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ANALYSIS OF A STABILIZED FINITE ELEMENT APPROXIMATION OF THE
TRANSIENT CONVECTION-DIFFUSION EQUATION USING AN ALE
FRAMEWORK *

SANTIAGO BADIA T AND RAMON CODINA f

Abstract. In this paper we analyze a stabilized finite element method to approximate the convection-diffusion
equation on moving domains using an ALE framework. As basic numerical strategy, we discretize the equation
in time using first and second order backward differencing (BDF) schemes, whereas space is discretized using
a stabilized finite element method (tbethogonal subgrid scaléormulation) to deal with convection dominated
flows. The semi-discrete problem (continuous in space) is first analyzed. In this situation it is easy to identify the
error introduced by the ALE approach. After that, the fully discrete method is considered. We obtain optimal error
estimates in both space and time in a mesh dependent norm. The analysis reveals that the ALE approach introduces
an upper bound for the time step size for the results to hold. The results obtained for the fully discretized second
order scheme (in time) are associated teemkernorm than the one used for the first order method. Nevertheless,
optimal convergence results have been proved. For fixed domains, we recover stability and convergence results with
the strong norm for the second order scheme, stressing the aspects that make the analysis of this method much more
involved.

Key words. Stabilized finite elements, second order BDF, ALE

1. Introduction. In this paper we propose and analyze two time integration schemes,
of first and of second order, for the numerical approximation of the transient convection-
diffusion equation in moving domains. This equation is written in an ALE framework, in
which the temporal derivatives are expressed with respect to the reference of a moving domain
), obtained from a mapping of the domain at the initial time. The space discretization is
carried out using a stabilized finite element method that allows us to deal with convection
dominated flows.

The ALE framework, initially used with a finite element approximation in [12], has be-
come widely popular when simulating fluid-structure interaction problems. Even tough one
can find a lot of numerical experimentation using the ALE approach, some aspects have kept
on the dark side for a long time. For instance, the meaning and effect Gfabmetric con-
servation Law(GCL) or how the accuracy of a numerical method in fixed domains is spoiled
when introducing moving domains with an ALE formulation were not clear. Farhat and co-
authors have shown in [13] that the GCL makes the numerical scheme preserve a maximum
principle. In [16], the authors have shown that this condition is not necessary to obtain sec-
ond order ALE schemes in a finite volume framework. More recently, in a finite element
setting and taking the transient convection-diffusion equation amtidelequation, works
like [14] and [23] have also allowed to clarify the effect of the GCL on the stability proper-
ties, the different behavior between conservative and non-conservative forms, and also some
convergence results have been proved. Further analyses, for second order schemes, have been
developed in later works, as [15] and [2]. Herein we use the mathematical setting used, e.g.,
in [23] for the description of this method.

The ALE framework does not introduce any error by itself at the continuous level. How-
ever, when the problem is discretized in time, some errors due to the ALE description arise.
At this step, for fixed domains, the only source error is the time derivative of the unknown.
In addition, for moving domains, also the error from the evaluation of the mesh velocity has
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2 S. BADIA AND R. CODINA

to be accounted for. This velocity is calculated as the time derivative of the space position of
a particle. Thus, an error is induced when this time derivative is calculated numerically.

On the other hand, in practical applications the mesh velocity belongs to the finite ele-
ment space and does not introduce any interpolation error. Thus, we consider that the ALE
formulation is better understood analyzing the problem semi-discretized in time. However,
most numerical analysis (see [14], [15] and [2]) first study the semi-discrete problem in space,
and then the fully discretized problem.

The convection-diffusion equation (as the Navier-Stokes equations) when discretized in
space with the standard Galerkin formulation shows numerical oscillations if the convective
term is dominant. With the aim of developing a finite element method free of spurious oscil-
lations many methods have been proposed during the last twenty years, such as SUPG (see
[5]), Galerkin/Least-squares (see [22]) or the Subgrid Scale stabilization (see [20]). A com-
parative of different stabilization methods can be found in [6]. Dinthogonal Subgrid Scale
method (OSS) used in this paper belongs to this last family and was introduced by Codina
in [7]. The method is designed taking as starting point the Subgrid Scale variational setting
proposed by Hughes in [21] and modeling the subgrid problem in a particular way, in partic-
ular taking the subgrid scales orthogonal to the finite element space. The common aspect of
all these methods is found in the convergence analysis of the discrete problem in space. For
the Galerkin approximation, the error estimate bound depends on the physical properties (the
Péclet number for the convection-diffusion equation), and increases as the convective term
is more dominant. In fact, the stability bound blows up as diffusion goes to zero, reflecting
the fact that the continuous problem is a singularly perturbed one. But when using stabi-
lized methods this negative feature does not appear anymore. This is explained because the
new terms introduced by the stabilization control the convective term norm. In the present
analysis we have been able to obtain appropriate error estimates only controlling a part of the
convective term, which is an innovative result.

As far as we know, most of the existing stabilization techniques are extended to transient
problems using the framework of the discontinuous Galerkin space-time formulation, increas-
ing notably the computer cost for schemes in time of order two or higher. This situation has
been improved by Guermond in [18], where he analyzes the introduction of a certain numeri-
cal subgrid viscosity. Optimal convergence results are obtained for an evolutionary equation.
The key point is the uncoupling of the stabilization terms with the temporal derivative of the
unknown. Another stabilization method with this feature is presented in [3].

Codina and Blasco analyze in [11] the transient convection-diffusion-reaction equation
discretized in space using the OSS method and in time with the backward Euler time integra-
tion. Further, they consider thteacking of the subscales in time. Optimal convergence and
stability results are obtained.

The present paper can be viewed as an extension of [11]. We generalize the situation
to moving domains (using an ALE approach). In addition, first and second order backward
differencing (BDF) time integration schemes are considered, which will be denoted by BDF1
and BDF2, respectively. The blend of a stabilized finite element method with the use of an
ALE framework is one of the innovative aspects of this paper.

In order to analyze the stabilized method for transient problems, the following strategy
is adopted in [11]: first the semi-discrete problem is studied (where no stabilization terms
appear) and later the fully discrete method is analyzed. As it is shown in [11], this provides
a natural way to deal with the subscales whose approximation enhances the stability and
accuracy of the formulation. The main drawback of this strategy is that space regularity
for the convergence analysis needs to be assumed for the semidiscrete solution, not for the
continuous one.
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The first time integration scheme considered uses the classical backward Euler formula
for the approximation of both the time derivative of the unknown and the calculation of the
mesh velocity. We label this method as:

e BDF1-BDF1y, for the problem semi-discretized in time,
e BDF1-BDFls;  for the fully discretized problem using the classical Galerkin ap-
proximation in space,
e BDF1-BDF1-0OS§; ), for the fully discretized problem using the OSS method in
space,
e BDF1-OS§; ) for the fully discretized problem using the OSS method in space on
fixed domains (not in an ALE framework).
In the second method the time integration makes use of the second order BDF formula. Again,
we use the following notation:
e BDF2-BDF2, for the problem semi-discretized in time,
e BDF2-BDF2;, ) for the fully discretized problem using the classical Galerkin ap-
proximation in space,
e BDF2-BDF2-0OS§; ;, for the fully discretized problem using the OSS method in
space,
e BDF2-0OS§; , for the fully discretized problem using the OSS method in space on
fixed domains (not in an ALE framework).

Let us underline what is new in each case. The BDF1-BfpFInethod has been ana-
lyzed in [14]. As explained above, we change the order of the discretization: first we ana-
lyze BDF1-BDF1;,, and then BDF1-BDF1-OSg;, introducing the appropriate stabilization
terms. For fixed domains, the BDF1-O$% has been analyzed in [11]. However, the analy-
sis herein is slightly different. The analysis of convergence and stability of the semidiscrete
method BDF2-BDFg, is new, and also its fully discrete stabilized version BDF2-BDF2-
0SS, We specially remark the fact that convergence results independent of the physical
properties can be obtained without the full norm of the convective term. Even for fixed do-
mains, the stability and convergence results for BDF2-Q$are new. In all cases the long
time behavior has been considered.

Numerical experimentation with the ALE methods (for diffusion dominated problems us-
ing the Galerkin method) BDF1-BDFK{;,, and BDF2-BDFZ; ;, can be found in [15], [2] and
[23], showing the expected behavior. The application of BDF1-£&&nd BDF2-OSS 5,
can be found in [8] and [10] for the solution of fluid problems. Finally, the blend of these
methods, BDF1-BDF1-OS$g;, and BDF2-BDF2-OS§ 5, has been used for simulating en-
gineering problems in [1], with excellent results.

The paper is organized as follows. §8 we state the governing equations for moving
domains in an ALE framework. Some important ingredients in order to define the ALE
approach are introduced. The semi-discrete problem is formulated both for BDF1 and BDF2.
The section ends with the presentation of the OSS stabilization method and the fully discrete
problem. §3 is devoted to the semi-discrete problem. First and second order methods are
considered for which stability and optimal convergence estimates are obtgdnaebsents an
analogous analysis to that &8 but for the fully discrete problem. Finally, some conclusions
are drawn irg5.

2. Problem statement.
2.1. The continuous problem.In order to study the ALE framework together with a

stabilized finite element method, we take as a model test problem the transient convection-
diffusion equation. The problem written in an Eulerian framework consists in finding a func-
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tion « such that

%—VAu—k(rVu:f in Q x (0,7), (2.1a)
u=0 ondQ x (0,7), (2.1b)
’LL(ZC(),O) =ug in Qg x {0}7 (21C)

whereQ, c R? (d=2,3) is a bounded and polyhedral domain (moving in tin@)7] is the

time interval of analysisa is a divergence-free velocity field and > 0 is the diffusion
coefficient. Homogeneous boundary conditions are assumed to clarify the analysis. We also
assume the following regularity of the data:

fe L0, T; H (), wuoeL?*(Q), ac L),

assuring the existence of a unique solutign) € L?(0,T; H(£2;)) N C°(0,T; L?(Q)).
We introduce some key ingredients of an ALE framework. Uetbe a family of map-
pings, which for al: € [0, 7] map a pointey € £ into a pointx € €,

At : Qo — Qt, m(ﬂjo,t) = At(.’Bo).
We assume thatl; is invertible with inversed; !. Forty,t, € [0, T] we define
At1,t2 : Qtl - Qtza Atl,tg = At2 o .A;ll

We note that the family of mappings is arbitrary. Several techniques have been suggested in
order to construct this ALE mapping. M; is the mapping arising from the motion of the
particles, the resulting formulation would be of pure Lagrangian type.

