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Abstract. The Discrete Material Optimization (DMO) and the Shape Function with Penaliza-
tion (SFP) constitute the state-of-the-art material interpolation techniques for identifying from
a list of pre-defined candidate materials the most suitable one(s) for the structural domain.
The candidate materials are represented on this list through their mechanical properties, and
are interpolated within the domain of interest (DOI), whether that is the finite element (FE)
domain or groups of FEs, so-called patches. Depending on the technique preferred to interpolate
the mechanical properties within the DOI, a different type of weights is selected. Goal of the
discrete material optimization problem (MOP) is to solve for these weights and determine for
each FE/patch a unique material from the list. The current work extends the concept of the
SFP technique by employing as weights the shape functions of the hyper-tetrahedral FE, the
dimension of which is dynamically adapted depending on the number of candidate materials
considered for the structural domain. This generalized hyper-tetrahedral FE constitutes what
is defined as a simplex, and similar to the SFP technique each of its nodes is tied to a specific
candidate material. In the context of discrete optimization and utilizing the shape functions of
an abstract high-dimensional FE as weights for the candidate materials, the proposed interpo-
lation technique secures the continuity between the number of candidate materials that can be
considered for the structure, a feature lacking in the SFP technique. Additionally, given that
the number of nodes forming the simplex FE is always one unit greater than the dimension of
the space it is defined within, the dimension of the resulting MOP drops by one per DOI. The
developed material interpolation technique is combined with the topology optimization problem
(TOP) to formulate the concurrent material and topology optimization problem for compliance
minimization of the structure. Finally, the latter is examined on the academic case study of
the 3D Messerchmitt-Bölkow-Blohm (MBB) beam for the case of the concurrent topology and
discrete fiber orientation optimization problem.
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1 INTRODUCTION

The deployment of composite materials has now become the norm for structures where the
combination of high mechanical properties and low weight forms the primary requirement, with
the main metric for comparing the various candidate composites being their specific proper-
ties. Exploiting their general orthotropy for optimizing and steering the orientation of the fiber
towards the most intense load paths, constitutes the most widely studied topic in the field of
discrete material optimization; the discrete material optimization problem (MOP) searches from
a discrete list of pre-defined candidate materials that are considered for the structural domain,
the most suitable one per DOI. Each of the candidate materials is represented on this list via
their mechanical properties, and a parameterization scheme is implemented so as to interpolate
the mechanical property within the DOI. Considering the case of nc candidate materials as-
signed per FE (e) of the structural domain, discrete material optimization applies the following
interpolation scheme:

[Ce(we)] = we1 · [C1] + · · ·+ wenc · [Cnc ] =

nc∑
i=1

wei · [Ci], (1)

where wei ∈ [0, 1] is the weight assigned to the (ith) in order candidate material from the list, and
[Ci] its elasticity tensor. Goal of the MOP is to solve for these weights and conclude at the end of
the optimization procedure to a unique material for each FE. The latter requirement implies that
the predicted solution must be binary, i.e., w∗

ei = {0, 1} under the constraint that
∑

iw
∗
ei = 1.

The wei weights vary depending on the technique selected to inteprolate the mechanical property
within the DOI.

In the initial stage of the field, the state-of-the-art work in [1] set the basis for the variety
of material interpolation techniques to follow, where the authors proposed the so-called discrete
material optimization (DMO) technique. DMO comes in different variations, amongst which
the DMO4 and DMO5 [2] stood out to be the most robust ones, and despite being the oldest
interpolation technique, it still constitutes the go-to choice in most MOPs. However, its main
computational shortcoming lies in having an equal number of design variables to the number of
candidate materials considered for the DOI, increasing thus the dimension of the resulting MOP.
In their attempt to tackle this issue, the shape function with penalization technique (SFP) was
proposed in [3]-[4], where the authors introduced the shape functions of the 2k−noded quadran-
gular FE, with k ∈ N+, as weights for the candidate materials. The idea behind this approach is
that each candidate material is tied to a specific node on the quadrangular FE, and the solution
is optimized with respect to the nodal coordinates configuration. Despite achieving a substantial
reduction in the number of design variables in the MOP, SFP suffers from the constraint that
the number of candidate material phases should be given in integer powers of base 2. As a
generalization of the SFP technique, trying to bridge the gap between [2k−1 + 1, 2k] material
phases, the bi-value coding parameterization method (BCP) was later proposed in [5]. In the
framework of the continuous multi-material topology optimization problem, the normal distri-
bution function was applied in [6] for selecting the optimal amongst different isotropic materials,
an idea which was recently explored in [7] for the problem of continuous fiber angle optimiza-
tion (CFAO), labeled as the Normal Distribution Fiber Optimization (NDFO) technique. The
authors utilized the standard normal distribution as the weighting function for the candidate
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fiber orientations, and illustrated that a unique design variable is needed per DOI regardless of
the number of candidate materials assigned to it.

