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SUMMARY

A general finite volume method (FVM) for the analysis of structural
problems is presented. It is shown that the FVM can be considered to
be a particular case of finite elements with a non Galerkin weighting.
For structural analysis this can be readily interpreted as equivalent to the
unit displacement method which involves mainly surface integrals. Both
displacement and mixed FV formulations are presented for static and
dynamic problems.

-

INTRODUCTION

The finite volume method (FVM) evolved in the carly seventies via finite
difference approximations on non-orthogonal grids. Popularity of the FVM
has been extensive in the field of computational fluid dynamics (CFD) and
heat transfer [1-5]. On the contrary, in the fied on computational solid
mechanics (CSM) the use of the FVM has never achieved such acceptance.
An early attempt to use FV concepts in CSM is due to Wilkins (6] as an
alternative approximation to derivatives in a cell. In this he defines the
average gradient of an arbitrary function u in a volume Q as

Ju 1 Su 1
(82:1-)9: Q Ja dz; dﬂwﬁ Sun,ds (1)

using the well known divergence theorem.
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Such definition of gradients can be written entirely in terms of function
values at the boundary of a volume and has been used in the early
“hydrocodes” of the Lawrence Livermore Laboratory.

The reasons for the unpopularity of the FVM amongst structural
mechanics is understable, as finite volumes are well known to be less accurate
than finite elements for self adjoint (elliptic) problems. A comparison
between FVM and FEM has been recently presented by Zienkiewicz and
Onate (7). Here the authors show that FVM and FEM share concepts such
as mesh discretization and interpolation, giving precisely the same discretized
systems of equations for some particular cases. Moreover, it is also shownin a
simple bar example that the finite volume solution can be improved if a mixed
formulation, involving displacements and stresses as variables, is used. These
advantages unfortunately do not show so clearly for 2D and 3D problems.
Here, surface integrals are mostly involved and the number of computations
can be shown to be proportional to the number of “sides” in the mesh.
This leads to an overall solution cost very similar (and sometimes greater)
than that of FE computations (note that for a fine mesh of 3 node triangles
the number of sides is 1.5 times that of elements). This fact suggests that
computational speed is not one of the keys to the possible success of FVM
in structural problems. However, the possibility of obtaining the element
maltrices and vectors in terms of computations along the element sides opens
new possibilities for the solution of some structural problems which, in the
authors’ opinion, may be worth exploring in more detail.

The layout of the paper is as follows. In next section the general finite
volume format for structural mechanics is presented. Both displacement and
mixed formulations are discussed in detail and applications to simple bar and
Timoshenko beam examples are presented. Finally, possibilities of the FVM
for transient dynamic structural problems are discussed and some examples
showing the potential of the methods proposed are given.

BASIC EQUATIONS

We consider the solution of the differential equations of structural
mechanics and their boundary conditions which can be written as

Equilibrium equation
LYe + by~ pit =0 in 0 (2)
Strain definition
e-Lu=0 in Q (3)
Constitutive equation

g-De=0 in (4)
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Boundary conditions

To—-t, =0 n Iy (6)

In (2)~(6) u, € and o are the displacement, stress and strain vectors,
respectively, D is the constitutive matrix, p the material density, i the vector
of accelerations, by the constant body forces, up, the prescribed displacements
at the boundary Iy, tp the prescribed traction forces at the boundary I'y, 0
the domain area or volume with boundary I' = 'y UTy. Typical examples of
matrices L and T for 2D elasticity problems are

g
o= i) n 0 n

L—|0 , Tz[‘” y] 7
s ?505 0 ny ng (7)
Jy Dz

where nz,n, are the components of the unit normal n to the domain
boundary.

Displacement formulation

We will consider first the reduced form of eqs.(2)-(6) obtained by
substituting the strains from (3) in (4) and the resulting value of the stresses
in (2) and (6) to give

Equilibrium equation

LIDLu+by - pit=0 in O (8)

Boundary conditions

u-—up =20 in Iy (9)
TDLu —t, = 0 in I ' (10)

The weighted residual form of eqs.{8-10) can be written now as
/Q WTLTDLu + by — pit] d2 + j@ WIlu - up) dl'+

(11)
+ ¢ WITDLu - t,]dr - o
I

We will assume now that W, = 0 in I'y enforcing the satisfaction of the
kinematic boundary conditions (9). Integration by parts of the first term

of the first integral in (11) and choosing Wy = —~W yields the well known
expression
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—fQ[LW]TDLudQ +fQWT[bo ~ pii] dmnjg WTTDLudl+

(12)
+ ﬁé‘ WTt,dl = 0
t

REMARK 1

By choosing now (for 2D problems) wT = {6u,bv}, where du, bv can be
intepreted as virtual displacements, eq.(12) recovers the usual form of the
Principle of Virtual Displacements (8] which can be taken as the starting
point for any finite element, or finite volume, formulation.