Let us consider a functioff : €, x [0,7] — R. We indicate withf = f o A, the
corresponding function in the ALE frame:

f:Q0x[0,T) — R, f(xo,t) = f(As(x0),1).
Furthermore, the time derivatives in the ALE frame are defined as follows:

of aof of

1 0 T R t) = — t).
ot 2 t X [07 ]*) ) ot (.’13, ) ot (:L’(), )

Lo

The domain velocityw is calculated using the following expression:

_ aAt (w(])
zo o’

ox
ot

w(x,t) =

and the Jacobian of the ALE mapping is given by

ox

Jt:det(Jt), Jt:aia:o

We recall theReynolds transport formuld-et ) (x, t) be a function defined if;. Then,
for any subdomaiv; C €2, such that; = A:(Vp) with V5 C Qq it holds that

d B o

+ YV - w) dv.

o
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In particular, ifv : Q, — R, that is, ifv does not depend explicitly on time, we have that

d

de:/ vV - wdQ. (2.2)
dt oM O,

With all this notation introduced, we are ready to write (2.1) in the ALE framework. It
now reads

oul vAu+ (a—w)-Vu=f inQ x(0,7T), (2.3a)
ot | g,

u=0 ondQ x (0,T), (2.3b)

u(xg,0) = ug in Qo x {0}. (2.3¢c)

The funcional space
V() ={v: % —>Ruv=00A"0€ Hj(Q)}, te(0,T),

allows us to write (2.3) in its variational form. The variational problem reads: il €
V() for all t € (0,T") such that

(%5

,’U)Q +v (Vu(t), Vv)g, + ((@ —w(t)) - Vu(t),v)q, = (f(t),v)a,, (2.4)

Vv € V(), where(:,-)q, stands for thel?(Q;) inner product and-, ), for the duality
pairing in H=1(Q;) x H}(Q).

Let us re-scale the time variabletas- ¢ /T, so that the new time interval |8, 1] and the
coefficientl /T has to be inserted in front of the time derivatives. The reason of this change
is to display which terms in the stability and convergence results disap&ar-aso, that is,
the long time behavior. After re-scaling, problem (2.4) is transformed to,

7 (%

) - v(Tu(0), o)y, + (@ = wlt) - Vu(t)0)g, = (F0) 0 (25)

and now the domain velocity is,

1 oz
=_ 2.
We take into account this re-scaling in property (2.2), which now reads
1d
= — dQ = . Q. 2.7
Tdt o, v /Qt vV -wd (2.7)

2.2. The semi-discrete problem in time.Let us introduce some notation that we will
used throughout the work. Consider a uniform partitior[®fl] into N time intervals of
lengthdt. Let us denote by™ the approximation of a time dependent functjoat time level
t" = not. We will also denote

5fn+1 = 6(1)fn+1 _ fn+1 _ fn,
SUAD) prtl — 5(@0) gntl _ 5@ gn 51 9 3



6 S. BADIA AND R. CODINA

The discrete operato#§'+ 1) are centered. We will also use the backward difference operators

5fn+1 fn+1 _ fn
st ot
3

4 1
D ntl _ Y (ent+l = en ~fn—1 .
2f 25t(f 5/t )

Dy frt =

Let us discretize problem (2.5) in time, oncleas been normalized. We assume the force
term is continuous in time and denote the time level by a superscript. We start using the BDF1
time integration scheme. It leads to the following problem:=00,1,..., N — 1, givenu™,
find u" ™! € V(Qn+1) such that

l (un-l—l _ un’vn+1)

T Qpuys T OV (Vu ™, voret)

+ 6t ((@ — w™th) - Vu T o)

Qn+1

= St(fm o) (2.8)

Qnt1 tnt1?

with «® = ug N Lz(Qo)
Furthermore, we discretize in time the ALE mapping using a linear interpolation. The
discretized ALE mappingﬁl;”rl is defined for a given time slgb?, t" '] as

t— " tn+1 —t
A?Jrl(wo, t) = 7./4,5714—1 ((L’o) + T

6t At"’ (wo ) .

Thus, the mesh velocity is constant on each time step and given by

~n A n+41 (ZBO) — Atn ((EO)
+1 _ t
W (@o) = Tst ’

andw™t! (z,t) = w" T ((AM)~1(x)) for t € (¢, t"*1]. Equation (2.8) with this mesh
velocity defines the BDF1-BDR1 method. Note that the superscriptt- 1 in w denotes
that it varies with time within the time intervat™, t"*!] where it is defined. However, in
§ 3 we will simply denotew™*! = w"*!(z,t"*1). Since Al = Asnri, we will write
w i (z, ") = w" T (AL () or, for z arbitrary,w™ = @™t o AL,

For the numerical analysis we rewrite the transient problem using a different setting.
The sequence of problems (2.8) can be written in a unified manner as: find a sefjuence
{u® ub u?, ..., u™N} such that

B(U,V) = L(V) (2.9)

for all sequence¥’, where

N-1
B(U,V):= 1 (UO,UO)QO + Z L{ (5u"+1,v"+l)ﬂtn+1 + oty (Vu"+1,Vv”+1)Q
n=0

2T i1
o n+1 . n+1 n+1
+6t (@ — w ) - Vurt o )QW], (2.10)
1 N-1
L(V) = (w0 g, + > St 0" e, (2.11)
n=0

Observe that the initial condition has been embedded in the variational problem.
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In order to reach second order accuracy in time, the BDF2 integration scheme is used. It
leads to the following time discretization of (2.5):
1

- (3un+1 —du™ + unfl, ,Un+1

n+1 n+1
5T + ot (Vu™, Vo )Qtn+1

= §t<fn+1a Un+1>Q

)i

+6t (@ — w1y - Vo) (2.12)

Qyny1 1’

This problem has to be initialized. For instance, we can ohtaiwith (2.8) andu’ = v,

in L?(9) keeping the order of convergence of the method. In order to keep this accuracy,
a quadratic interpolation is used to approximate the ALE mapping. For a given time slab
[t™,t"T1], this interpolation is given by

(t _ tn)(t _ tn—l)

AP o, 1) = S A (o)
OO gy CEE
Thus, the mesh velocity on each time step is linear in time and given by
W™ (2o, 1) Z%J‘lwﬂ(%)
Y R}

andw" ! (z,t) = w" (AP Y(x),t) for t € (¢t",¢"T1]. Itis easily checked that at
t"*+1 we recover the BDF2 formula for the mesh velocity.
Again, we can rewrite the transient problem as an abstract ‘variarional’ problem (2.9),
now with the bilinear form
1
B(U,V) =7 (u1 —u, Ul)ﬂtl + otv (Vul, Vvl)Qtl + 0t ((a - wl) . Vul,vl)gtl
N-1

1,0 o 1 ntl n—1  ntl

+ﬁ(u , U )520+Z |:2T (3uL — 4™ + u" ’UL )Qt”Jrl
n=1
+5tV (vun-&-l’ an+1)§2t7L+1 4 5t ((a _ wn-l—l) . vun—&-l’ Un+1)ﬂt”+1} ,
(2.13)
and the linear form
) N-1
L(V) = 5z (0% o, + Z:O S(fH g (2.14)

We end this subsection giving the norm for which stability and convergence results are
obtained ing3 for the previous semi-discrete problems, which is

N-1
1 ni2 n 2
IVIIZ =7 sup (0" La@n + D 0t [Vo" Ml ) (215)
n€e[0,N] n—0 ¢

Given a normed spack¥, for 1 < ¢ < oo we define the spac&(X) as that of sequences
V = {v"}_, such thathN:0 at)|o™||% < oo, and¢>°(X) the space of sequences such that
Supn:()

.....

n-th component of the sequence.
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2.3. The fully discrete problem. At this point we treat the space discretization of sys-
tems (2.8) and (2.12). The BDF1-BDF1-O%$% reads as follows: fon = 0,1,..., N — 1,
givenu}, findu) ™' € V;,(€;) such that

B )b (VLT
+0t (@ —w™*)- VUZH ) s
+ ot ( (@ —w"™) - Vupt) 7" a —w™h) - Vot
i, "+1>atn+u (2.16)

whereV, (€;) is a finite element approximation spacew(f2;), 7"*! is a mesh dependent
parameter, that we will calitabilization parameterwhose expression is detailed later, and
;- (+) =: Id(-)—1Ij, (+), with Id the identity inL?($2;) andIl,, (-) the L2-projection onto this
finite element space (and therefdie (-) is the projection orthogonal to the finite element
space). The description and motivation of this formulation, that we@ahogonal Subgrid
Scale(OSS) stabilization, can be found in [9].

Let ©! be a finite element partition of the domd in a family of element{ K. }.<,,
ne; being the number of elements. We denote the diameter of the sphere that circumscribes
elementK by hx and the diameter of the sphere inscribedsirby ox. We also callh =
maxgeet (hx) ando = mingcer (0x). We assume that all the element domaitise
©! are the image of a reference eleméfitthrough polynomial mappingg’, affine for
simplicial elements, bilinear for quadrilaterals and trilinear for hexahedrakQve define
the polynomial spaceB,(K') whereR,, is, for simplicial elements, the set of polynomials in
z1,..., x4 Of degree less than or equaljpcalled P,. For quadrilaterals and hexahedgg
consists of polynomials in, ..., x4 of degree less than or equalzdn each variable, a set
called@,. The finite element spaces introduced before and that we will use in the following
are:

Vi(Q0) = {0 € C%(Q) | On|x = 00 F', € Ry(K), K €04},
Vi0(Q0) = {vn € Vi(Qo) | vrlon, = 0},

V() = {vn € CO(Q) [ o = 0n 0 A7, Th € Vi(Q)},

Vio(Q) = {vn € CO() | vn =T o AL, Bn € Vio(0)}-

Moreover, ©} is assumed to be quasi-uniform, that is to say, there exists a constant
02 > 0, independent ok, such that? > o, > 0 ash tends to zero. This will simplify the
analysis and, in particular, will allow us to use stabilization parameters constant in space.

