
Vol. 15, 3, 343{355 (1999)
Revista Internacional de
M�etodos Num�ericos para

C�alculo y Dise~no en Ingenier��a

Elementos �nitos orientado por objetos

Marco L. Bittencourt

Departamento de Projeto Mecânico

Faculdade de Engenharia Mecânica

Universidade Estadual de Campinas

Caixa Postal 6051, Campinas, SP, 13083-970, Brasil

e-mail: mlb@fem.unicamp.br

Antônio S. Guimar~aes e Ra�ul A. Feij�oo

Laborat�orio Nacional de Computa�c~ao Cient���ca (LNCC/CNPq)

Av. Getulio Vargas 333, Quintadinha

25651-070, Petr�opolis, RJ - Brasil

Tel.: 55-24-233 60 17/61 57, Fax: 55-24-233 61 65/231 55 95

e-mail: feij@alpha.lncc.br

Sum�ario

Este artigo considera o desenvolvimento de programas para an�alise estrutural usando programa�c~ao orientada
por objetos. Apresentam-se uma revis~ao bibliogr�a�ca, conceitos de orienta�c~ao por objetos e classes para
an�alise linear por elementos �nitos. Finalmente, dois ambientes para problemas el�asticos bidimensionais s~ao
considerados, os quais integram ferramentas para a de�ni�c~ao de geometria, gera�c~ao autom�atica de malhas,
solu�c~ao, estimadores de erro, visualiza�c~ao de resultados e interfaces gr�a�cas.

OBJECT-ORIENTED FINITE ELEMENTS

Summary

This paper presents the development of structural analysis softwares based on object-oriented programming.
A bibliographical review, object-oriented concepts and classes for linear �nite element analysis are presented.
Finally , two-dimensional elastic environments are considered, which integrate tools for geometry de�nition,
automatic mesh generation, solver, error estimation, visualization of results and graphic user interfaces.

INTRODUC� ~AO

A implementa�c~ao computacional de m�etodos num�ericos, tais como o M�etodo de Elemen-
tos Finitos (MEF), para a an�alise de problemas de engenharia �e de fundamental importância.
Sob o ponto de vista do usu�ario , o programa deve possuir uma interface de utiliza�c~ao sim-
ples, ser con��avel e e�ciente. No que se refere �a implementa�c~ao, desejam-se caracter��sticas
como modula�c~ao, extensibilidade, f�acil manuten�c~ao, dentre outras.

Apesar de v�arios progressos, a produtividade no desenvolvimento de softwares ainda �e
pequena, comparado ao crescimento vertiginoso da ind�ustria de hardware nos �ultimos tem-
pos. Desta maneira, torna-se essencial disciplinar a implementa�c~ao de programas aplicando
por exemplo conceitos de engenharia de software24. No caso do meio cient���co, estes requi-
sitos s~ao importantes para uma maior quali�ca�c~ao dos programas, evitando a repeti�c~ao de
procedimentos em cada trabalho realizado. Desta forma, atrav�es de uma maior organiza�c~ao,
pode-se ter uma base s�olida de programas, permitindo a sua r�apida extens~ao para o estudo
de novos problemas.

c
Universitat Polit�ecnica de Catalunya (Espa~na). ISSN: 0213{1315 Recibido: Marzo 1998



344 M.L Bittencourt, A.C. Salgado Guimar~aes e R.A. Feij�oo

O modelo de programa�c~ao orientada por objetos17 tem possibilitado aumentar a pro-
dutividade no desenvolvimento de programas. Basicamente, identi�cam-se os agentes prin-
cipais da base de conhecimento a ser reprentada no programa. Estes agentes ou objetos
possuem atributos e m�etodos descrevendo as caracter��sticas e os comportamentos de in-
teresse. Assim, num programa tem-se um conjunto de objetos implementados atrav�es de
classes, as quais constituem-se em moldes para a de�ni�c~ao dos objetos como instâncias de
uma classe. Por sua vez, duas instâncias diferem entre si pelos valores atribu��dos as suas
vari�aveis. Desta maneira, as classes s~ao a unidade b�asica de modula�c~ao num sistema por
objetos.

Os objetos se comunicam atrav�es do envio de mensagens, as quais especi�cam apenas a

a�c~ao a ser feita. �E responsabilidade do objeto receptor interpretar a mensagem e executar o
conjunto de opera�c~oes correspondente, retornando o resultado para a instância que emitiu
a mensagem. Logo, numa classe tem-se o encapsulamento da informa�c~ao, a qual pode ser
acessada apenas atrav�es do envio de uma mensagem para o m�etodo desejado. Observa-
se ainda que uma mesma mensagem pode endere�car diferentes procedimentos dependendo
da classe receptora. Por exemplo, a opera�c~ao + para matrizes representa uma adi�c~ao
usual, enquanto para um conjunto de caracteres poderia signi�car concatena�c~ao. Esta
caracter��stica �e denominada polimor�smo.

Al�em disso, tem-se o conceito de heran�ca permitindo especializar a informa�c~ao ao longo
de uma hierarquia de classes, onde aquelas situadas em n��veis mais baixos herdam as carac-
ter��sticas (dados + m�etodos) daquelas classes situadas acima. Assim, �e poss��vel estender ou
reutilizar classes em v�arias aplica�c~oes, bastando acrescentar apenas as vari�aveis e m�etodos
necess�arios para descrever a especializa�c~ao desejada.

A principal diferen�ca do paradigma por objetos �e a proximidade com os conceitos do
mundo real a ser implementado no programa. Ao contr�ario do modelo por procedimen-
tos, onde se isolam os comportamentos atrav�es de subrotinas, tem-se entidades pr�oprias
descrevendo as suas principais caracter��sticas atrav�es de vari�aveis e m�etodos.

Estes conceitos têm sido aplicados na an�alise estrutural de problemas de engenharia,
podendo-se citar alguns trabalhos iniciais17;23;15;6;11;29 . Um dos primeiros programas imple-
mentados est�a discutido em6, usando a linguagem Object NAP baseada em rotinas escritas
em C e Pascal. Em11, apresentam-se conceitos gerais de programa�c~ao por objetos, incluindo
aspectos sobre concorrência, processamento distribu��do e banco de dados, al�em de um pro-
grama para an�alise por elementos �nitos implementado com uma extens~ao da linguagem
LISP, denominada Flavors.

