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Abstract

A p-multigrid (p = polynomial degree) discontinuous Galerkin method is presented for the solution of the compress-
ible Euler equations on unstructured grids. The method operates on a sequence of solution approximations of different
polynomial orders. A distinct feature of this p-multigrid method is to use different time integration schemes on different
approximation levels, resulting in an accurate, fast, and low memory method that can be used to accelerate the conver-
gence of the Euler equations to a steady state for discontinuous Galerkin methods. The developed method is used to
compute the compressible flows for a variety of test problems on unstructured grids. The numerical results obtained
strongly indicate the order independent property of this p-multigrid method. An overall speed-up factor more than
one order of magnitude for both second- and third-order solutions of all test cases in comparison with the explicit
method is demonstrated.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

The use of unstructured meshes for computational fluid dynamics problems has become widespread due
to their ability to discretize arbitrarily complex geometries and due to the ease of adaptation in enhancing
the solution accuracy and efficiency through the use of adaptive refinement techniques. In recent years, sig-
nificant progress has been made in developing numerical algorithms for the solution of the compressible
Euler and Navier–Stokes equations on unstructured grids.

The discontinuous Galerkin methods [1–13] have recently become popular for the solution of systems of
conservation laws. Nowadays, they are widely used in the computational fluid dynamics, computational
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acoustics, and computational electromagnetics. The discontinuous Galerkin methods combine two advan-
tageous features commonly associated to finite element and finite volume methods. As in classical finite ele-
ment methods, accuracy is obtained by means of high-order polynomial approximation within an element
rather than by wide stencils as in the case of finite volume methods. The physics of wave propagation is,
however, accounted for by solving the Riemann problems that arise from the discontinuous representation
of the solution at element interfaces. In this respect, the methods are therefore similar to finite volume
methods. The discontinuous Galerkin methods have many features: (1) The methods are well suited for
complex geometries since they can be applied on unstructured grids. In addition, the methods can also han-
dle nonconforming elements, where the grids are allowed to have hanging nodes. (2) The methods are
highly parallelizable, as they are compact and each element is independent. Since the elements are discon-
tinuous, and the inter-element communications are minimal, domain decomposition can be efficiently em-
ployed. The compactness also allows for structured and simplified coding for the methods. (3) They can
easily handle adaptive strategies, since refining or coarsening a grid can be achieved without considering
the continuity restriction commonly associated with the conforming elements. The methods allow easy
implementation of hp-refinement, for example, the order of accuracy, or shape, can vary from element
to element. (4) They have several useful mathematical properties with respect to conservation, stability,
and convergence. However, these methods have their own weaknesses. Compared to the finite element
methods and finite volume methods, the discontinuous Galerkin methods require the solutions of systems
of equations with more unknowns for the same grids. Consequently, these methods have been recognized as
expensive in terms of both computational cost and storage requirement.

Most efforts in the development of the discontinuous Galerkin methods are primarily focused on the spa-
tial discretization. The temporal discretization methods have lagged far behind. Usually, explicit temporal
discretizations such as multi-stage TVD (total variation diminishing) Runge–Kutta schemes [1,7–11] are
used to advance the solution in time. In general, explicit schemes and their boundary conditions are easy
to implement, vectorize and parallelize, and require only limited memory storage. However, for large-scale
simulations and especially for high-order solutions, the rate of convergence slows down dramatically,
resulting in inefficient solution techniques to steady state solution. In order to speed up convergence, a mul-
tigrid strategy or an implicit temporal discretization is required.

In general, implicit methods require the solution of a linear system of equations arising from the lin-
earization of a fully implicit scheme at each time step or iteration. Recently, significant efforts have been
made to develop efficient implicit solution methods for discontinuous Galerkin methods [12,13]. Unfor-
tunately, the drawback is that they require a considerable amount of memory to store the Jacobian ma-
trix, which may be prohibitive for large-scale problems and high-order solutions. This is especially
troublesome for discontinuous Galerkin method, which is recognized as expensive in terms of both com-
putational operation count and storage requirement. Even in the implementation of so called matrix-free
implicit methods [13], where only a block diagonal matrix is required to store, the memory requirements
can still be extremely demanding. The block diagonal matrix requires a storage of (neqns · ndegr) ·
(neqns · ndegr) · nelem, where neqns is the number of unknown variables (4 for 2D, and 5 for 3D Euler
equations), ndegr is the degrees of freedom for the polynomial (3 for P1, 6 for P2, and 10 for P3 for tri-
angle element in 2D; 4 for P1, 10 for P2, and 20 for P3 for tetrahedral element in 3D), and nelem is the
number of elements for the grid. For example, for a fourth-order (cubic polynomial finite element
approximation P3) discontinuous Galerkin method in 3D, the storage of this block diagonal matrix alone
requires 10,000 words per element!

