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ANALYSIS OF A STABILIZED FINITE ELEMENT APPROXIMATION OF THE
TRANSIENT CONVECTION-DIFFUSION EQUATION USING AN ALE

FRAMEWORK ∗

SANTIAGO BADIA † AND RAMON CODINA ‡

Abstract. In this paper we analyze a stabilized finite element method to approximate the convection-diffusion
equation on moving domains using an ALE framework. As basic numerical strategy, we discretize the equation
in time using first and second order backward differencing (BDF) schemes, whereas space is discretized using
a stabilized finite element method (theorthogonal subgrid scaleformulation) to deal with convection dominated
flows. The semi-discrete problem (continuous in space) is first analyzed. In this situation it is easy to identify the
error introduced by the ALE approach. After that, the fully discrete method is considered. We obtain optimal error
estimates in both space and time in a mesh dependent norm. The analysis reveals that the ALE approach introduces
an upper bound for the time step size for the results to hold. The results obtained for the fully discretized second
order scheme (in time) are associated to aweakernorm than the one used for the first order method. Nevertheless,
optimal convergence results have been proved. For fixed domains, we recover stability and convergence results with
the strong norm for the second order scheme, stressing the aspects that make the analysis of this method much more
involved.

Key words. Stabilized finite elements, second order BDF, ALE

1. Introduction. In this paper we propose and analyze two time integration schemes,
of first and of second order, for the numerical approximation of the transient convection-
diffusion equation in moving domains. This equation is written in an ALE framework, in
which the temporal derivatives are expressed with respect to the reference of a moving domain
Ωt obtained from a mapping of the domain at the initial time. The space discretization is
carried out using a stabilized finite element method that allows us to deal with convection
dominated flows.

The ALE framework, initially used with a finite element approximation in [12], has be-
come widely popular when simulating fluid-structure interaction problems. Even tough one
can find a lot of numerical experimentation using the ALE approach, some aspects have kept
on the dark side for a long time. For instance, the meaning and effect of theGeometric con-
servation Law(GCL) or how the accuracy of a numerical method in fixed domains is spoiled
when introducing moving domains with an ALE formulation were not clear. Farhat and co-
authors have shown in [13] that the GCL makes the numerical scheme preserve a maximum
principle. In [16], the authors have shown that this condition is not necessary to obtain sec-
ond order ALE schemes in a finite volume framework. More recently, in a finite element
setting and taking the transient convection-diffusion equation as themodelequation, works
like [14] and [23] have also allowed to clarify the effect of the GCL on the stability proper-
ties, the different behavior between conservative and non-conservative forms, and also some
convergence results have been proved. Further analyses, for second order schemes, have been
developed in later works, as [15] and [2]. Herein we use the mathematical setting used, e.g.,
in [23] for the description of this method.

The ALE framework does not introduce any error by itself at the continuous level. How-
ever, when the problem is discretized in time, some errors due to the ALE description arise.
At this step, for fixed domains, the only source error is the time derivative of the unknown.
In addition, for moving domains, also the error from the evaluation of the mesh velocity has

∗Universitat Polit̀ecnica de Catalunya, International Center for Numerical Methods in Engineering (CIMNE),
Jordi Girona 1-3, Edifici C1, 08034 Barcelona, Spain.

†sbadia@cimne.upc.edu
‡ramon.codina@upc.edu

1



2 S. BADIA AND R. CODINA

to be accounted for. This velocity is calculated as the time derivative of the space position of
a particle. Thus, an error is induced when this time derivative is calculated numerically.

On the other hand, in practical applications the mesh velocity belongs to the finite ele-
ment space and does not introduce any interpolation error. Thus, we consider that the ALE
formulation is better understood analyzing the problem semi-discretized in time. However,
most numerical analysis (see [14], [15] and [2]) first study the semi-discrete problem in space,
and then the fully discretized problem.

The convection-diffusion equation (as the Navier-Stokes equations) when discretized in
space with the standard Galerkin formulation shows numerical oscillations if the convective
term is dominant. With the aim of developing a finite element method free of spurious oscil-
lations many methods have been proposed during the last twenty years, such as SUPG (see
[5]), Galerkin/Least-squares (see [22]) or the Subgrid Scale stabilization (see [20]). A com-
parative of different stabilization methods can be found in [6]. TheOrthogonal Subgrid Scale
method (OSS) used in this paper belongs to this last family and was introduced by Codina
in [7]. The method is designed taking as starting point the Subgrid Scale variational setting
proposed by Hughes in [21] and modeling the subgrid problem in a particular way, in partic-
ular taking the subgrid scales orthogonal to the finite element space. The common aspect of
all these methods is found in the convergence analysis of the discrete problem in space. For
the Galerkin approximation, the error estimate bound depends on the physical properties (the
Péclet number for the convection-diffusion equation), and increases as the convective term
is more dominant. In fact, the stability bound blows up as diffusion goes to zero, reflecting
the fact that the continuous problem is a singularly perturbed one. But when using stabi-
lized methods this negative feature does not appear anymore. This is explained because the
new terms introduced by the stabilization control the convective term norm. In the present
analysis we have been able to obtain appropriate error estimates only controlling a part of the
convective term, which is an innovative result.

As far as we know, most of the existing stabilization techniques are extended to transient
problems using the framework of the discontinuous Galerkin space-time formulation, increas-
ing notably the computer cost for schemes in time of order two or higher. This situation has
been improved by Guermond in [18], where he analyzes the introduction of a certain numeri-
cal subgrid viscosity. Optimal convergence results are obtained for an evolutionary equation.
The key point is the uncoupling of the stabilization terms with the temporal derivative of the
unknown. Another stabilization method with this feature is presented in [3].

Codina and Blasco analyze in [11] the transient convection-diffusion-reaction equation
discretized in space using the OSS method and in time with the backward Euler time integra-
tion. Further, they consider thetrackingof the subscales in time. Optimal convergence and
stability results are obtained.

The present paper can be viewed as an extension of [11]. We generalize the situation
to moving domains (using an ALE approach). In addition, first and second order backward
differencing (BDF) time integration schemes are considered, which will be denoted by BDF1
and BDF2, respectively. The blend of a stabilized finite element method with the use of an
ALE framework is one of the innovative aspects of this paper.

In order to analyze the stabilized method for transient problems, the following strategy
is adopted in [11]: first the semi-discrete problem is studied (where no stabilization terms
appear) and later the fully discrete method is analyzed. As it is shown in [11], this provides
a natural way to deal with the subscales whose approximation enhances the stability and
accuracy of the formulation. The main drawback of this strategy is that space regularity
for the convergence analysis needs to be assumed for the semidiscrete solution, not for the
continuous one.
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The first time integration scheme considered uses the classical backward Euler formula
for the approximation of both the time derivative of the unknown and the calculation of the
mesh velocity. We label this method as:

• BDF1-BDF1δt for the problem semi-discretized in time,
• BDF1-BDF1δt,h for the fully discretized problem using the classical Galerkin ap-

proximation in space,
• BDF1-BDF1-OSSδt,h for the fully discretized problem using the OSS method in

space,
• BDF1-OSSδt,h for the fully discretized problem using the OSS method in space on

fixed domains (not in an ALE framework).
In the second method the time integration makes use of the second order BDF formula. Again,
we use the following notation:

• BDF2-BDF2δt for the problem semi-discretized in time,
• BDF2-BDF2δt,h for the fully discretized problem using the classical Galerkin ap-

proximation in space,
• BDF2-BDF2-OSSδt,h for the fully discretized problem using the OSS method in

space,
• BDF2-OSSδt,h for the fully discretized problem using the OSS method in space on

fixed domains (not in an ALE framework).
Let us underline what is new in each case. The BDF1-BDF1δt,h method has been ana-

lyzed in [14]. As explained above, we change the order of the discretization: first we ana-
lyze BDF1-BDF1δt, and then BDF1-BDF1-OSSδt,h, introducing the appropriate stabilization
terms. For fixed domains, the BDF1-OSSδt,h has been analyzed in [11]. However, the analy-
sis herein is slightly different. The analysis of convergence and stability of the semidiscrete
method BDF2-BDF2δt is new, and also its fully discrete stabilized version BDF2-BDF2-
OSSδt,h. We specially remark the fact that convergence results independent of the physical
properties can be obtained without the full norm of the convective term. Even for fixed do-
mains, the stability and convergence results for BDF2-OSSδt,h are new. In all cases the long
time behavior has been considered.

Numerical experimentation with the ALE methods (for diffusion dominated problems us-
ing the Galerkin method) BDF1-BDF1δt,h and BDF2-BDF2δt,h can be found in [15], [2] and
[23], showing the expected behavior. The application of BDF1-OSSδt,h and BDF2-OSSδt,h,
can be found in [8] and [10] for the solution of fluid problems. Finally, the blend of these
methods, BDF1-BDF1-OSSδt,h and BDF2-BDF2-OSSδt,h, has been used for simulating en-
gineering problems in [1], with excellent results.

The paper is organized as follows. In§2 we state the governing equations for moving
domains in an ALE framework. Some important ingredients in order to define the ALE
approach are introduced. The semi-discrete problem is formulated both for BDF1 and BDF2.
The section ends with the presentation of the OSS stabilization method and the fully discrete
problem. §3 is devoted to the semi-discrete problem. First and second order methods are
considered for which stability and optimal convergence estimates are obtained.§4 presents an
analogous analysis to that of§3 but for the fully discrete problem. Finally, some conclusions
are drawn in§5.

2. Problem statement.

2.1. The continuous problem. In order to study the ALE framework together with a
stabilized finite element method, we take as a model test problem the transient convection-
diffusion equation. The problem written in an Eulerian framework consists in finding a func-
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tion u such that

∂u

∂t
− ν∆u+ a · ∇u = f in Ωt × (0, T ), (2.1a)

u = 0 on ∂Ωt × (0, T ), (2.1b)

u(x0, 0) = u0 in Ω0 × {0}, (2.1c)

whereΩt ⊂ Rd (d=2,3) is a bounded and polyhedral domain (moving in time),[0, T ] is the
time interval of analysis,a is a divergence-free velocity field andν > 0 is the diffusion
coefficient. Homogeneous boundary conditions are assumed to clarify the analysis. We also
assume the following regularity of the data:

f ∈ L2(0, T ;H−1(Ωt)), u0 ∈ L2(Ω0), a ∈ L∞(Ωt),

assuring the existence of a unique solutionu(t) ∈ L2(0, T ;H1(Ωt)) ∩ C0(0, T ;L2(Ωt)).
We introduce some key ingredients of an ALE framework. LetAt be a family of map-

pings, which for allt ∈ [0, T ] map a pointx0 ∈ Ω0 into a pointx ∈ Ωt,

At : Ω0 −→ Ωt, x(x0, t) = At(x0).

We assume thatAt is invertible with inverseA−1
t . For t1, t2 ∈ [0, T ] we define

At1,t2 : Ωt1 −→ Ωt2 , At1,t2 = At2 ◦ A−1
t1 .

We note that the family of mappings is arbitrary. Several techniques have been suggested in
order to construct this ALE mapping. IfAt is the mapping arising from the motion of the
particles, the resulting formulation would be of pure Lagrangian type.

Let us consider a functionf : Ωt × [0, T ] −→ R. We indicate withf̂ = f ◦ At the
corresponding function in the ALE frame:

f̂ : Ω0 × [0, T ] −→ R, f̂(x0, t) = f(At(x0), t).

Furthermore, the time derivatives in the ALE frame are defined as follows:

∂f

∂t

∣∣∣∣
x0

: Ωt × [0, T ] −→ R,
∂f

∂t

∣∣∣∣
x0

(x, t) =
∂f̂

∂t
(x0, t).

The domain velocityw is calculated using the following expression:

w(x, t) =
∂x

∂t

∣∣∣∣
x0

=
∂At(x0)

∂t
,

and the Jacobian of the ALE mapping is given by

Jt = det(J t), J t =
∂x

∂x0
.

