style makes the segmentation of the head difficult in some cases, 
since the hair may be piled high on top or extend widely on the sides and cover the ears. 
However, we can either iterate the chin detection method a few times to find the best 
chin, or else assume that our segmentation method will solve this problem somehow via 
a hair filter module, so we move on with this example for the sake of brevity.

To locate the chin position, a horizontal edge detection mask is used around the 
predicted location, since the chin is predominantly a horizontal edge. The coordinates 
of the connected horizontal edge maxima are filtered to find the lowest y coordinates of 
the horizontal edge set, and the median of the lowest x/y coordinates is used as the initial 
guess at the chin center location. Later, when the eye positions are known, the chin x 
position can be sanity-checked with the position of the midpoint between the eyes and 
recomputed, if needed. See Figure 8-7.

Figure 8-7.  Location of facial landmarks. (Left) Facial landmarks enhanced using largest 
eigenvalues of Hessian tensor [493] in FeatureJ1; note the fine edges that provide extra 
detail. (Center) Template-based feature detector using steerable filters with additional 
filtering along the lines of the Canny detector [400] to provide coarse detail. (Right) 
Steerable filter pattern used to compute center image. Both images are enhanced using 
contrast window remapping to highlight the edges

1FeatureJ plug-in for ImageJ used to generate eigenvalues of Hessian (FeatureJ developed by Erik 
Meijering).

The head bounding box, containing the face, is assumed to be:

BoundingBoxTopLeftx = Leftx

BoundingBoxTopLefty = Topy

BoundingBoxBottomRightx = Rightx

BoundingBoxBottomRighty = Chiny

Face Landmark Identification and Compute Features
Now that the head bounding box is computed, the locations of the face landmark feature 
set can be predicted using the basic proportional estimates from Table 8-4. A search is 
made around each predicted location to find the features; see Figure 8-6. For example, 
the eye center locations are ~30 percent in from the sides and about 50 percent down 
from the top of the head.
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In our system we use an image pyramid with two levels for feature searching, 
a coarse-level search down-sampled by four times, and a fine-level search at full 
resolution to relocate the interest points, compute the feature descriptors, and take the 
measurements. The coarse-to-fine approach allows for wide variation in the relative size 
of the head to account for mild scale invariance owing to distance from the camera  
and/or differences in head size owing to age.

We do not add a step here to rotate the head orthogonal to the Cartesian coordinates 
in case the head is tilted; however, this could be done easily. For example, an iterative 
procedure can be used to minimize the width of the orthogonal bounding box, using 
several rotations of the image taken every 2 degrees from -10 to +10 degrees. The 
bounding box is computed for each rotation, and the smallest bounding box width is 
taken to find the angle used to correct the image for head tilt.

In addition, we do not add a step here to compute the surface texture of the skin, 
useful for age detection to find wrinkles, which is easily accomplished by segmenting 
several skin regions, such as forehead, eye corners, and the region around mouth, and 
computing the surface texture (wrinkles) using an edge or texture metric.

The landmark detection steps include feature detection, feature description, and 
computing relative measurements of the positions and angles between landmarks, as follows:

1.	 Compute interest points: Prior to searching for the facial 
features, interest point detectors are used to compute likely 
candidate positions around predicted locations. Here we use a 
combination of two detectors: (1) the largest eigenvalue of the 
Hessian tensor [493], and (2) steerable filters [388] processed 
with an edge detection filter criteria similar to the Canny 
method [400], as illustrated in Figure 8-7. Both the Hessian and 
the Canny-like edge detectors images are followed by contrast 
windowing to enhance the edge detail. The Hessian style and 
Canny-style images are used together to vote on the actual 
location of best interest points during the correlation stage next.

2.	 Compute landmark positions using correlation: The final 
position of each facial landmark feature is determined using 
a canonical set of correlation templates, described earlier, 
including eye corners, eyebrow corners, eyebrow peaks, 
nose corners, nose bottom, lip corners, and lip center region 
shapes. The predicted location to start the correlation search 
is the average position of both detectors from step 1: (1) The 
Hessian approach provides fine-feature details, (2) while 
the steerable filter approach provides coarse-feature details. 
Testing will determine if correlation alone is sufficient without 
needing interest points from step 1.

3.	 Describe landmarks using FREAK descriptors: For each 
landmark location found in step 2, we compute a FREAK 
descriptor. SIFT may work just as well.



Chapter 8 ■ Vision Pipelines and Optimizations 

338

4.	 Measure dominant eye color using CIECAM02 JCH: We use 
a super-pixel method [257,258] to segment out the regions 
of color around the center of the eye, and make a histogram 
of the colors of the super-pixel cells. The black pupil and the 
white of the eye should cluster as peaks in the histogram, and 
the dominant color of the eye should cluster in the histogram 
also. Even multi-colored eyes will be recognized using our 
approach using histogram correspondence.

5.	 Compute relative positions and angles between landmarks: In 
step 2 above, correlation was used to find the location of each 
feature (to sub-pixel accuracy if desired [468]). As illustrated 
in Figure 8-6, we use the landmark positions as the basis for 
measuring the relative distances of several features, such as:

a.	 Eye distance, center to center, useful for age and gender

b.	 Eye size, corner to corner

c.	 Eyebrow angle, end to center, useful for emotion

d.	 Eyebrow to eye angle, ends to center positions, useful for 
emotion

e.	 Eyebrow distance to eye center, useful for emotion

f.	 Lip or mouth width

g.	 Center lip ridges angle with lip corners, useful for emotion

Pipeline Stages and Operations 
The pipeline stages and operations are shown in Figure 8-8. For correspondence, we 
assume a separate database table for each feature. We are not interested in creating an 
optimized classifier to speed up pattern matching; brute-force searching is fine.
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Capture RGB and D 
images

Segment out background 
from head

Bounding box:
Compute head width, head 

Predict face landmark 
positions relative to 

Compute Hessian and 
Canny detector image set

Bounding box:
Predict chin position

Correlation templates at 
each feature landmark to 

Compute relative angles 
and distances between 

Compute super -pixel 
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Head 
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Face 
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Object classification  score

Image pre-processing Feature Description Correspondence

Figure 8-8.  Operations in hypothetical vision pipeline for face, emotion, and age detection 
using local features

Operations and Compute Resources
For this example, there is mostly straight-line code best suited for the CPU. Following 
the data access patterns as a guide, the bounding box, relative distances and ratios, 
FREAK descriptors and correspondence are good candidates for the CPU. In some cases, 
separate CPU threads can be used, such as computing the FREAK descriptors at each 
landmark in separate threads (threads are likely overkill for this simple application). We 
assume feature matching using a standard database. Our application is assumed to have 
plenty of time to wait for correspondence.

