. =4
Vol. 15, 3, 343-355 (1999) Revista Internacional de

Métodos Numéricos para
Calculo y Diseno en Ingenieria

Elementos finitos orientado por objetos

Marco L. Bittencourt

Departamento de Projeto Mecénico
Faculdade de Engenharia Mecanica
Universidade Estadual de Campinas
Caixa Postal 6051, Campinas, SP, 13083-970, Brasil

e-mail: mlb@fem.unicamp.br

Anténio S. Guimaraes e Raudl A. Feijéo

Laboratério Nacional de Computagao Cientifica (LNCC/CNPq)
Av. Getulio Vargas 333, Quintadinha

25651-070, Petrépolis, RJ - Brasil

Tel.: 55-24-233 60 17/61 57, Fax: 55-24-233 61 65/231 55 95

e-mail: feij@alpha.lnce.br

Sumadrio

Este artigo considera o desenvolvimento de programas para andlise estrutural usando programacao orientada
por objetos. Apresentam-se uma revisao bibliogrifica, conceitos de orientacdao por objetos e classes para
andlise linear por elementos finitos. Finalmente, dois ambientes para problemas eldsticos bidimensionais sao
considerados, os quais integram ferramentas para a definicao de geometria, geragao automatica de malhas,
solucdo, estimadores de erro, visualizacdo de resultados e interfaces graficas.

OBJECT-ORIENTED FINITE ELEMENTS

Summary

This paper presents the development of structural analysis softwares based on object-oriented programming.
A bibliographical review, object-oriented concepts and classes for linear finite element analysis are presented.
Finally , two-dimensional elastic environments are considered, which integrate tools for geometry definition,
automatic mesh generation, solver, error estimation, visualization of results and graphic user interfaces.

INTRODUCAO

A implementacao computacional de métodos numéricos, tais como o Método de Elemen-
tos Finitos (MEF), para a analise de problemas de engenharia é de fundamental importancia.
Sob o ponto de vista do usuario , o programa deve possuir uma interface de utilizacdo sim-
ples, ser confidvel e eficiente. No que se refere a implementacao, desejam-se caracteristicas
como modulacao, extensibilidade, ficil manutencao, dentre outras.

Apesar de varios progressos, a produtividade no desenvolvimento de softwares ainda é
pequena, comparado ao crescimento vertiginoso da indudstria de hardware nos ultimos tem-
pos. Desta maneira, torna-se essencial disciplinar a implementacdo de programas aplicando
por exemplo conceitos de engenharia de software?*. No caso do meio cientifico, estes requi-
sitos s@o importantes para uma maior qualificagdo dos programas, evitando a repeticao de
procedimentos em cada trabalho realizado. Desta forma, através de uma maior organizacao,
pode-se ter uma base sélida de programas, permitindo a sua riapida extensdo para o estudo
de novos problemas.

©Universitat Politécnica de Catalunya (Espana). ISSN: 0213-1315 Recibido: Marzo 1998

344 M.L Bittencourt, A.C. Salgado Guimaraes e R.A. Feijéo

O modelo de programacio orientada por objetos!” tem possibilitado aumentar a pro-
dutividade no desenvolvimento de programas. Basicamente, identificam-se os agentes prin-
cipais da base de conhecimento a ser reprentada no programa. Estes agentes ou objetos
possuem atributos e métodos descrevendo as caracteristicas e os comportamentos de in-
teresse. Assim, num programa tem-se um conjunto de objetos implementados através de
classes, as quais constituem-se em moldes para a defini¢ao dos objetos como instancias de
uma classe. Por sua vez, duas instancias diferem entre si pelos valores atribuidos as suas
varidveis. Desta maneira, as classes sao a unidade béasica de modulagdo num sistema por
objetos.

Os objetos se comunicam através do envio de mensagens, as quais especificam apenas a
acao a ser feita. E responsabilidade do objeto receptor interpretar a mensagem e executar o
conjunto de operagoes correspondente, retornando o resultado para a instancia que emitiu
a mensagem. Logo, numa classe tem-se o encapsulamento da informagao, a qual pode ser
acessada apenas através do envio de uma mensagem para o método desejado. Observa-
se ainda que uma mesma mensagem pode enderecar diferentes procedimentos dependendo
da classe receptora. Por exemplo, a operagdo + para matrizes representa uma adicao
usual, enquanto para um conjunto de caracteres poderia significar concatenacdo. Esta
caracteristica é denominada polimorfismo.

Além disso, tem-se o conceito de heranca permitindo especializar a informacao ao longo
de uma hierarquia de classes, onde aquelas situadas em niveis mais baixos herdam as carac-
teristicas (dados + métodos) daquelas classes situadas acima. Assim, é possivel estender ou
reutilizar classes em varias aplicacGes, bastando acrescentar apenas as varidaveis e métodos
necessarios para descrever a especializacao desejada.

A principal diferenca do paradigma por objetos é a proximidade com os conceitos do
mundo real a ser implementado no programa. Ao contririo do modelo por procedimen-
tos, onde se isolam os comportamentos através de subrotinas, tem-se entidades proéprias
descrevendo as suas principais caracteristicas através de varidaveis e métodos.

Estes conceitos tém sido aplicados na andlise estrutural de problemas de engenharia,
podendo-se citar alguns trabalhos iniciais'”?*1%611:29 Um dos primeiros programas imple-
mentados estd discutido em®, usando a linguagem Object NAP baseada em rotinas escritas
em C e Pascal. Em!!, apresentam-se conceitos gerais de programacio por objetos, incluindo
aspectos sobre concorréncia, processamento distribuido e banco de dados, além de um pro-
grama para andlise por elementos finitos implementado com uma extensdo da linguagem
LISP, denominada Flavors.