We recall theReynolds transport formula. Letψ(x, t) be a function defined inΩt. Then,
for any subdomainVt ⊆ Ωt such thatVt = At(V0) with V0 ⊆ Ω0 it holds that

d

dt

∫
Vt

ψ(x, t) dV =
∫

Vt

(
∂ψ

∂t

∣∣∣∣
x0

+ ψ∇ ·w

)
dV.
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In particular, ifv : Ωt −→ R, that is, ifv does not depend explicitly on time, we have that

d

dt

∫
Ωt

v dΩ =
∫

Ωt

v∇ ·w dΩ. (2.2)

With all this notation introduced, we are ready to write (2.1) in the ALE framework. It
now reads

∂u

∂t

∣∣∣∣
x0

− ν∆u+ (a−w) · ∇u = f in Ωt × (0, T ), (2.3a)

u = 0 on ∂Ωt × (0, T ), (2.3b)

u(x0, 0) = u0 in Ω0 × {0}. (2.3c)

The funcional space

V(Ωt) :=
{
v : Ωt → R, v = v̂ ◦ A−1

t , v̂ ∈ H1
0 (Ω0)

}
, t ∈ (0, T ),

allows us to write (2.3) in its variational form. The variational problem reads: findu(t) ∈
V(Ωt) for all t ∈ (0, T ) such that(

∂u(t)
∂t

, v

)
Ωt

+ ν (∇u(t),∇v)Ωt
+((a−w(t)) · ∇u(t), v)Ωt

= 〈f(t), v〉Ωt
, (2.4)

∀v ∈ V(Ωt), where(·, ·)Ωt stands for theL2(Ωt) inner product and〈·, ·〉Ωt for the duality
pairing inH−1(Ωt)×H1

0 (Ωt).
Let us re-scale the time variable ast← t/T , so that the new time interval is[0, 1] and the

coefficient1/T has to be inserted in front of the time derivatives. The reason of this change
is to display which terms in the stability and convergence results disapear asT →∞, that is,
the long time behavior. After re-scaling, problem (2.4) is transformed to,

1
T

(
∂u(t)
∂t

, v

)
Ωt

+ ν (∇u(t),∇v)Ωt
+ ((a−w(t)) · ∇u(t), v)Ωt

= 〈f(t), v〉Ωt
, (2.5)

and now the domain velocity is,

w(x, t) =
1
T

∂x

∂t

∣∣∣∣
x0

. (2.6)

We take into account this re-scaling in property (2.2), which now reads

1
T

d

dt

∫
Ωt

v dΩ =
∫

Ωt

v∇ ·w dΩ. (2.7)

2.2. The semi-discrete problem in time.Let us introduce some notation that we will
used throughout the work. Consider a uniform partition of[0, 1] into N time intervals of
lengthδt. Let us denote byfn the approximation of a time dependent functionf at time level
tn = nδt. We will also denote

δfn+1 ≡ δ(1)fn+1 = fn+1 − fn,

δ(i+1)fn+1 = δ(i)fn+1 − δ(i)fn, i = 1, 2, 3, ...
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The discrete operatorsδ(i+1) are centered. We will also use the backward difference operators

D1f
n+1 =

δfn+1

δt
=
fn+1 − fn

δt
,

D2f
n+1 =

3
2δt

(fn+1 − 4
3
fn +

1
3
fn−1).

Let us discretize problem (2.5) in time, oncet has been normalized. We assume the force
term is continuous in time and denote the time level by a superscript. We start using the BDF1
time integration scheme. It leads to the following problem: for= 0, 1, ..., N − 1, givenun,
find un+1 ∈ V(Ωtn+1) such that

1
T

(
un+1 − un, vn+1

)
Ωtn+1

+ δtν
(
∇un+1,∇vn+1

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1, vn+1

)
Ωtn+1

= δt〈fn+1, vn+1〉Ωtn+1 , (2.8)

with u0 = u0 in L2(Ω0).
Furthermore, we discretize in time the ALE mapping using a linear interpolation. The

discretized ALE mappingAn+1
t is defined for a given time slab[tn, tn+1] as

An+1
t (x0, t) =

t− tn

δt
Atn+1(x0) +

tn+1 − t
δt

Atn(x0).

Thus, the mesh velocity is constant on each time step and given by

ŵn+1(x0) =
Atn+1(x0)−Atn(x0)

Tδt
,

andwn+1(x, t) = ŵn+1((An+1
t )−1(x)) for t ∈ (tn, tn+1]. Equation (2.8) with this mesh

velocity defines the BDF1-BDF1δt method. Note that the superscriptn + 1 in w denotes
that it varies with time within the time interval(tn, tn+1] where it is defined. However, in
§ 3 we will simply denotewn+1 ≡ wn+1(x, tn+1). SinceAn+1

tn+1 = Atn+1 , we will write
wn+1(x, tn+1) = ŵn+1(A−1

tn+1(x)) or, for x arbitrary,wn+1 = ŵn+1 ◦ A−1
tn+1 .

For the numerical analysis we rewrite the transient problem using a different setting.
The sequence of problems (2.8) can be written in a unified manner as: find a sequenceU =
{u0, u1, u2, ..., uN} such that

B(U, V ) = L(V ) (2.9)

for all sequencesV , where

B(U, V ) :=
1

2T
(
u0, v0

)
Ω0

+
N−1∑
n=0

[
1
T

(
δun+1, vn+1

)
Ωtn+1

+ δtν
(
∇un+1,∇vn+1

)
Ωtn+1

+δt
(
(a−wn+1) · ∇un+1, vn+1

)
Ωtn+1

]
, (2.10)

L(V ) :=
1

2T
(
u0, v0

)
Ω0

+
N−1∑
n=0

δt〈fn+1, vn+1〉Ωtn+1 . (2.11)

Observe that the initial condition has been embedded in the variational problem.
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In order to reach second order accuracy in time, the BDF2 integration scheme is used. It
leads to the following time discretization of (2.5):

1
2T
(
3un+1 − 4un + un−1, vn+1

)
Ωtn+1

+ δtν
(
∇un+1,∇vn+1

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1, vn+1

)
Ωtn+1

= δt〈fn+1, vn+1〉Ωtn+1 . (2.12)

This problem has to be initialized. For instance, we can obtainu1 with (2.8) andu0 = u0

in L2(Ω0) keeping the order of convergence of the method. In order to keep this accuracy,
a quadratic interpolation is used to approximate the ALE mapping. For a given time slab
[tn, tn+1], this interpolation is given by

An+1
t (x0, t) =

(t− tn)(t− tn−1)
2δt2

Atn+1(x0)

− (t− tn+1)(t− tn−1)
2δt2

Atn(x0) +
(t− tn+1)(t− tn)

2δt2
Atn−1(x0).

Thus, the mesh velocity on each time step is linear in time and given by

ŵn+1(x0, t) =
2t− tn − tn−1

2Tδt2
Atn+1(x0)

− 2t− tn+1 − tn−1

2Tδt2
Atn(x0) +

2t− tn+1 − tn

2Tδt2
Atn−1(x0),

andwn+1(x, t) = ŵn+1((An+1
t )−1(x), t) for t ∈ (tn, tn+1]. It is easily checked that at

tn+1 we recover the BDF2 formula for the mesh velocity.
Again, we can rewrite the transient problem as an abstract ‘variarional’ problem (2.9),

now with the bilinear form

B(U, V ) =
1
T

(
u1 − u0, v1

)
Ωt1

+ δtν
(
∇u1,∇v1

)
Ωt1

+ δt
(
(a−w1) · ∇u1, v1

)
Ωt1

+
1

2T
(
u0, v0

)
Ω0

+
N−1∑
n=1

[
1

2T
(
3un+1 − 4un + un−1, vn+1

)
Ωtn+1

+δtν
(
∇un+1,∇vn+1

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1, vn+1

)
Ωtn+1

]
,

(2.13)

and the linear form

L(V ) :=
1

2T
(
u0, v0

)
Ω0

+
N−1∑
n=0

δt〈fn+1, vn+1〉Ωtn+1 . (2.14)

We end this subsection giving the norm for which stability and convergence results are
obtained in§3 for the previous semi-discrete problems, which is

|||V |||2 =
1
T

sup
n∈[0,N ]

‖vn‖2L2(Ωtn ) +
N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )
. (2.15)

Given a normed spaceX, for 1 ≤ q < ∞ we define the spacèq(X) as that of sequences
V = {vn}Nn=0 such that

∑N
n=0 δt‖vn‖qX <∞, and`∞(X) the space of sequences such that

supn=0,...,N ‖vn‖X < ∞. With this notation, the norm defined in (2.15) can be considered
that of `∞(L2(Ωt)) ∩ `2(H1

0 (Ωt)). Here, the subscriptt has to be understood astn for the
n-th component of the sequence.
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2.3. The fully discrete problem. At this point we treat the space discretization of sys-
tems (2.8) and (2.12). The BDF1-BDF1-OSSδt,h reads as follows: forn = 0, 1, ..., N − 1,
givenun

h, findun+1
h ∈ Vh(Ωt) such that

1
T

(
un+1

h − un
h, v

n+1
h

)
Ωtn+1

+ δtν
(
∇un+1

h ,∇vn+1
h

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1

h , vn+1
h

)
Ωtn+1

+ δt
(
Π⊥h

(
(a−wn+1) · ∇un+1

h

)
, τn+1(a−wn+1) · ∇vn+1

h

)
Ωtn+1

= δt〈fn+1, vn+1
h 〉Ωtn+1 , (2.16)

whereVh(Ωt) is a finite element approximation space ofV(Ωt), τn+1 is a mesh dependent
parameter, that we will callstabilization parameter, whose expression is detailed later, and
Π⊥h (·) =: Id(·)−Πh (·), with Id the identity inL2(Ωt) andΠh (·) theL2-projection onto this
finite element space (and thereforeΠ⊥h (·) is the projection orthogonal to the finite element
space). The description and motivation of this formulation, that we callOrthogonal Subgrid
Scale(OSS) stabilization, can be found in [9].

Let Θt
h be a finite element partition of the domainΩt in a family of elements{Ke}nel

e=1,
nel being the number of elements. We denote the diameter of the sphere that circumscribes
elementK by hK and the diameter of the sphere inscribed inK by %K . We also callh =
maxK∈Θt

h
(hK) and% = minK∈Θt

h
(%K). We assume that all the element domainsK ∈

Θt
h are the image of a reference elementK̃ through polynomial mappingsFK , affine for

simplicial elements, bilinear for quadrilaterals and trilinear for hexahedra. OnK̃ we define
the polynomial spacesRp(K̃) whereRp is, for simplicial elements, the set of polynomials in
x1, ..., xd of degree less than or equal top, calledPp. For quadrilaterals and hexahedraRp

consists of polynomials inx1, ..., xd of degree less than or equal top in each variable, a set
calledQp. The finite element spaces introduced before and that we will use in the following
are:

Vh(Ω0) = {v̂h ∈ C0(Ω0) | v̂h|K = ṽ ◦ F−1
K , ṽ ∈ Rp(K̃), K ∈ Θt

h},
Vh,0(Ω0) = {vh ∈ Vh(Ω0) | vh|∂Ω0 = 0},
Vh(Ωt) = {vh ∈ C0(Ωt) | vh = v̂h ◦ A−1

t , v̂h ∈ Vh(Ω0)},
Vh,0(Ωt) = {vh ∈ C0(Ωt) | vh = v̂h ◦ A−1

t , v̂h ∈ Vh,0(Ω0)}.

Moreover,Θt
h is assumed to be quasi-uniform, that is to say, there exists a constant

%2 > 0, independent ofh, such that%h ≥ %2 > 0 ash tends to zero. This will simplify the
analysis and, in particular, will allow us to use stabilization parameters constant in space.

Let us note that in practical applicationsAtn+1 mapsΘ0
h onto Θn+1

h . Therefore, it is
easily checked the fact thatwn+1 ∈ (Vh(Ωtn+1))d. In the following we will not distinguish
betweenwn+1 andwn+1

h .