Conceitos do modelo por objetos aplicados ao MEF s~ao tamb�em discutidos em29, apre-
sentando-se uma extens~ao da hierarquia de classes da linguagem Smalltalk para o caso do
MEF. Detalhes de implementa�c~ao deste programa prot�otipo est~ao dados em32. Devido a
baixa e�ciência do ambiente Smalltalk, desenvolveu-se em33 uma vers~ao do mesmo programa
em C++25. Uma extens~ao para o tratamento de problemas de plasticidade est�a dada em22.

Aplica�c~oes da linguagem C++ com diferentes enfoques tamb�em podem ser encontradas
em5;27;28 . Em12, tem-se uma hierarquia de classes para o tratamento de v�arios tipos de
matrizes, tais como sim�etrica, esparsa, coluna, dentre outras, al�em de uma s�erie de classes
para o tratamento de entidades do MEF. J�a em3, tem-se um ambiente em C++ constitu��do
de um interpretador e um m�odulo de execu�c~ao. Atrav�es de uma linguagem interpretada,
pode-se especi�car interativamente os parâmetros do modelo de elementos �nitos e da
solu�c~ao. Exemplos de problemas lineares e n~ao-lineares s~ao resolvidos.

Em14;13, apresentam-se aspectos da programa�c~ao por objetos aplicados a an�alise
num�erica, representa�c~ao gr�a�ca das classes, bancos de dados, incluindo ainda a aplica�c~ao
destes conceitos na implementa�c~ao de um programa para o tratamento de laminas de ma-
teriais compostos. Al�em disso, aspectos de inteligência arti�cial s~ao tamb�em abordados
em conjunto com a an�alise estrutural. Esta tem�atica tamb�em �e discutida em30;31, apresen-
tando uma s�erie de ferramentas computacionais para automatizar o processo de an�alise,



Elementos �nitos orientado por objetos 345

fornecendo uma base de conhecimentos e sistemas especialistas para auxiliar a especi�ca�c~ao
de parâmetros da an�alise, interpreta�c~ao dos resultados, procedimentos adapt�aveis, trata-
mento de erros, dentre outros. O objetivo b�asico �e acumular um conjunto de conhecimentos
de um especialista, auxiliando o usu�ario comum na simula�c~ao computacional de problemas
mecânicos, tornando o ambiente de an�alise mais inteligente.

Um grande esfor�co no desenvolvimento de programas para engenharia estrutural
tem sido realizado por um conjunto de pesquisadores, come�cando com a linguagem
Fortran10, passando para C1 e �nalmente utilizando o modelo de programa�c~ao orientada
por objetos18;9;8;23;16;2 atrav�es da linguagem C++. De forma geral, tem-se bibliotecas de
classes e procedimentos para bancos de dados, tratamento de erros, estruturas de dados,
manipula�c~ao de matrizes e vetores, rotinas matem�aticas1, al�em de conjuntos de classes
para de�ni�c~ao de contornos geom�etricos16, gera�c~ao autom�atica de malhas9;8, an�alise linear
por elementos �nitos18;23, m�etodos multigrid18;20 , visualiza�c~ao de resultados2;26, otimiza�c~ao
estrutural7, dentre outras.

A contribui�c~ao deste trabalho est�a relacionada a uma nova proposta de organiza�c~ao das
classes para elementos �nitos baseada no conceito de tipos parametrizados dispon��veis em
C++. Consideram-se ainda os sistemas SAFE2 e SAT18 para an�alise de problemas el�asticos
bidimensionais.

Neste trabalho, apresentam-se inicialmente alguns conceitos do modelo orientado por
objetos, tais como modula�c~ao, abstra�c~ao, classes, m�etodos, dentre outros. Posteriormente,
considera-se um conjunto de classes para an�alise linear de problemas el�asticos, empregando
o conceito de tipos parametrizados da linguagem C++. Finalmente, discutem-se dois
ambientes para an�alise de problemas bidimensionais com ferramentas para de�ni�c~ao de
contornos, gera�c~ao autom�atica de malhas, visualiza�c~ao de resultados e an�alise adapt�avel,
integradas atrav�es de interfaces gr�a�cas.

CONCEITOS DE PROGRAMAC� ~AO POR OBJETOS

O modelo orientado por objetos, de maneira an�aloga aos v�arios paradigmas de pro-
grama�c~ao, introduz alguns conceitos particulares, tais como objetos, mensagens, mecanismo
de heran�ca, dentre outros. Ressalta-se, por�em, que nem todas as linguagens orientadas por
objetos implementam todos os conceitos a serem descritos. Assim, a apresenta�c~ao feita
a seguir tem um car�ater mais geral, n~ao procurando destacar as particularidades de uma
linguagem17.

Modula�c~ao: o conceito de modula�c~ao �e de certa forma intuitivo: dado um problema
complexo, subdivide-se o mesmo em subproblemas menos complexos visando obter a solu�c~ao
global.

No entanto, a aplica�c~ao do conceito de modula�c~ao n~ao pode ser realizada inde�nidamente
no desenvolvimento de um programa. Ao mesmo tempo em que o esfor�co de desenvolvi-
mento diminui substancialmente quando se aumenta o n�umero de m�odulos, o esfor�co de
interfaceamento destes m�odulos cresce na mesma propor�c~ao. Alguns tipos de m�odulos s~ao
encontrados em linguagens de programa�c~ao, como por exemplo a declara�c~ao class em C++.
Este m�odulos s~ao componentes de programas que combinam abstra�c~oes de dados e proced-
imentos, incentivando assim, o desenvolvimento de programas modulares.

Ocultamento de informa�c~ao: a aplica�c~ao do conceito de ocultamento de informa�c~ao
no desenvolvimento de um programa permite construir m�odulos onde a interdependência
entre os mesmos �e pequena. Al�em disso, aumenta-se a con�abilidade e as modi�ca�c~oes
s~ao efetuadas localmente dentro de cada m�odulo, preservando assim, a dissemina�c~ao das
altera�c~oes ao longo de todo o sistema.