Conceitos do modelo por objetos aplicados ao MEF sao também discutidos em?®, apre-
sentando-se uma extensao da hierarquia de classes da linguagem Smalltalk para o caso do
MEF. Detalhes de implementagao deste programa protétipo estdo dados em®?. Devido a
baixa eficiéncia do ambiente Smalltalk, desenvolveu-se em®® uma versiao do mesmo programa
em C++2?°. Uma extensio para o tratamento de problemas de plasticidade estd dada em??.

Aplicacoes da linguagem C++ com diferentes enfoques também podem ser encontradas
em®?"2% Em!2, tem-se uma hierarquia de classes para o tratamento de vdrios tipos de
matrizes, tais como simétrica, esparsa, coluna, dentre outras, além de uma série de classes
para o tratamento de entidades do MEF. J4 em?®, tem-se um ambiente em C++ constituido
de um interpretador e um médulo de execucdo. Através de uma linguagem interpretada,
pode-se especificar interativamente os parametros do modelo de elementos finitos e da
solucdo. Exemplos de problemas lineares e ndo-lineares sdo resolvidos.

Em'*'3®, apresentam-se aspectos da programagao por objetos aplicados a andlise
numérica, representacao grafica das classes, bancos de dados, incluindo ainda a aplicacdo
destes conceitos na implementacdo de um programa para o tratamento de laminas de ma-
teriais compostos. Além disso, aspectos de inteligéncia artificial sao também abordados
em conjunto com a andlise estrutural. Esta temética também é discutida em3°3!, apresen-
tando uma série de ferramentas computacionais para automatizar o processo de analise,

Elementos finitos orientado por objetos 345

fornecendo uma base de conhecimentos e sistemas especialistas para auxiliar a especificagao
de parametros da andlise, interpretacdo dos resultados, procedimentos adaptaveis, trata-
mento de erros, dentre outros. O objetivo basico é acumular um conjunto de conhecimentos
de um especialista, auxiliando o usuario comum na simulacdo computacional de problemas
mecanicos, tornando o ambiente de andlise mais inteligente.

Um grande esforco no desenvolvimento de programas para engenharia estrutural
tem sido realizado por um conjunto de pesquisadores, comecando com a linguagem
Fortran'®, passando para C' e finalmente utilizando o modelo de programacao orientada
por objetos!®?8:2316.2 através da linguagem C++. De forma geral, tem-se bibliotecas de
classes e procedimentos para bancos de dados, tratamento de erros, estruturas de dados,
manipulacao de matrizes e vetores, rotinas matematicas’, além de conjuntos de classes
para definigao de contornos geométricos'®, geracao automatica de malhas®®, andlise linear
por elementos finitos'®?*, métodos multigrid*®2°, visualizagio de resultados®?®, otimizagio
estrutural”, dentre outras.

A contribuicdo deste trabalho esta relacionada a uma nova proposta de organizacao das
classes para elementos finitos baseada no conceito de tipos parametrizados disponiveis em
C++. Consideram-se ainda os sistemas SAFE? e SAT'® para andlise de problemas elasticos
bidimensionais.

Neste trabalho, apresentam-se inicialmente alguns conceitos do modelo orientado por
objetos, tais como modulacao, abstracao, classes, métodos, dentre outros. Posteriormente,
considera-se um conjunto de classes para andlise linear de problemas elasticos, empregando
o conceito de tipos parametrizados da linguagem C++4. Finalmente, discutem-se dois
ambientes para analise de problemas bidimensionais com ferramentas para definicdo de
contornos, geragao automaéatica de malhas, visualizacdo de resultados e andlise adaptéavel,
integradas através de interfaces gréficas.

CONCEITOS DE PROGRAMACAO POR OBJETOS

O modelo orientado por objetos, de maneira andloga aos vérios paradigmas de pro-
gramagao, introduz alguns conceitos particulares, tais como objetos, mensagens, mecanismo
de heranca, dentre outros. Ressalta-se, porém, que nem todas as linguagens orientadas por
objetos implementam todos os conceitos a serem descritos. Assim, a apresentacdo feita
a seguir tem um caradter mais geral, ndo procurando destacar as particularidades de uma
linguagem?!”.

Modulacgao: o conceito de modulacdo é de certa forma intuitivo: dado um problema
complexo, subdivide-se o mesmo em subproblemas menos complexos visando obter a solugao
global.

No entanto, a aplicagao do conceito de modulacao nao pode ser realizada indefinidamente
no desenvolvimento de um programa. Ao mesmo tempo em que o esforco de desenvolvi-
mento diminui substancialmente quando se aumenta o numero de mddulos, o esforco de
interfaceamento destes médulos cresce na mesma proporgao. Alguns tipos de médulos sao
encontrados em linguagens de programacao, como por exemplo a declaracdo class em C++.
Este mdédulos sdo componentes de programas que combinam abstractes de dados e proced-
imentos, incentivando assim, o desenvolvimento de programas modulares.

Ocultamento de informacao: a aplicacdo do conceito de ocultamento de informacio
no desenvolvimento de um programa permite construir médulos onde a interdependéncia
entre os mesmos é pequena. Além disso, aumenta-se a confiabilidade e as modificacoes
sao efetuadas localmente dentro de cada mddulo, preservando assim, a disseminacdo das
alteracoes ao longo de todo o sistema.

Para se alcangar uma modulacao efetiva, define-se um conjunto de médulos interdepen-
dentes, 0s quais se comunicam entre si apenas através das informagoes necessarias para

346 M.L Bittencourt, A.C. Salgado Guimaraes e R.A. Feijéo

acessar uma determinada caracteristica. O estado de um moddulo é descrito por varidveis
locais, visiveis apenas dentro do escopo deste modulo, e um conjunto de procedimentos que
manipulam estes dados. Observa-se que o uso de abstracées de dados permite definir e
utilizar o conceito de ocultamento de informagéao no desenvolvimento de programas.