In both FV and FE procedures the independent unknowns are
approximated as

us~i=Nyu;  (j=1,---,n) (13)

where u; are the unknown parameters and N are the basis functions (8].
The approximating system of equations (12) is written now as a set of
algebraic equations

— [ (LW, )TDLadY + | Wb — pl]dO+ ¢ WITDLaJI+
Q a ° r, °
* (14)
4 jtfr wlt,dl = 0
t

where W; (i =1,---

,+-+,m) are now an appropriately selected set of weighting

functions.
I2q.(14) can be written for linear systems after substitution of the
interpolation (13) as

Mu+ Ka = f (15)

where the usual additive property of element or subdomain contributions is
preserved, whatever the form of the weighting functions. In (15) M, K and
f are, respectively, the mass and stiffness matrices and the equivalent nodal
force vector given by

Mij:fﬂ WpN; dQ) (16a)
K. x/n LW TDLN; dﬂ—fr WTTDLN; dI (16b)

£ = fﬂ W bode) + ﬁ wTt,dr (16¢)
t L
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In above €; is the control volume associated with node 7 {to use the
finite volume terminology. See Figure 1) where W, # 0. The boundary of
the control volume is denoted I';, excluding the part which may coincide with
the external boundary of the total domain where tractions are prescribed;
this particular part of the boundary is denoted as ['y; and it is included in
the force term. Providing both W; and N; are chosen so that integrals (16)
can be evaluated, then whatever the external boundary we can specify on it
cither the tractions (tp) or the displacements (i1 = up) with equal ease.

Galerkin approach

Structural problems are usually self adjoint and the optimal weighting is
the Galerkin one with W; = N;, thus implying the same approximation for
the virtual displacements than for the actual ones. This leads to minimum
energy norin errors and preserves synunetry of matrices K and M (note that
the surface integral in (16b) now vanishes as N; is zero at the control volume
boundary. See Figure 2). Hence, the Galerkin approach is the basis of most
frequently used finite element procedures. However, other weightings can
be used recovering all possible approximation methods [8]. In what follows
we shall use standard finite element interpolations N; with 0 standing for

nodal values in element subdomains.

Figure 1. An assembly of finite elements/finite volumes with
shading indicating the control volume.
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FINITE VOLUME METHOD

The finite volume procedure is in fact a special case of the weighted
eq.{14) in which

W;=1 in ; (and W; = 0 elsewhere) (17)
where I is the unity matrix,

Eq.(14} can be readily interpreted as applying unit virtual displacements
over each control volume. Thus substituting (17) in (12) yields (as LI = 0)

fﬂipudﬂ—jtgiTDLudI‘_/ﬂibgdﬂ—f;utpdf:0 (18)

Eq.(18) can be written in the standard matrix form (15) using (13) where
I1ow

M,; :fnpNj 0 (19a)
K, = —fpi TDLN; dT (198)
f£; = /ﬂi bodﬂ+j€‘ﬁ tp dl’ (19¢)

In (19) definition of £;, T; and I'y; coincide with those given for Equations
{16). We note however that the control volume ; can be prescribed in
various ways, and some are discussed in the next sections.

REMARK 2

Note that in the FVM matrix K is invariably non-symmetric (see eqn.
(19b})). This is a direct consequence of the equivalence between this approach
and the well known unit displacement method in structural mechanics {12].

Cell Vertex scheme

To illustrate above concepts consider a field of arbitrary triangles with
linear interpolations with the control volume for node i-th shown shaded in
Figure 1. This corresponds in finite volume terminology to the so—called cell
vertex approach [5] ( sometimes quoted as vertex centered approach [8] ).

In standard finite element assembly the weighting function W; = N; is
of the form shown in Figure 2a and ; includes all the elements associated
with the i-th node.

Now, if we consider the cell vertex finite volume situation (Figure 2b)
it is evident that all volume integrals involving derivatives of the constant
weighting function dissappear. However, a difficulty arises with the boundary
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a) B)

Figure 2. Weighting and basis functions for finite element (a) and
finite volume {b} approximations for Figure 1.

integral in the K;; term of Eq.(19b), because the displacement gradients
involved are not continuous at the interfaces between the elements.

In the normal direction n between {wo elements, as illustrated in Figure
1, we have a discontinuity shown in Figure 3 with %I:—ZL jumping from a value
1/hy to —1/h,y, where heights of adjacent triangles are denoted h;, and h,.

an  h, | i
h : | — Boundary of Q;

i A
| |

1 hy | E ‘1 h, .

