
The 8th European Congress on Computational Methods in Applied Sciences and Engineering
ECCOMAS Congress 2022

5-9 June 2022, Oslo, Norway

COMPARISON OF UNCERTAINTY QUANTIFICATION
METHODS FOR MATHEMATICAL PROBLEMS IN

INTERMEDIATE DIMENSIONS

JACQUES PETER, QUENTIN BENNEHARD

ONERA/DAAA, Université Paris-Saclay
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Abstract. The efficiency of multidimensional quadrature methods is compared for seven test
functions in intermediate dimensions. Following this goal, the numerical evaluations of the mean
and variance of the test functions, for two probability density functions, are assessed with respect
to (wrt) their known exact values. The retained dimensions (3 to 6) correspond to the number
of operational and geometrical uncertain parameters we plan to consider in a near future for
realistic sensitivity analysis or robust designs. Most of the numerical quadrature methods rely
on a generalized Polynomial Chaos (gPC) defined either by quadrature or by collocation. Two
of the gPC collocation techniques, Basis Poursuit Denoise (BPdn) and Least Angle Regression
(LAR), search for a sparse gPC while satisfying the collocation equations. Finally, the efficiency
of the quadrature methods is discussed in relation with the regularity, the input dimension and
the ANOVA decomposition of the test functions.

1 INTRODUCTION

ONERA participated in several cooperative projects devoted to uncertainty quantification
(UQ) for computational fluid dynamics (CFD), like the EU projects NODESIM-CFD and UM-
RIDA or the RTO-AVT-191 group [14, 21, 29, 24]. Uncertainty calculation about complex
flows requires significant CPU ressources and does not allow a large comparison of quadrature
techniques. Conversely, in this study, we assess the efficiency of a series numerical integration
methods, mostly based on generalized Polynomial Chaos (gPC)[32], for the calculation of the
mean and variance of seven mathematical test functions. Of course, the retained intermediate
dimensions (3 to 6) correspond to the number of uncertain parameters we plan to deal with in
a near future in sensitivity analysis or robust designs applications.

2 PDF AND TEST FUNCTIONS

2.1 Classical test functions for numerical integration

Probably, the most widely used test functions for numerical integration are those defined by
Genz [10]. This series of five multivariate functions (Oscillatory, product peak, corner peak,
Gaussian, C0, discontinuous) varies the regularity from C∞ to C0 and discontinuous and goes
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with two families of numerical parameters: the first ones are typically shifts along the axis
that do not affect the difficulty of the integration ; on the contrary, the second ones make the
functions more stiff/oscillatory. These test functions are very interesting but they do not vary
the coupling of the input variables unless incidentally some of the parameters of the second
family are zero.
Also interesting are the nine test functions defined by Kocis and Whiten [13] that are all designed
to have null mean and unit variance. The first three functions are sums of 1D-functions. The
next four functions are product functions with numbers of minima and maxima increasing with
2n as well as exponentially increasing absolute maximum. The last two functions are sums of
two-dimensional components that are themselves products of two one-dimensional functions.
In this study, we consider seven test functions with various regularity and coupling bewteen input
variables. In order to quantitatively qualify this coupling, we calculate the number non-zero
second-order terms in the ANOVA decomposition divided by the total number of pairs of input
variables. Besides, the previous contributions considered integration for the uniform distribution
whereas more peaky distributions may be more representative of an uncertain parameter in an
engeering problem and may concentrate the integration in zone of discontinuity or, at least,
locally low regularity and thus make the integration more difficult. Therefore a constant and
also a peaky probability density function (pdf) are considered.

2.2 Probability density functions

We consider both a uniform distribution and a peaky β distribution with two equal exponents.

DU (ξ) = 1/2n D(2)(ξ) =

(
15

16

)n n∏
l=1

(1− ξ2l )2

The mean and variance of a function F for these two pdf are denoted as follows:

Eu(F ) =

∫
[−1,1]n

F (ξ)Du(ξ)dξ V u(F ) =

∫
[−1,1]n

(F (ξ)− Eu(F ))2Du(ξ)dξ.