In the framework of the concurrent MOP and TOP [8], in [9] the authors proposed an
extension of the DMO technique for the concurrent discrete material distribution and thickness
optimization for laminated composites. The proposed methodology was extended in [10] by
introducing the relative density as an additional design variable so as to effectively terminate
individual plies throughout the laminate. With regards to the concurrent CFAO and TOP, the
recent work in [11] is mentioned, where the authors examined the effect of the printing plane of
the additive manufacturing (AM) process in the predicted topologies of the structural domain.

The present work is motivated by the SFP technique, where in the context of utilizing the
shape functions of a FE as weights for the candidate materials, the shape functions of the
hyper − tetrahedral FE are employed. Here, the term simplex defines the tetrahedral FE in
any space Rk, where k ∈ N+. As discussed in the upcoming sections, the advantage that comes
with considering the shape functions of the hyper-tetrahedral FE is two-fold: (1a) with respect
to DMO, the dimension of the resulting MOP drops by one per DOI, e.g., for the case where each
FE is assigned a different material, the dimension of the resulting simplex-based MOP reduces
by the number of FEs discretizing the domain compared to the corresponding DMO-based MOP,
and (1b) the summation equality constraint stated in Eq(1), is automatically satisfied due to
the self-complementary property of the simplex’s FE shape functions. (2) with respect to SFP,
first order shape functions are employed for the interpolation scheme, and the continuity in the
number of candidate materials is ensured, i.e., they are longer restricted to integer powers of
base 2.

The paper is structured as follows: in Sec.(2) the complete formulation of the concurrent
simplex-based material and topology optimization problem for compliance minimization of the
structure is presented, and in Sec.(3) the proposed interpolation scheme is demonstrated on the
3D MBB beam for the concurrent discrete fiber orientation and topology optimization problem.

2 FORMULATION OF THE CONCURRENT SIMPLEX-BASED DISCRETE
MATERIAL AND TOPOLOGY OPTIMIZATION PROBLEM

In this section the concurrent discrete material and topology optimization problem is pre-
sented for compliance minimization of the structural domain. The two optimization problems
are initially decoupled with the MOP being examined first, where the proposed technique for
interpolating the properties of the candidate materials within the FE domain is presented. In
a second step, the TOP is incorporated into the MOP by introducing the relative densities of
the FEs discretizing the structural domain as additional design variables. More specifically, the
section is organized as follows: since the proposed technique is based on utilizing the shape
functions of the simplex as the weights cast on the different candidate materials, the definition
of a simplex as a geometric shape is given in Sec.(2.1). In Sec.(2.2) the simplex is treated as
a hyper-tetrahedral FE defined in Rk, where k ∈ N+, whose shape functions are requested. In
this context, and for purposes of more comprehensive understanding, their derivation process
is elaborated through their geometric interpretation. Finally, in Sec.(2.3) the proposed inter-
polation scheme is derived and is then incorporated into the TOP to pose the final compliance
minimization problem for the structural domain.
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2.1 Definition of the simplex in the Rk space, where k ∈ N+

Following up on the concept of the SFP technique that the shape functions of a FE constitute
the weights of the candidate materials, the shape functions of the k−dimensional tetrahedron
are considered in this work. In this case, this generalized tetrahedron constitutes what is de-
fined as a simplex: a simplex is the generalization of a non-zero volume tetrahedron to the
k−dimensional space (simplest possible convex polytope), e.g. in two dimensions it is a triangle,
in three dimensions a tetrahedron, in k dimensions a (k + 1)-verticed hyper-tetrahedron. The
direct consequence stemming from the definition of the simplex is that the number of its vertices
is always by one greater the dimension of the space it is defined within e.g., a simplex F defined
in Rk is always formed by (k + 1) vertices.