p-Multigrid method is an iterative scheme in which systems of equations arising from compact, high-or-
der finite element discretization, such as spectral-hp or discontinuous Galerkin formulation, are solved by
recursively iterating on solution approximations of different polynomial order. For example, to solve equa-
tions derived using a polynomial approximation order of 2, the solution can be iterated on at an approx-
imation order of p = 2, 1, and 0. The p component of this algorithm was introduced by Rönquist and
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Patera [14], and analyzed by Maday and Munoz [15] for a one-dimensional, Galerkin spectral element dis-
cretization of the Laplace equation. Bassi and Rebay presented their work on the p-multigrid method for
the Euler equations in [16]. Helenfrook et al. [17] examined the performance of p-multigrid for Laplace
equation and the convection equation in two dimensions.

The objective of the effort discussed in this paper is to develop a fast, low storage p-multigrid method for
discontinuous Galerkin methods to solve the compressible Euler equations on unstructured grids. Explicit
multi-stage Runge–Kutta method [1,7], matrix-free symmetric Gauss–Seidel (SGS) method [18], and ma-
trix-free lower–upper symmetric Gauss–Seidel (LU-SGS) [18,19,23] method are implemented, used, and
discussed as iterative smoothers. Unlike the traditional p-multigrid methods where the same time integra-
tion scheme is used on all approximation levels, the present p-multigrid method uses multi-stage Runge–
Kutta scheme as the iterative smoother on the higher level approximations, and matrix-free SGS method
as the iterative smoother on the lowest level approximation in an attempt to significantly reduce the storage
requirements and fully capitalize on the mature matrix-free implicit methods developed for the finite vol-
ume methods [18,19]. The developed method has been used to compute compressible flows for a variety
of test problems on unstructured grids. The numerical results obtained strongly imply the order indepen-
dent property of this p-multigrid method, and indicate that this novel p-multigrid method provides a very
efficient way for accelerating the convergence of the compressible Euler equations to a steady state without
significant increase in memory requirement. Efficiency increases of one order of magnitude for both second-
and third-order solutions of all test cases in comparison with the explicit method are demonstrated by the
use of this p-multigrid method.
2. Governing equations

The Euler equations governing unsteady compressible inviscid flows can be expressed in conservative
form as
oUðx; tÞ
ot

þ oFjðUðx; tÞÞ
oxj

¼ 0; ð2:1Þ
where, the conservative state vector U and the inviscid flux vectors F are defined by
U ¼
q

qui
qe

0
B@

1
CA; F ¼

quj
quiuj þ pdij
ujðqeþ pÞ

0
B@

1
CA; ð2:2Þ
where the summation convention has been used and q, p, and e denote the density, pressure, and specific
total energy of the fluid, respectively, and ui is the velocity of the flow in the coordinate direction xi. This set
of equations is completed by the addition of the equation of state
p ¼ ðc� 1Þq e� 1
2
ujuj

� �
; ð2:3Þ
which is valid for perfect gas, where c is the ratio of the specific heats.
3. Discontinuous Galerkin method

To formulate the discontinuous Galerkin method, we first introduce the following weak formulation of
(2.1), which is obtained by multiplying Eq. (2.1) by a test function W, integrating over the domain X, and
performing an integration by parts:
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Z
X

oU

ot
WdXþ

Z
C
FjnjWdC�

Z
X
Fj

oW

oxj
dX ¼ 0 8W; ð3:1Þ
where C (= oX) denotes the boundary of X, and nj the unit outward normal vector to the boundary.
Assuming that Xh is a classical triangulation of X where the domain X is subdivided into a collection of

nonoverlapping elements Xe, the following semi-discrete form of (3.1) is obtained by applying (3.1) on each
element Xe
d

dt

Z
Xe

UhWh dXþ
Z
Ce

FjðUhÞnjWh dC�
Z
Xe

FjðUhÞ
oWh

oxj
dX ¼ 0 8Wh; ð3:2Þ
where Uh and Wh represent the finite element approximations to the analytical solution U and test function
W, respectively. Assume the approximate solution and test function be piece-wise polynomials in each ele-
ment and let the polynomial basis function be Bm(x), then Uh and Wh can be expressed as
Uhðx; tÞ ¼
XN
m¼1

UmðtÞBmðxÞ; WhðxÞ ¼
XN
m¼1

WmBmðxÞ; ð3:3Þ
where Bm(x), 1 6 m 6 N is the basis function of the polynomials of degree p. The dimension of the poly-
nomial space, N = N(p,d) depends on the degree of the polynomials of the expansion p, and the number
of spatial dimensions d, as
N ¼ ðp þ 1Þðp þ 2Þ � � � ðp þ dÞ
d!