Para se alcan�car uma modula�c~ao efetiva, de�ne-se um conjunto de m�odulos interdepen-
dentes, os quais se comunicam entre si apenas atrav�es das informa�c~oes necess�arias para



346 M.L Bittencourt, A.C. Salgado Guimar~aes e R.A. Feij�oo

acessar uma determinada caracter��stica. O estado de um m�odulo �e descrito por vari�aveis
locais, vis��veis apenas dentro do escopo deste m�odulo, e um conjunto de procedimentos que
manipulam estes dados. Observa-se que o uso de abstra�c~oes de dados permite de�nir e
utilizar o conceito de ocultamento de informa�c~ao no desenvolvimento de programas.

Abstra�c~ao: para problemas onde se aplicam o conceito de modula�c~ao, v�arios n��veis de abs-
tra�c~ao podem ser considerados. No n��vel mais alto de abstra�c~ao, a solu�c~ao adotada para o
problema �e colocada em termos de uma linguagem pr�oxima ao ambiente do problema. Nos
n��veis mais baixos, descrevem-se os procedimetos a serem implementados. Assim, o uso de
abstra�c~ao permite ao programador concentrar-se em um problema, considerando um n��vel
de generaliza�c~ao qualquer, sem se preocupar com detalhes irrelevantes ao problema.

V�arias linguagens de programa�c~ao, tais como Ada, Modula e Smalltalk, permitem a
cria�c~ao de tipos abstratos de dados, os quais consistem de uma representa�c~ao interna para
os dados e um conjunto de procedimentos para acessar e manipular os dados.

Liga�c~ao dinâmica: nas linguagens convencionais, tais como C , Pascal e FORTRAN , a
partir do conhecimento dos tipos de vari�aveis e constantes utilizadas em uma declara�c~ao, o
compilador gera o c�odigo de m�aquina correspondente. Este processo de de�nir os tipos de
dados aplic�aveis a um operador em uma declara�c~ao, anterior a sua execu�c~ao, �e denominado
liga�c~ao est�atica.

Entretanto, algumas linguagens, como por exemplo C++, permitem a 
exibilidade de
rede�nir operadores convencionais para os tipos declarados pelo usu�ario. Assim, pode-se
de�nir o tipo Vetor, onde a soma de dois vetores A e B �e expressa por A+B. No entanto, esta
liga�c~ao entre tipos e operandos �e realizada ainda, em tempo de compila�c~ao do c�odigo fonte.

A liga�c~ao dinâmica permite associar um tipo de dado a um operando em tempo de ex-
ecu�c~ao do programa. Em C++, esta caracter��stica est�a implementada atrav�es de declara�c~oes
do tipo virtual.

Objeto: um objeto se constitui na unidade b�asica de modula�c~ao no modelo orientado por
objetos, constituindo-se um tipo abstrato de dados.

Para se manipular a informa�c~ao representada por um objeto, deve-se solicitar ao mesmo
que execute uma de suas opera�c~oes, atrav�es do envio de uma mensagem. O objeto que
recebe a mensagem �e denominado receptor, devendo responder esta mensagem atrav�es da
sele�c~ao da fun�c~ao correspondente, executar esta opera�c~ao e retornar o controle para o objeto
emissor da mensagem.

Mensagens: constituem-se nas especi�ca�c~oes das opera�c~oes de um objeto. Assim, quando
um objeto recebe uma mensagem, deve determinar como manipul�a-la para obter a resposta
requerida. Uma mensagem inclui um seletor, descrevendo o tipo de manipula�c~ao desejada,
e argumentos, os quais podem ser outros objetos ou valores das vari�aveis de um objeto.

A caracter��stica principal do mecanismo de mensagem �e que o seletor �e um nome de uma
opera�c~ao, descrevendo apenas a a�c~ao a ser executada. Portanto, uma mesma mensagem pode
ser interpretada de maneiras distintas. Assim, por exemplo, considere as classes Vector e
String. De�nindo-se os objetos Vector A,B e String Str1,Str2, as instru�c~oes A+B e
Str1+Str2, apesar de utilizarem o mesmo operador, possuem signi�cados diferentes.

Classes e instâncias: v�arios sistemas orientados por objetos fazem uma distin�c~ao entre
um objeto e a sua descri�c~ao. Assim, de�nem-se os conceitos de classe e instância.

Uma classe �e uma descri�c~ao geral de um conjunto de objetos semelhantes, provendo todas
as informa�c~oes necess�arias para a cria�c~ao e utiliza�c~ao dos objetos. Uma instância, por sua
vez, �e um objeto descrito por uma classe particular. Cada objeto �e instância de uma classe.
Assim, no exemplo anterior A,B s~ao instâncias da classe Vector.

Todas as instâncias de uma classe utilizam o mesmo m�etodo para responder a uma
mensagem particular. A diferen�ca na resposta obtida para duas instâncias distintas �e
resultado dos diferentes valores armazenados nas vari�aveis. Portanto, pode-se dizer que um



Elementos �nitos orientado por objetos 347

sistema orientado por objetos �e desenvolvido a partir da cria�c~ao das classes que descrevem
os objetos constituintes do sistema.

M�etodos: s~ao procedimentos invocados pelo envio de mensagens para as instâncias de uma
classe. Portanto, um m�etodo, como um procedimento, �e a descri�c~ao de uma sequência de
a�c~oes a serem executadas. De forma an�aloga aos procedimentos, os m�etodos devem conhecer
os tipos de dados que manipulam.

Mecanismo de heran�ca: permite compartilhar as informa�c~oes entre objetos. Supondo
uma hierarquia, os objetos situados em um n��vel inferior herdam todas as caracter��sticas
(dados e opera�c~oes) dos objetos situados em n��veis superiores.