Some operations are suited for a GPU; for example the area operations, including 
the Hessian and Canny-like interest point detectors. These methods could be combined 
and optimized into a single shader program using a single common data read loop and 
combined processing loop, which produce output into two images, one for each detector. 
In addition, we assume that the GPU provides an API to a fast, HW accelerated correlation 
block matcher in the media section, so we take advantage of the HW accelerated correlation.

Criteria for Resource Assignments
In this example, performance is not a problem, so the criteria for using computer resources 
are relaxed. In fact, all the code could be written to run in a single thread on a single CPU, 
and the performance would likely be fast enough with our target system assumptions. 
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However, the resource assignments shown in Table 8-5 are intended to illustrate 
reasonable use of the resources for each operation to spread the workload around the SOC.

Table 8-5.  Assignments of Operations to Compute Resources

Image Classification
For our next example, we design a simple image classification system intended for mobile 
phone use, with the goal of identifying the main objects in the camera’s field of view, 
such as buildings, automobiles, and people. For image classification applications, the 
entire image is of interest, rather than specific local features. The user will have a simple 
app which allows them to point the camera at an object, and wave the camera from side 
to side to establish the stereo baseline for MVS depth sensing, discussed later. A wide 
range of global metrics can be applied (as discussed in Chapter 3), computed over the 
entire image, such as texture, histograms of color or intensity, and methods for connected 
component labeling.  Also, local features (as discussed in Chapter 6) can be applied to 
describe key parts of the images. This hypothetical application uses both global and local 
features.

We define the system with the following requirements:

1080p RGB color video (1920x1080 pixels) at 30 fps, 12 bits per •	
color, 65 degree FOV, 30 FPS

Image FOV covers infinite focus view from a mobile phone •	
camera

Unlimited lighting conditions (bad and good)•	

Accuracy of 90 percent or better•	

Simplified robustness criteria, including scale, perspective, •	
occlusion
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•	 For each image, the system computes the following features:

•	 Global RGBI histogram, in RGB-I color space

•	 GPS coordinates, since the phone has a GPS

•	 Camera pose via MVS depth sensing, using the accelerometer 
data for geometric rectification to an orthogonal FOV plane 
(the user is asked to wave the camera while pointed at 
the subject, the camera pose vector is computed from the 
accelerometer data and relative to the main objects in the 
FOV using ICP)

•	 SIFT features, ideally between 20 and 30 features stored for 
each image

•	 Depth map via monocular dense depth sensing, used to 
segment out objects in the FOV, depth range target 0.3 
meters to 30 meters, accuracy within 1 percent at 1 meter, 
and within 10 percent at 30 meters

•	 Scene labeling and pixel labeling, based on attributes of 
segmented regions, including RGB-I color and LBP texture

Scene recognition is a well-researched field, and several grand challenge 
competitions are held annually to find methods for increased accuracy using established 
ground truth datasets, as shown in Appendix B. The best accuracy achieved for various 
categories of images in the challenges ranges from 50 to over 90 percent. In this exercise, 
no attempt is made to prove performance or accuracy.

Segmenting Images and Feature Descriptors
For this hypothetical vision pipeline, several methods for segmenting the scene into 
objects will be used together, instead of relying on a single method, as follows:

1.	 Dense segmentation, scene parsing, and object labeling: 
A depth map generated using monocular MVS is used to 
segment common items in the scene, including the ground 
or floor, sky or ceiling, left and right walls, background, and 
subjects in the scene. To compute monocular depth from the 
mobile phone device, the user is prompted by the application 
to move the camera from left to right over a range of arm’s 
length covering 3 feet or so, to create a series of wide baseline 
stereo images for computing depth using MVS methods (as 
discussed in Chapter 1). MVS provides a dense depth map. 
Even though MVS computation is compute-intensive, this 
is not a problem, since our application does not require 
continuous real-time depth map generation – just a single 
depth map; 3 to 4 seconds to acquire the baseline images 
and generate the depth map is assumed possible for our 
hypothetical mobile device.
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2.	 Color segmentation and component labeling using super-
pixels: The color segmentation using super-pixels should 
correspond roughly with portions of the depth segmentation.

3.	 LBP region segmentation: This method is fairly fast to 
compute and compact to represent, as discussed in Chapter 6.

4.	 Fused segmentation: The depth, color, and LBP 
segmentation regions are combined using Boolean masks 
and morphology and some logic into a fused segmentation. 
The method uses an iterative loop to minimize the differences 
between color, depth, and LBP segmentation methods into a 
new fused segmentation map. The fused segmentation map is 
one of the global image descriptors.

5.	 Shape features for each segmented region: basic shape 
features, such as area and centroid, are computed for each 
fused segmentation region. Relative distance and angle 
between region centroids is also computed into a composite 
descriptor.

In this hypothetical example, we use several feature descriptor methods together for 
additional robustness and invariance, and some pre-processing, summarized as follows:

1.	 SIFT interest points across the entire image are used as 
additional clues. We follow the SIFT method exactly, since 
SIFT is known to recognize larger objects using as few as three 
or four SIFT features [161]. However, we expect to limit the 
SIFT feature count to 20 or 30 strong candidate features per 
scene, based on training results.

2.	 In addition, since we have an accelerometer and GPS sensor 
data on the mobile phone, we can use sensor data as hints 
for identifying objects based on location and camera pose 
alone, for example assuming a server exists to look up the GPS 
coordinates of landmarks in an area.

3.	 Since illumination invariance is required, we perform RGBI 
contrast remapping in an attempt to normalize contrast 
and color prior to the SIFT feature computations, color 
histograms, and LBP computations. We assume a statistical 
method for computing the best intensity remapping limits is 
used to spread out the total range of color to mitigate dark and 
oversaturated images, based on ground truth data testing, but 
we do not take time to develop the algorithm here; however, 
some discussion on candidate algorithms is provided in 
Chapter 2. For example, computing SIFT descriptors on dark 
images may not provide sufficient edge gradient information 
to compute a good SIFT descriptor, since SIFT requires 
gradients. Oversaturated images will have washed-out color, 
preventing good color histograms.
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4.	 The fused segmentation combines the best of all the color, 
LBP, and depth segmentation methods, minimizing the 
segmentation differences by fusing all segmentations into 
a fused segmentation map. LBP is used also, which is less 
sensitive to both low light and oversaturated conditions, 
providing some balance.

Again, in the spirit of a hypothetical exercise, we do not take time here to develop the 
algorithm beyond the basic descriptions given above.

Pipeline Stages and Operations
The pipeline stages are shown in Figure 8-9. They include an image pre-processing stage 
primarily to correct image contrast, compute depth maps and segmentation maps. The 
feature description stage computes the RGBI color histograms, SIFT features, a fused 
segmentation map combining the best of depth, color, and LBP methods, and then 
labels the pixels as connected components. For correspondence, we assume a separate 
database table for each feature, using brute-force search; no optimization attempted.