for d ¼ 1; 2; 3. ð3:4Þ
Eq. (3.2) must be satisfied for any test function Wh. Since Bn is the basis for Wh, (3.2) is, therefore, equiv-
alent to the following system of N equations:
dUm

dt

Z
Xe

BmBn dXþ
Z
Ce

FjðUhÞnjBn dC�
Z
Xe

FjðUhÞ
oBn

oxj
dX ¼ 0; 1 6 n 6 N ; ð3:5Þ
where Uh is replaced with Eq. (3.3). Since the numerical solution Uh is discontinuous between element inter-
faces, the interface fluxes are not uniquely defined. The flux function Fj(Uh)nj appearing in the second term
of Eq. (3.5) is replaced by a numerical Riemann flux function H

�
UL

h ;U
R
h ; n

�
, where UL

h and UR
h are the con-

servative state vector at the left and right side of the element boundary. In order to guarantee consistency
and conservation, H(UL,UR,n) is required to satisfy
HðU;U; nÞ ¼ FjðUÞnj; HðU;V; nÞ ¼ �HðV;U; nÞ. ð3:6Þ

This scheme is called discontinuous Galerkin method of degree p, or in short notation ‘‘DG(p) method’’.

Note that discontinuous Galerkin formulations are very similar to finite volume schemes, especially in their
use of numerical fluxes. Indeed, the classical first-order cell-centered finite volume scheme exactly corre-
sponds to the DG(0) method, i.e., to the discontinuous Galerkin method using piece-wise constant polyno-
mial. Consequently, the DG(p) methods with p > 0 can be regarded as a ‘‘natural’’ generalization of finite
volume methods to higher order methods. By simply increasing the degree p of the polynomials, DG meth-
ods of corresponding higher orders are obtained.

In the present work, the Riemann flux function is approximated using the HLLC approximate Rie-
mann solver [20], which has been successfully used to compute compressible viscous and turbulent flows
on both structured grids [21] and unstructured grids [22]. This HLLC scheme is found to have the fol-
lowing properties: (1) exact preservation of isolated contact and shear waves, (2) positivity-preserving of
scalar quantity, (3) enforcement of entropy condition. In addition, the implementation of HLLC Rie-
mann solver is easier and the computational cost is lower compared with other available Riemann
solvers.
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The domain and boundary integrals in Eq. (3.5) are calculated using Gauss quadrature formulas. The
number of quadrature points used is chosen to integrate exactly polynomials of order of 2p on the reference
element. In the case of linear, quadratic, and cubic shape function, the domain integrals are evaluated using
three, six, and twelve points, respectively, and the boundary integrals are evaluated using two, three, and
four points, respectively.

By assembling together all the elemental contributions, a system of ordinary differential equations gov-
erning the evolution in time of the discrete solution can be written as
M
dU

dt
¼ RðUÞ; ð3:7Þ
where M denotes the mass matrix, U is the global vector of the degrees of freedom, and R(U) is the residual
vector. Since the shape functions BjXe

are nonzero within element Xe only, the mass matrix M has a block
diagonal structure that couples the N degrees of freedom of each component of the unknown vector only
within Xe. As a result, the inverse of the mass matrix M can be easily computed by hand considering one
element at a time in advance.

The semi-discrete system can be integrated in time using explicit methods. For example, the following
explicit three-stage third-order TVD Runge–Kutta scheme [1,7]
Uð1Þ ¼ Un þ DtM�1RðUnÞ;
Uð2Þ ¼ 3

4
Un þ 1

4

�
Uð1Þ þ DtM�1RðUð1ÞÞ

�
;

Unþ1 ¼ 1
3
Un þ 2

3

�
Uð2Þ þ DtM�1RðUð2ÞÞ

�
;

is widely used to advance the solution in time. This method is linearly stable for a Courant number less than
or equal to 1/(2p + 1). The inefficiency of the explicit method due to this rather restrictive CFL condition
motivates us to develop the p-multigrid method to accelerate the convergence of the Euler equations to a
steady state.
4. p-Multigrid method

Nowadays, geometric multigrid methods are widely and routinely used to accelerate the convergence of
the Euler and Navier–Stokes equations to a steady state on unstructured grids. It is well established that
multigrid acceleration can drastically reduce the computational costs. p-Multigrid method is a natural
extension of geometric multigrid methods to high-order finite element formulation, such as spectral-hp
or discontinuous Galerkin methods, where systems of equations are solved by recursively iterating on solu-
tion approximations of different polynomial order. For example, to solve equations derived using a poly-
nomial approximation order of 4, the solution can be iterated on at an approximation order of p = 2, 1, and
0. The basic idea of a p-multigrid method is to perform time steps on the lower order approximation levels
to calculate corrections to a solution on a higher order approximation level. In this study, we are only inter-
ested in DG(2) and DG(1) methods. For both methods, a two level V-cycle p-multigrid method has been
used to drive the iterations. More specifically, this two level p-multigrid method consists of the following
steps at each p-multigrid cycle:

(1) Perform a time-step at the highest approximation order, be piece-wise linear P1 or piece-wise qua-
dratic P2, which yields the initial solution Unþ1

P1;2
.