A maioria das linguagens orientadas por objetos implementam o mecanismo de heran�ca
entre as classes do sistema. Uma classe pode ser alterada para criar uma outra. Nesta
rela�c~ao, a primeira classe �e denominada superclasse e a segunda subclasse. Uma subclasse
pode adicionar novas vari�aveis e m�etodos, assim como rede�nir os dados e opera�c~oes da
superclasse.

CLASSES PARA ELEMENTOS FINITOS

O objetivo, neste caso, foi implementar um conjunto de classes para an�alise linear de
estruturas modeladas por elementos �nitos isoparam�etricos. Estas classes foram organizadas
em 4 n��veis como ilustrado na Figura 1. Observa-se que foram utilizados procedimentos do
sistema ACDP1 para o tratamento de erros, grava�c~ao e recupera�c~ao de dados em disco,
assim como rotinas para manipula�c~ao de vetores e matrizes.

Nivel 1

Nivel 2 Nivel 3

Nivel 4

Array, String,
FullMatrix, ...

FiniteElement, ...
Node, Material, NodesVector,

MaterialType, ...

FEModel,
FESolver

Figura 1. N��veis de organiza�c~ao das classes

N�IVEL 1

Envolve a de�ni�c~ao das classes b�asicas do programa, compreendendo as estruturas de
dados empregadas nos demais n��veis. M�etodos para aloca�c~ao dinâmica de mem�oria, mani-
pula�c~ao de banco de dados e procedimentos matem�aticos est~ao dispon��veis.
Matrix: de�ne uma matriz de elementos reais. Tem como principais vari�aveis os n�umeros
de linhas e colunas, al�em de um vetor com os elementos da matriz. Implementa m�etodos
para inicializa�c~ao da matriz, busca de informa�c~ao (m�aximo, m��nimo, norma, ordem, ele-
mento), bem como opera�c~oes envolvendo matrizes, onde est~ao implementados algoritmos
de transposi�c~ao, inser�c~ao de elementos, adi�c~ao, multiplica�c~ao e multiplica�c~ao por escalar.



348 M.L Bittencourt, A.C. Salgado Guimar~aes e R.A. Feij�oo

Implementa, ainda, m�etodos diretos e iterativos para a solu�c~ao de sistemas de equa�c~oes, tais
como Gauss e Gauss-Seidel.

SymmetricMatrix: classe an�aloga a Matrix, mas restrita a matrizes sim�etricas, ar-
mazenando, portanto, apenas a parte inferior da matriz. Considera ainda m�etodos dire-
tos, iterativos estacion�arios e baseados em gradiente conjugado incluindo v�arios tipos de
pr�e-condicionadores.

SymmetricSkyline: classe an�aloga a Matrix para matrizes sim�etricas do tipo skyline.
�E aplicada para de�ni�c~ao da matriz global do sistema de equa�c~oes. Armazena a ordem
da matriz, altura das colunas e os elementos da parte inferior. Possui m�etodos para
superposi�c~ao de matrizes sim�etricas e resolu�c~ao de sistemas de equa�c~oes atrav�es de m�etodos
diretos e iterativos.

SymmetricSparse: �e semelhante a classe a SymmetricSkyline, considerando a estrutura
comprimida por linhas para matriz esparsa18.

Vector: caso particular de Matrix constitu��da de apenas uma coluna. Al�em dos pro-
cedimentos para adi�c~ao, subtra�c~ao e multiplica�c~ao, cont�em m�etodos para produto escalar,
normas e multiplica�c~ao de matrizes por vetor.

String: classe respons�avel pelo manuseio de cadeias de caracteres ao longo do programa.
Possui m�etodos de acesso a elementos, concatena�c~ao e compara�c~ao de caracteres.

Array: Tem por objetivo armazenar conjuntos de objetos. Na sua implementa�c~ao, utilizou-
se classes parametrizadas, onde o tipo de dado �e tamb�em um parâmetro. Em C++, o
comando template permite a de�ni�c~ao de classes e fun�c~oes parametrizadas. Pode-se de�nir
um Array de n�os e de strings pelas declara�c~oes:

Array<Node> Nodes(5) Array<String> Strings(10)

Foram implementados m�etodos para acesso e altera�c~ao do n�umero de elementos, dentre
outros. O objetivo desta classe �e gerenciar conjuntos de qualquer tipo de dado ao longo
do programa. Por quest~oes de e�ciência, consideraram-se as especializa�c~oes Array<long> e
Array<double> para o tratamento de conjuntos de n�umeros inteiros e reais, respectivamente.

N�IVEL 2

Neste n��vel, consideram-se as classes relativas ao modelo de elementos �nitos.

Node: possui como principais atributos o n�umero do n�o e as coordenadas nodais. O n�umero
de coordenadas nodais depende da dimens~ao do problema em estudo, ou seja, uni, bi ou
tridimemsional. Possui ainda uma vari�avel para o n�umero �otimo do n�o obtido por um
algoritmo de renumera�c~ao. Esta classe �e empregada apenas para a passagem de parâmetros
em alguns m�etodos.

De�nitionDOF: esta classe tem por objetivo armazenar os nomes dos graus de liberdade
armazenados como uma vari�avel do tipo Array<String>. Por exemplo, para um problema
el�astico bidimensional, os graus de liberdade dos n�os s~ao denominados UX e UY.

EliminatedDOF: esta classe constitui-se numa tabela de graus de liberdade a serem
eliminados, correspondendo aos deslocamentos nulos, no processo de montagem do sistema
de equa�c~oes. Para isso, armazena o n�umero dos n�os e a cardinalidade dos graus de liberdade
eliminados, utilizando vari�aveis do tipo Array<long>.

PrescribedBC: �e nesta classe que s~ao armazenadas as condi�c~oes de contorno prescritas do
problema a ser solucionado pelo modelo de elementos �nitos. Como exemplo, podem-se citar
as cargas concentradas, distribu��das e de corpo; gradientes de temperatura; e deslocamentos.
Utilizam-se vari�aveis dos tipos Array<double> e Array<long> para armazenar os n�os, os
graus de liberdade e a intensidade dos carregamentos, deslocamentos e temperaturas.