Also in this case we can write the problem using a ‘variational’ formalism. The fully
discrete sequence of problems given by (2.16) can be written as: find a sequenceUh =
{u0

h, u
1
h, ..., u

N
h } such that

Bh(Uh, Vh) = L(Vh), (2.17)
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for all sequencesVh, with the bilinear formBh given by

Bh(Uh, Vh) =
1

2T
(
u0

h, v
0
h

)
Ω0

+
N−1∑
n=0

[
1
T

(
un+1

h − un
h, v

n+1
h

)
Ωtn+1

+ bh
(
wn+1;un+1

h , vn+1
h

)
Ωtn+1

]
, (2.18)

wherebh is defined as

bh
(
wn+1;un+1

h , vn+1
h

)
Ωtn+1

= δtν
(
∇un+1

h ,∇vn+1
h

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇un+1

h , vn+1
h

)
Ωtn+1

+ δt
(
Π⊥h

(
(a−wn+1) · ∇un+1

h

)
, τn+1(a−wn+1) · ∇vn+1

h

)
Ωtn+1

. (2.19)

The OSS method modifies the discretized equation of the classical Galerkin method intro-
ducing the last term, which enhances the stability of the original method. The value of the
stabilization parameterτn+1 has been justified in [9]. In an ALE framework it depends on
the difference between the advection velocitya and the mesh velocityw. The expression we
use is

τn+1 =

(
c1
ν

h2
+ c2

‖a−w‖L∞(Ωtn+1 )

h

)−1

, (2.20)

that is constant in space. Here,c1 andc2 are algorithmic constants that depend on the order
of the finite element interpolation. As will be shown later (see (4.7)), they are related to the
constantCinv in the inverse estimate introduced in (4.1).

As in [11], we will make further assumptions. We assume that for eachn the parameter
τn satisfies

τn ≤ CTδt, (2.21)

which in particular implies that we can not letδt → 0 without refining the finite element
mesh.

For the space discretization of the second order method (2.12), the bilinear form is given
by

Bh (Uh, Vh)

=
N−1∑
n=1

[
1

2T
(
3un+1

h − 4un
h + un−1

h , vn+1
h

)
Ωtn+1

+ bh
(
wn+1;un+1

h , vn+1
h

)
Ωtn+1

]
+

1
T

(
u1

h − u0
h, v

1
h

)
Ωt1

+ bh
(
w1;u1

h, v
1
h

)
Ωt1

+
1
T

(
u0

h, v
0
h

)
Ω0
. (2.22)

We end this section with two norms useful in the following numerical analysis. The first
is a norm that we will callweak, and given by

|||V |||2w =
1
T

sup
n∈[0,N ]

‖vn‖2L2(Ωtn ) +
N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+
N−1∑
n=0

δtτn+1
∥∥Π⊥h ((a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )
.
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Observe that only the orthogonal projection of the convective term appears. The full convec-
tive term appears in the norm that we will callstrong, given by

|||V |||2s =
1
T

sup
n∈[0,N ]

‖vn‖2L2(Ωtn ) +
N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+
N−1∑
n=0

δtτn+1
∥∥(a−wn+1) · ∇vn+1

∥∥2

L2(Ωtn+1 )

= |||V |||2w +
N−1∑
n=0

δtτn+1
∥∥Πh

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )
.

3. Analysis of the semi-discrete problem.In this section we analyze problems BDF1-
BDF1δt and BDF2-BDF2δt. In both cases, stability and error estimates will be given. We
denote byC a positive constant, possibly with different values at different appearances.

3.1. Analysis of BDF1-BDF1δt. Let us define byUex = {u0, u(t1), u(t2), ..., u(tN )}
the sequence of solutions of the contiunous problem (2.4) andU = {u0, u1, u2, ..., uN} the
sequence of solutions of the semi-discrete problem (in time) (2.9)-(2.11). We start obtaining
a stability result for this method. With this aim, first we prove that the bilinear form (2.10)
that governs the semi-discrete problem is coercive.

THEOREM 3.1 (Coercivity).There existsδt1cr such that for0 < δt < δt1cr the bilinear
form B(·, ·) defined in (2.10) is coercive, that is, for every sequenceV = {vn}Nn=0, with
vn ∈ V(Ωtn),

B(V, V ) ≥ β1|||V |||2

for a certain constantβ1 ≥ 0 independent ofh.
Proof. We know, from the definition of the bilinear form, that

B(V, V ) =
N−1∑
n=0

[
1
T

(
vn+1 − vn, vn+1

)
Ωtn+1

+ δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+δt
(
(a−wn+1) · ∇vn+1, vn+1

)
Ωtn+1

]
+

1
2T

∥∥v0
∥∥2

L2(Ω0)
.

We can rewrite the term coming from the time derivative as follows:

1
T

(
vn+1 − vn, vn+1

)
Ωtn+1

=
1

2T

[∥∥vn+1
∥∥2

L2(Ωtn+1 )
− ‖vn‖2L2(Ωtn+1 ) +

∥∥vn+1 − vn
∥∥2

L2(Ωtn+1 )

]
.

Integrating equation (2.7) fromtn to tn+1 for the functionvn we get

1
T
‖vn‖2L2(Ωtn+1 ) =

1
T
‖vn‖2L2(Ωtn ) +

∫ tn+1

tn

∫
Ωs

(∇ ·wn+1)(vn)2 dΩds,

where we have profited from the fact that the discrete mesh velocity is constant at every time
step. On the other hand, due to the fact that the convective velocitya is divergence-free, we
get (

(a−wn+1) · ∇vn+1, vn+1
)
Ωtn+1

=− 1
2

∫
Ωtn+1

wn+1 · ∇(vn+1)2 dΩ

=
1
2

∫
Ωtn+1

(∇ ·wn+1)(vn+1)2 dΩ.
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We bound the terms associated to the mesh velocity as follows:∫ tn+1

tn

∫
Ωs

(∇ ·wn+1)(vn)2 dΩds

≤ δt sup
s∈(tn,tn+1)

∥∥∥JAtn+1,s
∇ ·wn+1

∥∥∥
L∞(Ωs)

‖vn‖2L2(Ωtn+1 ) ,

−δt
∫

Ωtn+1

wn+1 · ∇(vn+1)2 dΩ = δt

∫
Ωtn+1

(∇ ·wn+1)(vn+1)2 dΩ

≤ δt
∥∥∇ ·wn+1

∥∥
L∞(Ωtn+1 )

∥∥vn+1
∥∥2

L2(Ωtn+1 )
.

Let us define the parameters

γn+1
1 = T sup

s∈(tn,tn+1)

∥∥∥JAtn+1,s
∇ ·wn+1

∥∥∥
L∞(Ωs)

, (3.1)

for n = −1, ..., N − 2 andγN
1 = 0, together with

γn+1
2 = T ‖∇ ·wn‖L∞(Ωtn+1 ) (3.2)

for n = 0, ..., N − 1 andγ0
2 = 0.

With the inequalities just proved we can easily obtain that

B(V, V )+
1

2T

N−1∑
n=−1

δt(γn+1
1 + γn+1

2 )
∥∥vn+1

∥∥2

L2(Ωtn+1 )

≥ sup
n∈[−1,N−1]

1
2T

∥∥vn+1
∥∥2

L2(Ωtn+1 )
+

N−1∑
n=0

2δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )
.

If the maximum of‖vn‖L2(Ωtn ) is achieved atn = Nm, the sequence

{v0, v1, ..., vNm , 0, ..., 0}

has to be added to the test sequence. Sometimes along the paper we obtain the maximum
using this technique. Invoking the Gronwall lemma (see [19]), we can absorb the second
term of the left hand side with the first one of the right hand side for aδt small enough. More
precisely, the time step must be such that

δt <
1

supn∈[0,N ] (γn
1 + γn

2 )
=: δt1cr.

We note that this is the time step size of thenormalizedproblem in time. The originalδt1cr
does not depend onT anymore.

This result, together with the continuity ofL(·) proved in next lemma, will lead us to a
classical stability bound.

LEMMA 3.2 (Continuity).The following inequality holds:

L(V ) ≤
N−1∑
n=0

δt

2βν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )
+

N−1∑
n=0

δtβν

2

∥∥∇vn+1
∥∥2

L2(Ωtn+1 )
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for all β > 0.
Proof. The right hand side has the following expression:

L(V ) =
N−1∑
n=0

δt〈fn+1, vn+1〉Ωtn+1 .

The Cauchy-Schwarz inequality leads to

L(V ) ≤

(
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )

) 1
2
(

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

) 1
2

.

The proof is finished invoking Young’s inequality.
From Theorem 3.1 and Lemma 3.2 the following stability result is straightforward.
COROLLARY 3.3 (Stability).There existsδt1cr such that, for0 < δt < δt1cr, the sequence

U , solution of problem (2.9)-(2.11), is bounded as follows:

|||U |||2 ≤ C
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )
.

REMARK 3.1. The BDF1 method is unconditionally stable for fixed domains. However,
for moving domains this property is not maintained anymore. In this case only conditional
stability can be proved, with the critical time step value obtained above.

The next task is to obtain an optimal convergence result. In the following theorem, rely-
ing on the stability properties proved in Corollary 3.3,optimalerror estimates are obtained.
We denote byen+1 := u(tn+1) − un+1 the error introduced by the time integration at time
tn+1, and byE := Uex − U the sequence of these errors.

THEOREM 3.4 (Convergence).There existsδt1cr such that, for0 < δt < δt1cr, the
sequence of errorsE = Uex − U satisfies the following error estimate:

|||E|||2 ≤ C δt
2

T

N−1∑
n=0

δt

∥∥∥∥∥ ∂2u

∂t2

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

+ sup
s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂2As

∂t2

∣∣∣∣2
∥∥∥∥∥

L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )

 . (3.3)

Proof. We start taking the exact solution sequenceUex in the bilinear form. We get:

B(Uex, V ) =L(V ) +
N−1∑
n=0

1
T

(
u(tn+1)− u(tn)− δt ∂u

∂t

∣∣∣∣
tn+1

, vn+1

)
Ωtn+1

−
N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), vn+1

)
Ωtn+1

.

We subtract the equation for the semi-discrete sequence of solutions to the previous equations
and arrive to

B(U − Uex, V ) =−
N−1∑
n=0

1
T

(
u(tn+1)− u(tn)− δt ∂u

∂t

∣∣∣∣
tn+1

, vn+1

)
Ωtn+1

+
N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), vn+1

)
Ωtn+1

.
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We test the previous equation withV = U − Uex = E, obtaining

B(E,E) =−
N−1∑
n=0

1
T

(
u(tn+1)− u(tn)− δt ∂u

∂t

∣∣∣∣
tn+1

, en+1

)
Ωtn+1

+
N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), en+1

)
Ωtn+1

.

Exploiting the fact that the bilinear form is coercive the remaining ingredient is an appropriate
bound for the error terms associated to the time discretization. Let us start with the terms
related to the time derivative. We use the following Taylor formula foru:

u(x0, t
n+1)− u(x0, t

n)
Tδt

− 1
T

∂u

∂t

∣∣∣∣
x0

(tn+1) = − 1
Tδt

∫ tn+1

tn

(s− tn)
∂2u

∂t2

∣∣∣∣
x0

(s) ds,

(3.4)

and for the mesh velocity

wn+1 −w(tn+1) = − 1
Tδt

(∫ tn+1

tn

(s− tn)
∂2As

∂t2
ds

)
◦ A−1

tn+1 . (3.5)

As explained in§ 2, it is understood with this notation that this equality holds for arbitrary
x ∈ Ωt.

With (3.4) we get a bound for the term associated to the time derivative ofu as follows:

∫
Ωtn+1

en+1 ·

(∫ tn+1

tn

(s− tn)
∂2u

∂t2

∣∣∣∣
x0

(x0, s) ds

)
◦ A−1

tn+1 dΩ

≤
∫ tn+1

tn

∫
Ω0

JAtn+1 (s− tn)ên+1
∂̂2u

∂t2
dΩds

≤

(∫ tn+1

tn

(s− tn)2
∥∥en+1

∥∥2

L2(Ωtn+1 )

) 1
2

×

∫ tn+1

tn

∫
Ω0

JAtn+1

(
∂̂2u

∂t2

)2

dΩds

 1
2

≤ β1δt

2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ Cδt3

∥∥∥∥∥ ∂2u

∂t2

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

,

whereβ1 is the coercivity constant introduced in Theorem 3.1. Similarly, using (3.5) for the
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term related to the time derivative of the mapping, we get

−
∫

Ωtn+1

en+1

(∫ tn+1

tn

(s− tn)
∂2As

∂t2
ds

)
◦ A−1

tn+1 · ∇un+1 dΩ

≤
∫ tn+1

tn

∫
Ω0

JAtn+1 (s− tn)ên+1
∂2As

∂t2
· ̂∇un+1 dΩds

≤

(∫ tn+1

tn

(s− tn)2
∥∥en+1

∥∥2

L2(Ωtn+1 )
ds

) 1
2

×

∫ tn+1

tn

∥∥∥∥∥
∣∣∣∣∂2As

∂t2

∣∣∣∣2
∥∥∥∥∥

L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )
ds

 1
2

≤ β1δt

2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ Cδt3 sup

s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂2As

∂t2

∣∣∣∣2
∥∥∥∥∥

L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )
.