(2) Transfer the flow solution and residual to the lowest approximation level: piece-wise constant P0. This
can be readily obtained using the shape function as



772 H. Luo et al. / Journal of Computational Physics 211 (2006) 767–783
UP0ðXeÞ ¼
XN
i¼1

Unþ1
iP1;2

BiðxcÞ; RP0ðXeÞ ¼
XN
i¼1

Ri

�
Unþ1

P1;2

�
BiðxcÞ; ð4:1Þ
where xc is the coordinates of the center of element Xe.
(3) Compute the force terms on the lowest approximation level,
FP0 ¼ RP0
� RðUP0Þ. ð4:2Þ
(4) Perform a time-step at the lowest approximation level where the residual is given by
R ¼ RðUP0
Þ þ FP0 ; ð4:3Þ
which yields the solution at the lowest level Unþ1
P0

.
(5) Interpolate the correction CP0 back from the lowest level to update the highest level solution
CP0 ¼ Unþ1
P0

�UP0 ;
eUnþ1

P1;2
¼ Unþ1

P1;2
þ CP0 . ð4:4Þ
The above one p-multigrid cycle will produce a better solution at the higher level from an initial solution at
the same level.

In general, the same time integration scheme is applied to advance the solution on both levels P1,2

and P0. However, when the multi-stage TVD Runge–Kutta explicit scheme is used as an iterative
smoother, the performance of the resulting p-multigrid method is quite disappointing, in contrast to
the success that geometric multigrid methods enjoyed to accelerate the convergence of the Euler equa-
tions using the multi-stage TVD Runge–Kutta explicit scheme as an iterative smoother. This is maybe
due to the severely anisotropic (hyperbolic) nature of the Euler equations and the isotropic (elliptic)
nature of p-multigrid iterations. Implicit schemes have better convergence properties. Unfortunately,
this is achieved at the expense of dramatic storage increase, making the implicit iterative smoother
impractical, if not impossible to use for large-scale problems and especially with high-order discontin-
uous Galerkin methods. The approach proposed here is to use different time integration schemes at dif-
ferent approximation levels: the multi-stage TVD Runge–Kutta explicit scheme is used on the highest
level P1,2, where one cannot afford to use implicit iterative smoother because of storage consideration,
and the implicit scheme is used in the lowest level P0, where the storage requirement is not as demand-
ing as in the higher level. Note that on level P0, the discontinuous Galerkin method, corresponding to
zeroth-order basis functions, degenerates to the classical first-order cell-centered finite volume scheme,
so that the fairly mature implicit methods developed over the last decades can be readily used as
the implicit iterative smoother. Using Euler implicit time-integration, the spatially discretized Euler
equations on P0 level can be linearized in time and written as
V
Dt

I� oRP0

oUP0

� �
DUP0 ¼ RP0 ; ð4:5Þ
where V is the element volume, and RP0 is the right-hand-side residual. Note that the subscript P0 will be
omitted from here on, if there is no confusion. Eq. (4.5) represents a large system of linear simultaneous
algebraic equations that needs to be solved. In this study, symmetric Gauss–Seidel (SGS) method [17] is
used to solve the linear system (4.5). The SGS method with k iterations, called SGS(k) here after, can be
written as

0. Initialization:
DU0 ¼ 0; ð4:6Þ
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1. Forward Gauss–Seidel iteration:
ðDþ LÞDUkþ1
2 þ UDUk ¼ R; ð4:7Þ
2. Backward Gauss–Seidel iteration:
ðDþ UÞDUkþ1 þ LDUkþ1
2 ¼ R; ð4:8Þ
where U, L, and D represent strict upper, strict lower, and diagonal matrices, respectively, and k is the num-
ber of iterations for SGS method. The main advantage of SGS method is that it does not require any addi-
tional storage beyond that of the matrix itself. Note that if only one iteration is used in the SGS method and
the initial guess is set to zero, the resulting method is nothing but so called LU-SGS method [18,22], which
can be written as
Lower (forward) sweep:
ðDþ LÞDUH ¼ R; ð4:9Þ