E(2)(F ) =

∫
[−1,1]n

F (ξ)D(2)(ξ)dξ V (2)(F ) =

∫
[−1,1]n

(F (ξ)− E(2)(F ))2D(2)(ξ)dξ.

2.3 Test functions

The first function is the well-known Ishigami or Homma-Saltelli function [9]. Functions three
and four are taken from [13]. The input variable is denoted ξ ∈ [−1, 1]n and the seven test
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functions read:

F1(ξ) = sin(πξ1) + a sin2(πξ2) + b (πξ3)
4 sin(πξ1)

F2(ξ) = exp(ξ1 +
ξ2
2

+
ξ3
3

) + 2 exp(ξ2 +
ξ3
2

+
ξ4
3

) + 3 exp(ξ3 +
ξ4
2

+
ξ5
3

)

F3(ξ) =

√
9

n

 n∑
j=1

√
ξj + 1− 2

√
2n

3


F4(ξ) =

n∏
j=1

(−1.2
√

7ξj +
√

7ξ3j )

F5(ξ) = γn

n∏
j=1

tanh(2ξj) + ηn

n∑
j=1

ξj with γn =
2(n−1)/2

(2− tanh(2))n/2
ηn =

√
3

2n

F6(ξ) = 0.5/(1 + ξ21) + 1/(1 + 4ξ22)/(1 + 4ξ23) + 8/(1 + 16ξ24)/(1 + 16ξ25)/(1 + 16ξ26)

F7(ξ) = |ξ1|3 + |ξ2 + 1/3|3|ξ3 − 1/3|3 + |ξ4 + 1/2|3|ξ5|3|ξ6 − 1/2|3

For numerical tests, F3, F4 and F5 are considered in dimension 5.

2.4 Exact mean and variance for uniform distribution

The exact mean and variance of the test functions for the uniform distribution are gathered
hereafter. The mean and variance of Ishigami function for Du are [9]

Eu(F1) =
a

2
V u(F1) =

a2

8
+
bπ4

5
+
b2π8

18
+

1

2
.

Considering F2, we first calculate

s(a) =

∫ 1

−1
exp(at)Du(t)dt =

ea − e−a

2a
, then

Eu(F2) = 6s(1)s(1/2)s(1/3)

V u(F2) = 14s(2)s(1)s(2/3) + 16s(1)s(3/2)s(5/6)s(1/3) + 6s(1)s(4/3)s(1/3)(s(1/2))2 − (Eu(F2))
2

F3, F4 and F5 have been designed so that

Eu(F3) = 0 V u(F3) = 1

Eu(F4) = 0 V u(F4) = 1

Eu(F5) = 0 V u(F5) = 1.

Before integrating F6, we calculate

J(γ) =

∫ 1

−1

0.5

1 + γt2
dt =

1
√
γ

atan(
√
γ), K(γ) =

∫ 1

−1

0.5

(1 + γt2)2
dt =

1

2
√
γ

(atan(
√
γ)+

√
γ

1 + γ
). Then
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Eu(F6) = 0.5J(1) + J(4)2 + 8J(16)3

V u(F6) = 0.25 K(1) +K(4)2 + 64 K(16)3 + J(1) J(4)2 + 8J(1)J(16)3 + 16 J(4)2J(16)3 − Eu(F6)
2

Integrating F7 requires the calculation of

In(γ) =
1

2

∫ 1

−1
|t− γ|ndt =

1

2(n+ 1)
((1− γ)n+1 + (γ + 1)n+1).

We note that In(−γ) = In(γ). It is then straightforward that:

Eu(F7) = I3(0) + I3(1/3)2 + I3(0)I3(1/2)2

V u(F7) = I6(0) + I6(1/3)2 + I6(0)I6(1/2)2 +

+ 2 I3(0)I3(1/3)2 + 2 I3(0)2I3(1/2)2 + 2 I3(1/3)2I3(1/2)2I3(0)− Eu(F7)
2.