Figure 1: (A) The triangle is the simplex in R2. (B) The tetrahedron is the simplex in R3.
Spanning R3, simplexes in higher dimensions are formed.

The volume of the simplex is explicitly defined by the coordinates of its vertices. Here, the
notion of the volume is used in loose terms, since it loses its meaning for simplexes defined in any
space other than R3. Specifically, for the triangle it contracts to the area of the triangle while for
higher dimensional simplexes it is extrapolated to describe what is defined as a hyper-volume.
The formula for calculating the volume of the simplex in R2, R3 and in higher dimensional
spaces Rk>3 is provided in Table 1. Here, each row of the matrix corresponds to a vertex of
the simplex, and counting from the second column forth, each column contains the coordinates
of the corresponding vertex in each direction (the first column is by default prepended to the
matrix forcing it to be square).

A0 in R2 V0 in R3 V k
0 in Rk, k > 3

1
2! · abs

(
det

1 ξ11 ξ12
1 ξ21 ξ22
1 ξ31 ξ32

) 1
3! · abs

(
det


1 ξ11 ξ12 ξ13
1 ξ21 ξ22 ξ23
1 ξ31 ξ32 ξ33
1 ξ41 ξ42 ξ43


)

1
k! · abs

(
det


1 ξ11 ξ12 · · · ξ1k
1 ξ21 ξ22 · · · ξ2k
...

...
...

. . .
...

1 ξ(k+1)1 ξ(k+1)2 · · · ξ(k+1)k


)

Table 1: The formula for calculating the volume of the simplex in any given space.
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2.2 Derivation of the simplex FE’s shape functions

Let Rk be the space the simplex Fk is defined within. By definition, the corresponding simplex
is constructed by (k+1) vertices. Here, the terms ”node” and ”vertex” are interchangeable. The
shape function associated with its (ith) node Ni(ξ1,··· , ,ξk), is defined as the ratio of the volume of
the hyper-tetrahedron formed by an internal point P(ξ1,··· , ξk) ∈ Fk with the rest of its vertices,
Vi(ξ1,··· , ξk), to its total volume V0. In mathematical terms, the above statement reads as follows:

Ni(ξ1,··· ,ξk) =
Vi(ξ1,··· ,ξk)

V0
∈ [0, 1], with i ∈ V = {1, 2, · · · , k + 1}, (2)

where, ξ = [ξ1, · · · ξk] are the coordinates of the internal point P . The calculation of the
two volumes is carried out based on the formulas listed in Table 1; the calculation of V0 yields
a constant value -the volume of the simplex FE- while the volume Vi is parametrized by the
coordinates of the internal point P . To calculate the latter, the coordinates of the (ith) node ξij
with j = 1 : k, are replaced by the coordinates of the point P in the matrix. As a general rule,
the coordinates of the node whose shape function is sought are replaced by the coordinates of
the internal point P in the matrix. For instance, expanding Eq.(2) for the case of the triangular
FE, the shape function corresponding to the #1 node is written as follows:

N1(ξ1,ξ2) =
A1(ξ1,ξ2)

A0
=

��
1
2!
·abs

(
det


1 ξ1 ξ2
1 ξ21 ξ22
1 ξ31 ξ32


)

��
1
2!
·abs

(
det


1 ξ11 ξ12
1 ξ21 ξ22
1 ξ31 ξ32


) ∈ [0, 1] (3)

where, A1(ξ1,ξ2) is the area of the triangle formed by the (#2,#3) nodes and the internal point
P(ξ1,ξ2), and A0 the total area of the triangle. Figure 2(A) illustrates the geometric interpretation
of the shape functions for the triangular FE.

With regards to the tetrahedral FE, the shape function associated with the #1 node is
expressed as follows:

N1(ξ1,ξ2,ξ3) =
V1(ξ1,ξ2,ξ3)

V0
=

��
1
3!
·abs

(
det


1 ξ1 ξ2 ξ3
1 ξ21 ξ22 ξ23
1 ξ31 ξ32 ξ33
1 ξ41 ξ42 ξ43


)

��
1
3!
·abs

(
det


1 ξ11 ξ12 ξ13
1 ξ21 ξ22 ξ23
1 ξ31 ξ32 ξ33
1 ξ41 ξ42 ξ43


) ∈ [0, 1] (4)

where, V1(ξ1,ξ2,ξ3) the volume formed by the (#2,#3,#4) nodes and the internal point
P(ξ1,ξ2,ξ3), and V0 the total volume of the tetrahedral FE. Figure 2(B) illustrates the geomet-
ric interpretation of the shape functions for the tetrahedral FE.