Elementos �nitos orientado por objetos 349

DOFEquation: armazena para cada n�o, o n�umero �otimo determinado por um algoritmo de
renumera�c~ao. Al�em disso, o n�umero e a numera�c~ao dos graus de liberdade s~ao armazenados
nesta classe. Possui m�etodos para realizar a numera�c~ao dos graus de liberdade.

GeometricProperties: �e uma tabela para armazenar as propriedades geom�etricas dos
elementos, tais como espessura, momentos de in�ercia, �area de sec�c~ao, etc. Esta tabela �e
identi�cada pelo seu n�umero armazenado com uma vari�avel inteira.

ElasticMaterial: �e uma classe gen�erica, de�nindo as caracter��sticas b�asicas de ou-
tras classes que implementam as informa�c~oes referentes ao comportamento dos materiais
el�asticos. Possui uma vari�avel para o n�umero do material. Declara v�arias fun�c~oes virtuais
para inicializa�c~ao e acesso �as propriedades dos materiais e outras para obten�c~ao das matrizes
de elasticidade nos casos de estado plano de tens~ao, estado plano de deforma�c~ao, s�olidos
axissim�etricos e estado geral de solicita�c~ao. A partir desta classe, derivam-se outras duas:
ElasticIsotropicMaterial e ElasticOrtotropicMaterial.

ElasticIsotropicMaterial: declara vari�aveis para o armazenamento de informa�c~oes re-
lativas aos materiais el�asticos isotr�opicos, como o m�odulo de elasticidade longitudinal,
coe�ciente de Poisson, coe�ciente de expans~ao t�ermica e densidade. Implementa as fun�c~oes
declaradas virtuais na classe ElasticMaterial. A classe ElasticOrtotropicMaterial �e
an�aloga a esta classe, considerando no entanto, materiais ortotr�opicos.

FiniteElement: constitui-se numa classe gen�erica de onde derivam-se cada um dos di-
ferentes tipos de elementos �nitos. Declara vari�aveis para n�umero do elemento, n�umero
�otimo, n�umero total de graus de liberdade, n�umero do material, n�umero da tabela de
propriedades geom�etricas, n�umero da tabela de sistemas locais de referência, n�umero de
pontos de integra�c~ao e incidência.

Possui m�etodos para inicializa�c~ao e acesso a estas informa�c~oes, bem como m�etodos
virtuais para o c�alculo da matriz de rigidez, matriz de massa, tens~oes, deforma�c~oes e erro
em energia no elemento.

PlaneStressTriangular: �e um dos tipos de elementos implementados. Atrav�es do meca-
nismo de heran�ca, possui acesso a todos os atributos da classe FiniteElement. Implementa
as opera�c~oes declaradas virtuais em FiniteElement para o caso de estado plano de tens~ao.

Tem-se m�etodos de c�alculo das matrizes de rigidez e de massa; tensores de tens~ao e
deforma�c~ao calculados nos pontos de intergra�c~ao de Gauss-Legendere e nas coordenadas
locais dos n�os; estimador de erro; dentre outros.

Desenvolveram-se as classes PlaneStrainTriangle e AxyssimetricTriangle, seme-
lhantes a esta classe, para os casos de estado plano de deforma�c~ao e s�olidos axissim�etricos,
respectivamente. Da mesma maneira, classes quadrados, cubos e tetraedros foram tamb�em
implementadas.

TriangularShapeFunctions: implementa as fun�c~oes de forma de Serendipty at�e o quarto
grau para o caso de elementos �nitos triangulares. Possui m�etodos para o c�alculo das
derivadas em rela�c~ao �as coordenadas locais e globais do elemento, assim como para a matriz
e o determinante do Jacobiano.

TriangularGaussLegendre: armazena os pontos de integra�c~ao e os coe�cientes de pon-
dera�c~ao para a integra�c~ao de Gauss-Legendre utilizadas nas classes PlaneStressTriangle,
PlaneStrainTriangle e AxyssimetricTriangle.

N�IVEL 3

Neste caso, consideram-se conjuntos das classes descritas no n��vel anterior. Constitui-se
basicamente no grupo de classes que vai organizar as informa�c~oes dos atributos do modelo de
elementos �nitos, permitindo a inicializa�c~ao, modi�ca�c~ao e acesso aos atributos das classes
utilizadas. Os dados s~ao lidos a partir de arquivos de dados no formato de�nido2.



350 M.L Bittencourt, A.C. Salgado Guimar~aes e R.A. Feij�oo

Nodes: possui como atributos principais uma vari�avel para armazenar a dimens~ao do
problema (uni, bi ou tridimensional) e um Array<double> para as coordenadas.

DOFBoundaryConditions: armazena as tabelas de de�ni�c~ao dos nomes dos graus de
liberdade, graus eliminados e prescritos. Trata as informa�c~oes das classes De�nitionDOF,
EliminatedDOF e PrescribedBC.

MaterialGroup: implementa um vetor de apontadores da classe ElasticMaterial, ar-
mazenando ainda o tipo dos materiais (isotr�opico ou ortotr�opico) aplicados na an�alise.

FiniteElementGroup: um grupo de elementos �nitos �e constitu��do por elementos do
mesmo tipo. Esta classe declara um vetor do tipo FiniteElement e o nome do elemento,
a �m de gerenciar os v�arios tipos de elementos da malha. Al�em disso, tem-se uma vari�avel
Array<long> para a incidência nodal dos elementos do grupo.

LoadCase: �e um vetor da classe PrescribedBC para o tratamento das condi�c~oes de
carregamento aplicadas �a estrutura.

N�IVEL 4

Neste n��vel, tem-se classes para o armazenamento de todos os atributos do modelo de
elementos �nitos para que o problema seja posteriormente resolvido.

FEModel: esta classe armazena todos os atributos do modelo de elementos �nitos. De�ne
vari�aveis dos tipos descritos no N��vel 3 para os n�os, materiais, condi�c~oes de contorno, grupos
de elementos e condi�c~oes de carregamento. Tem-se ainda uma vari�avel da classe String para
armazenar o t��tulo do modelo. Assim, a partir de um arquivo de entrada, especi�cando as
caracter��sticas do modelo e das opera�c~oes implementadas nesta classe, inicializam-se todas
as demais j�a apresentadas.