Let us note that in practical applicationf.+1 maps©? onto @Z“. Therefore, it is
easily checked the fact that"*! € (V;,(;++1))%. In the following we will not distinguish
betweenw™*! andw;*.

Also in this case we can write the problem using a ‘variational’ formalism. The fully
discrete sequence of problems given by (2.16) can be written as: find a sedienee
{ud, up,...,ul } such that

By(Un, Vi) = L(V), (2.17)
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for all sequencey},, with the bilinear formB,, given by

1
By(Un, Vi) = 5= (u?mvi?)no

2T
N—-1
]' n+1 n n+1 b n+1, n+1 n+1 218
+Z T(uh, — Up, Uy )Qtn+1+ h(w sUp 5 Up )QWrl , (2.18)
n=0

whereby, is defined as

n+1l, n+l  n+1
bh(w supT vy

)Qtn+1 = otv (Vuptt, Vo th)
+ 6t ((@ —w™th) - Vuptt, UZH)QWH

+ 6t (I ((a — w"™) - Vuptt) 7" (a — w™ ) - Vopth)

Qunt1

Qs * (2.19)
The OSS method modifies the discretized equation of the classical Galerkin method intro-
ducing the last term, which enhances the stability of the original method. The value of the
stabilization parametetr”*! has been justified in [9]. In an ALE framework it depends on
the difference between the advection veloaitgind the mesh velocity. The expression we
useis

~1
la —w|
T = (C1hy2 +c 2 — ) (2.20)

that is constant in space. Herg,andc, are algorithmic constants that depend on the order
of the finite element interpolation. As will be shown later (see (4.7)), they are related to the
constantCi,, in the inverse estimate introduced in (4.1).

As in [11], we will make further assumptions. We assume that for edtie parameter
7™ satisfies

7 < CTét, (2.21)

which in particular implies that we can not I& — 0 without refining the finite element
mesh.
For the space discretization of the second order method (2.12), the bilinear form is given

By, (Up, Vi)
N-lrg
_ +1 y -1, n+l ST D P |
— [2T (3uz —duy +uy vy )Qw+1 by, (w"+ cuptt on >S2tn+1
n=1
1y 0 .1 1.1 .1 Lo o
+ T (Uh - uhavh)gtl + bn (w ;Umvh)gztl + T (uhavh)no : (2.22)

We end this section with two norms useful in the following numerical analysis. The first
is a norm that we will callveak and given by

N-1
1 nn2 n 2
VI =35m0 10" o + 3 00 190" i
N-1
+ Z Str Tl ||Hf,‘ ((a — w"“) . Vv"“)

n=0

2
||L2(Qm+1) :
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Observe that only the orthogonal projection of the convective term appears. The full convec-
tive term appears in the norm that we will cattong given by

N-1

1
VI =7 sﬁp 1" 72 ) +Zo6tv|IW”“||Lz<w>
n
+Z5t7"+1H o n+1 nHHi?(QmH)

N-1
2 1 1 1) [|2
=VIE+ Y strm I, (@ — wtt) - vort Mz
n=0
3. Analysis of the semi-discrete problem.n this section we analyze problems BDF1-
BDF1s5, and BDF2-BDF2;. In both cases, stability and error estimates will be given. We
denote byC a positive constant, possibly with different values at different appearances.

3.1. Analysis of BDF1-BDFJ;. Let us define byU., = {ug,u(t!), (t2) (tN )}
the sequence of solutions of the contiunous problem (2.4Yard {u°, u',v?,...,u™V} the
sequence of solutions of the semi-discrete problem (in time) (2.9)-(2. 11) We start obtaining
a stability result for this method. With this aim, first we prove that the bilinear form (2.10)
that governs the semi-discrete problem is coercive.

THEOREM 3.1 (Coercivity). There exist$it.. such that for) < §t < 6t the bilinear
form B(-,-) defined in (2.10) is coercive, that is, for every sequevice- {v"}_,, with
IMNS V(Qtn),

B(V,V) > all[vI[?

for a certain constanB; > 0 independent of.
Proof. We know, from the definition of the bilinear form, that

N-—-1
BV =3[R e, v

n=0

(ynt1)

. N N 1 2
+0t ((a —w +1) -Vu +17U +1)Qtn+1:| * ﬁ HUOHL2(QO) ’

We can rewrite the term coming from the time derivative as follows:

1
+1 +1
T ("t — o " )Qwﬂ
1 2 2 2
- +1 +1
= o7 1o agpny = 1 ey * 07 =0 a0
Integrating equation (2.7) fron® to t**! for the functiomv™ we get
1 tn+1
2
T an”LQ(Qth) anHLZ(Q,n / / L™ (02 dQ ds,

where we have profited from the fact that the discrete mesh velocity is constant at every time
step. On the other hand, due to the fact that the convective veléitylivergence-free, we
get

1
((a o wn+1) . vvn+17vn+1) _ _ / ,wn+1 . V(Un+1)2 do
Qt71+1

Qynt1

1/ (v . wn+1)(vn+1)2 dQ.
2 an+1
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We bound the terms associated to the mesh velocity as follows:

tn+1

/ / Vw1 (u™)? dQds

<6t sup
Se(t” ,t”+1)

n+1H H n||2

‘JAWHYSV'U’ . 122(,000)

—5t/ w"+1~V(v"+1)2dQ=5t/ (V- w1 (0" 1)2 d0
Sltn+1

Qt”+1
2
< ot[|v- wn+1||L°°(Qtn+1) H”nHHLz(QWH) :
Let us define the parameters

Vit =T

‘JAtnﬁ-l,sv : wn+1H (31)

su ,
; L>(Qs)

se(tn tntt)
forn = —1,...,N —2andy}¥ = 0, together with

B =TV w0 e g (3.2)

tn+1 )

forn=0,..,N — 1andyd = 0.
With the inequalities just proved we can easily obtain that

B(V,V) +— Z St(yPT 4 Apth H”"HH;(Q

tn+1 )

n——l
) ) N-1 )
1 1
> e[s?l?v , - ||,Un+ HLZ(Qthrl) + nZ:O 20ty ||Vv"+ HLZ(Qth) .

If the maximum ofj[v" || ;2 (g, is achieved ab = N,,,, the sequence

has to be added to the test sequence. Sometimes along the paper we obtain the maximum
using this technique. Invoking the Gronwall lemma (see [19]), we can absorb the second
term of the left hand side with the first one of the right hand side figraamall enough. More
precisely, the time step must be such that

1

5t < =t
SUPnpel0,N] (17 +1%)

We note that this is the time step size of tiemalizedproblem in time. The originat.,
does not depend dfi anymordl

This result, together with the continuity éf(-) proved in next lemma, will lead us to a
classical stability bound.

LEMMA 3.2 (Continuity).The following inequality holds:

N-1
Sty L.
L(V) < Z 25” ||f +1HH 'n+1) + Z ||V +1||L2(Q{7L+1)

n=0 n=0
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forall 5 > 0.
Proof. The right hand side has the following expression:

N—-1
V)= st{(f" v .,
n=0

The Cauchy-Schwarz inequality leads to

. 3o v o 2
L(V)S(Z | f +1HH tnﬂ)) (Z‘SWHV” +1HL2(QHL+1)> :

n=0 n=0
The proof is finished invoking Young’s inequaliy.
From Theorem 3.1 and Lemma 3.2 the foIIowing stability result is straightforward.
COROLLARY 3.3 (Stability). There existét., such that, fo0 < 6t < 4t} , the sequence
U, solution of problem (2.9)-(2.11), is bounded as follows:

N-1
Ot || 112
NP <D — 1" M s
n=0

cr’

tn+1) '

REMARK 3.1. The BDF1 method is unconditionally stable for fixed domains. However,
for moving domains this property is not maintained anymore. In this case only conditional
stability can be proved, with the critical time step value obtained above.

The next task is to obtain an optimal convergence result. In the following theorem, rely-
ing on the stability properties proved in Corollary 3dptimal error estimates are obtained.
We denote byt := y(t"+1) — u™*! the error introduced by the time integration at time
t"*t1 and byF := U, — U the sequence of these errors.

THEOREM 3.4 (Convergence).There existsit}, such that, for0 < 6t < dt., the
sequence of errorg = U, — U satisfies the followmg error estimate:
582 N—1 9 2

0%u

11E/? < cf Z ot | | 5
Lo |12
L2(Q2yn+1)
A, |* +1
+  sup ’ 2 " (3.3)
sE(tn tnt1) ot? Lo (520) || HHI(Q nt1)

Proof. We start taking the exact solution sequebigg in the bilinear form. We get:

ou
n+1 _ et n+1
B(Uex, V) = +Z ( ) () =St | )

— i: 5t ((w™t —w (™)) - Vu ("), ")

tn+1

Qnt1

We subtract the equation for the semi-discrete sequence of solutions to the previous equations
and arrive to

P ou
B(U — Ue, V) = — — (u(tn+1) u(t") — ot — ”+1>
27 5l )

+ 0t ((w T —w(th) - Va0t

n=0

n+1
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We test the previous equation with= U — U, = E, obtaining

en+1>
tntl Q

((,wn+1 _ w(thrl)) . vu(t'rH»l)7 6n+1)

-

ou
n+1
< (t —u(t") - ot ot

Nl

tn+1

+
2:
Ho

(=9

~

Qf,n+1 '

3
Il
=)

Exploiting the fact that the bilinear form is coercive the remaining ingredient is an appropriate
bound for the error terms associated to the time discretization. Let us start with the terms
related to the time derivative. We use the following Taylor formulaufor

tn+l

u(xo, ") —u(xo,t") 1 Ou +1 1 / 0%u
- — t" = —— s—1t") — s)ds,
Tét T Ot mn( ) T6t Jin ( ) ot? a:o( )
(3.4)
and for the mesh velocity
., . 1t 92A, _
w" T —w (") = ~ 5 (/tn (s —1t") 92 ds | o tn1+1' (3.5)

As explained ing 2, it is understood with this notation that this equality holds for arbitrary
b S Qt.