Applying the same approach, the shape function tied to the #1 node of the hyper-tetrahedral
FE is calculated. By cyclical alternation of the indices, the shape functions of the rest of the
nodes are calculated.
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(a)

(b)

Figure 2: Geometric interpretation of the simplex FE’s shape functions: (a) The shape function
associated with each node of the triangular FE equals to the ratio of the area formed by the
rest two nodes and the internal point P(ξ1,ξ2). (b) The shape function associated with each node
of the unitary orthogonal tetrahedral FE equals to the ratio of the volume formed by the rest
three nodes and the internal point P(ξ1,ξ2,ξ3).

Given the freedom of considering different simplexes within a given space, for consistency
purposes, the proposed material interpolation technique is presented for the case when the
unitary orthogonal simplex FE is considered. The motivation behind this selection is two-fold:
(1) the simplified mathematical description of the specific simplex FE as a linear convex set,
which constitutes the feasible domain for the solution P(ξ), and (2) the identification of the
permissible bounds of the P(ξ) point to those of the relative density of each FE; that is, the
resulting MOP and TOP will share the same side constraints in their design variables. As such,
scale-related computational issues stemming from the imposed constraints can be avoided in the
final optimization problem.

Thus, considering the first node of the simplex FE being located at the origin and the rest
of its nodes at a unit distance from the origin spanning the Rk space, its shape functions take
the form listed in Table 2. Here, the domain of the (k + 1)-noded orthogonal tetrahedral FE in
Rk results from the intersection of the [0, 1]k hyper-cube -where its natural coordinate system is
defined- with the hyper-plane g(ξ1,··· ,ξk) :

∑k
i=1 ξi − 1 = 0, expressed in the table in a L1 norm

format. The hyper-plane defines mathematically the hypotenuse of the simplex FE, as illustrated
in Figure 3 for the cases of the orthogonal triangular and tetrahedral FEs, respectively.
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#Node F2 = {ξ ∈ R2 | 0 ≤ ξ ≤ 1, ∥ξ∥1 − 1 ≤ 0} F3 = {ξ ∈ R3 | 0 ≤ ξ ≤ 1, ∥ξ∥1 − 1 ≤ 0} Fk = {ξ ∈ Rk | 0 ≤ ξ ≤ 1, ∥ξ∥1 − 1 ≤ 0}
1 N1(ξ1,ξ2) = 1− ξ1 − ξ2 N1(ξ1,ξ2,ξ3) = 1− ξ1 − ξ2 − ξ3 N1(ξ1,··· ,ξk) = 1−

∑k
i=1 ξi

2 N2(ξ1,ξ2) = ξ1 N2(ξ1,ξ2,ξ3) = ξ1 N2(ξ1,··· ,ξk) = ξ1

3 N3(ξ1,ξ2) = ξ2 N3(ξ1,ξ2,ξ3) = ξ2 N3(ξ1,··· ,ξk) = ξ2

4 N4(ξ1,ξ2,ξ3) = ξ3 N4(ξ1,··· ,ξk) = ξ3

k+1 Nk+1(ξ1,··· ,ξk) = ξk

Table 2: The shape functions of the unitary orthogonal simplex FE Fk in Rk, k ∈ N+.

Figure 3: Depiction of (a) orthogonal triangular FE (F2), (b) orthogonal tetrahedral FE (F3).

2.2.1 The simplex-based material interpolation technique

Similar to the SFP technique each candidate elasticity tensor occupies a specific nodal location
on the simplex FE. The goal of the resulting MOP is to optimize the objective function with
respect to the coordinates of the internal point P(ξ). The dimension of the space the simplex
is defined within, is dynamically adapted depending on the number of candidate materials
considered for the structural domain. For instance, when considering nc candidate materials for
the structural domain, a nc-noded unitary orthogonal tetrahedral FE is generated within the
Rnc−1 space. Deploying the shape functions of the unitary orthogonal tetrahedral FE, listed in
Table 2, to interpolate the nc candidate materials within the (eth) FE, the interpolated property
reads as follows:

[Ce(ξe)] =

nc∑
i=1

Npn
ei(ξe)