With these results we can write

B(E,E) ≤ 1
T

N−1∑
n=0

δtβ1

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ Cδt3

∥∥∥∥∥ ∂2u

∂t2

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

+ Cδt3 sup
s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂2As

∂t2

∣∣∣∣2
∥∥∥∥∥

L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )

 . (3.6)

At this point we invoke the coercivity property of the bilinear form proved in Theorem 3.1.
Thus, the first term of the right hand side in (3.6) can be absorbed using the Gronwall lemma
. We note that in this case we can apply the Gronwall lemma without any extra condition over
the time step size (see [19]).

Clearly, the second term in the right-hand-side of (3.3) is bounded if the second time
derivatives of the ALE mapping are uniformly bounded in[0, T ]. In this case, its norm in the
spaceL∞(0, T ;L∞(Ω0)) can be taken out of the sum and the stability estimate of Corollary
3.3 allows us to bound the remaining term. However, we have kept expression (3.3) to display
the structure of the error bound.

We conclude this subsection with an improved stability estimate:
COROLLARY 3.5 (Stability in`∞(H2(Ωt))). Under the conditions of Theorem 3.4, sup-

pose additionally that the right-hand-side of (3.3) is bounded, thatu ∈ L∞(0, T ;H2(Ωt))
and that the domainΩt is such that∆u ∈ L2(Ωt) implies u ∈ H2(Ωt). Then,U ∈
`∞(H2(Ωt)).

Proof. At each time step we can write the error equation

ν∆(un+1 − u(tn+1)) = (a−wn+1) · ∇(un+1 − u(tn+1))

+ (w(tn+1)−wn+1) · ∇u(tn+1) +
1
δt

(un+1 − un)− ∂u

∂t

∣∣∣∣
tn+1

.

By virtue of Theorem 3.4, all the terms in the right-hand-side are bounded inL2(Ωtn+1) for
n = 0, ..., N − 1. Since

‖∆un+1‖L2(Ωtn+1 ) ≤ ‖∆un+1 −∆u(tn+1)‖L2(Ωtn+1 ) + ‖∆u(tn+1)‖L2(Ωtn+1 ),
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it follows that{∆un+1}N−1
n=0 ∈ `∞(L2(Ωt)). The assumption on the domainΩt implies that

{un+1}N−1
n=0 ∈ `∞(H2(Ωt)).

This justifies our strategy of first analyzing the problem semi-discretized in time and then
the fully discrete problem. When we will requireU ∈ `2(Hp+1(Ωt)) to obtain optimal order
of convergence in space, we know that at least forp = 1 this holds under the same condition
on the domainΩt as for the sequence of solutions of the continuous problem,Uex. It is well
known that this condition onΩt holds for example if it is convex and polyhedral (see, for
example, [17]).

3.2. Analysis of BDF2-BDF2δt. For the second order method we follow the same pro-
cedure used above. In this case the problem that we analyze can be written using equation
(2.9) together with the bilinear form (2.13) and the right hand side linear form (2.14), and we
denote byU = {u0, u1, u2, ..., uN} the sequence of solutions of this problem.

We start again proving that the corresponding bilinear form is coercive.

THEOREM 3.6 (Coercivity).There existsδt2cr such that for0 < δt < δt2cr the bilinear
form B(·, ·) defined in (2.12) is coercive, that is, for every sequenceV = {vn}Nn=0, with
vn ∈ V(Ωtn),

B(V, V ) ≥ β2|||V |||2

for a certain constantβ2 ≥ 0 independent ofh.

Proof. We know, from the definition of the bilinear form, that,

B(V, V ) =
N−1∑
n=0

[
δt
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )
+ δt

(
(a−wn+1) · ∇vn+1, vn+1

)
Ωtn+1

]
+

N−1∑
n=1

1
2T
(
3vn+1 − 4vn + vn−1, vn+1

)
Ωtn+1

+
1
T

(
v1 − v0, v1

)
Ωt1

+
1

2T

∥∥v0
∥∥2

L2(Ω0)
. (3.7)

Integrating equation (2.7) fromtn to tn+1 for the functionsvn and 2vn − vn−1, we can
express the term corresponding to discrete time derivative as follows:

1
2T

(3vn+1 − 4vn + vn−1, 4vn+1)Ωtn+1

=
1
T

(∥∥vn+1
∥∥2

L2(Ωtn+1 )
− ‖vn‖2L2(Ωtn ) +

∥∥2vn+1 − vn
∥∥2

L2(Ωtn+1 )

−
∥∥2vn − vn−1

∥∥2

L2(Ωtn )
+
∥∥δ2vn+1

∥∥2

L2(Ωtn+1 )

)
+
∫ tn+1

tn

∫
Ωs

(∇ ·wn+1(s))(vn)2 dΩds

+
∫ tn+1

tn

∫
Ωs

(∇ ·wn+1(s))(2vn − vn−1)2 dΩds. (3.8)
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The mesh velocity terms are bounded as follows:∫ tn+1

tn

∫
Ωs

(∇ ·wn+1(s))(vn)2 dΩds+
∫ tn+1

tn

∫
Ωs

(∇ ·wn+1(s))(2vn − vn−1)2 dΩds

≤ δt sup
s∈(tn,tn+1)

∥∥∥JAtn+1,s
∇ ·wn+1(s)

∥∥∥
L∞(Ωs)

×
(
‖vn‖2L2(Ωtn+1 ) +

∥∥2vn − vn−1
∥∥2

L2(Ωtn+1 )

)
. (3.9)

On the other hand, we can exploit the fact that the convective velocitya is divergence-free,
obtaining for the convective term that

(
(a−wn+1) · ∇vn+1, 4vn+1

)
Ωtn+1

=− 2δt
∫

Ωtn+1

wn+1 · ∇(vn+1)2 dΩ

=2δt
∫

Ωtn+1

(∇ ·wn+1)(vn+1)2 dΩ

≤ 2
∥∥∇ ·wn+1

∥∥
L∞(Ωtn+1 )

∥∥un+1
h

∥∥2

L2(Ωtn+1 )
.

(3.10)

We use inequalities (3.8) and (3.9) in (3.7) and invoke again the Gronwall lemma. This leads
to the desired bound for a time step size:

δt <
1

supn∈[0,N ] (γn
1 + 2γn

2 )
=: δt2cr,

slightly different from the one obtained for the first order method.
The previous theorem and Lemma 3.2 allow us to obtain the same stability result as for

the previous case, stated in the next corollary.
COROLLARY 3.7 (Stability).There existsδt2cr such that for0 < δt < δt2cr the sequence

U solution of problem (2.9)-(2.13)-(2.14) is bounded as follows:

|||U |||2 ≤ C
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )
.

Furthermore, we can obtain optimal error estimates under some regularity assumptions.
For the sake of clearness we assume that the initialization is calculated exactly. It can be
easily checked from Theorem 3.4 that the error introduced by the initialization is optimal.

THEOREM 3.8 (Convergence).There existδt2cr such that for0 < δt < δt2cr the sequence
of errorsE = Uex − U satisfies the following error estimate:

|||E|||2 ≤ C δt
4

T

N−1∑
n=0

δt

∥∥∥∥∥ ∂3u

∂t3

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

+ sup
s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂3As

∂t3

∣∣∣∣2
∥∥∥∥∥

L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )

 .
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Proof. We start taking the exact solution sequenceUex in the bilinear form. We get:

B(Uex, V ) =L(V ) +
N−1∑
n=0

1
2T

(
3u(tn+1)− 4u(tn) + u(tn−1)− δt ∂u

∂t

∣∣∣∣
tn+1

, vn+1

)
Ωtn+1

−
N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), vn+1

)
Ωtn+1

.

Now we subtract the equation for the semi-discrete sequence of solutions to the previous
equations and arrive to

B(U − Uex, V ) =−
N−1∑
n=0

1
T

(
3u(tn+1)− 4u(tn) + u(tn−1)− δt ∂u

∂t

∣∣∣∣
tn+1

, vn+1

)
Ωtn+1

+
N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), vn+1

)
Ωtn+1

.

We test the previous equation withV = U − Uex = E, obtaining

B(E,E) =−
N−1∑
n=0

1
T

(
3u(tn+1)− 4u(tn) + u(tn−1)− δt ∂u

∂t

∣∣∣∣
tn+1

, en+1

)
Ωtn+1

+
N−1∑
n=0

δt
(
(wn+1 −w(tn+1)) · ∇u(tn+1), en+1

)
Ωtn+1

.

The truncation error introduced by the time integration scheme BDF2 is evaluated using the
following Taylor formula:

3u(x0, t
n+1)− 4u(x0, t

n) + u(x0, t
n−1)

Tδt
− 1
T

∂u

∂t

∣∣∣∣
x0

(tn+1)

= − 1
Tδt

∫ tn+1

tn−1
(s− tn)2

∂3u

∂t3

∣∣∣∣
x0

(s) ds− 1
Tδt

∫ tn+1

tn

(s− tn)2
∂3u

∂t3

∣∣∣∣
x0

(s) ds.

(3.11)

The evaluation of the mesh velocity (2.6) requires a time derivative. Its numerical approxi-
mation using the second order BDF2 scheme can be written again as a truncation error:

wn+1 −w(tn+1)

= − 1
Tδt

(∫ tn+1

tn−1

(s− tn)2
∂3As

∂t3
ds+

∫ tn+1

tn

(s− tn)2
∂3As

∂t3
ds

)
◦ A−1

tn+1 , (3.12)

which holds for allx ∈ Ωt. Recall thatwn+1 stands for the mesh velocity evalutated attn+1.

The error related to the time derivative ofu can be bounded using the following inequal-



18 S. BADIA AND R. CODINA

ity: ∫
Ωtn+1

en+1 ·

(∫ tn+1

tn−1
(s− tn)2

∂3u

∂t3

∣∣∣∣
x0

(s) ds

− 1
Tδt

∫ tn+1

tn

(s− tn)2
∂3u

∂t3

∣∣∣∣
x0

(s) ds

)
◦ A−1

tn+1 dΩ

≤ β2δt

2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ Cδt5

∥∥∥∥∥ ∂2u

∂t2

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

, (3.13)

whereβ2 is the coercivity constant introduced in Theorem 3.6.
We obtain the following inequality in order to bound the error introduced by the evalua-

tion of the mesh velocity,

−
∫

Ωtn+1

en+1

(∫ tn+1

tn−1

(s− tn)2
∂3As

∂t3
ds

+
∫ tn+1

tn

(s− tn)2
∂3As

∂t3
ds

)
◦ A−1

tn+1 · ∇un+1 dΩ

≤ β2δt

2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ δt5 sup

s∈(tn−1,tn+1)

∥∥∥∥∥
∣∣∣∣∂3As

∂t3

∣∣∣∣2
∥∥∥∥∥

L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )
.

(3.14)

Using the error expressions (3.11) and (3.12) and bounds (3.13) and (3.14) we get

B(E,E) ≤ 1
T

N−1∑
n=0

δtβ2

∥∥en+1
∥∥2

L2(Ωtn+1 )
+ C

δt4

T

N−1∑
n=0

δt

∥∥∥∥∥ ∂3u

∂t3

∣∣∣∣
x0

∥∥∥∥∥
2

L2(Ωtn+1 )

+ C
δt4

T

N−1∑
n=0

δt sup
s∈(tn,tn+1)

∥∥∥∥∥
∣∣∣∣∂3As

∂t3

∣∣∣∣2
∥∥∥∥∥

L∞(Ω0)

∥∥un+1
∥∥2

H1(Ωtn+1 )
.

Again, we can apply the Gronwall lemma without any extra condition over the time step size.

4. The fully discrete problem. In this section we analyze the fully discrete problems
BDF1-BDF1-OSSδt,h and BDF2-BDF2-OSSδt,h. In both cases, stability and error estimates
are obtained.