With (3.4) we get a bound for the term associated to the time derivativeasffollows:

tn+1

/ en—l—l . / (S—tn) @
Qtn+1 tn at2 1130

tn+1 —_—

92
/ JA, i (8 —t")e”‘*‘l—dQ ds
tn Qo t

(xo, ) ds) o .A;L dQ

IN

a 2
< </tn (s —t")? ||6n+1||i2(9m+1))
tntt 8/22 2 z
. At <8t2> dQ2ds
<D0y, rone| 2 . ,

L2(Qyn+1)

wheref; is the coercivity constant introduced in Theorem 3.1. Similarly, using (3.5) for the
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term related to the time derivative of the mapping, we get

tn+1

2
- / et (/ (s — t")aaés ds) o A L, - VuthdQ
Qt”+1 tm

tntt 92 o
S/ JAnH(s—t”)e”“Lf;S~Vu”+1des
tn Q ot

tn+1

<(/

2
(s — t")? H€n+1 H;(gt”“) ds)

tn+1 2 2
0°Ag 12
o WA (=21 I U Y
L= (Qo)
2
B16t 12 3 02 A, 12
< B e g,y + OO sup | -
- (Qf,n ) n in 2 H? (Qt” )
2 +1 s€(t t +1) 6t LOO(QO) +1
With these results we can write
N-1 2
1 2 02u
- n+1 3
B(E,E) < > | oty 20,0y + €Ot 5|
n=0 0 Lz(Qtn+1)
O?A, |2 2
3 ) S n+1
cont o NG W) @9
’ LOQ(Q())

At this point we invoke the coercivity property of the bilinear form proved in Theorem 3.1.
Thus, the first term of the right hand side in (3.6) can be absorbed using the Gronwall lemma
. We note that in this case we can apply the Gronwall lemma without any extra condition over
the time step size (see [19D.

Clearly, the second term in the right-hand-side of (3.3) is bounded if the second time
derivatives of the ALE mapping are uniformly boundeddnT]. In this case, its norm in the
spaceL > (0,T; L>°(Q)) can be taken out of the sum and the stability estimate of Corollary
3.3 allows us to bound the remaining term. However, we have kept expression (3.3) to display
the structure of the error bound.

We conclude this subsection with an improved stability estimate:

COROLLARY 3.5 (Stability in/>(H?(Q;))). Under the conditions of Theorem 3.4, sup-
pose additionally that the right-hand-side of (3.3) is bounded, that L>°(0,T; H?(Q;))
and that the domairf), is such thatAu € L2(€;) impliesu € H?(Qy). Then,U €
0 (H?(D)).

Proof. At each time step we can write the error equation

vAU"T —u(t") = (a —w™ ) - V(T — (i)
1

4 (w(tn+1) _ wn—i—l) X Vu(tn+1) 4 a(un-&-l _ un)

ou
8t tn+1 '

By virtue of Theorem 3.4, all the terms in the right-hand-side are bounded(i,. ) for
n=20,..,N — 1. Since

18" L2,y < 1AW = Au(t™ ) L2, 00 + 1AW ) 120,00)
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it follows that{Au”“}N € (°°(L?(€;)). The assumption on the domdih implies that
{unJrl}n 0 € goo(Hz(Qt)) a

This justifies our strategy of first analyzing the problem semi-discretized in time and then
the fully discrete problem. When we will requité € ¢2( HP*+1(,)) to obtain optimal order
of convergence in space, we know that at leaspfer 1 this holds under the same condition
on the domair?; as for the sequence of solutions of the continuous problém, It is well
known that this condition of2; holds for example if it is convex and polyhedral (see, for
example, [17]).

3.2. Analysis of BDF2-BDF3,. For the second order method we follow the same pro-
cedure used above. In this case the problem that we analyze can be written using equation
(2.9) together with the bilinear form (2.13) and the right hand side linear form (2.14), and we
denote by = {u®,u',u?, ...,u™N'} the sequence of solutions of this problem.

We start again proving that the corresponding bilinear form is coercive.

THEOREM 3.6 (Coercivity). There exist$t>. such that for) < §t < 6t2, the bilinear
form B(-,-) defined in (2.12) is coercive, that is, for every sequelice- {v"})_,, with
M V(Qtn),

B(V,V) > Bs|||[V][]?

for a certain constanB, > 0 independent of.
Proof. We know, from the definition of the bilinear form, that,

N-1
2 [515 vanﬂ H2L2(Qtn+1) + ot ((a —w"th) . vt Un+1)
N-1

1 _
Z:: 7T vt = do” +o" 1’vn+1)§2m+1 + T (Ul - UOJ}l)Qtl

Qt"r+1:|

0
+ o 1N S

Integrating equation (2.7) front* to t"*+! for the functionsv™ and2v™ — v~ !, we can
express the term corresponding to discrete time derivative as follows:

1
ﬁ(?ﬂ)n—i_l — 4™ + ’Un_l,4’l}n+1)g

tn+1
1 2 2
== (HUTH_lHLQ(Qthrl) — ||U"||2Lz(ﬂtn) +|2om+t — ’UHHLZ(QWH)

_1p2 2
20" = " Faggy + 1620 e )

tn+1

/ / W' (s)) (0™ A0 ds

tn+1

/ Sw"T(s)) (20" — ™12 dQds. (3.8)
t’n.
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The mesh velocity terms are bounded as follows:
$ntl

n+1
/ / (V- w" () (v™) des+/ / ~w"TH(s)) (20" — 0" 1)2dQds

< ot sup ‘JAWJrl AV wn+1(5) H
se(tn tn+l) *

Lo (Qs)
> (HUTL”?)?(QWJA) + H2vn _ Un—lHiZ(Qthrl)) . (39)

On the other hand, we can exploit the fact that the convective veladiydivergence-free,
obtaining for the convective term that

+1 +1 +1
((a—w"th) . Vo't 40" )Qtn+

= 2515/ w" TV (o™ T)2 d0
Qtﬂ+1
20t [ (Vwr e an
Qﬂ,+1

<2V i ™|

|L2(Qtn+1) :
(3.10)

(Qtﬂ+1) |

We use inequalities (3.8) and (3.9) in (3.7) and invoke again the Gronwall lemma. This leads
to the desired bound for a time step size:

5t < L =: §t2

SWpepn (VF +275)

slightly different from the one obtained for the first order metHad.

The previous theorem and Lemma 3.2 allow us to obtain the same stability result as for
the previous case, stated in the next corollary.

COROLLARY 3.7 (Stability). There exist$t2, such that fol0 < 6t < 62, the sequence
U solution of problem (2.9)-(2.13)-(2.14) is bounded as follows:

N-1
ot
oz < e <1 v

n=0

1)

Furthermore, we can obtain optimal error estimates under some regularity assumptions.
For the sake of clearness we assume that the initialization is calculated exactly. It can be
easily checked from Theorem 3.4 that the error introduced by the initialization is optimal.
THEOREM 3.8 (Convergence)There existt>, such that fol0 < 6t < 6t2, the sequence
of errors E = U,,, — U satisfies the following error estimate:

4 N—-1
2P < 0% Yo || 5
6t -
ONL2(Qnt1)
PA | ,
+ sup unt
sE(tm tnrl) ot L (o) H HHl(QwH)
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Proof. We start taking the exact solution sequebig in the bilinear form. We get:

N-1
, vn+1>
tn+1 O

B(Uer, V) =L(V)+ Y

n=0

<3u(t”+1) — 4u(t™) +u(t"t) — ot %

1
2T

gl

N-1
= ot ((w™ —w(t™T)) - Vu(" ), ")

n=0

Qint1

Now we subtract the equation for the semi-discrete sequence of solutions to the previous
equations and arrive to
U”+1>
tn+1 Q

Qny1

2

—1
(3u(t”+1) — 4u(t") +u(t"Y) — ot Ou

B(U — U, V) =— N

Nl

3
Il
=

¢l

i

=+ St ((,wn—i-l _ w(tn-i-l)) . vu(tn—&-l)’ v7z+1)

n

Il
=

We test the previous equation with= U — U,, = FE, obtaining

N—-1
1
B(E,E)=-Y_ 7 <3u(t"+1) — du(t™) +u(t") — ot % . ,e”+1>
n=0 tntt Qn+1

N—-1
+ ) ot ((w"t —w(t™ ) - Vu(tn T, en )

n=0

Qunt1

The truncation error introduced by the time integration scheme BDF2 is evaluated using the
following Taylor formula:

3u(xo, ") — du(xo, t") + u(xo, t" 1) 1 0u ()
ot T Ot |y,
1 tn+1 83u 1 t'rL+1 a3u
-~ —t”27 ds — — _tn27 ds.
Tot /tn,l (=" 5|, (D~ 75 /t (=) 5@, ()98
0 0

(3.11)

The evaluation of the mesh velocity (2.6) requires a time derivative. Its numerical approxi-
mation using the second order BDF2 scheme can be written again as a truncation error:

wn+1 _ w(tn+1)

tn+1 fn+1

_ 1 n 283"48 n 283-’45 —1
=~ 75 (/tn—1 (s —t") o ds—f—/tn (s—1t") 55 ds | o AL, (3.12)

which holds for alke € €. Recall thatw™*! stands for the mesh velocity evalutated™t' .
The error related to the time derivativewtan be bounded using the following inequal-
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ity:

o

(s) ds) o Ak, dQ

0%u

55
+C Tl

, (3.13)
L2 (Qthrl )

B0t 2
S i P

Lo

wheref, is the coercivity constant introduced in Theorem 3.6.
We obtain the following inequality in order to bound the error introduced by the evalua-
tion of the mesh velocity,

¢ntt 3
0° A
_/ €n+1 / (S—tn)2 38 ds
Qt""+1 tn—1 at
tn,+1 3
n 8 'AS — n
+ N (s —t™)? 51 ds) o Ak, - Vu'thdQ
2
B20t |\ g 5 DA 1
< == He”"‘ H + ot sup - Hu”"‘ H .
- L2(Qnt1) T am 3 HY(Qnt1)
2 ! se(en=tanin ||| O L[ o) -

(3.14)
Using the error expressions (3.11) and (3.12) and bounds (3.13) and (3.14) we get

4N 1
B(E,E) Z&fﬂ He”HHLz Qpni1) +O* Z‘S 8t3 z
0 LQ(Qthrl)
st N1 3 2
ot” 0 As n+1
ek OIS

Again, we can apply the Gronwall lemma without any extra condition over the time step size.
0

4. The fully discrete problem. In this section we analyze the fully discrete problems
BDF1-BDF1-0S§$; ;, and BDF2-BDF2-OSg§ ;.. In both cases, stability and error estimates
are obtained.