Abstracao: para problemas onde se aplicam o conceito de modulacao, varios niveis de abs-
tracdo podem ser considerados. No nivel mais alto de abstracao, a solugdo adotada para o
problema é colocada em termos de uma linguagem proxima ao ambiente do problema. Nos
niveis mais baixos, descrevem-se os procedimetos a serem implementados. Assim, o uso de
abstragao permite ao programador concentrar-se em um problema, considerando um nivel
de generalizagdo qualquer, sem se preocupar com detalhes irrelevantes ao problema.

Viarias linguagens de programagao, tais como Ada, Modula e Smalltalk, permitem a
criacao de tipos abstratos de dados, os quais consistem de uma representagdo interna para
os dados e um conjunto de procedimentos para acessar e manipular os dados.

Ligacao dindmica: nas linguagens convencionais, tais como C, Pascal ¢ FORTRAN, a
partir do conhecimento dos tipos de varidveis e constantes utilizadas em uma declaracio, o
compilador gera o cédigo de maquina correspondente. Hste processo de definir os tipos de
dados aplicaveis a um operador em uma declaracao, anterior a sua execuc¢ao, é denominado
ligacdo estdtica.

Entretanto, algumas linguagens, como por exemplo C++, permitem a flexibilidade de
redefinir operadores convencionais para os tipos declarados pelo usuério. Assim, pode-se
definir o tipo Vetor, onde a soma de dois vetores A e B é expressa por A+B. No entanto, esta
ligagao entre tipos e operandos ¢ realizada ainda, em tempo de compilagdo do cédigo fonte.

A ligacdo dindmica permite associar um tipo de dado a um operando em tempo de ex-
ecucao do programa. Em C+4+, esta caracteristica estd implementada através de declaragoes
do tipo virtual.

Objeto: um objeto se constitui na unidade bésica de modulagdo no modelo orientado por
objetos, constituindo-se um tipo abstrato de dados.

Para se manipular a informacgao representada por um objeto, deve-se solicitar ao mesmo
que execute uma de suas operacoes, através do envio de uma mensagem. O objeto que
recebe a mensagem é denominado receptor, devendo responder esta mensagem através da
selecdo da funcao correspondente, executar esta operacgao e retornar o controle para o objeto
emissor da mensagem.

Mensagens: constituem-se nas especificagbes das operagoes de um objeto. Assim, quando
um objeto recebe uma mensagem, deve determinar como manipulé-la para obter a resposta
requerida. Uma mensagem inclui um seletor, descrevendo o tipo de manipulacido desejada,
e argumentos, os quais podem ser outros objetos ou valores das varidveis de um objeto.

A caracteristica principal do mecanismo de mensagem ¢ que o seletor é um nome de uma
operagao, descrevendo apenas a acao a ser executada. Portanto, uma mesma mensagem pode
ser interpretada de maneiras distintas. Assim, por exemplo, considere as classes Vector e
String. Definindo-se os objetos Vector A,B e String Stril,Str2, as instrugoes A+B e
Stri+Str2, apesar de utilizarem o mesmo operador, possuem significados diferentes.

Classes e instancias: vdrios sistemas orientados por objetos fazem uma distingao entre
um objeto e a sua descrigdo. Assim, definem-se os conceitos de classe e instancia.

Uma classe é uma descri¢cao geral de um conjunto de objetos semelhantes, provendo todas
as informagoes necessarias para a criagdo e utilizagao dos objetos. Uma instancia, por sua
vez, é um objeto descrito por uma classe particular. Cada objeto é instancia de uma classe.
Assim, no exemplo anterior A,B sdo instancias da classe Vector.

Todas as instancias de uma classe utilizam o mesmo método para responder a uma
mensagem particular. A diferenga na resposta obtida para duas instancias distintas é
resultado dos diferentes valores armazenados nas varidaveis. Portanto, pode-se dizer que um

Elementos finitos orientado por objetos 347

sistema orientado por objetos é desenvolvido a partir da criagao das classes que descrevem
os objetos constituintes do sistema.

Métodos: sdo procedimentos invocados pelo envio de mensagens para as instancias de uma
classe. Portanto, um método, como um procedimento, é a descricio de uma sequéncia de
acoes a serem executadas. De forma andloga aos procedimentos, os métodos devem conhecer
os tipos de dados que manipulam.

Mecanismo de heranca: permite compartilhar as informacGes entre objetos. Supondo
uma hierarquia, os objetos situados em um nivel inferior herdam todas as caracteristicas
(dados e operagdes) dos objetos situados em niveis superiores.

A maioria das linguagens orientadas por objetos implementam o mecanismo de heranca
entre as classes do sistema. Uma classe pode ser alterada para criar uma outra. Nesta
relacdo, a primeira classe é denominada superclasse e a segunda subclasse. Uma subclasse
pode adicionar novas variaveis e métodos, assim como redefinir os dados e operacgoes da
superclasse.

CLASSES PARA ELEMENTOS FINITOS

O objetivo, neste caso, foi implementar um conjunto de classes para analise linear de
estruturas modeladas por elementos finitos isoparamétricos. Estas classes foram organizadas
em 4 niveis como ilustrado na Figura 1. Observa-se que foram utilizados procedimentos do
sistema ACDP! para o tratamento de erros, gravagao e recuperagao de dados em disco,
assim como rotinas para manipulacdo de vetores e matrizes.

Nivel 2 Nivel 3
Node, Material, NodesVector,
FiniteElement, ... MaterialType, ...

Nivel 1
Array, String,
FullMatrix, ...

Nivel 4

FEModel,
FESolver

Figura 1. Niveis de organizacao das classes

NIVEL 1

Envolve a definicdo das classes basicas do programa, compreendendo as estruturas de
dados empregadas nos demais niveis. Métodos para alocacdo dindmica de meméria, mani-
pulacdo de banco de dados e procedimentos matematicos estdo disponiveis.