Observe from (2.20) thatτn has been taken constant in space. Further, we assumeΘt
h

quasi-uniform. In this case, the following inverse estimate holds (see [4]):

‖∇vh‖L2(Ωt)
≤ Cinv

h
‖vh‖L2(Ωt)

. (4.1)

In order to obtain optimal convergence results, we assume thatun+1 ∈ Hp+1(Ωt) for
n = 0, ..., N−1, wherep is the degree of the polynomial defining the finite element spaceVh.
We also assume that for any functionv ∈ Hp+1(Ωt) there exists a finite element interpolation
πh(v) such that,

‖v − πh(v)‖Hm(Ωt) ≤ Chh
p+1−m‖v‖Hp+1(Ωt).
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We need to prove that theL2-projection onto the finite element space is an optimal inter-
polation in theL2(Ωt) norm and the seminorm‖∇(·)‖L2(Ωt)

. We show this in the following
lemma.

LEMMA 4.1. Given a functionv ∈ Hp+1(Ωt) with p ≥ 1, its L2-projection onto the
finite element spaceΠh (v) satisfies

‖v −Πh (v)‖L2(Ωt)
≤Chh

p+1‖v‖Hp+1(Ωt), (4.2)

and also

h2 ‖∆v −Πh (∆v)‖L2(Ωt)
≤Chp+1‖v‖Hp+1(Ωt). (4.3)

If the inverse estimate (4.1) hold true

‖∇ (v −Πh (v))‖L2(Ωt)
≤Chp‖v‖Hp+1(Ωt), (4.4)

are satisfied.
Proof. The first inequality is obvious:

‖v −Πh (v)‖L2(Ωt)
≤ ‖v − πh(v)‖L2(Ωt)

≤ Chh
p+1‖v‖Hp+1(Ωt).

Using the previous inequality for∆v we obtain the second result.
Making use of the inverse estimate (4.1) we prove the last inequality:

‖∇ (v −Πh (v))‖L2(Ωt)
≤ ‖∇ (v − πh(v))‖L2(Ωt)

+ ‖∇ (πh(v)−Πh (v))‖L2(Ωt)

= ‖∇ (v − πh(v))‖L2(Ωt)
+ ‖∇ (Πh (v − πh(v)))‖L2(Ωt)

≤ ‖∇ (v − πh(v))‖L2(Ωt)
+
Cinv

h
‖Πh (v − πh(v))‖L2(Ωt)

≤ (1 + Cinv)Chh
p‖v‖Hp+1(Ωt).

As in the previous section,C is a positive constant, possibly with different values at
different appearances.

4.1. Analysis of BDF1-BDF1-OSSδt,h. In this subsection we analyze the fully discrete
problem (2.17) with the bilinear formBh(·, ·) defined in (2.18) and right-hand side (2.14). We
denote byU = {u0, u1, u2, ..., uN} the sequence of solutions of the semi-discrete problem
(in time) (2.9)-(2.11) andUh = {u0

h, u
1
h, u

2
h, ..., u

N
h } its fully discrete counterpart, solution

of (2.17)-(2.18)-(2.14).
We start proving the coercivity of the bilinear form for theweaknorm|||· |||w. This result

will be used in the convergence analysis.
THEOREM 4.2 (Coercivity).There existsδt1cr such that for0 < δt < δt1cr the bilinear

formBh(·, ·) defined in (2.18) is coercive. That is, for every sequenceV = {vn}Nn=0, with
vn ∈ V(Ωtn),

Bh (V, V ) ≥ β1|||V |||2w

for a certain constantβ1 > 0.
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Proof. The bilinear form analyzed in this theorem is equal to the one for which coercivity
is proved in Theorem 3.1 plus the stabilization term. We can easily get

Bh(V, V ) =
1

2T

∥∥vN
∥∥2

L2(ΩN )
+

1
2T

N−1∑
n=0

∥∥δvn+1
∥∥2

L2(Ωtn+1 )

+
N−1∑
n=0

[
δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )
+ δtτn+1

∥∥Π⊥h ((a−wn+1) · ∇vn+1
)∥∥2

L2(Ωtn+1 )

]
+

1
2

N−1∑
n=0

δt
(
∇ ·wn+1, (vn+1)2

)
Ωtn+1

+
1
2

N−1∑
n=0

∫ tn+1

tn

∫
Ωt

(∇ ·wn+1)(vn+1)2 dΩ.

(4.5)

Due to the fact that the stabilization term does not affect the treatment of the mesh ve-
locity terms in Theorem 3.1, we refer to this one for the remaining of the proof.

Let us define theΛ-coercivity property associated to a bilinear form that will be used in
the following analysis.

DEFINITION 4.3 (Λ-coercivity). Let V be a functional space andζ : V × V −→ R
a bilinear form. We say thatζ is Λ-coercive with respect to the norm||| · ||| and the linear
operatorΛ : V −→ V if there exists and a constantβ > 0 such that,

ζ(v,Λ(v)) ≥ β|||v|||2, ∀v ∈ V. (4.6)

The bilinear formζ(·, ·) also satisfies aninf-supcondition under the conditions of the
following lemma.

LEMMA 4.4. If Λ is continuous with respect to the norm||| · ||| andζ(·, ·) is Λ-coercive,
then there existsγ > 0 such that

inf
u∈V

sup
v∈V

ζ(u, v)
|||u||| |||v|||

≥ γ.

The proof of the previous lemma is straightforward from Definition 4.3 and the continuity
of the operatorΛ(·).

We now show that the bilinear formBh(·, ·) of our problem isΛ-coercive for thestrong
norm||| · |||s.

THEOREM 4.5 (Λ-coercivity). Let V = {vn}Nn=0 be a sequence of functions such that
vn ∈ V(Ωtn) and consider the operator

Λ(V ) = V + {0, 1
2
{τn+1Πh

(
(a−wn+1) · ∇vn+1

)
}N−1
0 }.

Then, there existsδt1cr such that, for0 < δt < δt1cr, the bilinear formBh(·, ·) is Λ-coercive:

Bh (V,Λ(V )) ≥ β1|||V |||2s

for a certain constantβ1 > 0.
Proof. Testing (2.18) with the sequence of functions that belong to the finite element

space

Π0(τ, V ) := {0, {τn+1Π0(vn+1)}}N−1
n=0 := {0, {τn+1Πh

(
(a−wn+1) · ∇vn+1

)
}N−1

n=0 }
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we have

Bh(V,Π0(τ, V )) ≥
N−1∑
n=0

φn+1δtτn+1
∥∥Πh

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )

−
N−1∑
n=0

[
1
T

∥∥δvn+1
∥∥2

L2(Ωtn+1 )
+ δtν

∥∥∇vn+1
∥∥2

L2(Ωtn+1 )

+δtτn+1
∥∥Π⊥h ((a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )

]
, (4.7)

where

φn+1 := 1− 1
4
τn+1

Tδt
− 1

4
τn+1 νC

2
inv

h2
− 1

4
(τn+1)2

∥∥a−wn+1
∥∥2

L∞(Ωtn+1 )
C2

inv

h2
. (4.8)

To obtain (4.7) we have made use of Young’s inequality and the inverse estimate (4.1). As-
suming now that the constantsc1 andc2 in (2.20) are such thatc1 ≤ C2

inv, c2 ≤ Cinv and the
constantC in (2.21) isC ≤ 1 it follows thatφn+1 ≥ 1/4.

The combination of (4.7) and (4.5) leads to

Bh(V,2V + Π0(τ, V )) ≥ 1
T

∥∥vN
∥∥2

L2(ΩN )
+

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+ C

N−1∑
n=0

δtτn+1
∥∥(a−wn+1) · ∇vn+1

∥∥2

L2(Ωtn+1 )

+
N−1∑
n=0

δt
(
∇ ·wn+1, (vn+1)2

)
Ωtn+1

+
N−1∑
n=0

∫ tn+1

tn

∫
Ωs

(∇ ·wn+1)(vn+1)2 dΩds

≥ 1
T

∥∥vN
∥∥2

L2(ΩN )
+

N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )

+ C
N−1∑
n=0

δtτn+1
∥∥Πh

(
(a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )

−
N−1∑
n=0

δtγn+1

∥∥vn+1
∥∥2

L2(Ωtn+1 )
,

with γn+1 := γn+1
1 + γn+1

2 , andγn+1
1 , γn+1

2 defined in (3.1) and (3.2). Using the Gronwall
lemma, we finally get the coercivity stated in the theorem. We point out that the critical time
stepδt1crin this case is identical to the one obtained for the semi-discrete problem.

In order to satisfy the continuity ofΛ(·) needed for to obtain theinf-supcondition in
Lemma 4.4 we have to restrict the situation to the discrete finite element spaceVh.

LEMMA 4.6 (Continuity). Let Vh = {vn
h}Nn=0 be a finite element sequence such that

vn
h ∈ Vh(Ωtn) and consider the operatorΛ introduced in Theorem 4.5. Then,Λ(·) is contin-

uous with respect to the norm||| · |||s for every finite element sequenceVh:

|||Λ(Vh)|||s ≤ ρ|||Vh|||s (4.9)

for a certain constantρ > 0.
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Proof. DefiningΠ0(τ, Vh) as in the proof of the previous theorem, we have from the
definition of the norm that

|||Π0(τ, Vh)|||2s =
1
T

sup
n∈[0,N−1]

∥∥τn+1Π0(vn+1
h )

∥∥2

L2(Ωtn+1 )

+
N−1∑
n=0

δtν
∥∥τn+1∇Π0(vn+1

h )
∥∥2

L2(Ωtn+1 )

+
N−1∑
n=0

δtτn+1
∥∥τn+1(a−wn+1) · ∇Π0(vn+1

h )
∥∥2

L2(Ωtn+1 )
. (4.10)

Invoking the expression forτn+1 and the inverse estimate (4.1) we can easily bound every
term by|||V |||2s.

REMARK 4.1. The fact that we need to use the inverse estimate (4.1) in order to bound
the first term in(4.10) restricts the continuity ofΛ(·) to finite element sequences (for the rest of
the terms the inverse estimate is applied to derivatives ofΠh

(
(a−wn+1) · ∇vn+1

)
, a finite

element function even ifvn+1 is not in the finite element space). However, this restriction
does not complicate the convergence analysis, where only theΛ-coercivity is invoked.

From Lemmas 4.4 and 4.6 we obtain thediscrete inf-supcondition.
COROLLARY 4.7 (Discrete inf-sup condition).LetUh = {un

h}Nn=0 andVh = {vn
h}Nn=0

be sequences of finite element functions such thatun, vn ∈ V(Ωtn). There existsδt1cr such
that, for0 < δt < δt1cr, the bilinear formBh(·, ·) satisfies the following condition:

inf
Uh∈Vh

sup
Vh∈Vh

Bh (Uh, Vh)
|||Uh|||s |||Vh|||s

≥ β̃1

for a certain constant̃β1 > 0.
At this point, the only ingredient that remains in order to have a stability result is the

continuity of theforce term, provided by Lemma 3.2. The stability result is stated in the next
corollary.

COROLLARY 4.8 (Stability).There existsδt1cr such that, for0 < δt < δt1cr, the sequence
Uh, solution of problem (2.17)-(2.18)-(2.11), is bounded as follows:

|||Uh|||2s ≤ C
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )
.

For the convergence analysis, let us define the difference between the solution of (2.8)
and (2.16) asen+1

d := un+1
h − un+1, and the sequence of these errors byEd. From Theorem

4.5, that proves theΛ-coercivity of the bilinear formBh for Λ defined in this theorem, we
know that

Bh (Ed,Λ(Ed)) ≥ β1|||Ed|||2s. (4.11)

We subtract the discrete bilinear form (2.18) from its semi-discrete counterpart (2.10)
tested with finite element sequences in order to get

Bh (Ed, Vh) = εc(Vh)

:= −
N−1∑
n=0

δtτn+1
(
Π⊥h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇vn+1

h

)
Ωtn+1

,



ANALYSIS OF A STABILIZED ALE-FEM 23

whereεc(Vh) accounts for the consistency error. After some manipulations, we can write

Bh (Ed,Λ(Ed)) = Bh (Ed, Ed) +
1
2
Bh (Ed,Π0(τ, Ed))

= Bh (Ed,Πh(U)− U) + εc(Uh −Πh(U)) +
1
2
εc(Π0(τ, Ed)),

whereΠh(U) := {Πh(un)}Nn=0.
We distinguish betweeninterpolationerror, the first term of the right hand side, and the

consistencyerror associated to the second and third terms. In the following two lemmas we
bound these error terms. We start with the interpolation error, obtaining the result stated in
the following lemma:

LEMMA 4.9 (Interpolation error).The error sequenceEd = Uh − U satisfies the fol-
lowing inequality:

Bh (Ed,Πh(U)− U) ≤ C|||Ed|||w

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

(4.12)

Proof. Let us expand the expression of the interpolation error making use of the definition
of the bilinear form associated to the problem we are analyzing:

Bh (Ed,Πh(U)− U)

=
N−1∑
n=0

[
1
T

(
en+1
d − en

d ,Πh

(
un+1

)
− un+1

)
Ωtn+1

+ δtν
(
∇en+1

d ,∇(Πh

(
un+1

)
− un+1)

)
Ωtn+1

+ δt
(
(a−wn+1) · ∇en+1

d ,Πh

(
un+1

)
− un+1

)
Ωtn+1

+ δtτn+1
(
Π⊥h

(
(a−wn+1) · ∇en+1

d

)
, (a−wn+1) · ∇

(
Πh

(
un+1

)
− un+1

))
Ωtn+1

]
.