Capture wide baseline 
images

RGBI contrast remapping

Compute MVS depth map

Color segmentation map

LBP texture segmentation 
map

Compute RGBI color 
histograms

Compute SIFT features

Compute fused -
segmentation

Labeling segmented 
objects

Classify features

Histograms

GPS, camera 
pose

Segmented 
Objects

SIFT features

Object classification  score

Image pre-processing Feature Description Correspondence

Figure 8-9.  Operations in hypothetical image classification pipeline using global features

Mapping Operations to Resources
We assume that the DSP provides an API for contrast remapping, and since the DSP is 
already processing all the pixels from the sensor anyway and the pixel data is already 
there, contrast remapping is a good match for the DSP.

The MVS depth map computations follow a data pattern of line and area operations. 
We use the GPU for the heavy-lifting portions of the MVS algorithm, like left/right image 
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pair pattern matching. Our algorithm follows the basic stereo algorithms, as discussed in 
Chapter 1. The stereo baseline is estimated initially from the accelerometer, then some 
bundle adjustment iterations over the baseline image set are used to improve the baseline 
estimates. We assume that the MVS stereo workload is the heaviest in this pipeline and 
consumes most of the GPU for a second or two. A dense depth map is produced in the 
end to use for depth segmentation.

The color segmentation is performed on RGBI components using a super-pixel 
method [257,258]. A histogram of the color components is also computed in RGBI for 
each superpixel cell. The LBP texture computation is a good match for the GPU since it 
is an area operation amenable to shader programming style. So, it is possible to combine 
the color segmentation and the LBP texture segmentation into the same shader to 
leverage data sharing in register files and avoid data swapping and data copies.

The SIFT feature description can be assigned to CPU threads, and the data can be tiled 
and divided among the CPU threads for parallel feature description. Likewise, the fused 
segmentation can be assigned to CPU threads and the data tiled also. Note that tiled data 
can include overlapping boundary regions or buffers, see later Figure 8-12 for an illustration 
of overlapped data tiling. Labeling can also be assigned to parallel CPU threads in a similar 
manner, using tiled data regions. Finally, we assume a brute-force matching stage using 
database tables for each descriptor to develop the final score, and we weight some features 
more than others in the final scoring, based on training against ground truth data.

Criteria for Resource Assignments
The basic criterion for the resource assignments is to perform the early point processing 
on the DSP, since the data is already resident, and then to use the GPU SIMT SIMD model 
to compute the area operations as shaders to create the depth maps, color segmentation 
maps, and LBP texture maps. The last stages of the pipeline map nicely to thread parallel 
methods and data tiling. Given the chosen operation to resource assignments shown 
in Table 8-6, this application seems cleanly amenable to workload balancing and 
parallelization across the CPU cores in threads and the GPU.

Table 8-6.  Assignments of Operations to Compute Resources
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Augmented Reality 
In this fourth example, we design an augmented reality application for equipment 
maintenance using a wearable display device such as glasses or goggles and wearable 
cameras. The complete system consists of a portable, wearable device with camera and 
display connected to a server via wireless. Processing is distributed between the wearable 
device and the server. (Note: this example is especially high level and leaves out a lot of 
detail, since the actual system would be complex to design, train and test.)

The server system contains all the CAD models of the machine and provides  
on-demand graphics models or renderings of any machine part from any viewpoint. 
The wearable cameras track the eye gaze and  the position of the machine. The wearable 
display allows a service technician to look at a machine and view augmented reality 
overlays on the display, illustrating how to service the machine. As the user looks at a 
given machine, the augmented reality features identify the machine parts and provide 
overlays and animations for assisting in troubleshooting and repair. The system uses a 
combination of RGB images as textures on 3D depth surfaces and a database of 3D CAD 
models of the machine and all the component machine parts.

The system will have the following requirements:

1080p RGB color video camera (1920x1080 pixels) at 30 fps, 12 bits •	
per color, 65 degree FOV, 30 FPS

1080p stereo depth camera with 8 bits Z resolution at 60 fps, •	
65 degree FOV; all stereo processing performed in silicon in the 
camera ASIC with a depth map as output

480p near infra-red camera pointed at eyes of technician, used for •	
gaze detection; the near-infrared camera images better in the  
low-light environment around the head-mounted display

1080p wearable RGB display•	

A wearable PC to drive the cameras and display, descriptor •	
generation, and wireless communications with the server; the 
system is battery powered for mobile use with an 8-hour battery life

A server to contain the CAD models of the machines and parts; •	
each part will have associated descriptors pre-computed into 
the data base; the server can provide either graphics models or 
complete renderings to the wearable device via wireless

Server to contain ground truth data consisting of feature •	
descriptors computed on CAD model renderings of each part + 
normalized 3D coordinates for each descriptor for machine parts

Simplified robustness criteria include perspective, scale, and •	
rotation
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Calibration and Ground Truth Data
We assume that the RGB camera and the stereo camera system are calibrated with 
correct optics to precisely image the same FOV, since the RGB camera and 3D depth map 
must correspond at each pixel location to enable 2D features to be accurately associated 
with the corresponding 3D depth location. However, the eye gaze camera will require 
some independent calibration, and we assume a simple calibration application is 
developed to learn the technician’s eye positions by using the stereo and RGB cameras to 
locate a feature in the FOV, and then overlay an eye gaze vector on a monitor to confirm 
the eye gaze vector accuracy. We do not develop the calibration process here.

However, the ground truth data takes some time to develop and train, and requires 
experts in repair and design of the machine to work together during training. The ground 
truth data includes feature sets for each part, consisting of 2D SIFT features along 
corners, edges, and other locations such as knobs. To create the SIFT features, first a set of 
graphics renderings of each CAD part model is made from representative viewpoints the 
technician is likely to see, and then the 2D SIFT features are computed on the graphics 
renderings, and the geometry of the model is used to create relative 3D coordinates for 
each SIFT feature for correspondence.

The 2D SIFT feature locations are recorded in the database along with relative 3D 
coordinates, and associated into objects using suitable constraints such as angles and 
relative distances, see Figure 8-10. An expert selects a minimum set of features for each 
part during training—primarily strongest features from corners and edges of surfaces. 
The relative angles and distances in three dimensions between the 2D SIFT features are 
recorded in the database to provide for perspective, scale, and rotation invariance. The 
3D coordinates for all the parts are normalized to the size of the machine. In addition, 
the dominant color and texture of each part surface is computed from the renderings 
and stored as texture and color features. This system would require considerable training 
and testing.

