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Abstract. A novel multiscale variational method for modelling fracture propagation is proposed. The
method employs strong discontinuity kinematics enhancement, enabling macroscopic cracks to be mod-
elled explicitly, while minimum remeshing is ensured. In addition, the response of quadrature points
in the bulk is up-scaled using a Micromechanical continua, which enables the evolution of directional
micro-defects (e.g. microcracks) without venturing into prohibitive computational burden. Noticeably,
the method allows the Micromechanical continua to interact with macroscopic cracks. The framework is
conveniently formulated as a variational setting to provide a minimum energy solution. The new compu-
tational framework has been found to diagnose realistic failure mechanisms in quasi-brittle materials.

1 INTRODUCTION

Multiscale homogenisation is resurgent in Computational Mechanics [1], and opens the door to enhance
our understanding of materials. Benefits of multiscale modelling are noticeable, when conventional
inelasticity frameworks cannot reproduce the response of heterogeneous materials and structures with
the required accuracy needed. Taking into account the intrinsic microstructure of materials by direct
numerical simulation (DNS) is often computationally prohibitive. On the other hand, computational
homogenisation, referred to as global-local analysis [2], can also become computationally demanding
[3]. Therefore, there is a need for proposing efficient homogenisation strategies.

Moreover, an adequate or definitive treatment for damage to actual fracture occurrence across scales
yet remains as an unresolved dilemma in Multiscale modelling [4]. Although other methods exist for
macroscopic fracture, e.g. micropolar continua [5, 6], gradient-enhanced continua [7, 8], phase-field
methods for (quasi-) brittle fracture [9, 10], among others, connection with the evolving microstructure
is somewhat hidden in numerical length-scale parameters. Seeking a rigorous micromechanistic basis to
macrocracking is appealing. This paper tackles two challenges in Multiscale modelling: (i) reduction of
computational cost, e.g. by using diffuse approximations for RVE-based microstructural evolution, and
(ii) energetically-consistent treatment of diffuse-micro and localised-macro fracture seamlessly.

The remainder of the paper is divided into six additional sections: Section 2 explains a least-energy
approach for multiscale modelling of inelasticity and fracture; Section 3 describes homogenisation prin-
ciples at the RVE level; Section 4 expands on micro to macrocracking transition; Section 5 describes the
response of sharp macrocracks; Section 6 shows some numerical results; and Section 7 concludes.
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2 A NEW (LEAST-ENERGY) VARIATIONAL APPROACH TO MICRO-MACRO FRACTURE

A new variationally consistent method is proposed for modelling the transition from diffuse microcrack-
ing to localised fracture in quasi-brittle solids. The method relies on energy minimisation principles,
imposed on a multiscale weak form for solids with embedded discontinuities (see figure 2). The reader
may refer to [11, 12, 13] for reference on theoretical perspectives for non-linear solids with embedded
discontinuities:

↓ Downscaling,↑ Upscaling: δΠ = minimise
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Figure 1: Fracture kinematics: strong discontinuities follow a cohesive response with characteristic
smooth unloading/reloading (SUR) traction-separation law. For reference on SUR response see [14].

3 MICROMECHANICAL CONTINUA

The response of the micromechanical continua is non-linear, and is subjected to the evolution of di-
rectional microdefects (e.g. microcracks). Incorporating Eshelby’s ellipsoidal micro-voids in a diffuse
fashion [15], at various sets of preferential microcracking zones at the RVE level, and employment of
volume-averaging rules of RVE-based energy variation (Hill-Mandel condition [16]), yields the follow-
ing effective constitutive relation:

ε =< ε >RV E = D−1
e : < σ >RV E +

1
2π

∫
2π

∫
π/2

N−1
ε (ψ,θ) : ε

Γm
α sin(ψ)dψdθ (3)

ε
Γm
α (ε,< σ >RV E) = Nα

∫
∂Γm

(
rα⊗ [u∂Γm ]

)sdS, ∀x′ ∈ ∂Ω
m
α (4)