2.5 Exact mean and variance for β(2) distribution

The mean and variance of Ishigami function for D(2) are

E(2)(F1) =
a

2
(1 +

45

16π4
)

V (2)(F1) = (1 +
45

16π4
)(

1

2
+

5π8

858
b2 +

π4

21
b) +

a2

8
(3 +

2835

256π4
)− E(2)(F1)

2.

Considering F2, we first calculate s(a) the counterpart of s(a) for D(2):

s(a) =

∫ 1

−1
exp(at)D2(t)dt =

∫ 1

−1
exp(at)D(2)(t)dt =

15

16

(
ea(

8

a3
− 24

a4
+

24

a5
)− e−a( 8

a3
+

24

a4
+

24

a5
)

)
.

The mean and variance of F2 are then expressed as:

E(2)(F2) = 6s(1)s(1/2)s(1/3)

V (2)(F2) = 14s(2)s(1)s(2/3) + 16s(1)s(3/2)s(5/6)s(1/3) + 6s(1)s(4/3)s(1/3)(s(1/2))2 − (E(2)(F2))
2.

The coefficients in F3, F4 and F5 have been tuned to get null variance and unit mean for the
uniform distribution. For the selected β distribution, these values become:

E(2)(F3) =
6
√

2n

77

V (2)(F3) =

(
(2(

160

77
)2 − 1280

77
+ 8)n+ (9− 2(

160

77
)2)

)
− E(2)(F3)

2

E(2)(F4) = 0

V (2)(F4) =

(
21

40

)n(36

3
− 132

5
+

181

7
− 110

9
+

25

11

)n
E(2)(F5) = 0

V (2)(F5) = γ2n

(∫ 1

−1
(tanh(2u))2D(2)(u)du

)n
+
n

7
η2n ' 0.5

(
0.6294369205482356

2− tanh(2)

)n
+

3

14
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In order to integrate F6 we first calculate

J(γ) =

∫ 1

−1

D(2)(t)

1 + γt2
dt =

15

16

(
2

3γ
− 2(

2

γ
+

1

γ2
) + 2(1 +

1

γ
)2J(γ)

)
, and

K(γ) =

∫ 1

−1

D(2)(t)

(1 + γt2)2
dt =

15

16

(
2

γ2
− 2(

2

γ
+

2

γ2
)J(γ) + 2(1 +

1

γ
)2K(γ)

)
.

The expressions of E(2)(F6) and E(2)(F6) are then easily derived

E(2)(F6) = 0.5J(1) + J(4)2 + 8J(16)3

V (2)(F6) = (0.25 K(1) +K(4)2 + 64 K(16)3 + J(1) J(4)2 + 8J(1)J(16)3 + 16 J(4)2J(16)3)− E(2)(F6)
2.

In order to calculte the mean and variance of F7, we introduce

Ln,p(γ) =

∫ 1

−1
tp|t−γ|ndt and In(γ) =

∫ 1

−1
|t−γ|nD(2)(t)dt =

15

16
(Ln,0(γ)−2Ln,2(γ)+Ln,4(γ)).

As D(2)(−t) = D(2)(t), we note that In(−γ) = In(γ). Besides, for γ ∈ [−1, 1], Ln,p may be
calculated splitting the domain of summation in [−1, γ] and [γ, 1]

Ln,p(γ) =
n∑
k=1

(−1)(n−k)
(
n
k

)(
γk
[

tp+n−k+1

p+ n− k + 1

]γ
−1

+ γ(n−k)
[
tp+k+1

p+ k + 1

]1
γ

)
.

The mean and variance of interest are then expressed as:

E(2)(F7) = I3(0) + I3(1/3)2 + I3(0)I3(1/2)2

V (2)(F7) = I6(0) + I6(1/3)2 + I6(0)I6(1/2)2 +

+ 2 I3(0)I3(1/3)2 + 2 I3(0)2I3(1/2)2 + 2 I3(1/3)2I3(1/2)2I3(0)− E(2)(F7)
2

3 INTEGRATION METHODS AND TOOLS

Various quadrature methods have been used to calculate the integrals defined in §2.