Matrix: define uma matriz de elementos reais. Tem como principais varidveis os nlmeros
de linhas e colunas, além de um vetor com os elementos da matriz. Implementa métodos
para inicializacio da matriz, busca de informagéo (mdximo, minimo, norma, ordem, ele-
mento), bem como operagoes envolvendo matrizes, onde estdo implementados algoritmos
de transposigao, insercao de elementos, adi¢do, multiplicacdo e multiplicacdo por escalar.

348 M.L Bittencourt, A.C. Salgado Guimaraes e R.A. Feijéo

Implementa, ainda, métodos diretos e iterativos para a solugao de sistemas de equagdes, tais
como Gauss e Gauss-Seidel.

SymmetricMatrix: classe andloga a Matrix, mas restrita a matrizes simétricas, ar-
mazenando, portanto, apenas a parte inferior da matriz. Considera ainda métodos dire-
tos, iterativos estacionarios e baseados em gradiente conjugado incluindo vérios tipos de
pré-condicionadores.

SymmetricSkyline: classe andloga a Matrix para matrizes simétricas do tipo skyline.
E aplicada para definicdo da matriz global do sistema de equagbes. Armazena a ordem
da matriz, altura das colunas e os elementos da parte inferior. Possui métodos para
superposicao de matrizes simétricas e resolugao de sistemas de equagoes através de métodos
diretos e iterativos.

SymmetricSparse: é semelhante a classe a SymmetricSkyline, considerando a estrutura
comprimida por linhas para matriz esparsa!®.

Vector: caso particular de Matrix constituida de apenas uma coluna. Além dos pro-
cedimentos para adi¢do, subtracdo e multiplicacdo, contém métodos para produto escalar,
normas e multiplicacao de matrizes por vetor.

String: classe responsivel pelo manuseio de cadeias de caracteres ao longo do programa.
Possui métodos de acesso a elementos, concatenacdao e comparacao de caracteres.

Array: Tem por objetivo armazenar conjuntos de objetos. Na sua implementacao, utilizou-
se classes parametrizadas, onde o tipo de dado é também um parametro. Em C+4, o
comando template permite a defini¢do de classes e fung¢des parametrizadas. Pode-se definir
um Array de nés e de strings pelas declaragoes:

Array<Node> Nodes(5) Array<String> Strings(10)

Foram implementados métodos para acesso e alteracdo do ntmero de elementos, dentre
outros. O objetivo desta classe é gerenciar conjuntos de qualquer tipo de dado ao longo
do programa. Por questdes de eficiéncia, consideraram-se as especializagoes Array<long> e
Array<double> para o tratamento de conjuntos de nimeros inteiros e reais, respectivamente.

NIVEL 2

Neste nivel, consideram-se as classes relativas ao modelo de elementos finitos.

Node: possui como principais atributos o nimero do né e as coordenadas nodais. O niimero
de coordenadas nodais depende da dimensdo do problema em estudo, ou seja, uni, bi ou
tridimemsional. Possui ainda uma varidvel para o nimero 6timo do né obtido por um
algoritmo de renumeracao. Esta classe é empregada apenas para a passagem de parametros
em alguns métodos.

DefinitionDOF: esta classe tem por objetivo armazenar os nomes dos graus de liberdade
armazenados como uma varidvel do tipo Array<String>. Por exemplo, para um problema
elastico bidimensional, os graus de liberdade dos nés sdo denominados UX e UY.

EliminatedDOF': esta classe constitui-se numa tabela de graus de liberdade a serem
eliminados, correspondendo aos deslocamentos nulos, no processo de montagem do sistema
de equacbes. Para isso, armazena o nimero dos nos e a cardinalidade dos graus de liberdade
eliminados, utilizando varidveis do tipo Array<long>.

PrescribedBC: é nesta classe que sdo armazenadas as condigoes de contorno prescritas do
problema a ser solucionado pelo modelo de elementos finitos. Como exemplo, podem-se citar
as cargas concentradas, distribuidas e de corpo; gradientes de temperatura; e deslocamentos.
Utilizam-se varidveis dos tipos Array<double> e Array<long> para armazenar os nds, os
graus de liberdade e a intensidade dos carregamentos, deslocamentos e temperaturas.

Elementos finitos orientado por objetos 349

DOFEquation: armazena para cada nd, o nimero 6timo determinado por um algoritmo de
renumeracao. Além disso, o nimero e a numeracao dos graus de liberdade sdo armazenados
nesta classe. Possui métodos para realizar a numeracao dos graus de liberdade.

GeometricProperties: é uma tabela para armazenar as propriedades geométricas dos
elementos, tais como espessura, momentos de inércia, drea de seccao, etc. Esta tabela é
identificada pelo seu numero armazenado com uma varidvel inteira.

ElasticMaterial: ¢é uma classe genérica, definindo as caracteristicas bdsicas de ou-
tras classes que implementam as informacdes referentes ao comportamento dos materiais
elasticos. Possui uma varidvel para o nimero do material. Declara varias funcGes virtuais
para inicializacdo e acesso as propriedades dos materiais e outras para obtencao das matrizes
de elasticidade nos casos de estado plano de tensdo, estado plano de deformacao, sdlidos
axissimétricos e estado geral de solicitacdo. A partir desta classe, derivam-se outras duas:
ElasticIsotropicMaterial e ElasticOrtotropicMaterial.

ElasticIsotropicMaterial: declara varidveis para o armazenamento de informacées re-
lativas aos materiais eldsticos isotrépicos, como o médulo de elasticidade longitudinal,
coeficiente de Poisson, coeficiente de expansao térmica e densidade. Implementa as funcGes
declaradas virtuais na classe ElasticMaterial. A classe ElasticOrtotropicMaterial é
andloga a esta classe, considerando no entanto, materiais ortotrépicos.