' by ! ,
| i
b poON Ly
i L mT =
! | | Sl h,

A

Figure 3. Discontinuity of gradient at boundaries of control volume

The theory of disiributlons indicates that the jump in g% across the

boundary should be given an average value. [t will indeed be found that the.
mid value is optimat and then

di 1 ( i

o~ 2\ on

N du
1 on

)

du du . : du
where 31—1“ and 5;;[2 are respectively the values of 7. over elements 1 and 2
sharing the interface under consideration.
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REMARK 3

The jump in g—% across the boundaries reflects the discontinuity of
tractions along a common boundary in two adjacent elements. This is shown
clearly if the first boundary integral in (18) is writien as gr; t dl' where t are

the tractions acting on the boundary T;.

Example

An illustration of both finite element and finite volume approximations
can be easily obtained in the one dimensional example of a bar under
uniformly distributed traction forces, b(z), where equal two node linear

elements of size h are used (see Figure 4).

{a) Shape-basis functions

-2

(b} Weighting for FEM - Galerkin

Control wolume —

- o
2 -1 1 141 1+7

te} Weghting for FEM - (Subdomain coliocation) = F. Volume (Vertex centered)

Control volume -,

. ! -
e penee e 0 s ok

V-7 i-1 | 11 147

td) As [c) but with “cell centered” weighting

Control volume l
[ | :

Figure 4. A one dimensional problem.
The finite element approximation yields a typical assembled equation
(which can be easily verified after addition of appropriate integrals) as

h .. . . k _
gluisn + 4+ i) E(ﬁi“ — 204, + i) = f; (21)

where

h
fi= /ﬁh Nib da (22)
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The corresponding cell vertex finite volume equation is obtained using
the approximation (19)-(20) as

h o - . k - — — £
(g1 + 205 + 1) — 5-(Hige = 2u + Byeg) = fi (23)
2 2h

where

h
fi= ] bde (24)
—h

It can be noted that the two approximations are similar but by no means
identical. The finite volume considered has doubled the mass contained
in the finite element. The force f; is also doubled in case of a constant
uniformly distributed traction b. Further the mass is not distributed in the
same proportion at the nodes and neither is the force when b = b(z). Also, in
the FVM the stiffness term is readily recognized as an approximation to lwice
the second derivative of w. This results from using the interface derivatives
given by Eq.(20). It is notorious that this stiffness term has a wider bandwith
than the one corresponding to the FEM, as it involves external nodes 1 — 2
and 7 + 2. This is an undesiderable feature that would also occur in 2D and
3D situations, as can be seen in Figure 5. The problem can be overcome
by using the so—called eell centered schemes, or by avoiding second order
derivatives using a mixed formulation. Both possibilities are discussed 1n
next sections.

Figure 5. Nodes involved in the discretized equation of an arbitrary
control volume using the cell vertex scheme and a
“displacement” formulation.
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Bi- linear element

© - O pn s

S Control volume
i for node

Bi-quadratic elements

o

Figure 6. Control volumes for node i for higher order cell vertex
schemes using quadrilateral and triangular meshes.

The cell vertex scheme can be extended to higher order interpolations
without difficulty. Figure 6 shows some possibilities.

Cell centered finite volume schemes

In the preceding section we have tried to provide “weighting areas” (i.e.
control volumes) coinciding with elements. Clearly this presents the difficulty
of discontinuity of normal derivatives along boundaries and we can now
realize why many finite volume methods are applied in so-called cell centered
schemes. If we consider again the discretization of Figure 1 we can, as in
Figure 7, assign a control volume to each node without overlapping of the



A Finite Volume Format for Structural Mechanics 11

weighted area (the obvious division of each triangle is now indicated). In
Figure 4 we show the one dimensional equivalent of this and the reader can
easily verify that the finite volume equation now becomes

h . - . ko _ _ _ _
g('&i+1 A Gug + u;_y) — E(ui+1 - g+ uiml) = f; (25)

where

fixA/hﬂzbdx

~h )2

Equation (25) has the same connectivity as the finite element equations
and indeed retrieves here exactly the stiffness terms, however showing as
before different mass and force distributions.

Figure 7. Cell centered control volume.

REMARK §

The use of consistenl mass forms, which is found to be beneficious in
many transient computations using the finite element approximation, has
never found its way into the finite volume line of thinking. Here the users
invariably lump the masses implying for instance that Eq.(25) reads now

“ k
hug — (g = 20 + 8 g) = f; (26)

1t 1s obvious that if lumping is used both FE and FV left-hand sides are
now identical. If the forces b(z) are constant, both right-hand sides are also
identical, and so, the systems of equations, for the FVM and the FEM, in
this particular case, are the same { and so would be for finite differences !).
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For a cell centered scheme the use of mass lumping is natural, as it can be
obtained integrating the corresponding terms using a nodal quadrature. This
very important feature is preserved for 2D and 3D situations. Unfortunately,
this is not the case for cell vertex schemes, where the mass matrices obtained
are banded and not diagonally dominant.