Feature and Object Description
In actual use in the field, the RGB camera is used to find the 2D SIFT, LBP and color 
features, and the stereo camera is used to create the depth map. Since the RGB image and 
depth map are pixel-aligned, each feature has 3D coordinates taken from the depth map, 
which means that a 3D coordinate can be assigned to a 2D SIFT feature location. The 3D 
angles and 3D distances between 2D SIFT feature locations are computed as constraints, 
and the combined LBP, color and 2D SIFT features with 3D location constraints are stored 
as SIFT vertex features and sent to the server for correspondence. See Figure 8-10 for an 
illustration of the layout of the SIFT vertex descriptors and parts objects. Note that the 
3D coordinate is associated with several descriptors, including SIFT, LBP texture, ands 
RGB color, similar to the way a 3D vertex is represented in computer graphics by 3D 
location, color, and texture. During training, several SIFT vertex descriptors are created 
from various views of the parts, each view associated by 3D coordinates in the database, 
allowing for simplified searching and matching based on 3D coordinates along with the 
features.
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Overlays and Tracking
In the server, SIFT vertex descriptors in the scene are compared against the database to 
find parts object. The 3D coordinates, angles, and distances of each feature are normalized 
relative to the size of the machine prior to searching. As shown in Figure 8-10, the SIFT 
features are composed at a 3D coordinate into a SIFT vertex descriptor, with an associated 
2D SIFT feature, LBP texture, and color. The SIFT vertex descriptors are associated into 
part objects, which contain the list of vertex coordinates describing each part, along with 
the relative angles and distances between SIFT vertex features.

Assuming that the machine part objects can be defined using a small set of SIFT 
vertex features, sizes and distance can be determined in real time, and the relative 
3D information such as size and position of each part and the whole machine can 
be continually computed. Using 3D coordinates of recognized parts and features, 
augmented reality renderings can be displayed in the head-mounted display, highlighting 
part locations and using overlaying animations illustrating the parts to remove, as well as 
the path for the hand to follow in the repair process.

The near infrared camera tracks the eyes of the technician to create a 3D gaze vector 
onto the scene. The gaze vector can be used for augmented reality “help” overlays in 
the head-mounted display, allowing for gaze-directed zoom or information, with more 
detailed renderings and overlay information displayed for the parts the technician is 
looking at.

Multivariate Descriptor Layout

SIFT vertex descriptor
*3D coordinate
*2D SIFT
*LBP texture
*RGB color

Part object
*Name of part 
*SIFT vertex list
*Angles between SIFT vertex list items
*Distance between SIFT vertex list items
*Service & technical information

Figure 8-10.  SIFT vertex descriptor is similar to a computer graphics vertex using 3D 
location, color, and texture. The SIFT vertex descriptor contains the 2D SIFT descriptor 
from the RGB camera, the 3D coordinate of the 2D SIFT descriptor generated from the 
depth camera, the RGB color at the SIFT vertex, and the LBP texture at the SIFT vertex. 
The Part object contains a list of SIFT vertex descriptors, along with relative angles and 
distances between each 3D coordinate in the SIFT vertex list
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Pipeline Stages and Operations
The pipeline stages are shown in Figure 8-11. Note that the processing is divided between 
the wearable device (primarily for image capture, feature description, and display), and 
a server for heavy workloads, such as correspondence and augmented reality renderings. 
In this example, the wearable device is used in combination with the server, relying on 
a wireless network to transfer images and data. We assume that data bandwidth and 
data compression methods are adequate on the wireless network for all necessary data 
communications.

Align RGB + stereo images

Compute 2D SIFT 
descriptors

3D info: Add 3D coordinate 
to 2D SIFT 

Compute LBP texture + RGB 
color

Send 2DSIFT, 3D info, 
texture & color to server

3D info: Compute 3D angles 
& distances

Convert 3D info to relative 
coordinates

Match 2D SIFT descriptors

Match 3D info with SIFT 3D 
coordinates 

Match RGB-I texture + RGB 
color

Classify features

Object classification score

Feature Description
(device)

Correspondence
(server) 

Augment & Track
(server)

Update gaze pose vector 

Determine augmented 
rendering coordinates

Render overlay & animation 
images

Send graphics geometry to 
device

Render augmentation to 
head-mounted display

Figure 8-11.  Operations in hypothetical augmented reailty pipeline

Mapping Operations to Resources
We make minimal use of the GPU for GPGPU processing and assume the server has many 
CPUs available, and we use the GPU for graphics rendering at the end of the pipeline. 
Most of the operations map well into separate CPU threads using data tiling. Note that a 
server commonly has many high-power and fast CPUs, so using CPU threads is a good 
match. See Table 8-7.
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Criteria for Resource Assignments
On the mobile device, the depth map is computed in silicon on the depth camera. We use 
the GPU to perform the RGB and depth map alignment using the texture sampler, then 
perform SIFT computations on the CPU, since the SIFT computations must be done first 
to have the vertex to anchor and compute the multivariate descriptor information. We 
continue and follow data locality and perform the LBP and color computations for each 
2D SIFT point in separate CPU threads using data tiling and overlapped regions. See later 
Figure 8-12 for an illustration of overlapped data tiling.

Table 8-7.  Assignments of Operations to Compute Resources
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On the server, we have assigned the CAD database and most of the heavy portions 
of the workload, including feature matching and database access, since the server is 
expected to have large storage and memory capacity and many CPUs available. In 
addition, we wish to preserve battery life and minimize heat on the mobile device, so the 
server is preferred for the majority of this workload.

Acceleration Alternatives
There are a variety of common acceleration methods that can be applied to the vision 
pipeline, including attention to memory management, coarse-grained parallelism using 
threads, data-level parallelism using SIMD and SIMT methods, multi-core parallelism, 
advanced CPU and GPU assembler language instructions, and hardware accelerators.

There are two fundamental approaches for acceleration:

1.	 Follow the data

2.	 Follow the algorithm

Optimizing algorithms for compute devices, such as SIMD instruction sets or SIMT 
GPGPU methods, also referred to as stream processing, is oftentimes the obvious choice 
designers consider. However, optimizing for data flow and data residency can yield 

Tile 1

Tile 2

Tile 3

Tile 4

16

16

16 16

Figure 8-12.  Data tiling into four overlapping tiles. The tiles overlap a specific amount, 
16 pixels in this case, allowing for area operations such as convolutions to read, not write, 
into the overlapped region for assembling convolution kernel data from adjacent regions. 
However, each thread only writes into the nonoverlapped region within its tile. Each tile 
can be assigned to a separate thread or CPU core for processing
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better results. For example, bouncing data back and forth between compute resources 
and data formats is not a good idea; it eats up time and power consumed by the copy 
and format conversion operations. Data copying in slow-system memory is much 
slower than data access in fast-register files within the compute units. Considering the 
memory architecture hierarchy of memory speeds, as was illustrated in Figure 8-2, and 
considering the image-intensive character of computer vision, it is better to find ways to 
follow the data and keep the data resident in fast registers and cache memory as long as 
possible, local to the compute unit.