Upper (backward) sweep:
ðDþ UÞDU ¼ DDUH. ð4:10Þ
It is clear that the above algorithms involve primarily the Jacobian matrix-solution incremental vector
product. Such operation can be approximately replaced by computing increments of the flux vector prod-
uct. Such Jacobian matrix-solution incremental vector can then be approximately replaced by computing
increments of the flux vector. This is achieved by using scalar dissipation to derive the left-hand-side matrix.
The detailed matrix-free approach can be found in [17,18]. The most remarkable achievement of this
approximation is that there is no need to store the upper- and lower-matrices U and L, which substantially
reduces the memory requirements. The only matrix needed to store is the diagonal matrix D, which requires
a memory of neqns · neqns · nelem, where neqns is the number of solution vector variables (4 for 2D, and
5 for 3D Euler equations), and nelem is the number of elements for the grid. The storage of diagonal matrix
only requires 16 words per element in 2D and 25 words per element in 3D. Compare to the memory require-
ment of about 100 words per element for the explicit DG(1) method and 250 words per element for the
explicit DG(2) method in 2D, the additional storage requirement for the present p-multigrid method is
not significant at all.
5. Numerical results

Only shockless (smooth subsonic and supersonic) flows are considered here in an effort to ensure that
computational efficiency is not affected by a limiting processing, which is required to eliminate spurious
oscillations in the vicinity of discontinuities. Note that construction of an accurate, efficient, and robust lim-
iter remains one of the issues and challenges for the DG methods. All of the computations are performed on
an Dell Inspiron 8200 laptop computer (1.6 GHz CPU with 1 GB memory) running the Suse 9.1 Linux
operating system. The relative L2 norm of the density residual is taken as a criterion to test convergence
history. In most of the numerical tests performed, the p-multigrid method is compared to the explicit meth-
od in order to emphasize the efficiency. The explicit method uses the explicit three-stage third-order TVD
Runge–Kutta time-stepping scheme described in Section 3 with local time stepping technique. All compu-
tations are started with uniform flow and carried out using a CFL number of 2 for the explicit method and
a CFL number of 5000 for the implicit method used as iterative smoother in the p-multigrid method, unless
stated otherwise.
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5.1. Supersonic vortex flow

The problem under consideration is an inviscid supersonic vortex flow. This test case is chosen to verify
the implementation of the developed computer code and assess the order of accuracy of the discontinuous
Galerkin method. For nonlinear hyperbolic systems like the compressible Euler equations, there are prac-
tically no a priori error estimates available. Therefore, quantitative measurement of the order of accuracy
and discretization error associated with the discontinuous Galerkin method can only be obtained through
numerical test cases, for which exact, closed form, analytical solutions exist. For this purpose, we consider
the solution of the 2D compressible Euler equations to the supersonic vortex flow problem, that is one of
the few nontrivial problems of the 2D Euler equations for which a smooth analytical solution is known. The
inviscid, isentropic, supersonic flow of a compressible fluid between concentric circular arcs presents a flow
where the velocity varies inversely with radius. The expression for density q as a function of radius r is given
by
qðrÞ ¼ qi 1þ c� 1

2
M2

i 1� ri
r

� �2
	 
� � 1

c�1

;

where Mi and ri are the Mach number and radius at the inner arc. In the present calculation, the Mach
number, density, and pressure at the inner radius ri are specified 2.25, 1, and 1/c, respectively. The inner
and outer radius are 1 and 1.384. In the following, we compute the numerical solutions to this problem
using DG(0), DG(1), and DG(2) methods on four successively refined grids and evaluate the L2-error of
the solutions. All the computations are initialized with the exact solution. Fig. 1(a) and (b) shows four
meshes used in the computation and the density contours in the flow fields obtained by the DG(1) meth-
od, respectively. The detailed results of this test case are presented in Table 1a–c. They show the number
of elements, the number of degrees of freedom, the L2-error of the solutions, and the order of conver-
gence. These tables clearly indicate that the discontinuous Galerkin method applied to the steady com-
pressible Euler equations exhibits a full O(hp+1) order of convergence on smooth solutions. Fig. 1(c)
provides the details of the spatial accuracy of each DG method for this numerical experiment. Finally,
Fig. 1(d) shows the L2-error of the DG(p), 0 6 p 6 2 methods plotted against the number of degrees of
freedom, where one can clearly see that a higher order DG method requires much less number of degrees
of freedom than a lower order DG method to achieve the same accuracy. Note that although the discon-
tinuous Galerkin method is based on ideas of upwinding, it is not limited to convergence of first-order
but allows arbitrarily high orders of convergence for smooth solutions depending on the order of finite
element approximation.
5.2. Subsonic flow in a channel with a circular bump on the lower wall