FiniteElement: constitui-se numa classe genérica de onde derivam-se cada um dos di-
ferentes tipos de elementos finitos. Declara varidaveis para numero do elemento, numero
otimo, numero total de graus de liberdade, nimero do material, nimero da tabela de
propriedades geométricas, nimero da tabela de sistemas locais de referéncia, nimero de
pontos de integracao e incidéncia.

Possui métodos para inicializagao e acesso a estas informagoes, bem como métodos
virtuais para o calculo da matriz de rigidez, matriz de massa, tensoes, deformacoes e erro
em energia no elemento.

PlaneStressTriangular: é um dos tipos de elementos implementados. Através do meca-
nismo de heranca, possui acesso a todos os atributos da classe FiniteElement. Implementa
as operagoes declaradas virtuais em FiniteElement para o caso de estado plano de tensio.

Tem-se métodos de calculo das matrizes de rigidez e de massa; tensores de tensao e
deformacdo calculados nos pontos de intergracdo de Gauss-Legendere e nas coordenadas
locais dos nés; estimador de erro; dentre outros.

Desenvolveram-se as classes PlaneStrainTriangle e AxyssimetricTriangle, seme-
lhantes a esta classe, para os casos de estado plano de deformacao e sélidos axissimétricos,
respectivamente. Da mesma maneira, classes quadrados, cubos e tetraedros foram também
implementadas.

TriangularShapeFunctions: implementa as funcoes de forma de Serendipty até o quarto
grau para o caso de elementos finitos triangulares. Possui métodos para o calculo das
derivadas em relagao as coordenadas locais e globais do elemento, assim como para a matriz
e o determinante do Jacobiano.

TriangularGaussLegendre: armazena os pontos de integracio e os coeficientes de pon-
deracdo para a integracdo de Gauss-Legendre utilizadas nas classes PlaneStressTriangle,
PlaneStrainTriangle e AxyssimetricTriangle.

NiVEL 3

Neste caso, consideram-se conjuntos das classes descritas no nivel anterior. Constitui-se
basicamente no grupo de classes que vai organizar as informacoes dos atributos do modelo de
elementos finitos, permitindo a inicializagdo, modificagéo e acesso aos atributos das classes
utilizadas. Os dados séo lidos a partir de arquivos de dados no formato definido®.

350 M.L Bittencourt, A.C. Salgado Guimaraes e R.A. Feijéo

Nodes: possui como atributos principais uma varidvel para armazenar a dimensdao do
problema (uni, bi ou tridimensional) e um Array<double> para as coordenadas.

DOFBoundaryConditions: armazena as tabelas de definicio dos nomes dos graus de
liberdade, graus eliminados e prescritos. Trata as informagoes das classes DefinitionDOF,
EliminatedDOF e PrescribedBC.

MaterialGroup: implementa um vetor de apontadores da classe ElasticMaterial, ar-
mazenando ainda o tipo dos materiais (isotrépico ou ortotrépico) aplicados na anélise.

FiniteElementGroup: um grupo de elementos finitos é constituido por elementos do
mesmo tipo. Esta classe declara um vetor do tipo FiniteElement e o nome do elemento,
a fim de gerenciar os varios tipos de elementos da malha. Além disso, tem-se uma varidvel
Array<long> para a incidéncia nodal dos elementos do grupo.

LoadCase: ¢é um vetor da classe PrescribedBC para o tratamento das condigdes de
carregamento aplicadas a estrutura.

NiVEL 4

Neste nivel, tem-se classes para o armazenamento de todos os atributos do modelo de
elementos finitos para que o problema seja posteriormente resolvido.

FEModel: esta classe armazena todos os atributos do modelo de elementos finitos. Define
variaveis dos tipos descritos no Nivel 3 para os nds, materiais, condi¢oes de contorno, grupos
de elementos e condi¢des de carregamento. Tem-se ainda uma variavel da classe String para
armazenar o titulo do modelo. Assim, a partir de um arquivo de entrada, especificando as
caracteristicas do modelo e das operagoes implementadas nesta classe, inicializam-se todas
as demais ja apresentadas.

FESolver: é uma classe derivada de FEModel, implementando operagoes para a resolucao
do modelo. Possui variaveis para a matriz do sistema nos formatos skyline e esparso, sendo
opcao do usudrio escolher a opcdo mais conveniente. Como métodos de solugdo, tem-se
algoritmos diretos, iterativos e multgrid!®1920,

AMBIENTES PARA ANALISE DE PROBLEMAS ELASTICOS BIDIMEN-
SIONAIS

A aplicagdo do MEF para a resolucdo de problemas praticos de engenharia tem apresen-
tado um crescimento considerdvel. Estas ferramentas computacionais possibilitam otimizar
projetos na sua fase inicial, assim como verificar o comportamento de um componente ja
existente, visando validar a concepcao atual e permitir ainda a sua posterior otimizacao.

Varios programas comerciais estao disponiveis para esta finalidade. Sob o ponto de vista
do usudrio destes pacotes, exige-se um bom conhecimento da técnica de andlise, assim como
uma boa experiéncia na utilizacao do programa, visto que em geral a interface de comandos
é um tanto complexa. Tais fatos limitam uma maior disseminagdo destes programas, pois
o usuario deve possuir uma base sélida de conhecimentos para o efetivo emprego destes
recursos a problemas de engenharia. Uma hipétese mal formulada, implica em resultados
nao refletindo o real comportamento mecanico do componente. Desta maneira, o programa
deve ser de facil utilizagdo, permitindo ao usudrio dedicar a maior parte do tempo na
definicdo e simulagdo de modelos para a estrutura considerada.

Observa-se, em geral, que as tarefas de definicio da geometria do componente e da
respectiva malha de elementos finitos sdo responsaveis pela maior demanda em termos de
tempo no estudo de um problema. Em relacdo aos pacotes existentes, observa-se uma maior
integracéo entre programas de CAD (Computer Aided Design) e de andlise. Empregam-se
as ferramentas CAD para a definigdo da geometria e possivelmente da malha. A partir dai,

Elementos finitos orientado por objetos 351

utiliza-se o programa de andlise para a obtengao dos resultados. No entanto, em varios casos
nado se verifica uma efetiva integracdo ou onde esta ocorre tem-se uma interface complexa
dificultando a tarefa do usuério.