We must control each term separately. Let us start with the discrete time derivative term.
Using assumption (2.21) we have that

N−1∑
n=0

1
T

(
en+1
d − en

d ,Πh

(
un+1

)
− un+1

)
Ωtn+1

≤ C

(
N−1∑
n=0

1
T

∥∥en+1
d − en

d

∥∥2

L2(Ωtn+1 )

) 1
2

×

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

For the viscosity term, using the definition ofτn+1 and the inverse estimate (4.5), we have
that
N−1∑
n=0

δtν
(
∇en+1

d ,∇(Πh

(
un+1

)
− un+1)

)
Ωtn+1

≤ C

(
N−1∑
n=0

δtν
∥∥∇en+1

d

∥∥2

L2(Ωtn+1 )

) 1
2

×

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.
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Similar arguments allow us to obtain a bound for the convective term:

N−1∑
n=0

δt
(
(a−wn+1) · ∇en+1

d ,Πh

(
un+1

)
− un+1

)
Ωtn+1

≤ C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥h ((a−wn+1) · ∇en+1

d

)∥∥2

L2(Ωtn+1 )

) 1
2

×

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

, (4.13)

and for the stabilization term we obtain

N−1∑
n=0

δtτn+1
(
Π⊥h

(
(a−wn+1) · ∇en+1

d

)
, (a−wn+1) · ∇

(
Πh

(
un+1

)
− un+1

))
Ωtn+1

≤ C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥h ((a−wn+1) · ∇en+1

d

)∥∥2

L2(Ωtn+1 )

) 1
2

×

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

All the terms have been bounded by the right-hand-side of (4.12), and therefore the proof is
finished.

REMARK 4.2. Invoking the interpolation error (4.2) in (4.13) has allowed us to obtain
an optimal bound for the interpolation error without the control of the full convective term in
the norm||| · |||w. This fact will be used for the analysis of the second order method.

The following lemma is devoted to the control of the consistency error. Since we are
interested in smooth solutions, sayu ∈ L2(0, T ;Hp+1(Ωt)) (with the obvious modifications
for u less regular), we assume thatf is also smooth, in particularf ∈ L2(0, T ;Hp−1(Ωt)).
Thus, forp ≥ 1, 〈f, vh〉Ωt

= (Πh(f), vh)Ωt
. Therefore, the finite element solution is not

altered if we assumeΠ⊥h (f) = 0.

LEMMA 4.10 (Consistency error).The following inequality holds:

εc(Uh −Πh(U) +
1
2
Π0(τ, Ed)) ≤ C

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

×

(
|||Ed|||2s + h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

. (4.14)
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Proof. From the expression of the consistency error we arrive to:

− εc(Uh −Πh(U))

=
N−1∑
n=0

δtτn+1
(
Π⊥h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇(un+1

h −Πh

(
un+1

)
)
)
Ωtn+1

=
N−1∑
n=0

δtτn+1
(
Π⊥h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇en+1

d

)
Ωtn+1

(4.15)

+
N−1∑
n=0

δtτn+1
(
Π⊥h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇(un+1 −Πh

(
un+1

)
)
)
Ωtn+1

.

On the other hand, from the equation for the semi-discrete unknown (2.8), we can easily
check that (

Π⊥h
(
(a−wn+1) · ∇un+1

)
, vn+1

)
Ωtn+1

=
(

Π⊥h

(
ν∆un+1 − 1

Tδt
(un+1 − un)

)
, vn+1

)
Ωtn+1

=:
(
Π⊥h

(
λ(un+1)

)
, vn+1

)
Ωtn+1

. (4.16)

whereλ(·) := ν∆(·)− δ(·)
Tδt . Note that we have not includedΠ⊥h (f) in the previous equation.

Now, using (4.16) in (4.15) we can split the error in two different terms bounded as
follows:

N−1∑
n=0

δtτn+1
(
Π⊥h

(
λ(un+1)

)
, (a−wn+1) · ∇en+1

d

)
Ωtn+1

≤C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥h (λ(un+1)

)∥∥2

L2(Ωtn+1 )

) 1
2

×

(
N−1∑
n=0

δtτn+1
∥∥Π⊥h ((a−wn+1) · ∇en+1

d

)∥∥2

L2(Ωtn+1 )

) 1
2

,

N−1∑
n=0

δtτn+1
(
Π⊥h

(
λ(un+1)

)
, (a−wn+1) · ∇

(
un+1 −Πh

(
un+1

)))
Ωtn+1

≤C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥h (λ(un+1)

)∥∥2

L2(Ωtn+1 )

) 1
2

×

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

On the other hand, the term related to the perturbation of the test functionΠ0(τ, Ed) appear-
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ing in (4.14) can be bounded using similar arguments, leading to

εc(Π0(τ, Ed))

=
N−1∑
n=0

δtτn+1
(
Π⊥h

(
λ(un+1)

)
, (a−wn+1) · ∇

(
τn+1Πh

(
(a−wn+1) · ∇en+1

d

)))
Ωtn+1

≤ C

(
N−1∑
n=0

δtτn+1
∥∥Π⊥h (λ(un+1)

)∥∥2

L2(Ωtn+1 )

) 1
2

×

(
N−1∑
n=0

δtτn+1
∥∥Πh

(
(a−wn+1) · ∇en+1

d

)∥∥2

L2(Ωtn+1 )

) 1
2

.

It only remains to prove that

N−1∑
n=0

δtτn+1
∥∥Π⊥h (λ(un+1)

)∥∥2

L2(Ωtn+1 )
≤ Ch2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )
.

This inequality can be easily obtained from the expression ofτn+1, assumption (2.19) and
the interpolation error estimate (4.3).

We end this section with the main convergence result, which is a direct consequence of
inequality (4.11), Lemma 4.9 and Lemma 4.10:

THEOREM 4.11 (Convergence).There existδt1cr such that, for0 < δt < δt1cr, the
sequence of errorsEd = Uh − U satisfies the following error estimate:

|||Ed|||2s ≤Ch2(p+1)
N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )
.

4.2. Analysis of BDF2-BDF2-OSSδt,h. In this subsection we analyze the fully discrete
problem (2.17) with the bilinear formBh(·, ·) defined in (2.22) and right-hand side (2.14).
We denote byU = {u0, u1, u2, ..., uN} the sequence of solutions of the second order semi-
discrete problem (in time) (2.9)-(2.13)-(2.14) andUh = {u0

h, u
1
h, u

2
h, ..., u

N
h } its fully discrete

counterpart, solution of (2.17)-(2.22)-(2.14).
We have obtained the results of this section using theweaknorm ||| · |||w. Let us start

with a theorem proving coercivity under theweakernorm.
THEOREM 4.12 (Coercivity).There existsδt2cr such that, for0 < δt < δt2cr, the bilinear

formBh(·, ·) defined in (2.22) is coercive. That is, for every sequenceV = {vn}Nn=0 with
vn ∈ V (Ωtn)

Bh (V, V ) ≥ β2|||V |||2w
for a certain constantβ2 > 0.

Proof. It can be easily shown that

Bh (V, 4V ) ≥ 1
T

(∥∥vN
∥∥2

L2(ΩN )
+

N−1∑
n=0

∥∥δ2vn+1
∥∥2

L2(Ωtn+1 )

)

+
N−1∑
n=0

4δtν
∥∥∇vn+1

∥∥2

L2(Ωtn+1 )
+

N−1∑
n=0

4δtτn+1
∥∥Π⊥h ((a−wn+1) · ∇vn+1

)∥∥2

L2(Ωtn+1 )

+
∫ tn+1

tn

∫
Ωs

(∇ ·w(s))(vn)2 dΩds+
∫ tn+1

tn

∫
Ωs

(∇ ·w(s))(2vn − vn−1)2 dΩds.
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Manipulating the mesh velocity as for the BDF2-BDF2δt formulation (see Theorem 3.6) and
applying the Gronwall Lemma we obtain the desired result.

Stability is now straightforward from Theorem 4.12 and Lemma 3.2:
COROLLARY 4.13 (Stability). There existsδt2cr such that, for0 < δt < δt2cr, the

sequenceUh, solution of problem (2.17)-(2.22)-(2.14), is bounded as follows:

|||Uh|||2w ≤ C
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ωtn+1 )
.

This stability result can be consideredweak. However, we will see that this result is
enough in order to obtain error estimates without constants depending on the Péclet num-
ber (except, of course, in the dependence of the continuous solution with this number), the
original motivation of stabilization methods for convection-diffusion problems.

Let us obtain now error estimates for the BDF2-BDF2-OSSδt,h formulation. We start
with an auxiliary lemma that will be useful in the following:

LEMMA 4.14.LetX = {xn}Nn=0 andV = {vn}Nn=0 be two sequences of functions such
thatxn, vn ∈ Hp+1(Ωtn). Then, the bilinear form (2.22) satisfies the following bound:

Bh

(
X,Π⊥h (V )

)
≤C

(
|||X|||2w +

N−1∑
n=−1

δt(τn+1)−1‖Π⊥h (xn+1)‖2L2(Ωtn+1 )

) 1
2

×

(
h2(p+1)

N−1∑
n=−1

δt(τn+1)−1
∥∥vn+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

Proof. From (2.22) we have that

Bh

(
X,Π⊥h (V )

)
=

N−1∑
n=0

bh
(
wn+1;xn+1,Π⊥h

(
vn+1

))
Ωtn+1

+
N−1∑
n=1

1
2T
(
3xn+1 − 4xn + xn−1,Π⊥h

(
vn+1

))
Ωtn+1

+
1
T

(
x1 − x0,Π⊥h

(
v1
))

Ωt1
+

1
T

(
x0,Π⊥h

(
v0
))

Ω0
,

where

N−1∑
n=0

bh
(
wn+1;xn+1,Π⊥h

(
vn+1

))
Ωtn+1

=
N−1∑
n=0

δt
[
ν
(
∇xn+1,∇Π⊥h

(
vn+1

))
Ωtn+1

+
(
(a−wn+1) · ∇xn+1,Π⊥h

(
vn+1

))
Ωtn+1

+ τn+1
(
Π⊥h

(
(a−wn+1) · ∇xn+1

)
, (a−wn+1) · ∇Π⊥h

(
vn+1

))
Ωtn+1

]
.

Now we have to bound every term of the right hand side in order to complete the proof. We
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start with the first term:

N−1∑
n=0

δtν
(
∇xn+1,∇(Π⊥h

(
vn+1

)
)
)
Ωtn+1

≤

(
N−1∑
n=0

δtν
∥∥∇xn+1

∥∥2

L2(Ωtn+1 )

) 1
2
(

N−1∑
n=0

δtν
∥∥∇Π⊥h

(
vn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

.

The second term in the right-hand side can be bounded as

N−1∑
n=0

δt
(
(a−wn+1) · ∇xn+1,Π⊥h

(
vn+1

))
Ωtn+1

≤

(
N−1∑
n=0

δtτn+1
∥∥Π⊥h ((a−wn+1) · ∇xn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

×

(
N−1∑
n=0

δt(τn+1)−1
∥∥Π⊥h (vn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

,

and the third term as

N−1∑
n=0

δtτn+1
(
Π⊥h

(
(a−wn+1) · ∇xn+1

)
, (a−wn+1) · ∇Π⊥h

(
vn+1

))
Ωtn+1

≤

(
N−1∑
n=0

δtτn+1
∥∥Π⊥h ((a−wn+1) · ∇xn+1

)∥∥2

L2(Ωtn+1 )

) 1
2

×

(
N−1∑
n=0

δtτn+1
∥∥Π⊥h ((a−wn+1) · ∇Π⊥h

(
vn+1

))∥∥2

L2(Ωtn+1 )

) 1
2

.