Memory Optimizations
Attention to memory footprint and memory transfer bandwidth are the most often 
overlooked areas when optimizing an imaging or vision application.  As shown in Table 8-2 
and the memory discussion following, a vision pipeline moves several GB/S of data through 
the system between compute units and system memory. In addition, area processes like 
interest point detection and image pre-processing move even more data in complex routes 
through the register files of each compute unit, caches, and system memory.

Why optimize for memory? By optimizing memory use, data transfers are reduced, 
performance is improved, power costs are reduced, and battery life is increased. Power 
is costly; in fact, a large Internet search company has built server farms very close to the 
Columbia River’s hydroelectric systems to guarantee clean power and reduce power 
transmission costs.

For mobile devices, battery life is a top concern. Governments are also beginning 
to issue carbon taxes and credits to encourage power reductions. Memory use, thus, 
is a cost that’s often overlooked. Memory optimization APIs and approaches will be 
different for each compute platform and operating system. A good discussion on memory 
optimization methods for Linux is found in reference[494].

Minimizing Memory Transfers Between Compute Units
Data transfers between compute units should be avoided, if possible. Workload 
consolidation should be considered during the optimization and tuning stage in order to 
perform as much processing as possible on the same data while it is resident in register 
files and the local cache of a given compute unit. That is, follow the data.

For example, using a GPGPU shader for a single-area operation, then processing the 
same data on the CPU will likely be slower than performing all the processing on the CPU. 
That’s because GPGPU kernels require device driver intervention to set up the memory 
for each kernel and launch each kernel, while a CPU program accesses code and data 
directly, with no driver set-up required other than initial program loading. One method 
to reduce the back-and-forth between compute units is to use loop coalescing and task 
chaining, discussed later in this section.
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Memory Tiling
When dividing workloads for coarse-grained parallelism into several threads, the image 
can be broken into tiled regions and each tile assigned to a thread. Tiling works well 
for point, line, and area processing, where each thread performs the same operation 
on the tiled region. By allowing for an overlapped read regions between tiles, the hard 
boundaries are eliminated and area operations like convolution can read into adjacent 
tiles for kernel processing, as well as write finished results into their tile.

DMA, Data Copy, and Conversions
Often, multiple copies of an image are needed in the vision pipeline, and in some cases, 
the data must be converted from one type to another. Converting 12-bit unsigned 
color channel data stored in a 16-bit integer to a 32-bit integer allowing for more 
accurate numerical precision downstream in computations is one example. Also, the 
color channels might be converted into a chosen color space, such as RGBI, for color 
processing in the I component space (R*G*B)/3 = I; then, the new I value is mixed 
and copied back into the RGB components. Careful attention to data layout and data 
residency will allow more efficient forward and backward color conversions.

When copying data, it is good to try using the direct memory access (DMA) unit for 
the fastest possible data copies. The DMA unit is implemented in hardware to directly 
optimize and control the I/O interconnect traffic in and out of memory. Operating 
systems provide APIs to access the DMA unit [494]. There are variations for optimizing 
the DMA methods, and some interesting reading comparing cache performance against 
DMA in vision applications are found in references[497,495].

Register Files, Memory Caching, and Pinning
The memory system is a hierarchy of virtual and physical memories for each processor, 
composed of slow fixed storage such as file systems, page files, and swap files for 
managing virtual memory, system memory, caches, and fast-register files inside compute 
units, and with memory interconnects in between. If the data to process is resident in the 
register files, it is processed by the ALU at processor clock rates. Best-case memory access 
is via the register files close to each ALU, so keeping the data in registers and performing 
all possible processing before copying the data is optimal, but this may require some code 
changes (discussed later in this section).

If the cache must be accessed to get the data, more clock cycles are burned (power 
is burned, performance is lost) compared to accessing the register files. And if there is a 
cache miss and much slower system memory must be accessed, typically many hundreds 
of clock cycles are required to move the memory to register files through the caches for 
ALU processing.

Operating systems provide APIs to lock or pin the data in memory, which usually 
increases the amount of data in cache, decreasing paging and swapping. (Swapping is a 
hidden copy operation carried out by the operating system automatically to make more 
room in system memory). When data is accessed often, the data will be resident in the 
faster cache memories, as was illustrated in Figure 8-2.
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Data Structures, Packing, and Vector vs. Scatter-Gather  
Data Organization
The data structures used contribute to memory traffic. Data organization should allow serial 
access in contiguous blocks as much as possible to provide best performance. From the 
programming perspective, data structures are often designed with convenience in mind, and 
no attention is given to how the compiler will arrange the data or the resulting performance.

For example, consider a data structure with several fields composed of bytes, 
integers, and floating point data items; compilers may attempt to rearrange the positions 
of data items in the data structures, and even pack the data in a different order for various 
optimizations. Compilers usually provide a set of compiler directives, such as in-line pragmas 
and compiler switches, to control the data packing behavior; these are worth looking into.

For point processing, vectors of data are the natural structure, and the memory 
system will operate at peak performance in accessing and processing contiguous vectors. 
For area operations, rectangles spanning several lines are used, and the rectangles cause 
memory access patterns that can generate cache misses. Using scatter-gather operations 
for gathering convolution kernel data allows a large data structure to be split apart into 
vectors of data, increasing performance. Often, CPU and GPU memory architectures pay 
special attention to data-access patterns and provide hidden methods for optimizations.

Scatter-gather operations, also referred to as vectored I/O or strided memory access, 
can be implemented in the GPU or CPU silicon to allow for rapid read/write access to 
noncontiguous data structure patterns. Typically, a scatter operation writes multiple 
input buffers into a contiguous pattern in a single output buffer, and a gather operation 
analogously reads multiple input buffers into a contiguous pattern in the output buffer.

Operating systems and compute languages provide APIs for scatter-gather 
operations. For Linux-style operating systems, see the readv and writev function specified 
in the POSIX 1003.1-2001 specification. The async_work_group_strided_copy function  
is provided by OpenCL for scatter-gather.

Coarse-Grain Parallelism
A vision pipeline can be implemented using coarse-grain parallelism by breaking up the 
work into threads, and also by assigning work to multiple processor cores. Coarse-grained 
parallelism can be achieved by breaking up the compute workload into pipelines of 
threads, or by breaking up the memory into tiles assigned to multiple threads.