The second example is the well-known Ni�s test case: a subsonic flow in a channel with a 10% thick
circular bump on the bottom. The length of the channel is 3, its height 1, and its width 0.5. Inlet Mach
number is 0.5. The mesh, which contains 839 grid points, 1559 elements, and 117 boundary points, is
depicted in Fig. 2(a). The computed pressure contours obtained with P1 (second-order accurate) method
in the flow field are shown in Fig. 2(b). Fig. 2(c) and (d) displays a comparison of convergence histories
versus time steps and CPU, respectively, for the P0 (first-order accurate) and P1 RKDG methods. One
can clearly see that the convergence of the TVD RKDG method deteriorates drastically for P1 finite
element approximation, as a result of a larger number of degrees of freedom and smaller time-steps
for P1 element. Fig. 2(e) and (f) displays a comparison of convergence histories versus time steps
and CPU, respectively, for the P0 element approximation among 3-stage TVD Runge–Kutta explicit
method, matrix-free LU-SGS method, and matrix-free SGS method with 10 iterations. It is clear that



Fig. 1. (a) Sequences of four successively globally refined meshes used in DG(1) method for computing supersonic vortex flow
problem. (b) Computed density contours for supersonic vortex flow problem using DG(1) method. (c) Accuracy summary for
supersonic vortex flow for discontinuous Galerkin method using piecewise constant, piecewise linear, and piecewise quadratic element
approximations. (d) L2-error of numerical solutions against the number of degrees of freedom for supersonic vortex flow by DG(p)
method, 0 6 p 6 2.
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both LU-SGS and SGS(10) methods are superior to their explicit counterpart, and SGS(10) gives the
best convergence history. It is worth noting that per time step, the present LU-SGS method costs about
the same as the three-stage Runge–Kutta explicit method. Fig. 2(g) and (h) displays a comparison of
convergence histories versus time steps and CPU, respectively, for the P1 element approximation among
the three-stage TVD Runge–Kutta explicit method, the p-multigrid method with three-stage TVDRK
smoother, p-multigrid method with the matrix-free LU-SGS smoother, p-multigrid method with the ma-
trix-free SGS(5) smoother, and p-multigrid method with the matrix-free SGS(10) smoother. One can
clearly see that both SGS and LU-SGS methods are far more efficient than TVDRK method as a
smoother, and the SGS method with five iterations seems to give the best performance. Fig. 2(i) and
(j) shows a comparison of convergence histories versus time steps and CPU time, respectively, for
the P1 and P2 element approximation between the three-stage TVD Runge–Kutta explicit method,
and p-multigrid method with the matrix-free SGS(5) smoother. The mesh used for P2 computations
is chosen such as that the number of degrees of freedom for P1 and P2 computation is about the same.



Table 1
Supersonic vortex flow problem

No. elements No. DOFs L2-error Order

(a) DG(0) is of order O(h)
640 640 7.05667E�03 –
2560 2560 3.90032E�03 0.855
10,240 10,240 2.06871E�03 0.915
40,960 40,960 1.06955E�03 0.952

(b) DG(1) is of order O(h2)
160 480 5.72664E�03 –
640 1920 1.83358E�03 1.644
2560 7680 5.12743E�04 1.839
10,240 30,720 1.34865E�04 1.927

(c) DG(2) is of order O(h3)
40 240 2.86088E�03 –
160 960 4.19567E�04 2.775
640 3840 5.56673E�05 2.916
2560 15,360 7.20112E�06 2.951
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The coarse mesh used for P2 computation has 778 elements, 431 grid points, and 82 boundary points.
The present p-multigrid method can obtain the convergence in nearly the same number of cycles at
p = 2 as p = 1, and P2 computation actually requires less cpu time than the P1 computation. The reason
that P1 and P2 computations converge at about the same rate for the same number of unknowns is
partially due to the fact that P2–P0 V-cycle provides more appropriate p-multigrid than P1–P0 V-cycle.
Considering that P2 approximation is much more accurate than P1 approximation for the same number
of degrees of freedom (as demonstrated in test case 1), this indicates that the present p-multigrid meth-
od is able to obtain more accurate solution using less computing time, which makes the present p-mul-
tigrid method especially attractive for DG(2) method. For this case, the p-multigrid method is about 33
times faster for P1 computation and 40 times faster for P2 computation than its 3 stage TVDRK
counterpart.

