

This project has received funding from European Union's Horizon 2020 research and innovation programme under grant agreement № 723360

Numerical tools for the design of fibre-based ships of large lengths

Participants: CIMNE, COMPASSIS, ULIM, VTT, TWI, LR, BV, RINA, TUCO, IXBLUE, TSI

Cartagena, 27th February 2019

PRIVATE - CONFIDENTIAL © Document property of FIBRESHIP

CHARACTERIZATION AND SIMULATION OF FIBRE-BASED MATERIALS

- Simulation of mechanical performance of composites.
- Calibration process.
- Fatigue performance of composites.

• NUMERICAL TOOLS TO DESIGN AND ANALYZE FIBRE-BASED SHIPS OF LARGE LENGTH

- Coupled seakeeping-FEA tool
- GUI for materials definition, hull girder analysis and collapse assessment.

CHARACTERIZATION AND SIMULATION OF FIBRE-BASED MATERIALS

INTRODUCTION. What's a composite material?

INTRODUCTION. Use of composite materials on naval industry

SOLUTIONS ON NAVAL INDUSTRY ARE BECOMING MORE SPECIFIC, AS WELL AS THE MATERIALS USED TO DEAL WITH ARE BECOMING MORE COMPLEX.

COMPLEX SOLUTIONS REQUIRE SPECIFIC TOOLS

FIBRESHIP, 27th February 2019

INTRODUCTION. Challenges with composites

- Anisotropic behavior: material properties are orientationdependency.
- Different failure modes (delamination, matrix cracking, fiber breakage,...)
- Lack of experimental data compared with other materials.

Standardization of tests and calibration methods

HOW TO DEAL WITH THESE CHALLENGES?

Serial/Parallel Mixing Theory

This formulation is a constitutive equations manager that provides the response of the composite by coupling the constitutive equations of its components.

FIBRESHIPT

ADVANTAGES OF USE S/P MIXING THEORY

- Any staking sequence, no matter fiber orientation or fiber volume fraction.
- Formulation is able to couple different fiber/matrix systems, different constitutive laws.
- Non-linear performance of the composite can be defined from its constituents.

WHAT DATA DO WE REQUIRE?

- Stacking sequence of the laminate and volumetric participation.
- Elastic properties of the constituents.
- Non-linear properties of the constituents.

RESULTS. Load-Position curves.

Shear test

3P Bending perpendicular to fibre direction

INTRODUCTION. Fatigue phenomenon

ASTM E1823 standard: "The process of permanent, progressive and localized structural change which occurs to a material point subjected to strains and stresses of variable amplitudes which produces cracks which lead to total failure after a certain number of cycles".

Importance of the fatigue in naval structures. Prove of it is the existence of specific rules on Class Societies

DNV-RP-C203

ShipRight FDA

NI 611 DT R00 E

FATIGUE FORMULATION

- Fatigue damage formulation initially developed for metallic materials
- The constitutive law is modified by means of a reduction function, to account for the cyclic behaviour of the load.
- The formulation can take into account different block loading sequence.

FIBRESHIP, 27th February 2019

FIBRESHIP

ADAPTATION OF THE FORMULATION TO COMPOSITES

- Require to establish fatigue models for fibre and matrix.
- S/P Mixing Theory couples both materials to obtain fatigue behaviour of composite.
- Fibre and matrix performance, both static and fatigue, are obtained by tests on UD laminates.
 - UD loaded at longitudinal direction has a fibre-dominated performance.
 - UD loaded at transverse direction has a matrix-dominated performance.
- Failure of the laminate is supposed when damage appears on fibre for longitudinal ply.

FIBRESHIP

VALIDATION OF THE FORMULATION

16

CONCLUSIONS ABOUT NUMERICAL MODELS

RELEVANT ASPECTS

- Composite perfromance is obtained by means of fiber and matrix behavior, regardless fiber orientation or fiber participation, what reduces number of tests to be done.
- A process to calibrate the numerical model is constructed.
- Failure modes of the composite can be obtained.
- S/P Mixing Theory is compatible with known failure criteria (Tsai-Hill, first ply failure, etc).
- A composite fatigue model is introduced in order to simulate any kind of laminate.
- Better understanding of fatigue performance of composite structures.
- Reduction of uncertainty means structure optimization.

NUMERICAL TOOLS TO DESIGN AND ANALYZE FIBRE-BASED SHIPS OF LARGE LENGTH

Hull girder analysis tool

FIBRESHIP T

✓ Hull girder model: Simple
3D dynamic beam coupled
with FEM seakeeping solver.
It allows to analyse quickly
long time series of the
coupled problem.

✓ 3D detailed local model: information from the hull girder model may be used to enforce the boundary conditions needed for a detailed analysis of a local ship structure.

Hull girder analysis tool

o Applied loads and boundary conditions:

- Distributed cargo pressure loads must be specified
- Seakeeping wave load calculated during the hull girder analysis
- Enforce hull girder displacements at the end boundaries of the local section under analysis

○ Results:

•Time history of local displacements and stresses in the detailed structure of the section under analysis

Hull girder graphic user interface

FIBRESHIPT

 A GUI has been implemented in RamSeries to allow for the definition of ship sections and cargo/ballast loads for the hull girder solver.

Design and engineering (TQC3) / Compass / 12th - 13th of November 2018

GUI for the definition and assignement of laminates

GUI for the definition and assignement of laminates

Coupled analysis for collapse assessment

• FDS GUI (based on GiD-Ramseries)

SOME CHARACTERISTICS

- New GUI tools allow to define the main namelist groups of FDS (obstacles, vents, reactions, fire events ...) directly in GiD-RamSeries and to run FDS solver.
- Geometrical information is shared with the structural model and can be used for the definition of the FDS model.
- Importation tools (STEP and IGES, including XML's FORAN data)

CFAST GUI (based on GiD-Ramseries)

SOME CHARACTERISTICS

- New GUI tools also allow to define compartments, vents, fire events and targets directly in RamSeries and to run the CFAST solver.
- Geometrical information from the structural model can be used for the definition of the CFAST model if necessary..
- Importation tools (STEP and IGES, including XML's FORAN data)

Coupled analysis for collapse assessment

• FDS / CFAST GUI ()

1D/2D Pyrolysis model

Thermo-mechanical analysis

SOME CHARACTERISTICS

- FDS: Temperature maps over structural components (beams, decks and bulkheads) are calculated
- CFAST: Two-zones temperature evolution is calculated.
- FDS/CFAST: Furthermore, time evolution of (adiabatic) temperature in a distributed network of control points

SOME CHARACTERISTICS

- Transfer temperature (heat flux) information from control points to the structural solver.
- The structural solver includes a pyrolysis model for composites (1D -through thickness- model for shell elements and a 2D model for beam elements), which calculated temperature distribution (per layer).

SOME CHARACTERISTICS

• Displacements, strains and stresses are calculated on structural components using a thermomechanical composites constitutive model (collapse of the structure is assessed).

Collapse assessment of complex and large structures

FIBRESHIPT

• Start the validation and demonstration of fire analysis tools by simulating a fire scenario in the FIBRESHIP's demonstrator of the fishing research vessel

Joel Jurado Granados

THANK YOU

E-mail: jjurado@cimne.upc.edu

www.fibreship.eu