Compute-Centric vs. Data-Centric
Coarse-grain parallelism can be employed via compute-centric and data-centric 
approaches. For example, in a compute-centric approach, vision pipeline stages can be 
split among independent execution threads and compute units along the lines of pipeline 
stages, and data is fed into the next stage a little at a time via queues and FIFOs. In a data-
centric approach, an image can be split into tiles, as was shown in Figure 8-12, and each 
thread processes an independent tile region.



Chapter 8 ■ Vision Pipelines and Optimizations 

354

Threads and Multiple Cores
Several methods exist to spread threads across multiple CPU cores, including reliance on 
the operating system scheduler to make optimum use of each CPU core and perform load 
balancing. Another is by assigning specific tasks to specific CPU cores. Each operating 
system has different controls available to tune the process scheduler for each thread, 
and also may provide the capability to assign specific threads to specific processors. 
(We discuss programming resources, languages and tools for coarse-grained threading 
later in this chapter.) Each operating system will provide an API for threading, such as 
pthreads. See Figure 8-13.
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Figure 8-13.  (Left) Typical SIFT descriptor pipeline compute allocation [180]. (Right) 
Reported compute times [120] for ORB, SURF, and SIFT, averaged over twenty-four 640x480 
images containing about 1,000 features per image. Retrofitting ORB for SIFT may be a good 
choice in some applications

Fine-Grain Data Parallelism
Fine-grain parallelism refers to the data organization and the corresponding processor 
architectures exploiting parallelism, traditionally referred to as array processors or vector processors. 
Not all applications are data parallel. Deploying non-data-parallel code to run on a data-parallel 
machine is counterproductive; it’s better to use the CPU and straight-line code to start.

A data-parallel operation should exhibit common memory patterns, such as large 
arrays of regular data like lines of pixels or tiles of pixels, which are processed in the same 
way. Referring back to Figure 8-1, note that some algorithms operate on vectors of points, 
lines, and pixel regions. These data patterns and corresponding processing operations are 
inherently data-parallel. Examples of point operations are color corrections and data-
type conversions, and examples of area operations are convolution and morphology. 
Some algorithms are straight-line code, with lots of branching and little parallelism.  
Fine-grained data parallelism is supported directly via SIMD and SIMT methods.
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SIMD, SIMT, and SPMD Fundamentals
The supercomputers of yesterday are now equivalent to the GPUs and multi-core CPUs of 
today. The performance of SIMD, SIMT, and SPMD machines, and their parallel programming 
languages, is of great interest to the scientific community. It has been developed over decades, 
and many good resources are available that can be applied to inexpensive SOCs today; see the 
National Center for Supercomputing Applications[544] for a starting point.

SIMD instructions and multiple threads can be applied when fine-grained 
parallelism exists in the data layout in memory and the algorithm itself, such as with 
point, line, and area operations on vectors. Single Instruction Multiple Data (SIMD) 
instructions process several data items in a vector simultaneously. To exploit fine-grained 
parallelism at the SIMD level, both the computer language and the corresponding ALUs 
should provide direct support for a rich set of vector data types and vector instructions. 
Vector-oriented programming languages are required to exploit data-parallelism, as 
shown in Table 8-8; however, sometimes compiler switches are available to exploit 
SIMD. Note that languages like C++ do not directly support vector data types and vector 
instructions, while data-parallel languages do, as shown in Table 8-8.

Table 8-8.  Common Data-Parallel Language Choices

Language Name Standard or Proprietary OS Platform Support

Pixel Shader GLSL Standard OpenGL Several OS platforms

Pixel Shader HLSL Direct3D Microsoft OS

Compute Shader Direct3D Microsoft OS

Compute Shader Standard OpenGL Several OS platforms

RenderScript Android Google OS

OpenCL Standard Several OS platforms

C++ AMP Microsoft Microsoft OS platforms

CUDA Only for NVIDIA GPUs Several OS platforms

OpenMP Standard Several OS platforms

In some cases, the cost of SIMT outweighs its benefit, especially considering run-
time overhead for data set-up and tear-down, thread management, code portability 
problems, and scalability across large and small CPUs and GPUs.

In addition to SIMD instructions, a method for launching and managing large 
groups of threads running the same identical code must be provided to exploit data-
parallelism, referred to as Single Instruction Multiple Threading (SIMT), also known as 
Single Program Multiple Data (SPMD). The SIMT programs are referred to as shaders, 
since historically the pixel shaders and vertex shaders used in computer graphics were 
the first programs widely used to exploit fine-grained data parallelism. Shaders are also 
referred to as kernels.
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Both CPUs and GPUs support SIMD instructions and SIMT methods—for example, 
using languages like OpenCL. The CPU uses the operating system scheduler for managing 
threads; however, GPUs use hardware schedulers, dispatchers, and scoreboarding logic to 
track thread execution and blocking status, allowing several threads running an identical 
kernel on different data to share the same ALU. For the GPU, each shader runs on the ALU 
until it is blocked on a memory transfer, a function call, or is swapped out by the GPU 
shader scheduler when its time slice expires.

Note that both C++ AMP and CUDA seem to provide language environments closest 
to C++. The programming model and language for SIMT programming contains a run-
time execution component to marshal data for each thread, launch threads, and manage 
communications and completion status for groups of threads. Common SIMT languages 
are shown in Table 8-8.

Note that CPU and GPU execution environments differ significantly at the hardware 
and software level. The GPU relies on device drivers for set-up and tear-down, and  
fixed-function hardware scheduling, while CPUs rely on the operating system scheduler 
and perhaps micro-schedulers. A CPU is typically programmed in C or C++, and the 
program executes directly from memory and is scheduled by the operating system, 
while a GPU requires a shader or kernel program to be written in a SIMT SIMD-friendly 
language such as a compute shader or pixel shader in DirectX or OpenGL, or a GPGPU 
language such as CUDA or OpenCL.

Furthermore, a shader kernel must be launched via a run-time system through a 
device driver to the GPU, and an execution context is created within the GPU prior to 
execution. A GPU may also use a dedicated system memory partition where the data 
must reside, and in some cases the GPU will also provide a dedicated fast-memory unit.

GPGPU programming has both memory data set-up and program set-up overhead 
through the run-time system, and unless several kernels are executed sequentially in 
the GPU to hide the overhead, the set-up and tear-down overhead for a single kernel can 
exceed any benefit gained via the GPU SIMD/SIMT processing.

The decision to use a data parallelism SIMT programming model affects program 
design and portability. The use of SIMT is not necessary, and in any case a standard 
programming language like C++ must be used to control the SIMT run-time environment, 
as well as the entire vision pipeline. However, the performance advantages of a  
data-parallel SIMT model are in some cases dramatically compelling and the best choice. 
Note, however, that GPGPU SIMT programming may actually be slower than using 
multiple CPU cores with SIMD instructions, coarse-grained threading, and data tiling, 
especially in cases where the GPU does not support enough parallel threads in hardware, 
which is the case for smaller GPUs.