Desta forma, algoritmos robustos e eficientes para a geracao da geometria do componente
e da respectiva malha de elementos, solugdo, estimacao de erros e refinamento, acessiveis
através de uma interface de comandos simples, sdo pré-requisitos fundamentais para a andlise
numérica por elementos finitos.

Dentro deste contexto, desenvolveu-se inicialmente o ambiente SAFE? para andlise bidi-
mensional de problemas elasticos planos. A Figura 2 ilustra a janela principal e alguns dos
modulos do programa, tais como o editor para a especificacao dos parametros da estrutura
e da andlise , o gerador de malhas, a visualizagdo de resultados, além da malha refinada
através do procedimento adaptével baseado no estimador Zhu-Zienkiewicz*!.

= SAFE -]l [= Bloco de Notas - GANCHO.ARA EE
Arquivo Editar Localizar 2 N
le *TITLE g +
SAFE Gancho
*
*CONTROLS

150688 15088

Data Generation Analysis Visualization LINEAR
@ | REHUM_OH
v PLOT_ON
.';‘,\.'\ ﬁ (o mﬁﬂﬂ 0OUT_PREGRAPH
Help Aranha Femstrs Mesh
*ELEMENT_SIZE
- 8.3
1% J"Pk’l |
0 ﬁm (o arpnd *=KEYPOINTS
About Arazfem Remesh WectF
17
| 1 L.0808080806808 8._.1000088
% o 2 3.900008 7.000000
3 3.9800808 S .408008
Wizl Sel? 4 2969200 3.134200
3
- »
= Graph 2D - Windows - CASAFE\GANCHO B 5 Graph 2D - Windows - CASAFEVA [zl Scalar Field - Windows - CASAFE\GANCHO [-[-]]
<7 VonMis_1
SOy
S i +
,égﬁ'ﬁ!é% e
E%‘%%‘ ; 52371E 01
%aasgaga .\ 4.6552E+01
I G TV A07E1
a%%iﬁga i 24915401
i ATAYAY; & -
7 2.3277E+01
: 1 7458E 401
1 1639E 401
O oy
T e

Figura 2. Mddulos do programa SAFE

A especificacdo dos parametros é feita através de 2 arquivos de dados, com extensdes
.ara e .a2f, contendo véarias palavras chaves®. O primeiro especifica o contorno do dominio,
parametros de controle da malha e erro admissivel. O outro arquivo considera as pro-
priedades dos materiais, tipos de elementos, carregamentos, restricoes, graus de liberdade
e propriedades geométricas. Com o arquivo .ara, efetua-se a geragao da malha através do
programa ARANHA®. A partir dai, aplicam-se os parametros disponiveis no arquivo .a2f,

352 M.L Bittencourt, A.C. Salgado Guimaraes e R.A. Feijéo

gerando como saida um outro arquivo com extensdao .fem a ser submetido ao médulo de
solugdo. Estas tarefas constituem a parte de geragao dos dados do programa.

Na parte de andlise, resolve-se 0 modelo de elementos finitos, determinando deslocamen-
tos e tensoes. Tem-se ainda o médulo para efetuar o procedimento adaptavel gerando um
novo conjunto de arquivos de entrada .ara e .a2f. Finalmente, pode-se efetuar a visuali-
zacao da malha e de campos vetoriais e escalares. Observa-se que a comunicacao entre os
varios modulos € realizada através de arquivos e bancos de dados.

A partir da experiéncia do programa SAFE, desenvolveu-se um segundo ambiente, de-
nominado SAT, onde todos os dados do modelo sdo especificados de forma interativa. A
Figura 3 ilustra a janela principal e as interfaces dos médulos. Inicialmente, fornece-se o
nome do projeto, definindo o nome dos bancos de dados a serem empregados nas demais
partes do programa. Alguns argumentos genéricos do projeto, tais como titulo, data da
ultima modificagdo, autor e observagoes podem ser colocadas neste arquivo de projeto.

SAT - Structural Analisys Tools

Structural
Analysis
Tools

' Close Geametry

@ Wig ﬁh ;

Mesh

Mesh Module: rosca Visualization

Stress

von-Mises
1833

17745
16.591
15436
14282
13127
11473
10818
9EE33
8095
73551
£.2008
50462
3898
27373
1582903

MUK 70 00925 |

= 2w o mom om W R

==

oo

S AVAYAYA)
FAVAVAV v rvs CVAVAYAY,
W

o=

Figura 3. Médulos do programa SAT

O médulo GEOMETRY permite a definicao do contorno da geometria do componente
a ser analisado. Estd baseado no conceito de NURBS (Non-uniform Rational B-Splines)'®,
pondendo-se ainda importar arquivos no formato DXF. Possui como primitivas principais
linha, arco, circulo, curva, dentre outras. Varias ferramentas de edicdo estdo disponiveis

Elementos finitos orientado por objetos 353

tais como rotagao, translacao, zoom e divisdao. O objetivo principal é definir as areas sobre
as quais serdo gerados os elementos, gravando-se ao final o arquivo com extensao .ara.

No caso do médulo MESH*, partindo-se das &reas armazenadas no banco de dados do
GEOMETRY, agregam-se informacdes de controle da malha, como por exemplo o tamanho
médio dos elementos. A partir dai, executa-se o programa ARANHA® para a geragio da
malha. Todos os atributos do modelo de elementos finitos tais como carregamentos, pro-
priedades dos materias e condigoes de contorno podem ser especificados de forma interativa
através de didlogos, gravando-se ao final o arquivo .a2f. Com os arquivos .ara e .a2f, gera-
se o arquivo .fem para ser submetido ao médulo SOLVER, o qual é o mesmo do programa
SAFE, nao tendo sido considerado ainda o estimador de erro.