5.3. Subsonic flow past a NACA0012 airfoil

The third example is the subsonic flow past a NACA0012 airfoil at a Mach number of 0.63, and an
angle of attack 2�. The mesh, which contains 3537 grid points, 6891 elements, and 183 boundary
points, is depicted in Fig. 3(a). The computed pressure contours obtained using P1-element approxima-
tion in the flow field are shown in Fig. 3(b). Fig. 3(c) and (d) displays a comparison of convergence
histories versus time steps and CPU, respectively, for the 3-stage TVD Runge–Kutta explicit scheme
between P0 element and P1 element approximation. The trends are almost exactly the same as for
the last test case with drastically deteriorating convergence when from P0 finite element approximation
to P1 finite element approximation. Fig. 3(e) and (f) illustrates a comparison of convergence histories
versus time steps and CPU, respectively, for the P0 element approximation using 3-stage TVD
Runge–Kutta explicit method, matrix-free LU-SGS method, and matrix-free SGS method with 10 iter-
ations. Again, one can observe that both LU-SGS and SGS(10) methods are superior to their explicit
counterpart, and SGS(10) exhibits the fastest convergence. Fig. 3(g) and (h) displays a comparison of
convergence histories versus time steps and CPU, respectively, for the P1 element approximation among
the three-stage TVD Runge–Kutta explicit method, the p-multigrid method with three-stage TVDRK
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smoother, p-multigrid method with the matrix-free LU-SGS smoother, p-multigrid method with the
matrix-free SGS(5) smoother, and p-multigrid method with the matrix-free SGS(10) smoother. One
can clearly see that both SGS and LU-SGS methods are far more efficient than TVDRK method as
a smoother, and the SGS method with 10 iterations seems to give the best performance. Fig. 3(i)
and (j) shows a comparison of convergence histories versus time steps and CPU time, respectively,
for the P1 and P2 element approximation between the three-stage TVD Runge–Kutta explicit method,
and p-multigrid method with the matrix-free SGS(5) smoother. The mesh used for P2 computations was
chosen such as that the number of degrees of freedom for P1 and P2 computation is about the same.
The coarse mesh used for P2 computation has 3447 elements, 1786 grid points, and 125 boundary
points. Again, the present p-multigrid method can obtain the convergence in nearly the same number
a
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Fig. 2. (a) Unstructured mesh used for computing subsonic flow past Ni�s bump configuration (nelem = 1559, npoin = 839,
nboun = 117). (b) Computed pressure contours in the channel at M1 = 0.5, a = 0�. (c) Convergence history versus time steps for
subsonic channel flow using 3-stage TVD Runge–Kutta explicit method between P0-element approximation and P1-element
approximation. (d) Convergence history versus CPU time for subsonic channel flow using 3-stage TVD Runge–Kutta explicit method
between P0-element approximation and P1-element approximation. (e) Convergence history versus time steps for subsonic channel flow
for P0-element approximation among 3-stage TVD Runge–Kutta explicit method, matrix-free LU-SGS method, and matrix-free SGS
method with 10 iterations. (f) Convergence history versus CPU time for subsonic channel flow for P0-element approximation among 3-
stage TVD Runge–Kutta explicit method, matrix-free LU-SGS method, and matrix-free SGS method with 10 iterations. (g)
Convergence history versus time steps for subsonic channel flow for P1-element approximation among 3-stage TVD Runge–Kutta
explicit method, 3-stage TVD Runge–Kutta p-multigrid method, matrix-free LU-SGS p-multigrid method, and matrix-free SGS-10 p-
multigrid method. (h) Convergence history versus CPU time for subsonic channel flow for P1-element approximation among 3-stage
TVD Runge–Kutta explicit method, 3-stage TVD Runge–Kutta p-multigrid method, matrix-free LU-SGS p-multigrid method, and
matrix-free SGS-10 p-multigrid method. (i) Convergence history versus time steps for subsonic channel flow using the same number of
degrees of freedom for P1- and P2-element approximations between 3-stage TVD Runge–Kutta explicit method and matrix-free SGS-5
p-multigrid method. j: Convergence history versus CPU time for subsonic channel flow using the same number of degrees of freedom
for P1- and P2-element approximations between 3-stage TVD Runge–Kutta explicit method and matrix-free SGS-5 p-multigrid
method.
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of cycles at p = 2 as p = 1, and P2 computation actually requires less cpu time than the P1 computation.
For this case, the p-multigrid method is about 10 times faster for P1 computation and 18 times faster
for P2 computation than its 3 stage TVDRK counterpart.