The term related to the time derivative is bounded after recalling assumption (2.21) for the
stabilization parameterτn+1:

N−1∑
n=1

1
T

(
3xn+1 − 4xn + xn−1,Π⊥h

(
vn+1

))
Ωtn+1

+
1
T

(
x1 − x0,Π⊥h

(
v1
))

Ωt1

+
1
T

(
x0,Π⊥h

(
v0
))

Ω0
≤ C

(
N−1∑
n=−1

δt(τn+1)−1
∥∥Π⊥h (xn+1

)∥∥
L2(Ωtn+1 )

) 1
2

×

(
N−1∑
n=−1

δt(τn+1)−1
∥∥Π⊥h (vn+1

)∥∥
L2(Ωtn+1 )

) 1
2

.

We now have to use (4.4) of Lemma 4.1 and the expression (2.20) of the stabilization para-
meterτn+1 to conclude the proof.

To obtain the error estimate, we also need to invoke the coercivity ofBh(·, ·), which
leads to

Bh (Ed, Ed) ≥ β2|||Ed|||2w.
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Subtracting the equation for the semi-discrete velocity and the discrete velocity we get

Bh (Ed, Vh) =: εc(Vh)

= −
N−1∑
n=0

δtτn+1
(
Π⊥h

(
(a−wn+1) · ∇un+1

)
, (a−wn+1) · ∇vn+1

h

)
Ωtn+1

.

Using the previous equation we can obtain

Bh (Ed, Ed) = Bh (Ed,Πh(U)− U) + εc(Uh −Πh(U))

The first term is due to the interpolation error, whereas the second one is the consistency error.
In the following lemma we obtain a bound for the interpolation error:

LEMMA 4.15 (Interpolation error).The following inequality holds:

Bh

(
Ed,Π⊥h (U)

)
≤C

(
|||Ed|||2w + h2(p+1)

N−1∑
n=−1

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

×

(
h2(p+1)

N−1∑
n=−1

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

Proof. Invoking lemma 4.14 and using the fact thatΠh (U) − U = −Π⊥h (U) and
Π⊥h (Ed) = −Π⊥h (U), we immediately get the result.

In order to bound the consistency error we follow again the technique developed in
Lemma 4.10. The only difference between these two cases is the term associated to the
time derivative, which does not affect essentially the proof:

LEMMA 4.16 (Consistency error).The following inequality holds:

εc(Uh −Πh(U)) ≤C

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

×

(
|||Ed|||2w + h2(p+1)

N−1∑
n=0

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )

) 1
2

.

Again, we end with the desired convergence result, which is straight from Lemma 4.16
for the bound of the consistency error, Lemma 4.15 for the bound of the interpolation error
and Theorem 4.12, that gives coercivity of the bilinear form:

THEOREM 4.17 (Convergence).There existδt2cr such that, for0 < δt < δt2cr, the
sequence of errorsEd = Uh − U satisfies the following error estimate

|||Ed|||2w ≤Ch2(p+1)
N−1∑
n=−1

δt(τn+1)−1
∥∥un+1

∥∥2

Hp+1(Ωtn+1 )
.

This error estimate is optimal.
From this analysis, we can easily obtain stability and convergence results when the do-

main is fixed, that is, when the mesh velocity vanishes.
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4.3. Analysis of BDF2-OSSδt,h. The previous results are new even for fixed domains.
The OSS stabilization method was analyzed in [11] using the backward Euler time integra-
tion. It can be easily seen that for fixed domains, i.e. whenwn+1 = 0, there is no critical
time step size, the method becoming unconditionally stable. In this case, the problem to be
solved reads as follows: find a sequence of finite element functionsUh such that

Bh(Uh, Vh) = L(Vh) (4.17)

with the bilinear form

Bh (Uh, Vh) =
N−1∑
n=1

[
1

2T
(
3un+1

h − 4un
h + un−1

h , vn+1
h

)
+ bh

(
un+1

h , vn+1
h

)]
+

1
T

(
u1

h − u0
h, v

1
h

)
+ bh

(
u1

h, v
1
h

)
+

1
T

(
u0

h, v
0
h

)
, (4.18)

where nowbh(un+1
h , vn+1

h ) denotesbh(0;un+1
h , vn+1

h ), with bh(wn+1;un+1
h , vn+1

h ) defined
in (2.19). The right-hand side linear form is given again by (2.14).

In this case two different sets of results are obtained. The first one with theweaknorm
||| · |||w, and the second one with thestrongnorm ||| · |||s. The main difference is that in the
second norm,Bh (·, ·), looses coercivity. This complicates the analysis.

We state the results with the norm||| · |||w in the following corollaries. Their proofs are
straightforward from the previous analysis.

COROLLARY 4.18 (Stability).The sequenceUh solution of problem (4.17) is bounded
as follows:

|||Uh|||2w ≤ C
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)
.

for all δt > 0.
Again, we denote byU = {u0, u1, u2, ..., uN} the sequence of solutions of the second

order semi-discrete problem (in time) (2.9)-(2.13)-(2.14), now withΩt ≡ Ω.
COROLLARY 4.19 (Convergence).The error sequenceEd = Uh − U satisfies the

following error estimate:

|||Ed|||2w ≤Ch2(p+1)
N−1∑
n=−1

δt(τn+1)−1‖un+1‖2Hp+1(Ω),

for all δt > 0.
The remaining of this section is devoted to improve these stability and convergence esti-

mates. The improvement consists in obtaining estimates in thestrongernorm ||| · |||s. This
is possible forfixeddomains, but we have not been able to obtain similar estimates as those
presented next formovingdomains. Nevertheless, some additional assumptions will be re-
quired. We will also remark the aspects that make the analysis of the BDF2-OSSδt,h method
much more involved than that of the BDF1-OSSδt,h formulation.

Let us introduce some new notation. We modify the bilinear form as follows:

B∗h (Uh, Vh) =
N−1∑
n=0

bh
(
un+1

h , vn+1
h

)
+

N−1∑
n=1

1
2T

(3un+1
h − 4un

h + un−1
h , vn+1

h )

+
1
T

(u1
h − u0

h, v
1
h) +

1
T

(u0
h, v

0
h) +

1
Tδt

(u−1
h , v−1

h ), (4.19)
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and the right-hand-side linear form to:

L∗(Vh) =
N−1∑
n=0

δt〈fn+1, vn+1
h 〉+ 1

T
(u0, v

0
h) +

1
Tδt

(u1,h −Πh (u0) , v−1
h ), (4.20)

whereu0 is obviously the initial condition andu1,h is the solution at the first time step ob-
tained with the scheme used to initialize the BDF2 scheme. For example, the BDF1 scheme
can be used, and this is precisely what is assumed in the expression ofB∗h (·, ·). Note that
now the sequences of finite element functions start atn = −1.

It is easily checked that the solution of the equation (2.9) with the bilinear form (2.12) is
equivalent to

B∗h (Uh, Vh) = L∗(Vh).

Observe that this problem yieldsu−1
h = u1,h − Πh (u0), u0

h = Πh (u0) andu1
h = u1,h. The

rest of the terms of the sequence of unknownsU = {u−1
h , u0

h, u
2
h, .., u

N
h } is the same as the

solution of problem (4.17).
Let us introduce some additional ingredients. Given a sequence

V = {v−1, v0, v1, v2, ..., vN}

we define

d1,∗(V ) = {0, 0, 0, δv2, δv3, ..., δvN−1, δvN},
d2,∗(V ) = {0, 0,−δv2,−δ2v2,−δ2v3, ...,−δ2vN , δvN}.

These operators on sequences have the following property: for all sequencesX = {xn}Nn=−1

it holds that

B∗h
(
X, d2,∗(V )

)
=

N−1∑
n=1

bh
(
δxn+1, δvn+1

)
+

N−1∑
n=2

1
2T

(3δxn+1 − 4δxn + δxn−1, δvn+1)

+
3

2T
(δx2 − δx1, δv2)

=B∗h
(
d1,∗(X), d1,∗(V )

)
+

1
2T

(δx1, δv3 − 3δv2). (4.21)

REMARK 4.3. The previous property is not satisfied for moving domains due to the
fact that the convective velocity changes at every time step. It introduces an extra term
bh
(
δwn+1;un, δvn+1

)
Ωtn+1

that can not be bounded as required in the following analysis.

In the next theorem we obtainΛ-coercivity for the norm||| · |||s.
THEOREM 4.20 (Λ-coercivity). Let V = {vn}Nn=−1 be a sequence of functions such

thatvn ∈ V(Ω), n = 0, 1, ..., N , andv−1 = v1 − v0, and consider the operator

Λ(V ) = V + {0, 0, 1
4
{τn+1Πh

(
a · ∇vn+1

)
}N−1
0 }+ δt−1d2,∗(V ).

Then, the bilinear formB∗h (·, ·) is Λ-coercive. In particular, the following inequality holds:

B∗h (V,Λ(V )) ≥ β2

(
|||V |||2s + δt−1|||d1,∗(V )|||2w +

1
Tδt
‖v−1‖2L2(Ω)

)
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for a certain constantβ2 > 0.

Proof. It can be easily shown that

B∗h (V, 4V ) =
N−1∑
n=0

4bh
(
vn+1, vn+1

)
+

N−1∑
n=2

4
2T
(
3vn+1 − 4vn + vn−1, vn+1

)
+

4
T

(
v1 − v0, v1

)
+

4
T

(
v0, v0

)
+

4
Tδt

(
v−1, v−1

)
≥

N−1∑
n=0

4
[
δtν
∥∥∇vn+1

∥∥2

L2(Ω)
+ δtτn+1

∥∥Π⊥h (a · ∇vn+1
)∥∥2

L2(Ω)

]
+

1
T

[∥∥vN+1
∥∥2

L2(Ω)
+

N−1∑
n=1

∥∥δ2vn+1
∥∥2

L2(Ω)
+ 2

∥∥v0
∥∥2

L2(Ω)
+

4
δt
‖v−1‖2L2(Ω)

]
.

In order to obtain stability for the component of the convective term in the finite element
space, we use as test function the sequence{0, 0, {τn+1Πh(a · ∇vn+1)}N−1

0 } =: Π0(τ, V ),
that is starting with 0 in the component−1 and0. Exactly as in the proof of Theorem 4.5, we
now obtain:

B∗h (V,Π0(τ, V )) ≥
N−1∑
n=0

φn+1δtτn+1
∥∥Πh

(
a · ∇vn+1

)∥∥2

L2(Ω)

−
N−1∑
n=0

[
δtν
∥∥∇vn+1

∥∥2

L2(Ω)
+ δtτn+1

∥∥Π⊥h (a · ∇vn+1
)∥∥2

L2(Ω)

]
−

N−1∑
n=1

1
4T

∥∥3vn+1 − 4vn + vn−1
∥∥2

L2(Ω)
− 1
T

∥∥v1 − v0
∥∥2

L2(Ω)
, (4.22)

with the expression ofφn+1 given in (4.8). We do not have control over the term related to
the time derivative, needing a further step. We use now as test functiond2,∗(V ). From the
first step in (4.21) it follows that

δt−1B∗h
(
V, 4d2,∗(V )

)
≥ δt−1|||d1,∗(V )|||2w −

3
Tδt

∥∥δv1
∥∥2

L2(Ω)

= δt−1|||d1,∗(V )|||2w −
3
Tδt

∥∥v−1
∥∥2

L2(Ω)
. (4.23)

Combining the previous inequalities and invoking the Gronwall lemma (without any assump-
tion over the time step size) we can conclude the proof of the theorem.

REMARK 4.4. In equation (4.22) we do not have control over the term associated to the
time derivative. It makes the analysis for the second order method more intricate than for the
first order one, for which the time derivative term is easily controlled (see (4.7)). The control
of this term has motivated the introduction ofd2,∗(V ) in the test sequence used.