Ao final, os resultados escalares e vetoriais podem ser apresentados de formas numérica
e grifica no médulo VISUALIZATION?®. De forma anédloga ao SAFE, tem-se mapas de
cores em faixas e curvas de niveis, geometria original e/ou deformada, agregando ainda
um procedimento de animacao da configuragdao deformada. Um aspecto importante foi a
organizacgao dos campos escalares e vetoriais, onde os nomes e a quantidade dos mesmos sao
gravados no banco de dados do SOLVER. Assim, o programa determina dinamicamente os
campos a serem apresentados, permitindo a sua aplicagao para a visualizag@o de resultados
de outros tipos de andlise.

Cada um dos médulos constitue-se num programa independente estando a comunicagao
entre os mesmos efetuada através de bancos de dados. A representagdo das entidades graficas
em todos os médulos € feita por uma mesma estrutura de dados baseada em NURBS. Isto
permite uniformizar todas as operagoes efetuadas tais como rotacao, translagdo, zoom, fill,
dentre outras.

Os resultados obtidos para os dois programas foram bastante satisfatérios. Apesar de
tratarem somente problemas elasticos bidimensionais, os programas apresentam ferramentas
efetivamente integradas, desde a parte de geracdo de contornos e de malha, visualizacao dos
resultados, estimacdo de erros e refinamento adaptivel. As interfaces graficas permitem um
acesso simples e intuitivo aos véarios médulos disponiveis.

Outros tipos de problemas podem ser facilmente integrados na estrutura ja existente,
criando-se por exemplo novos moédulos de analise. Como exemplo deste procedimento, o
moédulo OPTIMIZATION para a otimizacao estrutural de componentes tém sido desen-
volvido. Os procedimentos numéricos foram implementados usando as classes para ele-
mentos finitos discutidas neste artigo. Estdo baseados num algoritmo de minimizacao de
ponto interior e na fomulagao continua de analise de sensibilidade, tomando-se a espessura
e a forma como variiveis de projeto’. A Figura 4 ilustra a otimizacdo de forma de um
componente bidimensional.

}‘AV“‘ AVAY()Y AVAVAVAVAY YAVAVAVAVAVAVAVAVAVA
4'«4em;ﬁ;«uwmuwmwmﬁiﬁﬂﬁ%“

YAVAVAVAVAVAVAV
AV A DAL

AVAVAVAVaY
AYAYAVAVL 6 A VA

NN AYAVAVA vy AV,

i \VAVAVAVAVAV Y} K 22

K RIKIARIIKS KA

NI SRR YA,
PR SOGUVaVAVAV.VAVAVAV, AV S

'4'§'§h§'ﬂ4§""‘”%%}ﬂﬁ&iﬁﬁuvmﬂﬂﬂ%{%, AR TSR]
KRR AR RRIRRIRRA SIS KA
o AVAYAAATATAVAY X7ATAVAVAVAVAVAVAVAVAV

Figura 4. Exemplo de otimizacao de forma

COMENTARIOS FINAIS

A aplicagdo do modelo orientado por objetos tem permitido o desenvolvimento de pro-
gramas com qualidade, eficiéncia, portabilidade e produtividade. Um aspecto importante,
ao se aplicar este modelo, é realizar o projeto da hierarquia de classes, antes da fase de im-
plementagao. Esta é a tarefa mais complexa e deve ser efetuada com cuidado, procurando
obter um conjunto de classes de facil reutilizagdo, extensdo e manutencao.

354 M.L Bittencourt, A.C. Salgado Guimaraes e R.A. Feijéo

Os ambientes de analise tém sido estendidos para o tratamento de problemas tridimen-
sionais. Espera-se alcangar as mesmas facilidades de utilizacdo e niveis de eficiéncia. No
caso do modelamento geométrico no ambiente SAT tridimensional, tem-se usado a biblio-
teca ACIS. Trata-se de um poderoso conjunto de classes em C+4 para o modelamento e
visualizacdo de objetos. Tem-se tornado um padrdo na area de computagdo grafica. Soft-
wares comerciais, tais como Autocada e SolidEdge, tém sido desenvolvidos empregando a
plataforma ACIS.

AGRADECIMENTOS

Os autores agradecem aos seguintes orgaos pelo apoio ao desenvolvimento do trabalho:
CNPq (Proc. 523.982/94-1), CNPq-RHAE (Proc.610.035/94-0), FAPESP (97/97/0540-0),
LNCC e UNICAMP. Os autores também agradecem as facilidades de software gentilmente
fornecidas pelo Grupo TACSOM (www.Incc.br/™ tacsom).

REFERENCIAS

1 A.C.S. Guimaraes y R.A. Feijéo, “The ACDP system (In portuguese)”, 27/89, National Labora-
tory for Scientific Computation, Rio de Janeiro, Brazil, (1989).

2 A.C.S. Guimaraes, E.A. Fancello, G.R. Feijéo y R.A. Feijéo, “SAFE - integrated system for
structural finite element analysis — Version 1.0”, National Laboratory for Scientific Computation,
Rio de Janeiro, Brazil, (1994).

3 A. Cardona, I. Klapka y M. Geradin, “Design of a new finite element programming environment”,
Engineering Computations, Vol. 11, pp. 365-381, (1994).

4 A.M. Thees, “Computational tools for a finite element structural analysis software (In por-
tuguese), DPM/FEM, State University of Campinas, Brazil, Research Report, (1996).

5 B. Raphael y C.S. Krishnamoorthy, “Automating finite element development using object-
oriented techniques”, Engineering Computation, Vol. 10, 1, pp. 267278, (1993).

6 B.W.R. Forde, R.B. Foschi y S.F. Stiemer, “Object-oriented finite element analysis Computer €
Structures, Vol. 34, pp. 355-374, (1990).