Observe from (2.20) that™ has been taken constant in space. Further, we as€jme
quasi-uniform. In this case, the following inverse estimate holds (see [4]):

C’ll"lV
vahum(ﬂt) < — HUhHL?(Q) (4.1)

In order to obtain optimal convergence results, we assumeuthidt € HP+1(€,) for
n =0,...,N—1, wherep is the degree of the polynomial defining the finite element space
We also assume that for any functiore H?*1(Q;) there exists a finite element interpolation
7 (v) such that,

v = 7 (V)| (2r) < CrPPT 0] o1 ()
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We need to prove that the?-projection onto the finite element space is an optimal inter-
polation in theL?(Q;) norm and the seminorfiV (-) | ;.2 (q, - We show this in the following
lemma.

LEMMA 4.1. Given a functionv € HPT1(Q,) with p > 1, its L2-projection onto the
finite element spacH;, (v) satisfies

lv =TI (0)l| 2,y SCRPPH[vl o), (4.2)
and also
R | Av =TI (Av)l| 2 (q,) SCRP ol are (). (4.3)
If the inverse estimate (4.1) hold true
IV (v = s ()| g2,y SCR"[0]lr+1(0),s (4.9)

are satisfied.
Proof. The first inequality is obvious:

lv —1Ip, (U)HL2(Qt) < lv- 7rh(U)HLz(Szt) < Chhp+1||UHHP“(Qt)'

Using the previous inequality fakv we obtain the second result.
Making use of the inverse estimate (4.1) we prove the last inequality:

IV (v =1 ()| 2,y < NV (0 =7 (0)]| L2,y + IV (7 (V) = T (0)) ] £2(q,)

= IV (v =720, + IV ITn (v =7 (0) 120,
C’inv
< IV (= m@)llz2@, + =~ 1Hn (v = ()]l L2(q,)

S (]. + Cinv)Chhp”v“Herl(Qt)'

0
As in the previous sectior(;' is a positive constant, possibly with different values at
different appearances.

4.1. Analysis of BDF1-BDF1-OS§ ;. Inthis subsection we analyze the fully discrete
problem (2.17) with the bilinear form,, (-, -) defined in (2.18) and right-hand side (2.14). We
denote byU = {u° u!,u?,...,u™N} the sequence of solutions of the semi-discrete problem
(in time) (2.9)-(2.11) andJ;, = {u?,u},u?,...,u} } its fully discrete counterpart, solution
of (2.17)-(2.18)-(2.14).

We start proving the coercivity of the bilinear form for tiveaknorm||| - |||.,. This result
will be used in the convergence analysis.

THEOREM 4.2 (Coercivity). There exist$t., such that for) < 6t < 6t the bilinear
form By, (-, -) defined in (2.18) is coercive. That is, for every sequénce {v"}Y_,, with
v € V(n),

B, (V,V) > Bi||VIIIZ

for a certain constanB; > 0.
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Proof. The bilinear form analyzed in this theorem is equal to the one for which coercivity
is proved in Theorem 3.1 plus the stabilization term. We can easily get

N-1
BuV.V) = 57 10" aiam, + 37 3 180" a1
N-1 "
#3 [o 90 gy 0 I (00 [ )
| Nl Nt
+3 2 ot (V- w"tt, (vwl)z)w+1 +3 T;) /t /Qt (V- w" ) (0" )2 Q.

(4.5)

Due to the fact that the stabilization term does not affect the treatment of the mesh ve-
locity terms in Theorem 3.1, we refer to this one for the remaining of the firoof.

Let us define the\-coercivity property associated to a bilinear form that will be used in
the following analysis.

DEFINITION 4.3 (A-coercivity). LetV be a functional spaceand : V x V — R
a bilinear form. We say thaf is A-coercive with respect to the norff - ||| and the linear
operatorA : V — V if there exists and a constaft> 0 such that,

Clv,A(v)) > |02, Vv e V. (4.6)

The bilinear form((-, -) also satisfies amf-sup condition under the conditions of the
following lemma.

LEMMA 4.4.1f A is continuous with respect to the notfh- ||| and((-, -) is A-coercive,
then there exists > 0 such that

¢(u,v)

inf sup —————"— > 1.
ueV yey || |ul[||[[v]]]

The proof of the previous lemma is straightforward from Definition 4.3 and the continuity
of the operator\(-).

We now show that the bilinear for@;, (-, -) of our problem isA-coercive for thestrong
norm||| - |1

THEOREM 4.5 (A-coercivity). LetV = {v"}]_ ) be a sequence of functions such that
v™ € V() and consider the operator

A(V) =V +{0, %{T"HHh ((@ —w" ) - Vo)1

Then, there exist&_, such that, fo0 < 6t < 6t.,, the bilinear formBy (-, -) is A-coercive:

By (V,A(V)) = BullIVII[Z

for a certain constanB; > 0.
Proof. Testing (2.18) with the sequence of functions that belong to the finite element
space

Io(r, V) = {0, {7 o (v" T} = {0, {7" "I, (@ — w" ) - Vo)
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we have
N—-1 )
By (V,IIy(7,V)) > ZO " Totr ||, ((@ — w ) - Vortt) [PEry—
n n 2
- Z 1807 gy + 090
45t ||Hﬁ ((a — . Vz)n+1) H;(QMH)] 7 4.7)
where
_ ant1][2 o2
n+1 ,__ 1 Tn+1 _ 1 n+1 chv _1 n+1\2 HCL w ||L (Q,"-H) inv
o=l T T e ) o (4.8)

To obtain (4.7) we have made use of Young'’s inequality and the inverse estimate (4.1). As-
suming now that the constantsandc, in (2.20) are such that < CZ , c2 < G,y and the
constantC' in (2.21) isC < 1 it follows thatg™+! > 1/4.

The combination of (4.7) and (4.5) leads to

N—1
B (V.2V +1lo(7,V)) ||”NHL2(QN) + Z (%VHVUTH_lHLZ(Qm-H)
N-1 )
+C Y ot (@ —w) Ve L
=0 .
N—nl gt
+Zét( L™t (T X Jrz/ / ST ("2 dQ ds
n=0 e n=0
N-1
> 2 [0y + 3 30 90" g (@ni1)
n=0
N-1
+C Z 5t7n+1 HHh ((a — w"“) . Vv"“ HLQ(QWJA)
n=0

N— 2
_ Z 0tYn+1 HUnHHLZ(QWH) ’
n:O

With 7,41 := A7+ 427 andy 42 defined in (3.1) and (3.2). Using the Gronwall
lemma, we finally get the coercivity stated in the theorem. We point out that the critical time
stepdt. in this case is identical to the one obtained for the semi-discrete proBlem.

In order to satisfy the continuity of(-) needed for to obtain thimf-sup condition in
Lemma 4.4 we have to restrict the situation to the discrete finite element ¥pace

LEMMA 4.6 (Continuity). Let v}, = {07}, be a finite element sequence such that
v € V() and consider the operatak introduced in Theorem 4.5. Thefu(-) is contin-
uous with respect to the norfji - |||5 for every finite element sequernigg

HAV)Ils < pll[Vallls (4.9)

for a certain constanp > 0.
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Proof. DefiningIly(r,V},) as in the proof of the previous theorem, we have from the
definition of the norm that

1
|||HO(7th)|||§:T sup || g (v !
n€el0,N—1]
N—-1
+ Z oty HT”HVHO(Q}ZH
n=0
N-1

n Z 6t7_n+1 HTn+1(a _ w"“) . VHO(Un
n=0

2
)HLZ(Qthrl)

2
)||L2(Qtn+1)

h“)“jmw). (4.10)

Invoking the expression for"*! and the inverse estimate (4.1) we can easily bound every
term by|[|V'[[20

REMARK 4.1. The fact that we need to use the inverse estimate (4.1) in order to bound
the first term in(4.10) restricts the continuity df(-) to finite element sequences (for the rest of
the terms the inverse estimate is applied to derivativésho(f(a —w" ). Vv"“), a finite
element function even if**! is not in the finite element space). However, this restriction
does not complicate the convergence analysis, where only-tteercivity is invoked.

From Lemmas 4.4 and 4.6 we obtain ttiecrete inf-sugondition.

COROLLARY 4.7 (Discrete inf-sup condition).et U, = {up })_, andV}, = {v}})_,
be sequences of finite element functions suchithat™ € V(). There exist$t., such
that, for0 < &t < dt.,, the bilinear formB,, (-, -) satisfies the following condition:

Bh, (Uhv‘/h) > 51

inf sup ———T—t—
UneVi vi,ew, [[Unll]s 11 Vallls

for a certain constanﬁl > 0.

At this point, the only ingredient that remains in order to have a stability result is the
continuity of theforce term provided by Lemma 3.2. The stability result is stated in the next
corollary.

COROLLARY 4.8 (Stability). There existét., such that, fo0 < t < 4t} , the sequence
Uy, solution of problem (2.17)-(2.18)-(2.11), is bounded as follows:

N—-1
ot
ORI < ¢ 1M 1

n=0

nt1)

For the convergence analysis, let us define the difference between the solution of (2.8)
and (2.16) ag); "' := u}"' —u"*1, and the sequence of these errorsy From Theorem
4.5, that proves thé-coercivity of the bilinear formB,, for A defined in this theorem, we
know that

Bn (Eq, A(Eq)) > B1|||Edl|[2- (4.11)

We subtract the discrete bilinear form (2.18) from its semi-discrete counterpart (2.10)
tested with finite element sequences in order to get

By (Eq, Vi) = €c(Vh)

N-1
==Y otr" T (I (@ — w™) - Vur ) (@ — w" ) - Vot

Qn+1’
n=0
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wheree.(V},) accounts for the consistency error. After some manipulations, we can write
1
By, (Eq, AM(Eq)) = By, (Ea, Eq) + 3Bn (Ea, Ho(7, Eq))

— By (Ba, Ty (U) — U) + (U — T (U)) + %ec(no(f, EJ)),
wherell, (U) := {Ip, (u™)}X

n=0-"
We distinguish betweeimterpolationerror, the first term of the right hand side, and the
consistencyerror associated to the second and third terms. In the following two lemmas we

bound these error terms. We start with the interpolation error, obtaining the result stated in
the following lemma

LEMMA 4.9 (Interpolation error).The error sequenc&,; = U,, — U satisfies the fol-
lowing inequality:

1
N-1 2

By, (Eg, 1n(U) = U) < Cl||Eal[ | (hQ(pH) > ot H“nHH;pﬂ(Qwﬂ))
n=0 )

(4.12)

Proof. Let us expand the expression of the interpolation error making use of the definition
of the bilinear form associated to the problem we are analyzing:

By, (Eq, I (U) —U)

N-1rg
TP
n=0
+ otv (Ve v (I, (u™th) — u”Jrl))Qw+1

+ Ot ((a — ™). Ve;”rl7 115, (u"“) — u"+1)Q -

ot (I (@ = w™) - Vet @ — w1 V(1 (@) —um )

We must control each term separately. Let us start with the discrete time derivative term.
Using assumption (2.21) we have that

N-1 1
> o (e = e () )

Qnt1
n=0

n=0

N—-1 1 2 %
<c (Z 7 lled™ = BZHL"’W“))

1
N-1 :
% <h2(p+1) Z 5t(7”+1)_1 HUnHHi{pH(Q n+1)> '

n=0

For the viscosity term, using the definition of ! and the inverse estimate (4.5), we have
that

N-1
Z oty (Ve’d”rl, V(I (u") —u™th)
n=0

Ne1 , 3 N-1 5
n n - n 2
<cC <Z 5wy|ved+1|\m(ﬂw+l)> x <h2<p“> > ot 7 fu “HHM(QW)> :
n=0

Qint1

n=0
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Similar arguments allow us to obtain a bound for the convective term:

Qint1

N—-1
Z St ((a _ wn-i—l) . VGZJrl,Hh (u”'H) _ un-‘r1>
n=0

N—-1 :
<C (Z ot 10 ((a — w™) - Ve[ g n+1>>

n=0

N-1 2
% <h2(p+1) Z St(rmHh~! H“nHHi{pﬂ(ﬂ ’ +1)> ; (4.13)
2 on

and for the stabilization term we obtain

N—1
Z Sttt (Hﬁ ((a — w"“) . VeZH) ,(a— w"“) -V (Hh (u"“) — u"“))

n=0

Qint1

N-1 :
S C <Z 6t7—n+1 Hnﬁ ((a’ - wn+1) ' V62+1)’|i2(ﬂ n+1)>

n=0

N-1 %
« (hQ(P""l) Z 5t(Tn+1)_1 Hun+1Hi]p+1(Q n+1)) ’

n=0

All the terms have been bounded by the right-hand-side of (4.12), and therefore the proof is
finished

REMARK 4.2. Invoking the interpolation error (4.2) in (4.13) has allowed us to obtain
an optimal bound for the interpolation error without the control of the full convective term in
the norm||| - |||.,. This fact will be used for the analysis of the second order method.

The following lemma is devoted to the control of the consistency error. Since we are
interested in smooth solutions, say L?(0,7; HP™1(€;)) (with the obvious modifications
for u less regular), we assume thfats also smooth, in particulaf € L2(0,T; HP~1(Q;)).
Thus, forp > 1, (f,vn)o, = n(f),vn)q,. Therefore, the finite element solution is not
altered if we assumB; (f) = 0.

LEMMA 4.10 (Consistency error)he following inequality holds:

1
N-1 2

1 1y — 1112
e.(Up, — p(U) + §H0(T, Ey))<C <h2(p+1) Z St(rmtH 1 H“ +1||Hp+1(gtn+l)>

n=0

N-1 2
n - n 2
" <|Ed||z+h2<p+” S ) +1\\Hp+1<m,m>> | .
n=0
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Proof. From the expression of the consistency error we arrive to:

—ec(Un — 1 (U))

N-1

= Z strt (I ((@ — w™™) - Vu'™) | (a — w™ ) - V(up ! - 11, (u”“)))g _
n=0
N—-1

= ZO str™ T (I ((@ — w™™) - Vu'™) | (@ — w™ 1) - Ve;”rl)ﬂtn+1 (4.15)
N-1

+ Z 6t7_n+1 (H# ((a _ wn+1) . vun-i-l) ’(a _ wn+1) . V(un-i-l — 11, (u"ﬂ)))g -

n=0

On the other hand, from the equation for the semi-discrete unknown (2.8), we can easily
check that

(Hﬁ ((a _ wn-i—l) . vun-‘rl) 7Un+1)

n 1 n n n
= <H}JL_ <VA’U, 1 T&(U 1 U )> , U +1)Q B
n

=: (Hﬁ (A(u"“)) ,v"“)

Q1

(4.16)

Qtn+1 :

whereA(:) := vA(:) — % Note that we have not includégi (f) in the previous equation.

Now, using (4.16) in (4.15) we can split the error in two different terms bounded as
follows:

N-1
Z Strmtt (H}JL_ (/\(Un+1)) ) (a’ - wn+1) ’ ves+1)9 nt1
n=0 1
N-1 2 ’
<C (Z 5t7—n+1 HHi ()‘(u7l+1)) |‘L2(Qtn+l)>
n=0
N-1 2 :
X (Z Strtt HH;J{ ((a - wn+1) ’ Veg+1){|L2(Qtn+1)> ’
n=0
N-1
Z Str" T (I (A(w™) (@ — w" ) - V (u T — 10, (u™)), i1
n=0 |

N—1 ;
<C (Z Strntt HHﬁ (>\(“n+1)) H2L2(Qw+1)>
n=0

N-—1 :
« <h2(P+1) Z 6t(7_n+1)—1 Hu”-i_luinﬂrl(ﬂ n+1)> .

n=0

On the other hand, the term related to the perturbation of the test fugion £,) appear-
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ing in (4.14) can be bounded using similar arguments, leading to

co(ITo(r, E2)
N-1

= Z Strtl (Hf; (A(u"“)) J(a—w"th) .V (T”HHh (a—w"th)- Veffrl)))
n=0

Qnt1

1

N—-1 :
<C <Z str T || (A(u™th)) ||i2(szm+1)>
n=0

1
2

N—1
o (Z st HHh ((a — w"+1) : VeZH)Hi?(Qwﬂ))
n=0 |

It only remains to prove that

N_1 N-1
3 a0 (G0 ) < OO S B
= n=0

This inequality can be easily obtained from the expressior"df., assumption (2.19) and
the interpolation error estimate (43).
We end this section with the main convergence result, which is a direct consequence of
inequality (4.11), Lemma 4.9 and Lemma 4.10:
THEOREM 4.11 (Convergence) There existit!, such that, for0 < 6t < 4t.,, the
sequence of errorg; = Uy, — U satisfies the following error estimate:
N-1 )
NEall; <On*t > st D)7 |u" | o

n=0

1)

4.2. Analysis of BDF2-BDF2-OS§ .. Inthis subsection we analyze the fully discrete
problem (2.17) with the bilinear forn®; (-, -) defined in (2.22) and right-hand side (2.14).
We denote byJ = {u° u!,u?,...,uN} the sequence of solutions of the second order semi-
discrete problem (in time) (2.9)-(2.13)-(2.14) aiigl = {u, u}, u3, ..., ud } its fully discrete
counterpart, solution of (2.17)-(2.22)-(2.14).

We have obtained the results of this section usingatbaknorm||| - |||.,. Let us start
with a theorem proving coercivity under theeakemorm.

THEOREM4.12 (Coercivity).There existst>, such that, fol) < 5t < 5t the bilinear
form By, (-, -) defined in (2.22) is coercive. That is, for every sequérice {v"})_, with
(IS V(Qtn)

By, (V,V) > Ba|||V]||2

w

for a certain constanBs > 0.
Proof. It can be easily shown that

1 2 = n 2
B, (V,4V) > T (H”NHL2(QN) + > [lo% +1’|L2(Qtn+1>>

n=0
N—-1 ) N-1
+ ) Aot [[Vor L D At (@ - wt) - Vet

2
. ||L2(Qtn+1)
n=0

n+1
n

tn+1 tn+1

=0
+/tn /QS(V-w(s))(U”)Qdes—i—/tn /Qs(v'w(s))(%"—v”_1)2des.
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Manipulating the mesh velocity as for the BDF2-BRFformulation (see Theorem 3.6) and
applying the Gronwall Lemma we obtain the desired rdsult.

Stability is now straightforward from Theorem 4.12 and Lemma 3.2:

COROLLARY 4.13 (Stability). There existsﬁtfr such that, for0 < 6t < 5t§r, the
sequencé/y,, solution of problem (2.17)-(2.22)-(2.14), is bounded as follows:

N-1
ot
waliz <c 32

n=0

anHHirl(Qtwl) .

This stability result can be considerggtak However, we will see that this result is
enough in order to obtain error estimates without constants depending oldlet FPum-
ber (except, of course, in the dependence of the continuous solution with this number), the
original motivation of stabilization methods for convection-diffusion problems.

Let us obtain now error estimates for the BDF2-BDF2-@$Sormulation. We start
with an auxiliary lemma that will be useful in the following:

LEMMA 4.14.LetX = {2"}_,andV = {v"}}V_, be two sequences of functions such
thatz™, o™ € HP*1(Qy). Then, the bilinear form (2.22) satisfies the following bound:

N—-1 2
By (X, 11, (V)) <C (IXIIIfU + > 575(7"“)_1IIHﬁ(J?"“)IIZL%QW))

n=-—1

n=-—1

N-1 :
% <h2(p+1) Z 5t(7"+1)71 ||Un+1|’§{p+1(9 n+1)> )

Proof. From (2.22) we have that

N-1
By (X7 Hi_ (V)) = Z bn (wn+1§$n+l,nf; (UnJrl))Q
0

n=

tn+1

1l
(32"t — 2™ 4 2" 10, (U”H))Qtnﬂ

Ea = I (), (T (),

where

tn+1

N—-1
Z by, (wn+1;zn+1’nﬁ (Un+1))9
n=0

+ ((CL _ wnJrl) . vxn+17H}J; (UnJrl))Q

tn+1 tn+1

N-1
= >t [y (Ve VI (7)),
n=0
+ 7" (I (@ — w"™™) - V2™t (@ — w" ) - VIO (0"1))

Qtn+1:| :

Now we have to bound every term of the right hand side in order to complete the proof. We
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start with the first term:

Qunt1

N-1
Z sty (Va1 V(I (v™)))
n=0

N-1 PN 2 :
n 2 n
< (S ) (Sl )

n=0 n=0

The second term in the right-hand side can be bounded as

N-1
Y 6t (@ - w™) - VI (o)
n=0

Qunt1

2

N-1
< (Z str™ [y (@ — w™ ) - VInH)H;(Q + ))
n=0 o

N-1 :
X (Z 5t<7n+1>_1 HH,& (Un+1>Hiz(Qtn+1)> ’

n=0
and the third term as

N-1
Z Strntl (Hi‘ ((a —w"t). V;v"'“) (@ —w"th) . VI (v"“))

Qunt1
n=0

1
N-1 2
< (Z str" [y (@ — w™ ') - VQ?”“)H;(Q n+1)>

n=0

N-1 :
X <Z Strntl HHﬁ ((@—w™™) - VII; (v"1)) Hi?(sztnﬂ)> :

n=0

The term related to the time derivative is bounded after recalling assumption (2.21) for the
stabilization parameter*1:

N—-1

Z % (3xn+1 — 4™ +xn71’Hﬁ (vn+1))9tn+1 -+ % (1’1 _ xO,Hﬁ (Ul))ﬂtl
n=1
1 N-—1 2
+ T (Z‘O,Hﬁ (UO))QO < C < Z (St(TnJrl)_l HHﬁ ('/I"n+1)HL2(Qt,,L+1)>
n=—1

N-1 %
X < Z 5t(7’n+1)_1 HHﬁ (’Un+1)||L2(Qtn+1)> ’

n=—1

We now have to use (4.4) of Lemma 4.1 and the expression (2.20) of the stabilization para-
meterr™*! to conclude the prodi.

To obtain the error estimate, we also need to invoke the coercivif§;gf, -), which
leads to

Bh (Eq, Eq) > [Ba|||Edl|[2,-
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Subtracting the equation for the semi-discrete velocity and the discrete velocity we get

B (Ea, Vi) =: €c(Va)
N-1
_ Z Sttt (Hi_ ((a _ wn+1) . vun-‘rl) , (a _ ,wn-‘rl) . V”UZ+1)

Qny1
n=0

Using the previous equation we can obtain
By (E4, Eq) = B (Eq, 11, (U) = U) + e.(Up — T (U))

The first term is due to the interpolation error, whereas the second one is the consistency error.
In the following lemma we obtain a bound for the interpolation error:
LEMMA 4.15 (Interpolation error)The following inequality holds:

1

N—-1 ) 2

By, (Eq, 115 (U)) <C <|Ed||3v + R Z St(rm ) ||un+1||HP+1(Qtn+1)>

n=-—1

N-1 :
% <h2(p+1) Z St(rm Tt ||Un+1H§{p+1(Q n+1)> '

n=—1

Proof. Invoking lemma 4.14 and using the fact tHa (U) — U = —II;+ (U) and
It (Ey) = =113+ (U), we immediately get the resuff.

In order to bound the consistency error we follow again the technique developed in
Lemma 4.10. The only difference between these two cases is the term associated to the
time derivative, which does not affect essentially the proof:

LEMMA 4.16 (Consistency error)he following inequality holds:

N-1 2
Ec(Uh — Hh(U)) <C <h2(P+1) Z (515(7'“-‘4-1)—1 Hun+1H§1’p+l(Qt"+l)>

n=0

W=

N-1
x <|Ed||i, F RO ST iy ||u"“<|2p+1(gw>

n=0

Again, we end with the desired convergence result, which is straight from Lemma 4.16
for the bound of the consistency error, Lemma 4.15 for the bound of the interpolation error
and Theorem 4.12, that gives coercivity of the bilinear form:

THEOREM 4.17 (Convergence) There existit2, such that, for0 < &t < 6t2,, the
sequence of errorg; = U, — U satisfies the following error estimate

N-1
H|Edm12ﬂ §0h2(p+1) Z 5t(Tn+1)—1 Hu

n=-—1

n+1||2
HHPJrl(Qthrl) :

This error estimate is optimal.

From this analysis, we can easily obtain stability and convergence results when the do-
main is fixed, that is, when the mesh velocity vanishes.
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4.3. Analysis of BDF2-OS$; 1,. The previous results are new even for fixed domains.
The OSS stabilization method was analyzed in [11] using the backward Euler time integra-
tion. It can be easily seen that for fixed domains, i.e. whér! = 0, there is no critical
time step size, the method becoming unconditionally stable. In this case, the problem to be
solved reads as follows: find a sequence of finite element fundigrsaich that

By (Up, Vi) = L(V},) (4.17)

with the bilinear form

2

-1
Bh (U}“Vh) = Z |:21T (?)’u;rlhL1 — 4U;§ + ’Uzzil n+1) + bh ( n+17’02+1>
n=1
1 1
+ T (uilL - u%v,ll) +bn (U}I'IJIU;L) + f (’U’%avg) ) (418)

where nowby, (u tt, v tt) denotesy, (05wl ™, v th), with by, (w1 uf vt defined
in (2.19). The rlght hand side linear form is given again by (2.14).

In this case two different sets of results are obtained. The first one witlvehknorm
[l - |||, and the second one with tseongnorm||| - |||s. The main difference is that in the
second normB,, (-, -), looses coercivity. This complicates the analysis.

We state the results with the nofifh- |||,, in the following corollaries. Their proofs are
straightforward from the previous analysis.

COROLLARY 4.18 (Stability). The sequenc#), solution of problem (4.17) is bounded
as follows:

~—

! 5t

2 n+1
AR < 3 ny PR

n=0

for all 6t > 0.

Again, we denote by = {u®,u!, 2, ...,u™} the sequence of solutions of the second
order semi-discrete problem (in time) (2.9)-(2.13)-(2.14), now With= .

COROLLARY 4.19 (Convergence).The error sequencé’; = U, — U satisfies the
following error estimate:

N—-1
1 Eall|Z, <CR2@TD S 6t (r ) 7 w1300 0,

n=—1
for all 6t > 0.
The remaining of this section is devoted to improve these stability and convergence esti-
mates. The improvement consists in obtaining estimates istthegernorm||| - |||s. This

is possible foffixeddomains, but we have not been able to obtain similar estimates as those
presented next fomovingdomains. Nevertheless, some additional assumptions will be re-
quired. We will also remark the aspects that make the analysis of the BDF2-@8thod
much more involved than that of the BDF1-Q%% formulation.

Let us introduce some new notation. We modify the bilinear form as follows:

N-1
1
b (Un, Vi) = Z bh "‘H UZH Z —T 3u2+1 — dup 4+ uy~ ! v;H'l)

1 1
+ —(up, —up,vp) + = (up, vp) +

7 u, b o), (4.19)
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and the right-hand-side linear form to:

n 1 1 —
Z&tf"“ ntly 4 T(uo,vg) T (W I, (uo), v, "), (4.20)

whereuy is obviously the initial condition and, j is the solution at the first time step ob-
tained with the scheme used to initialize the BDF2 scheme. For example, the BDF1 scheme
can be used, and this is precisely what is assumed in the expressijn(of). Note that
now the sequences of finite element functions stamtat—1.

It is easily checked that the solution of the equation (2.9) with the bilinear form (2.12) is
equivalent to

By (Up, Vi) = L* (V).
Observe that this problem yields, ' = uy 5, — Ij, (uo), u§) = II; (uo) andu} = uy . The
rest of the terms of the sequence of unknowns- {u,jl, u?,u?,..,ul } is the same as the

solution of problem (4.17).
Let us introduce some additional ingredients. Given a sequence

V ={v% 002, . 0N}
we define

d“* (V) ={0,0,0,60%, 603, ..., 50N 71 60V},
d>* (V) = {0,0, —6v?, —0%0?, =623, ..., =620, 607}

These operators on sequences have the following property: for all sequéreds™ }__;
it holds that

N— N1
1
By (X, d**( E Sz sum ) + E ﬁ (302"t — 462" + St Gu" T
n=1 n=2

9 2 ¢l 2
+ 2T(6x dz™, 6v%)
1
=B;; (d"*(X),d"*(V)) + ﬁ(ézl, Sv3 — 36v?). (4.21)
REMARK 4.3. The previous property is not satisfied for moving domains due to the

fact that the convective velocity changes at every time step. It introduces an extra term
by, (6w”+1; u™, (51;"“)Q » that can not be bounded as required in the following analysis.

In the next theorem we obtaik-coercivity for the norm|| - |||s-
THEOREM 4.20 (A-coercivity). LetV = {v N__, be a sequence of functions such
thatv™ € V(Q),n =0,1,...,N, andv~! = v! — oY, and consider the operator

1
A(V) =V +{0,0, Z{T”“Hh (@ Vo) 4 5t a2 (V).

Then, the bilinear fornB;: (-, -) is A-coercive. In particular, the following inequality holds:

B VA = i (IIVIE-+ 00 110 W + 00 o )
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for a certain constanBs > 0.

Proof. It can be easily shown that

N—-1 N-1
By (V,4V) = 4by, (v”“,v”“) + 5T (SU"Jrl 4™ 4 "1 v”“)
n=0 n=2 2
L S T RN R N S S
+T(v v,v)+T(v,v)+T6t(v , U )
N—-1
> 37 4ot [ V02 g + 0t [T (o Vo) 2, g
n=0
l N+11|2 §2yntl 0 i —12
+ 7 |10 e o) + Z | 122y + 2101z + 5107 ) |-

In order to obtain stability for the component of the convective term in the finite element
space, we use as test function the sequéfge, {7111, (a - Vo 1)}V =11 =: Ty (r, V),

that is starting with 0 in the componentl and0. Exactly as in the proof of Theorem 4.5, we
now obtain:

N-1

Bi (V,Ty(7,V)) = Y 6" 15trm [, (- Vo) |7,
n=0

N-1
[t [ Vo[ + 3t 10 (@ T )

(Q) ||L2(Q)}

T
)

— 1 n n n— 2 1
—T||3u 4™ o 1||L2(Q)—fuvl—vOHLQ(Q)? (4.22)

3
I |

with the expression ap"*! given in (4.8). We do not have control over the term related to
the time derivative, needing a further step. We use now as test funétiofy’). From the
first step in (4.21) it follows that

5t B, (V. 4d>* (V) 2 ot~ |l|d"=(V)II[7, — T& 160220

= st H|d"* (V)[|I2 - (4.23)

-1
.