· [Ci], (5)

where, [Ci] the [6 × 6] elasticity tensor representing the (ith) candidate material in the list,
Nei(ξe) the corresponding (ith) in order shape function of the simplex FE, and pn ∈ R+ a penalty
factor forcing the solution P(ξe) towards the location of the simplex’s nodes. Notice that, for val-
ues of pn ̸= 1, an additional constraint must be imposed so that to enforce the self-complementary
property on the shape functions within the simplex FE’s domain, i.e.,

∑nc
i=1N

pn
ei(ξe)

= 1. Finally,
the introduction of the subscript e in the shape functions, indicates that a different solution is
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expected/enforced per FE (e), unless groups of FEs are assigned the same simplex FE to in-
terpolate the candidate materials. Figure 4(A) depicts the idea behind assigning the candidate
materials to the nodes of the simplex FE. Figure 4(B) depicts the final volume and shape func-
tion’ values corresponding to the nodes of the simplex FE for the ideal case when a unique
material is predicted at the end of the material optimization loop for the (e) FE.

(a)

(b)

Figure 4: (a) Each candidate material is assigned to a nodal location on the tetrahedral FE. (b)
For the case where the material #3 is predicted for the (e) element, the shape function of the
#3 node equals to 1 and 0 for the rest.

Finally, the TOP is combined with the MOP by assigning per FE (e) in the structural domain
a relative density xe. As such, Eq.(5) is re-expressed as follows:

[Ce(xe,ξe)] = xpe ·
( nc∑
i=1

Npn
ei(ξe)

· [Ci]
)
, (6)

where p ∈ R+ a penalization factor forcing the intermediate relative density values towards to
the [10−3, 1] bounds. For abbreviation purposes from now onwards, the [xe, ξe] design variables
associated with the (e) FE are grouped in a unique vector denoted as dve = [xe, ξe].

2.3 Formulation of the concurrent simplex-based material and topology optimiza-
tion problem

In this section, the concurrent simplex-based material and topology optimization problem is
posed for compliance minimization of the structure. In Sec.(2.3.1), the stiffness matrix is derived
for the (e) FE, and in Sec.(2.3.2) the resulting compliance minimization problem is posed.
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2.3.1 Derivation of the FE’s stiffness matrix

Substituting the elasticity tensor derived in Eq.(6) into the volume integral calculating the
stiffness tensor of the FE, the latter reads as follows:

[Ke(dve)] = xpe ·
(∫

VE

[Be]
T ·
( nc∑
i=1

Npn
ei(ξe)

· [Ci]
)
· [Be] dV

)
=

xpe ·
( nc∑

i=1

Npn
ei(ξe)

·
(∫

VE

[Be]
T · [Ci] · [Be] dV

)
︸ ︷︷ ︸

[Kei]

)
= xpe ·

( nc∑
i=1

Npn
ei(ξe)

· [Kei]

)
, (7)

where, [Kei] is the [24× 24] stiffness tensor corresponding to the (ith) candidate material, VE

is the volume of the FE, and [Be] is the [6 × 24] Jacobian matrix of the FE’s shape functions.
It is noted that, unless penalized, the derivatives of the shape functions with respect to the ξe
design variables yield a constant value, i.e. the Jacobian of the stiffness tensor is independent
of the ξe design variables.

2.3.2 Posing the compliance minimization problem

The resulting compliance minimization problem is subjected to: (1) the system’s equilibrium
constraints of Eq.(9), (2) the volume constraint of Eq.(10), (3) the enforced self-complementary
property constraint imposed on the penalized shape functions of Eq.(11), and (4) the side con-
straints of the design variables of Eq.(12):

dv∗ = argmin
dv ∈ Rne·nc

C(dv) =

ne∑
e=1

{Ue(dve)}
T · [Ke(dve)] · {Ue(dve)}, (8)

s.t.