In order to obtain stability it remains to prove some kind of continuity with respect to the
operatorΛ. This is what the next theorem states:
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THEOREM 4.21 (Λ-continuity).The following inequality holds:

L∗(Λ(V ))

≤

(
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)
+

N−1∑
n=1

δt2

ν

∥∥D1f
n+1
∥∥2

H−1(Ω)

+
1
T
‖u0‖2L2(Ω) +

δt

T

∥∥∥∥u1,h −Πh (u0)
δt

∥∥∥∥2

L2(Ω)

) 1
2

×
(
|||V |||2s + δt−1|||d1,∗(V )|||2w +

1
T

∥∥v0
∥∥2

L2(Ω)
+

1
Tδt
‖v−1‖2L2(Ω)

) 1
2

.

Proof. The following inequalities can be easily obtained:

L∗(V ) ≤

(
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)
+

1
T
‖u0‖2L2(Ω) +

δt

T

∥∥∥∥u1,h −Πh (u0)
δt

∥∥∥∥2

L2(Ω)

) 1
2

×

(
N−1∑
n=0

δtν
∥∥∇vn+1

∥∥2

L2(Ω)
+

1
T

∥∥v0
∥∥2

L2(Ω)
+

1
Tδt

∥∥v−1
∥∥2

L2(Ω)

) 1
2

,

L∗(δt−1d2,∗(V )) ≤

(
N−1∑
n=1

δt2

ν

∥∥D1f
n+1
∥∥2

H−1(Ω)

) 1
2
(

N−1∑
n=1

δt2ν
∥∥D1v

n+1
∥∥2

H1(Ω)

) 1
2

,

L∗(Π0(τ, V )) ≤

(
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)

) 1
2

×

(
N−1∑
n=0

δtν
∥∥τn+1∇(Πh

(
a · ∇vn+1

)
)
∥∥2

L2(Ω)

) 1
2

,

and

ν
∥∥τn+1∇(Πh

(
a · ∇vn+1

)
)
∥∥2

L2(Ω)
≤C

2
invν

h2
(τn+1)2

∥∥Πh

(
a · ∇vn+1

)∥∥2

L2(Ω)

≤Cτn+1
∥∥a · ∇vn+1

∥∥2

L2(Ω)
.

From all these inequalities the theorem follows easily.
The two previous theorems lead to the following stability result:
COROLLARY 4.22 (Stability II).The sequenceUh, solution of problem (4.17), is boun-

ded as follows:

|||Uh|||2s+δt
−1|||d1,∗Uh|||2w

≤ C

(
N−1∑
n=0

δt

ν

∥∥fn+1
∥∥2

H−1(Ω)
+

N−1∑
n=1

δt2

ν

∥∥D1f
n+1
∥∥2

H−1(Ω)

+
1
T

∥∥u0
∥∥2

L2(Ω)
+
δt

T

∥∥∥∥u1,h −Πh (u0)
δt

∥∥∥∥2

L2(Ω)

)
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for all δt > 0.
Obviously, this stability bounds makes sense if the initialization is such that the last term

on the right-hand-side is bounded. Using for example the backward Euler scheme, this poses
a mild condition onδt andh. In particular, ifhp+1 ≤ Cδt, it is easy to show that this last
term is bounded.

The final result we obtain is an error estimate in thestrongnorm ||| · |||s. At this point
we introduce the sequenceU = {u−1

h , u0, u1, u2, ..., uN}, that consists of the sequence of
solutions of the semi-discrete problem (2.9)-(2.11) supplemented withu−1

h atn = −1. It can
be easily checked that this sequence satisfies

B∗h (U, V ) = L∗(V )− εc(V ).

Thus,Ed := Uh − U = {0, u0
h − u0, u1

h − u1, ..., uN
h − uN} satisfies

B∗h (Ed, Vh) = εc(Vh).

We point out that for fixed domains the critical time step size does not appear anymore due to
the fact thatw = 0. The method is unconditionally stable, as expected.

We stress the fact thate−1
d 6= e1d − e0d, and thereforeEd does not verify the statement of

Theorem 4.20. The only place where the fact thatv−1 = v1 − v0 is used is in (4.23). When
the test sequence does not satisfy the assumptionv−1 = v1 − v0 of Theorem 4.20, we have
to modify theΛ-coercivity proved in this theorem as follows:

4
Tδt

∥∥δe1d∥∥2

L2(Ω)
+B∗h (Ed,Λ(Ed)) ≥ β2

(
|||Ed|||2s + δt−1|||d1,∗(Ed)|||2w

)
. (4.24)

With the expression ofΛ(·) given in Theorem 4.20 we arrive to

B∗h (Ed,Λ(Ed)) = B∗h (Ed, Ed) +
1
4
εc(Π0(τ, Ed)) + δt−1B∗h

(
Ed, d

2,∗Ed

)
= B∗h (Ed,Πh (U)− U) + εc(Uh −Πh (U)) +

1
4
εc(Π0(τ, Ed))

+ δt−1B∗h
(
Ed, d

2,∗(Πh (U)− U)
)

+ δt−1εc(d2,∗(Uh −Πh (U))).
(4.25)

Again, we group the different terms as interpolation and consistency errors and bound
them separately in the next lemmas.

LEMMA 4.23 (Interpolation error).The following inequality holds:

Bh

(
Ed,Π⊥h (U)

)
+ δt−1B∗h

(
Ed, d

2,∗(Π⊥h (U)
)

≤

(
|||Ed|||2w + δt−1|||d1,∗(Ed)|||2w

+ h2(p+1)
N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)) 1
2

×

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)) 1
2

.
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Proof. The bound for the first term of the left-hand side of the inequality is easily obtained
from the proof of Lemma 4.15, sincee−1

d = 0. For the second term we use property (4.21)
and again the fact thate−1

d = 0, getting

B∗h
(
Ed, d

2,∗(Π⊥h (U))
)

= Bh(d1,∗(Ed), d1,∗(Π⊥h (U)))− 1
2T
(
δe1d, δ(Πh

(
u3
)
− 3Πh

(
u2
)
)
)
.

Note that when we writeBh(d1,∗(Ed), d1,∗(Π⊥h (U))) we eliminate the element−1 of the
sequences to apply the bilinear formBh(·, ·).

Using Lemma 4.14 we get

δt−1Bh(d1,∗(Ed), d1,∗(Π⊥h (U)))

≤ C

(
δt−1|||d1,∗Ed|||2w + h2(p+1)

N−1∑
n=1

δt(τn+1)−1
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

) 1
2

×

(
h2(p+1)

N−1∑
n=1

δt(τn+1)−1
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

) 1
2

.

Exploiting the fact thatΠ⊥h
(
e1d
)

= Πh

(
u1
)
− u1 we can easily get that

1
2Tδt

(
δe1d, δ

(
Πh

(
u3
)
− 3Πh

(
u2
)))

≤ Ch2(p+1)
2∑

n=0

δt(τn+1)−1
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)
.

The proof is concluded.

LEMMA 4.24 (Consistency error).The following inequality holds:

εc(Uh −Πh(U) +
1
4
Π0(τ, Ed) + δt−1d2,∗(Uh −Πh(U)))

≤ C

(
h2(p+1)

N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)) 1
2

×

(
|||Ed|||2w + h2(p+1)

N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)) 1
2

.

Proof. Due to the fact thate−1
d = 0 we can take profit from the bounds obtained in



36 S. BADIA AND R. CODINA

Lemmas 4.10 and 4.16. The remaining term associated tod2,∗(·) can be bounded as follows:

εc(δt−1d2,∗(Uh −Πh(U))) =
N−1∑
n=1

τn+1
(
Π⊥h

(
a · ∇δun+1

)
,a · ∇Π⊥h

(
δun+1

))
=

N−1∑
n=1

τn+1
(
Π⊥h

(
λ(δun+1)

)
,a · ∇Π⊥h

(
δun+1

))
≤C

(
N−1∑
n=1

δtτn+1
∥∥∥Π⊥h (√δtλ(D1u

n+1)
)∥∥∥2

L2(Ω)

) 1
2

×

(
h2(p+1)

N−1∑
n=1

δt(τn+1)−1
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

) 1
2

,

with λ(·) introduced in Lemma 4.10. The term related toλ(D1u
n+1) can be easily bounded

from the expression ofτn+1, assumption (2.19) and the interpolation error estimate (4.3), as
pointed out in Lemma 4.10.

We end with the convergence result of the method in the norm||| · |||s:
THEOREM 4.25 (Convergence II).The sequence of errorsEd = Uh − U satisfies the

following error estimate:

|||Ed|||2s ≤Ch2(p+1)

[
N−1∑
n=0

δt(τn+1)−1

(∥∥un+1
∥∥2

Hp+1(Ω)
+
∥∥∥√δtD1u

n+1
∥∥∥2

Hp+1(Ω)

)

+ (τ1)−1
∥∥u1
∥∥

Hp+1(Ω)
+ (τ1)−1

∥∥u0
∥∥

Hp+1(Ω)

]
(4.26)

for all δt > 0.
Proof. Using Lemma 4.23 and Lemma 4.24 in expressions (4.24) and (4.25), we can

easily get the desired bound for|||Ed|||2s in terms of 4
Tδt

∥∥δe1d∥∥2

L2(Ω)
. Using as initialization

the backward Euler scheme and the convergence result of Theorem 4.11 for the semidiscrete
problem, it follows that

1
Tδt

∥∥δe1d∥∥2

L2(Ω)
≤ C

Tδt

(∥∥e1d∥∥2

L2(Ω)
+
∥∥u0 −Πh(u0)

∥∥2

L2(Ω)

)
≤ C(τ1)−1h2(p+1)

(∥∥u1
∥∥

Hp+1(Ω)
+
∥∥u0
∥∥

Hp+1(Ω)

)
,

from which we obtain the desired result.
REMARK 4.5. From (4.26) it is seen that we need{

√
δtD1u

n+1} bounded in the norm of
`2(Hp+1(Ω)). This can be understood as additional regularity on the data or as an additional
assumption on the asymptotic behavior of the time step size in terms ofh. From the semidis-
crete equation, it is immediate to bound‖D1u

n+1‖Hq(Ω) in terms of theHq(Ω)-norm of the
rest of the terms of the equation. In particular, the viscous term implies that theHq(Ω)-norm
of D1u

n+1 can be bounded in terms of theHq+2(Ω)-norm ofun+1. If only theHp+1(Ω)-
norm ofun+1 is bounded, we have to takeq = p−1, and thush2(p+1)‖

√
δtD1u

n+1‖2Hp+1(Ω)

has to be replaced byh2(p−1)‖
√
δtD1u

n+1‖2Hp−1(Ω), and therefore we needδt ≤ Ch4 in or-
der to maintain the optimal order of accuracy.
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5. Conclusions. In this paper we have analyzed a stabilized finite element method to
approximate the convection-diffusion equation on moving domains. The Orthogonal Subgrid
Scale formulation has been used as stabilization technique and an ALE framework has been
used in order to deal with moving domains.

In the first part of the paper we have analyzed the semi-discrete problem (in time). Two
methods have been considered. A first order accurate method, where the time derivatives are
computed using the BDF1 scheme, and a second order accurate method, where the BDF2
scheme has been used. In this analysis it is easy to identify the error introduced by the ALE
formulation. The mesh velocity is computed as the time derivative of the mesh displacement.
The numerical approximation of this time derivative is the only source of error introduced
by the ALE formulation. As a conclusion,in order to keep the accuracy of ak-th order (in
time) method on fixed domains, we must compute the mesh velocity using a time integration
scheme of, at least, orderk of accuracy. The only negative aspect is thatunconditional stable
methods for fixed domains become conditionally stable.

In the second part of the paper we have analyzed a stabilized transient convection-
diffusion equation in an ALE framework. We have introduced the concept ofΛ-coercivity
that has been used for obtaining stability results and error estimates. It has been shown that
the OSS method can be easily extended to transient problems. For the BDF1 time integration
scheme we have stability of the convective term norm, as usual when using stabilization tech-
niques. The analysis of BDF2 is more complicated. We only have control over theorthogonal
projectionof the convective term. However, optimal convergence results with constants that
do not depend on the Péclet number can be proved. Finally, for fixed domains, we have been
able to recoverstrongerstability and convergence involving the full norm of the convective
term, but the analysis is much more involved and requires more regularity assumptions.
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