Shader Kernel Languages and GPGPU
As shown in Table 8-8, there are several alternatives for creating SIMD SIMT data-parallel 
code, sometimes referred to as GPGPU or stream processing. As mentioned above, the 
actual GPGPU programs are known as shaders or kernels. Historically, pixel shaders and 
vertex shaders were developed as data-parallel languages for graphics standards like 
OpenGL and DirectX. However, with the advent of CUDA built exclusively for NVIDIA 
GPUs, the idea of a standard, general-purpose compute capability within the GPU 
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emerged. The concept was received in the industry, although no killer apps existed 
and pixel shaders could also be used to get equivalent results. In the end, each GPGPU 
programming language translates into machine language anyway, so the choice of high-
level GPGPU language may not be significant in many cases.

However, the choice of GPGPU language is sometimes limited for a vendor operating 
system. For example, major vendors such as Google, Microsoft, and Apple do not agree 
on the same approach for GPGPU and they provide different languages, which means 
that industry-wide standardization is still a work in progress and portability of shader 
code is elusive. Perhaps the closest to a portable standard solution is OpenCL, but 
compute shaders for DirectX and OpenGL are viable alternatives.

Advanced Instruction Sets and Accelerators
Each processor has a set of advanced instructions for accelerating specific operations. 
The vendor processor and compiler documentation should be consulted for the latest 
information. A summary of advanced instructions is shown in Table 8-9.

Table 8-9.  Advanced Instruction Set Items

Instruction Type Description

Trancendentals GPU’s have special assembler instructions to compute common 
transcendental math functions for graphics rendering math 
operations, such as dot product, square root, cosine, and logarithms. 
In some cases, CPUs also have transcendental functions.

Fused 
instructions

Common operations such as multiply and add are often 
implemented in single fused MADD instruction, where both 
multiply and add are performed in a single clock cycle; the 
instruction may have three or more operands.

SIMD 
instructions

CPUs have SIMD instruction sets, such as the Intel SSE and Intel 
AVX instructions, similar SIMD for AMD processors, and NEON for 
ARM processors.

Advanced data 
types

Some instruction sets, such as for GPU’s, provide odd data types 
not supported by common language compilers, such as half-byte 
integers, 8-bit floating point numbers, and fixed-point numbers. 
Special data types may be supported by portions of the instruction 
set, but not all.

Memory access 
modifiers

Some processors provide strided memory access capability to 
support scatter-gather operations, bit-swizzling operations to allow 
for register contents to be moved and copied in programmable 
bit patterns, and permuted memory access patterns to support 
cross-lane patterns. Intel processors also provide MPX memory 
protection instructions for pointer checking.

(continued)
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Instruction Type Description

Security Cryptographic accelerators and special instructions may be 
provided for common ciphers such as SHA or AES ciphers; for 
example, INTEL AES-NI. In addition, Intel offers the INTEL SGX 
extensions to provide curtained memory regions to execute secure 
software; the curtained regions cannot be accessed by malware.

Hardware 
accelerators

Common accelerators include GPU texture samplers for image 
warping and sub-sampling, and DMA units for fast memory copies. 
Operating systems provide APIs to access the DMA unit [494]. 
Graphics programming languages such as OpenGL and DirectX 
provide access to the texture sampler, and GPGPU languages such 
as OpenCL and CUDA also provide texture sampler APIs.

APIs provided by operating system vendors may or may not use the special 
instructions. Compilers from each processor vendor will optimize all code to take 
best advantage of the advanced instructions; other compilers may or may not 
provide optimizations. However, each compiler will provide different flags to control 
optimizations, so code tuning and profiling are required. Using assembler language is the 
best way to get all the performance available from the advanced instruction sets.

Vision Algorithm Optimizations and Tuning
Optimizations can be based on intuition or on performance profiling, usually a 
combination of both. Assuming that the hot spots are identified, a variety of optimization 
methods can be applied as discussed in this section. Performance hotspots can be 
addressed from the data perspective, the algorithm perspective, or both.  Most of the time 
memory access is a hidden cost, and not understood by the developer (the algorithms 
are hard enough). However memory optimizations alone can be the key to increasing 
performance. Table 8-11 summarizes various approaches for optimizations, which are 
discussed next.

Data access patterns for each algorithm can be described using the Zinner, Kubinger, 
and Isaac taxonomy [494] shown in Table 8-10. Note that usually the preferred data access 
pattern is in-place (IP) computations, which involve reading the data once into fast 
registers, processing and storing the results in the registers, and writing the final results 
back on top of the original image. This approach takes maximal advantage of the cache 
lines and the registers, avoiding slower memory until the data is processed.

Table 8-9.  (continued)
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Compiler And Manual Optimizations
Usually a good compiler can automatically perform many of the optimizations listed 
in Table 8-11; however, check the compiler flags to understand the options. The goal of 
the optimizations is to keep the CPU instruction execution pipelines full, or to reduce 
memory traffic. However, many of the optimizations in Table 8-11 require hand coding to 
boil down the algorithm into tighter loops with more data sharing in fast registers and less 
data copying.

Table 8-10.  Image Processing Data Access Pattern Taxonomy (from Zinner et al.[494])

Type Description Source Images Destination Images READ WRITE

(1S) 1 source, 0 
destination

1 0 Source 
image

no

(2S) 2 source, 0 
destination

2 0 Source 
images

no

(IP) In-place* 1 0 Source 
image

Source 
image

(1S1D) 1 source, 1 
destination

1 1 Source 
image

Destination 
image

(2S1D) 2 source, 1 
destination

2 1 Source 
images

Destination 
image

*IP processing is usually the simplest way to reduce memory read/write bandwidth and 
memory footprint.

Table 8-11.  Common Optimization Techniques, Manual And Compiler Methods

Name Description

Sub-function inlining Eliminating function calls by copying the function code in-line

Task chaining Feeding the output of a function into a waiting function piece 
by piece

Branch elimination Re-coding to eliminate conditional branches, or reduce 
branches by combining multiple branch conditions together

Loop coalescing Combining inner and outer loops into fewer loops using more 
straight line code

Packing data Rearranging data alignment within structures and adding 
padding to certain data items for better data alignment to 
larger data word or page boundaries to allow for more efficient 
memory read and write

(continued)
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Tuning
After optimizing, tuning a working vision pipeline can be accomplished from several 
perspectives. The goal is to provide run-time controls. Table 8-12 provides some examples 
of tuning controls that may be implemented to allow for run-time or compile-time tuning.