FESolver: �e uma classe derivada de FEModel, implementando opera�c~oes para a resolu�c~ao
do modelo. Possui vari�aveis para a matriz do sistema nos formatos skyline e esparso, sendo
op�c~ao do usu�ario escolher a op�c~ao mais conveniente. Como m�etodos de solu�c~ao, tem-se
algoritmos diretos, iterativos e multgrid18;19;20 .

AMBIENTES PARA AN�ALISE DE PROBLEMAS EL�ASTICOS BIDIMEN-
SIONAIS

A aplica�c~ao do MEF para a resolu�c~ao de problemas pr�aticos de engenharia tem apresen-
tado um crescimento consider�avel. Estas ferramentas computacionais possibilitam otimizar
projetos na sua fase inicial, assim como veri�car o comportamento de um componente j�a
existente, visando validar a concep�c~ao atual e permitir ainda a sua posterior otimiza�c~ao.

V�arios programas comerciais est~ao dispon��veis para esta �nalidade. Sob o ponto de vista
do usu�ario destes pacotes, exige-se um bom conhecimento da t�ecnica de an�alise, assim como
uma boa experiência na utiliza�c~ao do programa, visto que em geral a interface de comandos
�e um tanto complexa. Tais fatos limitam uma maior dissemina�c~ao destes programas, pois
o usu�ario deve possuir uma base s�olida de conhecimentos para o efetivo emprego destes
recursos a problemas de engenharia. Uma hip�otese mal formulada, implica em resultados
n~ao re
etindo o real comportamento mecânico do componente. Desta maneira, o programa
deve ser de f�acil utiliza�c~ao, permitindo ao usu�ario dedicar a maior parte do tempo na
de�ni�c~ao e simula�c~ao de modelos para a estrutura considerada.

Observa-se, em geral, que as tarefas de de�ni�c~ao da geometria do componente e da
respectiva malha de elementos �nitos s~ao respons�aveis pela maior demanda em termos de
tempo no estudo de um problema. Em rela�c~ao aos pacotes existentes, observa-se uma maior
integra�c~ao entre programas de CAD (Computer Aided Design) e de an�alise. Empregam-se
as ferramentas CAD para a de�ni�c~ao da geometria e possivelmente da malha. A partir da��,



Elementos �nitos orientado por objetos 351

utiliza-se o programa de an�alise para a obten�c~ao dos resultados. No entanto, em v�arios casos
n~ao se veri�ca uma efetiva integra�c~ao ou onde esta ocorre tem-se uma interface complexa
di�cultando a tarefa do usu�ario.

Desta forma, algoritmos robustos e e�cientes para a gera�c~ao da geometria do componente
e da respectiva malha de elementos, solu�c~ao, estima�c~ao de erros e re�namento, acess��veis
atrav�es de uma interface de comandos simples, s~ao pr�e-requisitos fundamentais para a an�alise
num�erica por elementos �nitos.

Dentro deste contexto, desenvolveu-se inicialmente o ambiente SAFE2 para an�alise bidi-
mensional de problemas el�asticos planos. A Figura 2 ilustra a janela principal e alguns dos
m�odulos do programa, tais como o editor para a especi�ca�c~ao dos parâmetros da estrutura
e da an�alise , o gerador de malhas, a visualiza�c~ao de resultados, al�em da malha re�nada
atrav�es do procedimento adapt�avel baseado no estimador Zhu-Zienkiewicz21 .

Figura 2. M�odulos do programa SAFE

A especi�ca�c~ao dos parâmetros �e feita atrav�es de 2 arquivos de dados, com extens~oes
.ara e .a2f, contendo v�arias palavras chaves2 . O primeiro especi�ca o contorno do dom��nio,
parâmetros de controle da malha e erro admiss��vel. O outro arquivo considera as pro-
priedades dos materiais, tipos de elementos, carregamentos, restri�c~oes, graus de liberdade
e propriedades geom�etricas. Com o arquivo .ara, efetua-se a gera�c~ao da malha atrav�es do
programa ARANHA8. A partir da��, aplicam-se os parâmetros dispon��veis no arquivo .a2f,



352 M.L Bittencourt, A.C. Salgado Guimar~aes e R.A. Feij�oo

gerando como sa��da um outro arquivo com extens~ao .fem a ser submetido ao m�odulo de
solu�c~ao. Estas tarefas constituem a parte de gera�c~ao dos dados do programa.

Na parte de an�alise, resolve-se o modelo de elementos �nitos, determinando deslocamen-
tos e tens~oes. Tem-se ainda o m�odulo para efetuar o procedimento adapt�avel gerando um
novo conjunto de arquivos de entrada .ara e .a2f. Finalmente, pode-se efetuar a visuali-
za�c~ao da malha e de campos vetoriais e escalares. Observa-se que a comunica�c~ao entre os
v�arios m�odulos �e realizada atrav�es de arquivos e bancos de dados.

A partir da experiência do programa SAFE, desenvolveu-se um segundo ambiente, de-
nominado SAT, onde todos os dados do modelo s~ao especi�cados de forma interativa. A
Figura 3 ilustra a janela principal e as interfaces dos m�odulos. Inicialmente, fornece-se o
nome do projeto, de�nindo o nome dos bancos de dados a serem empregados nas demais
partes do programa. Alguns argumentos gen�ericos do projeto, tais como t��tulo, data da
�ultima modi�ca�c~ao, autor e observa�c~oes podem ser colocadas neste arquivo de projeto.

Figura 3. M�odulos do programa SAT

O m�odulo GEOMETRY permite a de�ni�c~ao do contorno da geometria do componente
a ser analisado. Est�a baseado no conceito de NURBS (Non-uniform Rational B-Splines)16,
pondendo-se ainda importar arquivos no formato DXF. Possui como primitivas principais
linha, arco, c��rculo, curva, dentre outras. V�arias ferramentas de edi�c~ao est~ao dispon��veis



Elementos �nitos orientado por objetos 353

tais como rota�c~ao, transla�c~ao, zoom e divis~ao. O objetivo principal �e de�nir as �areas sobre
as quais ser~ao gerados os elementos, gravando-se ao �nal o arquivo com extens~ao .ara.