Fig. 3. (a) Unstructured mesh used for computing subsonic flow past a NACA0012 airfoil (nelem = 6891, npoin = 3537,
nboun = 183). (b) Computed pressure contours for subsonic flow past a NACA0012 airfoil at M1 = 0.675, a = 2�. (c) Convergence
history versus time steps for subsonic flow past NACA0012 airfoil using 3-stage TVD Runge–Kutta explicit method between P0-
element approximation and P1-element approximation. (d) Convergence history versus CPU time for subsonic flow past NACA0012
airfoil using 3-stage TVD Runge–Kutta explicit method between P0-element approximation and P1-element approximation. (e)
Convergence history versus time steps for subsonic flow past NACA0012 airfoil for P0-element approximation among 3-stage TVD
Runge–Kutta explicit method, matrix-free LU-SGS method, and matrix-free SGS method with 10 iterations. (f) Convergence history
versus CPU time for subsonic flow past NACA0012 airfoil for P0-element approximation among 3-stage TVD Runge–Kutta explicit
method, matrix-free LU-SGS method, and matrix-free SGS method with 10 iterations. (g) Convergence history versus time steps for
subsonic flow past NACA0012 airfoil for P1-element approximation among 3-stage TVD Runge–Kutta explicit method, 3-stage TVD
Runge–Kutta p-multigrid method, matrix-free LU-SGS p-multigrid method, and matrix-free SGS-10 p-multigrid method. (h)
Convergence history versus CPU time for subsonic flow past NACA0012 airfoil for P1-element approximation among 3-stage TVD
Runge–Kutta explicit method, 3-stage TVD Runge–Kutta p-multigrid method, matrix-free LU-SGS p-multigrid method, and matrix-
free SGS-10 p-multigrid method. (i) Convergence history versus time steps for subsonic flow past NACA0012 airfoil using the same
number of degrees of freedom for P1- and P2-element approximations between 3-stage TVD Runge–Kutta explicit method and matrix-
free SGS-5 p-multigrid method. (j) Convergence history versus CPU time for subsonic flow past NACA0012 airfoil using the same
number of degrees of freedom for P1- and P2-element approximations between 3-stage TVD Runge–Kutta explicit method and matrix-
free SGS-5 p-multigrid method.
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5.4. Subsonic flow past a RAE2822 airfoil

The last example is the subsonic flow past a RAE2822 airfoil at a Mach number of 0.63, and an angle of
attack 0�. The fine mesh used for P1 computation, which contains 2681 grid points, 5163 elements, and 199



Fig. 4. (a) Unstructured mesh used for computing subsonic flow past a RAE2822 airfoil (nelem = 5163, npoin = 2681, nboun = 199).
(b) Computed pressure contours for subsonic flow past a RAE2822 airfoil at M1 = 0.675, a = 0�. (c) Convergence history versus time
steps for subsonic flow past a RAE2822 airfoil using the same number of degrees of freedom for P1- and P2-element approximations
between 3-stage TVD Runge–Kutta explicit method and matrix-free SGS-5 p-multigrid method. (d) Convergence history versus CPU
time for subsonic flow past a RAE2822 airfoil using the same number of degrees of freedom for P1- and P2-element approximations
between 3-stage TVD Runge–Kutta explicit method and matrix-free SGS-5 p-multigrid method.
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boundary points, is depicted in Fig. 4(a). The coarse mesh used for P2 computations, chosen to have about
the same number of degrees of freedom for P1 and P2 computation, consists of 2582 elements, 1360 grid
points, and 138 boundary points. The computed pressure contours obtained using P1-element approxima-
tion in the flow field are shown in Fig. 4(b). Fig. 4(c) and (d), shows a comparison of convergence histories
versus time steps and CPU time, respectively, for the P1 and P2 computation between the three-stage TVD
Runge–Kutta explicit method and p-multigrid method with the matrix-free SGS(5) smoother. The trends
are almost exactly the same as for the last two test cases: the convergence rate for the p-multigrid method
is insensitive to the polynomial order, and P2 computation actually requires less cpu time than the P1 com-
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putation. For this case, the p-multigrid method converges about 11 times faster for P1 computation and 16
times faster for P2 computation than the explicit method.
6. Conclusions

A p-multigrid discontinuous Galerkin finite element method has been developed for solving the com-
pressible Euler equations on unstructured grids. It is found that when the multi-stage TVD Runge–Kutta
explicit scheme is used as an iterative smoother, the performance of the resulting p-multigrid method is
quite disappointing due to the severely anisotropic nature of the Euler equations, and the isotropic nature
of p-multigrid iterations. Implicit schemes as an iterative smoother provide much better convergence prop-
erties at the expense of significant increase in storage requirements. This observation has led us to use dif-
ferent iterative smoothers at different approximation levels in an attempt to develop an efficient method to
accelerate the convergence of the Euler equations to a steady state without significant increase in memory
requirement. The developed p-multigrid has been used to compute compressible flows for a variety of test
problems on unstructured grids. The numerical results obtained strongly indicate the order independent
property of this novel p-multigrid method. This makes our p-multigrid method especially significant and
attractive for DG(2) method, as a third-order solution actually requires less CPU time than a second-order
solution for the same number of degrees of freedom. The overall performance of this novel p-multigrid is
one order of magnitude better than the explicit method without significant increase in memory. Using this
acceleration method, the discontinuous Galerkin methods provide a viable and competitive alternative to
the traditional finite-volume, finite-element, and finite-difference methods. The extension of the present p-
multigrid method to other types of elements and three-dimensional problems appears to be straightfor-
ward. Future work will also explore application of this method for the solution of the Navier–Stokes
equations.
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