Combining the previous inequalities and invoking the Gronwall lemma (without any assump-
tion over the time step size) we can conclude the proof of the thedrem.

REMARK 4.4.In equation (4.22) we do not have control over the term associated to the
time derivative. It makes the analysis for the second order method more intricate than for the
first order one, for which the time derivative term is easily controlled (see (4.7)). The control
of this term has motivated the introductiond3f*(V') in the test sequence used.

In order to obtain stability it remains to prove some kind of continuity with respect to the
operatorA. This is what the next theorem states:
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THEOREM4.21 (A-continuity). The following inequality holds:
L*(A(V))

5t n mn
s(Z Tl Z*an“HH -

n=0 n=1
2 3
L2(Q)>

_ . 1 2 1, _
(VI -+ 80 M W + 10 oy + o e

ot

uy.p — 1, (w
||U0||L2(Q)+T u1,p — Iy (uo)

ot

[N

Proof. The following inequalities can be easily obtained:

-

2 2
L2(Q)>

N-1 ., 1 1 —12 i
X (Z oty HV’U +1||iz(ﬂ) + T H’UOHiQ(Q) + Titst ||U 1HL2(Q) ’

n=0

) St | m 1 ot
L (V) < (Z ||f +1HH 1(Q) f HUO‘IiQ(Q) + ?
n=0

uy,n — Iy, (uo)
ot

Nl=

o ot s n
L* (8t~ d**(V)) < (Z —[Du - 1(9)) (Z ot°v | Do +1H21<ﬂ>> :

n=1

) }
L*(Ho(r,V)) < (Z ! an—HHH 1(9))
n=0

2

N-1
X (Z Stv H7'n+IV(Hh (a- VU”H))H2L2(9)> )
n=0

and
n+1 n+1\y]|2 CianV n+1\2 n+1) (2
vV (I (a - Vo ))HL2(Q) =72 (7?2 | (@ Vo )HLZ(Q)
<O la- VoL,

From all these inequalities the theorem follows edsily.

The two previous theorems lead to the following stability result:

COROLLARY 4.22 (Stability II). The sequenc#},, solution of problem (4.17), is boun-
ded as follows:

U246t~ [|d"*Unl[[7,

ot n n
<c(z 1+ Z D
n=0
5t 2
L2(Q)

HHOHL2(Q) T B (u0>

ot
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for all 6t > 0.

Obviously, this stability bounds makes sense if the initialization is such that the last term
on the right-hand-side is bounded. Using for example the backward Euler scheme, this poses
a mild condition onst andh. In particular, ifhPT1 < Cét, it is easy to show that this last
term is bounded.

The final result we obtain is an error estimate in st®ngnorm||| - |||s. At this point
we introduce the sequenéé = {u; ', u°, u',u?,...,u™}, that consists of the sequence of
solutions of the semi-discrete problem (2.9)-(2.11) supplementeduyi]tratn =—1.ltcan
be easily checked that this sequence satisfies

B (U, V)=L*(V) —e.(V).
Thus,Ey := U, — U = {0,u) —u® u} —ut, ..., uly —u™} satisfies
BZ (E‘d7 Vh) = GC(Vh).

We point out that for fixed domains the critical time step size does not appear anymore due to
the fact thatw = 0. The method is unconditionally stable, as expected.

We stress the fact thaf, ' # e — €Y, and thereforez,; does not verify the statement of
Theorem 4.20. The only place where the fact titat = v' — +° is used is in (4.23). When
the test sequence does not satisfy the assumptién= v* — v° of Theorem 4.20, we have
to modify theA-coercivity proved in this theorem as follows:

4

2 * — %
Tot HéeéHLZ(Q) + B} (Ea, A(Eq)) > Bo (|| Eall|? + ot~ |[|ld“* (Ea)||2) - (4.24)

With the expression ak(-) given in Theorem 4.20 we arrive to

B; (Ed, A(Ed)) = B; (Ed, Ed) + iﬁc
= B;: (Ed, Hh (U) — U) + Gc(Uh — Hh (U)) + iec(no(T, Ed))
+6t7 By (Eq,d>* (I, (U) = U)) + 6t~ e (d®* Uy, — I, (U))).
(4.25)

(Io(7, Eq)) + 6t~ B;, (Eq, d>* Ey)

Again, we group the different terms as interpolation and consistency errors and bound
them separately in the next lemmas.
LEMMA 4.23 (Interpolation error)The following inequality holds:

By, (Eq, I (U)) + 6t~ Bjy (Bq, d** (I (U))

< (IIEdIfU + 0t H[|dM (Ea)lI[7,

1

N-1 2
2(p+1) n+1y—1 n+11|2 H n+1) 2
A 3 i (e P Ve

1

9 2
H:D+1(Q))

N-1
y <h2<p+1> S ot (| ey + VD

n=0
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Proof. The bound for the first term of the left-hand side of the inequality is easily obtained
from the proof of Lemma 4.15, sinm—gl = 0. For the second term we use property (4.21)
and again the fact thag1 = (0, getting
By, (Eq,d** (11, (U)))
1
= B (dV* (Ey),dV (I (U))) — 5T (e, 5(Ty, (u?) — 310 (u?))) .

Note that when we write3), (d** (E,), d%* (1T} (U))) we eliminate the element1 of the
sequences to apply the bilinear foj (-, -).

Using Lemma 4.14 we get

5t~ By (dV* (Eq), dV* (I (U)))

1
2

<C <5t_1||d1 *Ede +h2(p+1) Z (515 n+1 HfD un-i-lH )
Hr+1(Q)

HP+1(Q)> )

Exploiting the fact thafl;- (e}) =11, (u') — u' we can easily get that

(m z st ) |V

< Cprty Zét )1 |[VetD, u”+1‘

Hr+1(Q)

The proof is concluded.

LEMMA 4.24 (Consistency error)he following inequality holds:

1 - *
ee(Up — L (U) + ZHO(T, Ey) + 6t d>* (U, — 11, (U)))

[N

<C (hQ(p+1) Z St(r™+) (H n+1HHP+1(Q + HfD un+1‘

n=0

X
Hp+1(9))>
Hp+1(Q)>>

Proof. Due to the fact that;' = 0 we can take profit from the bounds obtained in

1
2

N-—1
('”Ed“i*h“””Z ) (o + VD1
n=0
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Lemmas 4.10 and 4.16. The remaining term associaté¢it6) can be bounded as follows:

N-1

(6t~ d>* (Uy — T (U (I (a- Vou" ) a - VI (5u™t1))

il
,‘_.»—-

(I (M) a - VTG (su™))

n=1

<C (NZ St HHﬁ (Mé?A(Dlu”H))(

9 2
L2()

1

2
HP+1(Q)> ’

with A(+) introduced in Lemma 4.10. The term related\{@;«"*!) can be easily bounded
from the expression of**1, assumption (2.19) and the interpolation error estimate (4.3), as
pointed out in Lemma 4.10.

We end with the convergence result of the method in the ngrnl|s:

THEOREM 4.25 (Convergence Il)The sequence of errols; = U, — U satisfies the
following error estimate:

<h2 (p+1) Z (St n+1 H\/iD un-l—l‘

N-1

[[1Eall[ <Ch*®+D [Zét " (!|u"“l|m+lm>+”f Dl“"“HW<m>

n=0

+ (7Ht H”1||Hp+1(sz) 4 (! ||UOHHP+1(Q) (4.26)

for all 5t > 0.
Proof. Using Lemma 4.23 and Lemma 4.24 in expressions (4.24) and (4.25), we can
easily get the desired bound fgfF,|||2 in terms of & ||6e}l[|2LQ(Q). Using as initialization

the backward Euler scheme and the convergence result of Theorem 4.11 for the semidiscrete
problem, it follows that

C 2
i 136l < e (lebll2 gy + 11 = TGO )

< C(Tl)flh2(p+1) <||U1HHP+1(Q) + ||UOHHP+1(Q)) ,
from which we obtain the desired resiilt.

REMARK 4.5. From (4.26) it is seen that we neé¢/5tD;u"+'} bounded in the norm of
¢2(HP*+1(2)). This can be understood as additional regularity on the data or as an additional
assumption on the asymptotic behavior of the time step size in tertmg-afm the semidis-
crete equation, it is immediate to boufid; u" ! || 74 (q) in terms of thef/7(2)-norm of the
rest of the terms of the equation. In particular, the viscous term implies thaf tH€)-norm
of Dyu™*! can be bounded in terms of t#€472(Q2)-norm ofu™*1. If only the HP+1(Q)-
norm ofu™*" is bounded, we have to talie= p— 1, and thush® @V || Vot Dy 13,11

has to be replaced by*»~){|v/5tD1u™ |13, . ), and therefore we need < Ch* in or-
der to maintain the optimal order of accuracy.
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5. Conclusions. In this paper we have analyzed a stabilized finite element method to
approximate the convection-diffusion equation on moving domains. The Orthogonal Subgrid
Scale formulation has been used as stabilization technique and an ALE framework has been
used in order to deal with moving domains.

In the first part of the paper we have analyzed the semi-discrete problem (in time). Two
methods have been considered. A first order accurate method, where the time derivatives are
computed using the BDF1 scheme, and a second order accurate method, where the BDF2
scheme has been used. In this analysis it is easy to identify the error introduced by the ALE
formulation. The mesh velocity is computed as the time derivative of the mesh displacement.
The numerical approximation of this time derivative is the only source of error introduced
by the ALE formulation. As a conclusiomm order to keep the accuracy offath order (in
time) method on fixed domains, we must compute the mesh velocity using a time integration
scheme of, at least, ordérof accuracy The only negative aspect is thatconditional stable
methods for fixed domains become conditionally stable

In the second part of the paper we have analyzed a stabilized transient convection-
diffusion equation in an ALE framework. We have introduced the concept-obercivity
that has been used for obtaining stability results and error estimates. It has been shown that
the OSS method can be easily extended to transient problems. For the BDF1 time integration
scheme we have stability of the convective term norm, as usual when using stabilization tech-
nigues. The analysis of BDF2 is more complicated. We only have control overttimgonal
projectionof the convective term. However, optimal convergence results with constants that
do not depend on thedelet number can be proved. Finally, for fixed domains, we have been
able to recovestrongerstability and convergence involving the full norm of the convective
term, but the analysis is much more involved and requires more regularity assumptions.
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