Smolyak sparse grids [30, 11, 12] have been used with Clenshaw-Curtis [5] and Gauss-Patterson
[19] 1D base-quadrature. The selected computational module is Smobol by prof. Richard Dwight
[7]. The two underlying 1D quadratures are associated with Du for which they exhibit a poly-
nomial exactness of degree N − 1 (Clenshaw-Curtis) and (3N − 1)/2 (Gauss-Patterson) for N
points. Unfortunately, there is no 1D quadrature associated with D(2) available yet so that the
products Fi×D(2) have been integrated for the evaluation of E(2) and V (2). It is easily checked
that N points then only exactly integrate a polynomial of degree N − 5 (Clenshaw-Curtis) and
(3N − 9)/2 (Gauss-Patterson) as D(2) is a degree four polynomial. In the plots legend, the
corresponding results are noted SmolCC and SmolGP .

All other considered methods are gPC methods [32] which basics are briefly recalled in 1D: a
polynomial surrogate of F , gF , is searched for on a polynomial basis {Pl} associated with D(ξ),
the probability density function of the UQ problem:

gF (ξ) =

l=M∑
l=0

ClPl(ξ) ' F (ξ) < Pl, Pm >=

∫
Pl(ξ)Pm(ξ)D(ξ)dξ = δlm
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As in all other surrogate based UQ methods, the stochastic evaluations for F are estimated from
gF . The mean and variance are exactly evaluated for gF as

E(gF ) = C0 V (gF ) =

l=M∑
l=1

C2
l

The coefficents of the expansion may be calculated either by quadrature using

Cl =< F,Pl >=

∫
Pl(ξ)Pl(ξ)D(ξ)dξ,

or by collocation solving for the Cl the (possibly overdetermined or underdetermined) following
linear system

l=M∑
l=0

ClPl(ξk) = F (ξk) ∀ k ∈ {1...Q}. (1)

The extension of this method in IRn is straightforward if the joint pdf of ξ is a product of 1D pdf
as in our case. Finally, we remind that the polynomials orthonormal for Du are the normalized
Legendre polynomials whereas their counterparts orthonormal for D(2) are the normalized Jacobi
polynomials with the parameters corresponding to this pdf [1].

The gPC method has been used with tensorial quadrature either for maximum degree multi-
variate polynomials or for total degree multivariate polynomials. The link between the retained
polynomial basis and the number of quadrature points is the satisfaction of discrete orthonor-
mality. The corresponding mentions in the plot legends are gPC-TensGL , gPC-TensGJ and
gPC-Tens-OT (OT indicates the use of OpenTURNS[18]) – also in the legends, m.t. refers to
maximum degree, t.d. refers to total degree.

Finally, two sparse gPC methods have been tested. They both search a solution to (1) with
three times less collocation equations than polynomials in the total degree basis. Both also use a
random sampling and the presented results correspond to the mean over four trials of the mean
and variance estimations.
The first sparse gPC method is a Compressed Sensing resolution by the Basis Poursuit denoise
(BPdn) algorithm [2, 3]. It solves an ε accurate L1 minimization resolution of the collocation
system. We have used the corresponding SPGL1 python module by E. van den Berg and M.P.
Friedlander. The results of this method are referred to as gPCBPdn in the plot legends.
The second sparse gPC resolution is the Least Angle Regression (LAR) algorithm [4] applied to
the collocation system. Its principle is to search iteratively the remaining polynomial of the ba-
sis, Pl, that is best correlated with the current expansion residual of the approximation process
r = F − ΣC?l P

?
l . The corresponding results appear in plot legends as gPC LAR OT.