Name Description

Loop unrolling Reducing the loop iteration count by replicating code inside 
the loop; may be accomplished using straight line code 
replication or by packing multiple iterations into a VLIW

Function coalescing* Rewriting serial functions into a single function, with a single 
outer loop to read and write data to system memory; passing 
small data items in fast registers between coalesced functions 
instead of passing large images buffers

ROS-DMA* Double-buffering DMA overlapped with processing; DMA 
and processing occur in parallel, DMA the new data in during 
processing, DMA the results out

* Function coalescing and ROS-DMA are not compiler methods, and may be performed at 
the source code level.

Note: See references[498,499] for more information on compiler optimizations, and see each 
vendor’s compiler documentation for information on available optimization controls.

Table 8-11.  (continued)

Table 8-12.  Run-Time Tuning Controls for a Vision Pipeline

Image Resolution Allowing variable resolution over an octave scale or other scale 
to reduce workload

Frames per second Skipping frames to reduce the workload

Feature database size 
and accuracy

Finding ways to reduce the size of the database, for example 
have one data base with higher accuracy, and another database 
with lower accuracy, each built using a different classier

Feature database 
organization and 
speed

Improving performance through better organization and 
searching, perhaps have more than one database, each using a 
different organization strategy and classifier

Feature Descriptor Retrofit, Detectors, Distance Functions
As discussed in Chapter 6, many feature descriptor methods such as SIFT can be retro-fitted 
to use other representations and feature descriptions. For example, the LBP-SIFT retrofit 
discussed in Chapter 6 uses a local binary pattern in place of the gradient methods used 
by SIFT for impressive speedup, while preserving the other aspects of the SIFT pipeline. 
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The ROOT-SIFT method is another SIFT acceleration alternative discussed in Chapter 6. 
Detectors and descriptors can be mixed and matched to achieve different combinations 
of invariance and performance, see the REIN framework [397].

In addition to the descriptor extractor itself, the distance functions often consume 
considerable time in the feature matching stage. For example, local binary descriptors 
such as FREAK and ORB use fast Hamming distance, while SIFT uses the Euclidean 
distance, which is slower. Retro-fitting the vision pipeline to use a local binary descriptor 
is an example of how the distance function can have a significant performance impact.

It should be pointed out that the descriptors reviewed in Chapter 6 are often based 
on academic research, not on extensive engineering field trials and optimizations. Each 
method is just a starting point for further development and customization. We can be 
sure that military weapon systems have been using similar, but far more optimal feature 
description methods for decades within vision pipelines in deployed systems. See 
Figure 8-13.

Boxlets and Convolution Acceleration
Convolution is one of the most common operations in feature description and image  
pre-processing, so convolution is a key target for optimizations and hardware 
acceleration. The boxlet method [392] approximates convolution and provides a speed 
vs. accuracy tradeoff. Boxlets can be used to optimize any system that relies heavily on 
convolutions, such as the convolutional network approach used by LeCun and others 
[85,336,339]. The basic approach is to approximate a pair of 2D signals, the kernel and the 
image, as low-degree polynomials, which quantizes each signal and reduces the data size; 
and then differentiating the two signals to obtain the impulse functions and convolution 
approximation. The full convolution can be recovered by integrating the result of the 
differentiation.

Another convolution and general area processing acceleration method is to reuse 
as much overlapping data as possible while it exists in fast registers, instead of reading 
the entire region of data items for each operation. When performing area operations, it 
is possible to program to use sliding windows and pointers in an attempt to reuse data 
items from adjacent rectangles that are already in the register files, rather than copying 
complete new rectangles into registers for each area operation. This is another area suited 
for silicon acceleration.

Also, scatter-gather instructions can be used to gather the convolution data into 
memory for accelerated processing in some cases, and GPUs often optimize the memory 
architecture for fast area operations.

Data-Type Optimizations, Integer vs. Float
Software engineers usually use integers as the default data type, with little thought about 
memory and performance. Often, there is low-hanging fruit in most code in the area of 
data types. For example, conversion of data from int32 to int16, and conversion from 
double to float, are obvious space-savings items to consider when the extra bit precision 
is not needed.
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In some cases, floating-point data types are used when an integer will do equally 
well. Floating-point computations in general require nearly four times more silicon 
area, which consumes correspondingly more power.  The data types consume more 
memory and may require more clock cycles to compute. As an alternative to floating 
point, some processors provide fixed-point data types and instructions, which can be 
very efficient.

Optimization Resources
Several resources in the form of software libraries and tools are available for computer 
vision and image processing optimizations. Some are listed in Table 8-13.

Table 8-13.  Vision Optimization Resources

Method Acceleration Strategy Examples

Threading libraries Coarse-grained parallelism Intel TBB, pthreads

Pipeline building  
tools

Connect functions into pipelines PfeLib Vision Pipeline 
Library [495]

Halide [543]*

Primitive  
acceleration libraries

Functions are pre-optimized Intel IPP, NVIDIA NPP, 
Qualcomm FastCV

GPGPU languages Develop SIMT SIMD code CUDA, OpenCL, C++ AMP, 
INTEL CILK++, GLSL, 
HLSL, Compute Shaders 
for OpenGL and Direct3D, 
RenderScript

Compiler flags Compiler optimizes for each 
processor; see Table 8-10

Vendor-specific

SIMD instructions Directly code in assembler, or 
use compiler flags for standard 
languages, or use GPGPU 
languages.

Vendor-specific

Hardware  
accelerators

Silicon accelerators for complex 
functions

Texture Samplers; others 
provided selectively by 
vendors

Advanced  
instruction sets

Accelerate complex low-level 
operations, or fuse multiple 
instructions; see Table 8-9

INTEL AVX, ARM NEON, 
GPU instruction sets

*Open source available.
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Summary
This chapter ties together the discussions from previous chapters into complete vision 
systems by developing four purely hypothetical high-level application designs. Design 
details such as compute resource assignments and optimization alternatives are 
discussed for each pipeline, intended to generate a discussion about how to design 
efficient systems (the examples are sketchy at times). The applications explored include 
automobile recognition using shape and color features, face and emotion detection using 
sparse local features, whole image classification using global features, and augmented 
reality. Each example illustrates the use of different feature descriptor families from the 
Vision Metrics Taxonomy presented in Chapter 5, such as polygon shape methods, color 
descriptors, sparse local features, global features, and depth information. A wide range of 
feature description methods were used in the examples to illustrate the challenges in the 
pre-processing stage.

In addition, a general discussion of design concepts for optimizations and load 
balancing across the compute resources in the SOC fabric (CPU, GPU, and memory) 
was provided to explore HW/SW system challenges, such as power reductions. Finally, 
an overview of SW optimization resources and specific optimization techniques was 
presented.
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