• [Kall(dv)] · {Uall(dv)} = {Fall} ⇒ {H(dv)} :
( ne∑
e=1

[Ke(dve)] · {Ue(dve)}
)
− {Fall} = {0}, (9)

•
Vt(x)

V0
= fvolfrac ⇒ F(x) :

Vt(x)

V0 · fvolfrac
− 1 = 0, (10)

• he(ξe) :
∑

nc
i=1N

pn
ei(ξe)

− 1 = 0, with e = 1 : ne, (11)

• ge(ξe) : ∥ξe∥1 − 1 ≤ 0, • dve,min ≤ dve ≤ dve,max, with e = 1 : ne, (12)

where, dve,min = [10−3, 0, 0, · · · , 0]︸ ︷︷ ︸
[1× nc − 1]

, dve,max = [1, 1, 1, · · · , 1︸ ︷︷ ︸
[1× nc − 1]

],

where dv =
⋃ne

e=1 dve, x =
⋃ne

e=1 xe, ne is the number of FEs discretizing the structural
domain, [Kall(dv)] is the global stiffness matrix, {Uall(dv)} is the global displacement vector,
{Fall} is the external load vector (considered independent of the design variable vector dv),
{Ue(dve)} is the displacement vector of the (e) element, [Ke(dve)] its stiffness matrix, and Vt(x)

the final volume of the domain corresponding to the fraction fvolfrac of its initial volume V0.
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3 NUMERICAL EXAMPLES

In this section the methodology is presented for the concurrent discrete fiber orientation
and topology optimization problem. With regards to the former optimization problem, a list
of predefined candidate fiber orientations is considered for the structure, amongst which the
most optimal one is sought for each FE. Each candidate orientation is represented on the list
via the corresponding effective mechanical property of the composite lamina, as derived by
appropriately transforming it from the local to the global coordinate system (GCS). In the
following examples, the engineering constants of the composite lamina are set equal to: E1 =
200 GPa, E2 = G12 = 20 GPa, v12 = 0.3, and v23 = 0.3. The composite lamina is considered
to be specially orthotropic and transversely isotropic, with the latter implying that the rest of
the engineering constants perpendicular to the lamina plane can be obtained by interchanging
the subscripts 2 and 3 in the engineering constants.

The academic case study of the 3D MBB beam is examined in this section; the beam is
simply supported at its lower two edges and a distributed load of F = 100 Nt is being applied
in the middle of its lower face. The dimensions of the beam are L1 = 8 m, L2 = 4 m, and
L3 = 0.01 m. With regards to the discrete fiber orientation optimization problem, the following
list of candidate orientations is considered for the beam: Θ = {00,−450, 450, 900} about the X3

axis of the GCS, as depicted in Figure 5; that is, the shape functions of the 4−noded unitary
orthogonal simplex FE are employed as weights for the candidate elasticity tensors. With
regards to the TOP, 30% of the initial volume is selected to be kept, i.e., fvolfrac = 0.3. For
computational saving purposes, the pn penalty factor is considered equal to unity, so that the
self-complementary constraint of Eq.(11) is automatically satisfied, while the set of inequality
constraints ge(ξe) of Eq.(12), holding for each FE in the domain, is aggregated into a scalar-
valued global inequality constraint by means of the K-S function [12]. This transformation takes
place as follows:

G(Ξ) =
1

η
· ln
{ ne∑

e=1

eη·ge(ξe)

}
− 1

η
· ln(ne) (13)

where Ξ =
⋃ne

e=1 ξe, ne the number of FEs, and η ∈ [5, 200] a tunable parameter set equal to 50
in the test examples.

Figure 5: Depiction of the numerical example.
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The numerical example is solved for two different mesh discretizations, a [80 × 40 × 1]
and a [100 × 50 × 1] discretization mesh. The maximum number of iterations is set equal
to maxloop = 200 and the prescribed tolerance between two successive iterations is set equal
to tol = 10−3. Finally, both optimization problems have been solved by means of the moving
asymptotes solution algorithm (MMA) [13]. The predicted optimal topology and fiber ori-
entation for both cases is presented in Figure 6, along with the convergence history in their
compliance.

(a) Mesh A: [80× 40× 1] Optimized domain and fiber distribution.
(b) The compliance history in
semi-log scale.

(c) Mesh B: [100× 50× 1] Optimized domain and fiber distribution.
(d) The compliance history in
semi-log scale.

Figure 6: The predicted results for the two mesh discretization cases of the MBB beam.

4 CONCLUSIONS

The scope of this work is to introduce a new material interpolation technique. Motivated by
SFP, the proposed interpolation scheme utilizes the shape functions of the hyper-tetrahedral FE.
The resulting concurrent discrete material and topology optimization problem is formulated for
compliance minimization of the structural domain, and is demonstrated on the academic case
study of the 3D MBB beam for the concurrent discrete fiber and topology optimization problem.
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