No caso do m�odulo MESH4, partindo-se das �areas armazenadas no banco de dados do
GEOMETRY, agregam-se informa�c~oes de controle da malha, como por exemplo o tamanho
m�edio dos elementos. A partir da��, executa-se o programa ARANHA8 para a gera�c~ao da
malha. Todos os atributos do modelo de elementos �nitos tais como carregamentos, pro-
priedades dos materias e condi�c~oes de contorno podem ser especi�cados de forma interativa
atrav�es de di�alogos, gravando-se ao �nal o arquivo .a2f. Com os arquivos .ara e .a2f, gera-
se o arquivo .fem para ser submetido ao m�odulo SOLVER, o qual �e o mesmo do programa
SAFE, n~ao tendo sido considerado ainda o estimador de erro.

Ao �nal, os resultados escalares e vetoriais podem ser apresentados de formas num�erica
e gr�a�ca no m�odulo VISUALIZATION26. De forma an�aloga ao SAFE, tem-se mapas de
cores em faixas e curvas de n��veis, geometria original e/ou deformada, agregando ainda
um procedimento de anima�c~ao da con�gura�c~ao deformada. Um aspecto importante foi a
organiza�c~ao dos campos escalares e vetoriais, onde os nomes e a quantidade dos mesmos s~ao
gravados no banco de dados do SOLVER. Assim, o programa determina dinamicamente os
campos a serem apresentados, permitindo a sua aplica�c~ao para a visualiza�c~ao de resultados
de outros tipos de an�alise.

Cada um dos m�odulos constitue-se num programa independente estando a comunica�c~ao
entre os mesmos efetuada atrav�es de bancos de dados. A representa�c~ao das entidades gr�a�cas
em todos os m�odulos �e feita por uma mesma estrutura de dados baseada em NURBS. Isto
permite uniformizar todas as opera�c~oes efetuadas tais como rota�c~ao, transla�c~ao, zoom, �ll ,
dentre outras.

Os resultados obtidos para os dois programas foram bastante satisfat�orios. Apesar de
tratarem somente problemas el�asticos bidimensionais, os programas apresentam ferramentas
efetivamente integradas, desde a parte de gera�c~ao de contornos e de malha, visualiza�c~ao dos
resultados, estima�c~ao de erros e re�namento adapt�avel. As interfaces gr�a�cas permitem um
acesso simples e intuitivo aos v�arios m�odulos dispon��veis.

Outros tipos de problemas podem ser facilmente integrados na estrutura j�a existente,
criando-se por exemplo novos m�odulos de an�alise. Como exemplo deste procedimento, o
m�odulo OPTIMIZATION para a otimiza�c~ao estrutural de componentes têm sido desen-
volvido. Os procedimentos num�ericos foram implementados usando as classes para ele-
mentos �nitos discutidas neste artigo. Est~ao baseados num algoritmo de minimiza�c~ao de
ponto interior e na fomula�c~ao cont��nua de an�alise de sensibilidade, tomando-se a espessura
e a forma como vari�aveis de projeto7. A Figura 4 ilustra a otimiza�c~ao de forma de um
componente bidimensional.

Figura 4. Exemplo de otimiza�c~ao de forma

COMENT�ARIOS FINAIS

A aplica�c~ao do modelo orientado por objetos tem permitido o desenvolvimento de pro-
gramas com qualidade, e�ciência, portabilidade e produtividade. Um aspecto importante,
ao se aplicar este modelo, �e realizar o projeto da hierarquia de classes, antes da fase de im-
plementa�c~ao. Esta �e a tarefa mais complexa e deve ser efetuada com cuidado, procurando
obter um conjunto de classes de f�acil reutiliza�c~ao, extens~ao e manuten�c~ao.



354 M.L Bittencourt, A.C. Salgado Guimar~aes e R.A. Feij�oo

Os ambientes de an�alise têm sido estendidos para o tratamento de problemas tridimen-
sionais. Espera-se alcan�car as mesmas facilidades de utiliza�c~ao e n��veis de e�ciência. No
caso do modelamento geom�etrico no ambiente SAT tridimensional, tem-se usado a biblio-
teca ACIS. Trata-se de um poderoso conjunto de classes em C++ para o modelamento e
visualiza�c~ao de objetos. Tem-se tornado um padr~ao na �area de computa�c~ao gr�a�ca. Soft-
wares comerciais, tais como Autocada e SolidEdge, têm sido desenvolvidos empregando a
plataforma ACIS.

AGRADECIMENTOS

Os autores agradecem aos seguintes �org~aos pelo apoio ao desenvolvimento do trabalho:
CNPq (Proc. 523.982/94-1), CNPq-RHAE (Proc.610.035/94-0), FAPESP (97/97/0540-0),
LNCC e UNICAMP. Os autores tamb�em agradecem as facilidades de software gentilmente
fornecidas pelo Grupo TACSOM (www.lncc.br/~ tacsom).

REFERÊNCIAS

1 A.C.S. Guimar~aes y R.A. Feij�oo, \The ACDP system (In portuguese)", 27/89, National Labora-
tory for Scienti�c Computation, Rio de Janeiro, Brazil, (1989).

2 A.C.S. Guimar~aes, E.A. Fancello, G.R. Feij�oo y R.A. Feij�oo, \SAFE - integrated system for
structural �nite element analysis { Version 1.0", National Laboratory for Scienti�c Computation,
Rio de Janeiro, Brazil, (1994).

3 A. Cardona, I. Klapka y M. Geradin, \Design of a new �nite element programming environment",
Engineering Computations , Vol. 11, pp. 365{381, (1994).

4 A.M. Thees, \Computational tools for a �nite element structural analysis software (In por-
tuguese), DPM/FEM, State University of Campinas, Brazil, Research Report, (1996).

5 B. Raphael y C.S. Krishnamoorthy, \Automating �nite element development using object-
oriented techniques", Engineering Computation, Vol. 10, 1, pp. 267{278, (1993).