Remarks: (i) The evolution of microcrack density in every set of degradation micro-zones is linked
conveniently to the average strain history of the RVE, in an implicit computing flow; (ii) Numerical
homogenisation, as adopted in this paper, avoids the use of physical domains as RVEs, and exploits ener-
getic principles to track diffuse material degradation at the Micromechanical continuum; (iii) Macrocrack
degrees of freedom are condensated at the element level, while micro- and macrocracks interact.
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4 MACROCRACK DETECTION UPON MICROCRACKS COALESCENCE

Upon substantial microcracking growth, macroscopic fracture is enabled. In this case, the Microme-
chanical continua dictates the propagation direction of macroscopic sharp cracks. New macrocracks are
allowed to rotate until a critical iteration number itfix is reached. A computational flow is shown below:

New iterative element displacement (due to recent global update) : uel← uel +δuel

Activate flag for macrocrack detection: fζ← 1

iiter≤ itfixnew macrocrackζ
M,iiter−1
avg < ζcritfζ← 0

Delete recent
macrocrack to
allow rotation

fζ = 1

crack no. < max

Get homogenised
major princ. stress
σ̄1←< σ1 >GPtrack

σ̄1 > σcrit

Micromechanics
guides new
nucleation

Advance to force recovery

Use Standard Galerkin update or Variational minimisation ( only if macrocracks exist)

continue

continue

yesyesyes

no no

yes

no

no

yes

no

yes

no

Figure 2: Flow chart - Nucleation criteria is based upon crack aperture and Micromechanical stress.
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In addition, new forming macrocracks can be omitted in a near future iteration if the macrocrack average
aperture (an equivalent aperture can be used for mixed mode cracks) is smaller than a critical value.
This constraint has been found to conveniently delay the release of macrocracks, in such a manner that
a smooth transition from micro to macro fracture is obtained in the load-displacement space. A few
options are possible to adjust the transition from microcracking dominated phenomena to fully developed
macroscopic fracture, although these will be discussed later in the form of a journal publication.

5 EMBEDDED COHESIVE MODEL FOR SHARP MACROCRACKS

A simple traction-separation law is used upon macrocrack detection within a localised macrocrack band
of defined virtual thickness hca. It is highlighted that there is no geometric thickness of the macro-
crack band in the finite element setting. A single degradation macro-state variable ζM, with units of
length, dominates the response at each integration point of the localised macrocrack band. A dimension-
less degradation scalar-variable ωM is defined using a Smooth Unloading Reloading (SUR) approach.
Such approach benefits the numerical scheme by ensuring positive tangents upon fixation of macroc-
racks within the global incremental iterative procedure. The (local) traction separation-law follows the
expression shown below :

t′
ΓM(x′) =

1−ωM(x′)
hca

[
E 0
0 E/(2(1+ν))

]
∆u(x′), ∀x′ ∈ ∂Γ

M (5)

The work-conjugated equivalent force vector for the embedded cohesive model reads as follows:

Fck(x′) =
1

hca

 ∫
Γ
(1−ωM)Etgdl 0

∫
Γ
(1−ωM)Eltgdl

0
∫

Γ
(1−ωM)Gtgdl 0∫

Γ
(1−ωM)Eltgdl 0

∫
Γ
(1−ωM)El2tgdl

W, ∀x′ ∈ ∂Γ
M (6)

6 REPRESENTATIVE NUMERICAL EXAMPLE

6.1 Four-point bending test

A typical four-point bending setup is simulated using the new proposed framework. The main span of
the beam specimen is pushed at two contact points, located at a distance of L/3 from each support axis,
with L being the main span length. For details on element level performance the reader may see [17].
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Figure 3: Four point bending test on concrete. Geometry and boundary conditions as shown in illustra-
tion. Elastic supports possess equivalent elastic properties as the aggregate-matrix mixture.
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Elastic properties of the aggregate-cement matrix mixture follow standard concrete parameters: overall
Young’s modulus E = 30 GPa and ν = 0.2. Numerical results are shown below:

Figure 4: Load-displacement predictions for four-point bending test on concrete.