4 RESULTS

The complete set of results for the seven functions, the two pdf and the various quadrature
methods is presented and discussed in reference [25]. The null mean values allow some verifi-
cations and, more important, the polynomial F4 allows to check that the Smolyak sparse grids
module and the tensorial quadratures scripts exhibit the theoretical polynomial exactness (ac-
tually, as D(2) is a polynomial, exactness with both Du and D(2) has been checked). The next
subsections focus on three specific lessons learnt.
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Figure 1: Convergence of Eu(F2) and E(2)(F2) as function of the number of quadrature points

4.1 1D underlying quadrature in Smolyak’s sparse grids

Fig. 1 presents the convergence of Eu(F2) (left) and E(2)(F2) (right) as a function of the
number of nodes (in logarithmic scale) for the various quadrature methods. In the left plot, it
clearly appears that the theoretical properties of Smolyak sparse grids [30, 11, 12, 27] lead to
the most efficient approximation of Eu(F2) by SmolGP and SmolCC among all tested numerical
integration methods. Considering E(2)(F2) (see Fig. 1 right), these two sparse grids are on
the contrary the least efficient methods. Most probably, the underlying 1D quadrature needs
to be associated with the marginal probability law whereas, for D(2), due to the lack of such
1D quadrature, we have integrated F2 ×D(2) by the sparse grids used for uniform distribution.
Future work will include the calculation of a Gauss-Patterson 1D quadrature [19] associated
with D(2).

4.2 Influence of coupling between input variables

We recall that functions F2 and F6 read

F2(ξ) = exp(ξ1 +
ξ2
2

+
ξ3
3

) + 2 exp(ξ2 +
ξ3
2

+
ξ4
3

) + 3 exp(ξ3 +
ξ4
2

+
ξ5
3

)

F6(ξ) =
0.5

1 + ξ21
+

1

1 + 4ξ22

1

1 + 4ξ23
+

2

1 + 16ξ24

2

1 + 16ξ25

2

1 + 16ξ26

There are hence 7 coupled pairs of input variables among 10 pairs for F2 and only 4 coupled
pairs of variables among 15 pairs for F6. The sparsity of the exact gPC associated to F6 (either
for Du or D(2)) is hence superior to the one of F2. We thus expect the sparse gPC methods
gPCBPdn and gPC-LAR-OT to behave better for F6 than for F2. This is exactly what we observe
in Fig. 2. Actually, these methods are the most efficient for the evaluation of Eu(F6).

4.3 Influence of random sampling in compressed sensing methods

Both sparse gPC methods, gPC-LAR-OT and gPCBPdn, use a random spampling. This raises
the question of the influence of the sampling set on the accuracy of the numerical integration. It
was found to be significant (up to one or one and half order of magnitude) for samplings of tenth
or hundreds of evaluations and less influent for larger sampling where the change in the final
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Figure 2: Convergence of Eu(F2) and Eu(F6) as function of the number of quadrature points

Figure 3: Convergence of Eu(F1) (F1 Ishigami function) as function of the number of quadrature points

mean or variance accuracy was less than one order of magnitude. This is illustrated in Fig. 3
for the gPCBPdn method and the Ishigami function: for each sampling size, the results obtained
with two distinct samplings are reported by orange and brown circles which discrepancy can be
appreciated.

5 CONCLUSION

Several numerical integration methods have been compared in intermediate dimensions for
the calculation of the mean and the variance of mathematical test functions [10, 13, 25]. Most
of them build a gPC [32] and the gPC exact mean and variance are the discrete evaluations of
the method.
The low coupling of input variables (or, equivalently, the sparsity of the exact polynomial ex-
pansion) appeared to go with efficient evaluations of the two sparse gPC approaches [2, 3, 4]. On
the contrary, the influence of the function regularity on the method accuracy is more difficult to
understand based on our results. Tests should be pursued with neighboring functions exhibiting
close values and distinct mathematical regularities to clarify this point.
In the future, we shall also deal with surrogates of aerodynamic functions (like lift, drag, pitching
moment) from aerodynamic data basis and CFD based robust design problems. Besides ON-
ERA has developed a strong experience in the discrete adjoint method regarding fundamental
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aspects [20, 26, 28], goal-oriented simulations [22, 16, 31] and optimisation of complex config-
urations [6, 23, 15]. Future surrogate based numerical integration methods will hence involve
adjoint-based gradient information.
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