6 B.W.R. Forde, R.B. Foschi y S.F. Stiemer, \Object-oriented �nite element analysis Computer &

Structures , Vol. 34, pp. 355{374, (1990).

7 C.A.C. Silva, \Object-oriented structural optimization and sensitivity analysis" (In portuguese),
DPM/FEM, State University of Campinas, Brazil, (1997).

8 E.A. Fancello, A.C.S. Guimar~aes, R.A. Feij�oo y M. Venere, \Automatic two-dimensional mesh
generation using object-oriented programming" (In portuguese), Brasilian Association of Me-
chanical Sciences (Ed.), Proceedings of 11th Brazilian Congress of Mechanical Engineering , S~ao
Paulo, pp. 635{638, December, (1991).

9 E. Dari, \Contribuciones a la triangulaci�on autom�atica de dominios tridimensionales", Instituto
Balseiro, Bariloche, Argentina, (1994).

10 R.A. Feij�oo, \Relat�orios do sistema SDP formado por 15 manuais" National Laboratory for
Scienti�c Computation, Research Reports, Rio de Janeiro, Brazil, (1987).

11 G.R. Miller, \An Object-oriented approach to structural analysis and design", Computer &
Structures , Vol. 40, pp. 75{82, (1991).

12 G.W. Zeglinski, R.P.S. Han y P. Aitchison, \Object-oriented matrix classes for use in a �nite
element code using C++", Int. J. for Num. Meth. in Engng., Vol. 37, pp. 3921{3937, (1994).

13 G. Yu y H. Adeli, \Object-oriented �nite element analysis using Eer model", J. of Struct. Engng ,
Vol. 119, 9, pp. 2763{2781, (1993).



Elementos �nitos orientado por objetos 355

14 H. Adeli y G. Yu, \An integrated computing environment for solution of complex engineering
problems using the object-oriented programming paradigm and a blackboard architeture", Com-

puter & Structures , Vol. 54, 2, pp. 255{265, (1995).

15 J.S.R.A. Filho y P. Devloo, \Object-oriented programming in scienti�c computations: the begin-
ning of a new era, Engineering Computations , Vol. 8, pp. 81{88, (1991).

16 M.C. Galv~ao, \A NURBS based environment for domain de�nition applied to mesh generation"
(In portuguese), Research Report, DPM/FEM, State University of Campinas, Brazil, (1995).

17 M.L. Bittencourt, \Static and dynamic analysis by substructuring and object-oriented program-
ming" (In portuguese), DPM/FEM, State University of Campinas, Brazil, (1990).

18 M.L. Bittencourt, \Adaptive iterative and multigrid methods applied to non-structured meshes"
(In portuguese), DPM/FEM, State University of Campinas, Brazil, (1996).

19 M.L. Bittencourt y R.A. Feij�oo, \An�alise comparativa de m�etodos diretos e iterativos para a
solu�c~ao de sistema de equa�c~oes", Revista Int. de M�et. Num.para C�alculo y Dise~no en Ing., Vol.
13, 2, pp. 123{148, (1997).

20 M.L. Bittencourt y R.A. Feij�oo, \M�etodos multigrid em malhas n~ao-aninhadas aplicados a pro-
blemas el�asticos", Revista Int. de M�et. Num. ypara C�alculo y Dise~no en Ing., Vol. 14, 1, pp.
3{23, (1998).

21 O.C. Zienkiewicz y J.Z. Zhu, \A simple error estimator and adaptative procedure for practical
engineering analysis", Int. J. for Num. Meth. in Engng , Vol. 24, pp. 337{357, (1987).

22 P.H. Men�etrey y T. Zimmermann, \Object-oriented non-linear �nite element analysis: Applica-
tion to J2 plasticity", Computer & Structures , Vol. 49, 5, pp. 767{777, (1993).

23 R.A. Feij�oo, A.C.S. Guimar~aes y E.A. Fancello, \Algumas experiencias en la programaci�on
orientada por objetos y su aplicaci�on en el m�etodo de los elementos �nitos", Research Report
15/91, National Laboratory for Scienti�c Computation, Rio de Janeiro, Brazil, (1991).

24 R.S. Pressman, \Software engineering { a practitioner's approach", McGraw-Hill, New York,
(1987).

25 S.B. Lippman, \C++ primer", Addison-Wesley, Reading, (1991).

26 S.H.P. Ramos, \Visualization of structural analysis results in windows environment" (In por-
tuguese), Research Report, DPM/FEM, State University of Campinas, Brazil, (1996).

27 S.P. Scholz, \Elements of an object-oriented fem++ program in C++", Computer & Structures ,
Vol. 43, 3, pp. 517{529, (1992).

28 T.J. Ross, L.R. Wagner y G.F. Luger, \Object-oriented programming for scienti�c codes: II.
Examples in C++", J. of Comp. in Civil Engng., Vol. 6, 4, pp. 497{514, (1992).

29 T. Zimmermann, Y. Dubois-P�elerin y P. Bomme, \Object-oriented �nite element programming:
I. Governing principles", Comp. Meth. in Appl. Mech. and Engng., Vol. 98, pp. 291{303,
(1992).

30 W.W. Tworzydlo y J.T. Oden, \Towards an automated environment in computational mecha-
nics", Comp. Meth. in Appl. Mech. and Engng., Vol. 104, pp. 87{143, (1993).

31 W.W. Tworzydlo y J.T. Oden, \Knowledge-based methods and smart algorithms in computa-
tional mechanics", Engineering Fracture Mechanics , Vol. 50, 5, pp. 759{800, (1995).

32 Y. Dubois-P�elerin, T. Zimmermann y P. Bomme, \Object-oriented �nite element programming:
II. A prototype program in smalltalk", Comp. Meth. in Appl. Mech. and Engng , Vol. 98, pp.
361{397, (1992).

33 Y. Dubois-P�elerin, T. Zimmermann y P. Bomme, \Object-oriented �nite element programming:
III. An eÆcient implementation in C++", Comp. Meth. in Appl. Mech. and Engng , Vol. 108,
pp. 165{183, (1993).