(a) Coarse mesh (4488 dofs): failure patterns and deformed geometry (shaded background), at uy = 0.2mm.

(b) Fine mesh (7644 dofs): failure patterns and deformed geometry (shaded background), at uy = 0.2mm.

Figure 5: Predictions of failure mechanisms in four-point bending test. Colour-bars indicate inelastic
components of (major principal) homogenised strain and normalised macrocrack relative displacement.
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7 CONCLUSIONS

A new Multiscale variationally consistent method for modelling fracture, that provides a least-energy
solution, is proposed. Distinctive findings read as follows:

- The method is efficient, given that : (i) RVEs are conveniently approximated by a Micromechanical
continua; and (ii) macrocracking dofs are condesated at element level.

- The method adequately captures the interaction among diffuse-micro and localised-macro frac-
tures during the onset of material instabilities.

- The method has shown promise in the diagnosis of failure in quasi-brittle materials.
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Géotechnique, vol. 37, pp. 271–283, sep 1987.
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[8] L. Sluys, R. De Borst, and H. Mühlhaus, “Wave propagation, localization and dispersion in
a gradient-dependent medium,” International Journal of Solids and Structures, vol. 30, no. 9,
pp. 1153–1171, 1993.

6

https://www.cardiff.ac.uk/engineering
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/P02081X/1


Carlos X. Azua-Gonzalez, Iulia C. Mihai and Antony D. Jefferson

[9] C. Miehe, F. Welschinger, and M. Hofacker, “Thermodynamically consistent phase-field models
of fracture: Variational principles and multi-field FE implementations,” International Journal for
Numerical Methods in Engineering, vol. 83, pp. 1273–1311, sep 2010.

[10] C. V. Verhoosel and R. de Borst, “A phase-field model for cohesive fracture,” International Journal
for Numerical Methods in Engineering, vol. 96, pp. 43–62, oct 2013.

[11] J. C. Simo, J. Oliver, and F. Armero, “An analysis of strong discontinuities induced by strain-
softening in rate-independent inelastic solids,” Computational Mechanics, vol. 12, no. 5, pp. 277–
296, 1993.

[12] J. Oliver, A. E. Huespe, M. D. G. Pulido, and E. Samaniego, “On the strong discontinuity ap-
proach in finite deformation settings,” International Journal for Numerical Methods in Engineer-
ing, vol. 56, pp. 1051–1082, feb 2003.

[13] F. Armero and C. Linder, “Numerical simulation of dynamic fracture using finite elements with
embedded discontinuities,” International Journal of Fracture, vol. 160, pp. 119–141, dec 2009.

[14] W. Alnaas and A. Jefferson, “A smooth unloading–reloading approach for the nonlinear finite ele-
ment analysis of quasi-brittle materials,” Engineering Fracture Mechanics, vol. 152, pp. 105–125,
feb 2016.

[15] S. Nemat-Nasser and M. Hori, Micromechanics: Overall Properties of Heterogeneous Materials.
North-Holland, 1993.

[16] R. Hill, “Elastic properties of reinforced solids: Some theoretical principles,” Journal of the Me-
chanics and Physics of Solids, vol. 11, pp. 357–372, sep 1963.

[17] C. Azua-Gonzalez, I. Mihai, and A. Jefferson, “A combined Micromechanics Strong-Discontinuity
approach for Modelling Distributed and Localised Fracture in Cementitious Materials,” in UKACM
19 conference, (London), 2019.

7


	INTRODUCTION
	A NEW (LEAST-ENERGY) VARIATIONAL APPROACH TO MICRO-MACRO FRACTURE
	MICROMECHANICAL CONTINUA
	MACROCRACK DETECTION UPON MICROCRACKS COALESCENCE
	EMBEDDED COHESIVE MODEL FOR SHARP MACROCRACKS
	REPRESENTATIVE NUMERICAL EXAMPLE
	Four-point bending test

	CONCLUSIONS