7 C.A.C. Silva, “Object-oriented structural optimization and sensitivity analysis” (In portuguese),
DPM/FEM, State University of Campinas, Brazil, (1997).

8 E.A. Fancello, A.C.S. Guimaraes, R.A. Feijéo y M. Venere, “Automatic two-dimensional mesh
generation using object-oriented programming” (In portuguese), Brasilian Association of Me-
chanical Sciences (Ed.), Proceedings of 11th Brazilian Congress of Mechanical Engineering, Sao
Paulo, pp. 635—638, December, (1991).

9 E. Dari, “Contribuciones a la triangulacién automitica de dominios tridimensionales”, Instituto
Balseiro, Bariloche, Argentina, (1994).

10 R.A. Feijéo, “Relatérios do sistema SDP formado por 15 manuais” National Laboratory for
Scientific Computation, Research Reports, Rio de Janeiro, Brazil, (1987).

11 G.R. Miller, “An Object-oriented approach to structural analysis and design”, Computer &
Structures, Vol. 40, pp. 75 82, (1991).

12 G.W. Zeglinski, R.P.S. Han y P. Aitchison, “Object-oriented matrix classes for use in a finite
element code using C++", Int. J. for Num. Meth. in Engng., Vol. 37, pp. 3921-3937, (1994).

13 G. Yuy H. Adeli, “Object-oriented finite element analysis using Eer model”, J. of Struct. Engng,
Vol. 119, 9, pp. 2763-2781, (1993).

Elementos finitos orientado por objetos 355

14

16

17

18

19

20

21

22

23

24

25
26

27

28

29

30

31

32

33

H. Adeli y G. Yu, “An integrated computing environment for solution of complex engineering
problems using the object-oriented programming paradigm and a blackboard architeture”, Com-
puter & Structures, Vol. 54, 2, pp. 255-265, (1995).

J.S.R.A. Filho y P. Devloo, “Object-oriented programming in scientific computations: the begin-
ning of a new era, Engineering Computations, Vol. 8, pp. 81-88, (1991).

M.C. Galvao, “A NURBS based environment for domain definition applied to mesh generation”

(In portuguese), Research Report, DPM/FEM, State University of Campinas, Brazil, (1995).

M.L. Bittencourt, “Static and dynamic analysis by substructuring and object-oriented program-
ming” (In portuguese), DPM/FEM, State University of Campinas, Brazil, (1990).

M.L. Bittencourt, “Adaptive iterative and multigrid methods applied to non-structured meshes”
(In portuguese), DPM/FEM, State University of Campinas, Brazil, (1996).

M.L. Bittencourt y R.A. Feijéo, “Andlise comparativa de métodos diretos e iterativos para a
solucao de sistema de equagoes”, Revista Int. de Mét. Num.para Cdlculo y Diseno en Ing., Vol.

13, 2, pp. 123-148, (1997).

M.L. Bittencourt y R.A. Feijéo, “Métodos multigrid em malhas nao-aninhadas aplicados a pro-
blemas elasticos”, Revista Int. de Mét. Num. ypara Cdlculo y Diseno en Ing., Vol. 14, 1, pp.
3-23, (1998).

0.C. Zienkiewicz y J.Z. Zhu, “A simple error estimator and adaptative procedure for practical
engineering analysis”, Int. J. for Num. Meth. in Engng, Vol. 24, pp. 337-357, (1987).

P.H. Menétrey y T. Zimmermann, “Object-oriented non-linear finite element analysis: Applica-
tion to J2 plasticity”, Computer & Structures, Vol. 49, 5, pp. 767-777, (1993).

R.A. Feijéo, A.C.S. Guimaraes y E.A. Fancello, “Algumas experiencias en la programacién
orientada por objetos y su aplicacién en el método de los elementos finitos”, Research Report
15/91, National Laboratory for Scientific Computation, Rio de Janeiro, Brazil, (1991).

R.S. Pressman, “Software engineering — a practitioner’s approach”, McGraw-Hill, New York,

(1987).
S.B. Lippman, “C++ primer”, Addison-Wesley, Reading, (1991).

S.H.P. Ramos, “Visualization of structural analysis results in windows environment” (In por-
tuguese), Research Report, DPM/FEM, State University of Campinas, Brazil, (1996).

S.P. Scholz, “Elements of an object-oriented fem++ program in C++", Computer & Structures,
Vol. 43, 3, pp. 517-529, (1992).

T.J. Ross, L.LR. Wagner y G.F. Luger, “Object-oriented programming for scientific codes: II.
Examples in C++7, J. of Comp. in Civil Engng., Vol. 6, 4, pp. 497-514, (1992).

T. Zimmermann, Y. Dubois-Pelerin y P. Bomme, “Object-oriented finite element programming:
I. Governing principles”, Comp. Meth. in Appl. Mech. and Engng., Vol. 98, pp. 291 303,
(1992).

W.W. Tworzydlo y J.T. Oden, “Towards an automated environment in computational mecha-
nics”, Comp. Meth. in Appl. Mech. and Engng., Vol. 104, pp. 87-143, (1993).

W.W. Tworzydlo y J.T. Oden, “Knowledge-based methods and smart algorithms in computa-
tional mechanics”, Engineering Fracture Mechanics, Vol. 50, 5, pp. 759-800, (1995).

Y. Dubois-Pelerin, T. Zimmermann y P. Bomme, “Object-oriented finite element programming:
II. A prototype program in smalltalk”, Comp. Meth. in Appl. Mech. and Engng, Vol. 98, pp.
361-397, (1992).

Y. Dubois-Pelerin, T. Zimmermann y P. Bomme, “Object-oriented finite element programming:
III. An efficient implementation in C+4", Comp. Meth. in Appl. Mech. and Engng, Vol. 108,
pp. 165-183, (1993).