MIXED FINITE VOLUME METHODS
The starting point for mixed methods are the equilibrium (Eq.(2)) and
constitutive (Eq.(4)) equations written as
LYo + by — pit = 0 (27a)
o—~DLu=0 (27b)

with boundary conditions (5) and (6).
We write now the weighted residual form of Eqs.(27) and (6) as

fﬂ WIL o | bg — pii] d2 + fp WT[To —t,)dT =0  (28a)
L
/Q WZo — DLuld} = 0 (28b)

In (28a) satisfaction of the kinematic boundary conditions u = u, has
been assumed. Integrating by parts the first term of (28a) and making
W = —W yields

_ [ (LW)e d0 T f T(hy - pis j£ — 0 (29
fﬂ( Yo +}§Fuw Todr + [ W (by —pid)dfd 4 f, tpdl'=0 (29)

Fqs.(29) and (28b) are the starting point for any mixed stress-
displacement finite element or finite volume approximations.

We will assume now independent interpolations for the displacement and
stress fields as

12
=
I

N"%u (300,)
N (30b)

[
q)
f

u
o

9

where N* and N7 are appropriate interpolating functions.
Choosing a cell vertex finite volume scheme with W; = I over each
control volume, the following system of discretized equations is obtained

'"'cm_f T”dI‘—/ bdQA}g todl' = 0 31
fﬂ,-pu i Q Ty 7 (31a)

fﬂ WTl¢ - DL4)dQ = 0 (315)

1
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where W; (=1, ,m) are appropriately selected weighting functions.

Eqs.(31} can be written in matrix form subtituting the approximations
{30) as

Mi ~S& =0 (32q)
Ce—-Giu=0 (32b)

wlhere
o

Cy :fQ_W?N;’dQ . Gy :/Q_VV?DLN;‘C;Q (33)

fz-:fbdﬂ ygtdF
Q:’O +Fu’p

Matrix M is in general a banded symmetric matrix, while matrix C is in
general non-symmetric, thus rendering solution of Eq.(31a) computationally
difficult. It must be noted that if a cell centered scheme and a lumping
procedure are adopted, matrix M would become diagonal. Matrices S and
G are rectangular.

Obviously, Eq.{315) can be solved separately for each stress component.
This implies solving a system of n X n equations for each stress component (n
being the total number of nodes). The form of matrices C and G is obviously
dependent of the choice of weighting functions W;. Here some options are
possible, each one leading to a different “stress recovery” algorithm. Some
of these options are discussed next.

Option 1: W, = N? (Galerkin)

This provides symmetry of matrix C. Furthermore, integratidtn using a
nodal quadrature would naturally produce a diagonal matrix. The resulting
algorithm would be equivalent to the one suggested by Cantin et al. [9] as

an improvement of standard irreductive, displacement type, finite element
solutions.

Option 2 W, = §; I (Dirac delta)
This allows to use point collocation for direct computation of stresses as
a; = [DLq); (34)

As the gradients are not defined at the nodes, some averaging would be
needed. Obviously, this leads to the traditional nodal stress recovery method
by simiply averaging the stresses from the adjacent elements.
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Option 3 W, =1
The form of matrices C and G of (33) is now given by

Cij E/QI_ NIdQ Gy :fﬂ; DLNY d0) (35)

This would lead to nodal stress computation involving a banded C matrix
with the same structure as matrix M of Eq.(33). If a cell centered scheme and
mass lumping are used the resulting algorithm is equivalent to the traditional
weighted nodal averaging of the stresses from the adjacent elements. This is
a simple and efficient procedure.

This option can also be interpreted as equivalent to use a finite volume
approach also on the constitutive equation. Integration by parts of (31b)
gives

fﬂ Wl - DL ) d0 =
= [ Wlsan s [ [(L7W,)D + W, LT D) 0 (36)

- jaﬁr WIDTTadl = 0

Substituting now W; = I in (36) yields

f & dQ +[ @TD)T i dn —jﬁ DT adr = 0 (37)
0, Q; r;

1

If material propierties are constant over the control volume the second
integral of (37) vanishes and the resulting equation is

/ & d0) —j‘@ DTTadr =0 (38)

)

Equation (38) relates the stresses within the control volume to the
displacements in its boundary.

Transient explicit solution

Mixed finite volume methods seem particulary well suited for transient
explicit problems. The staggered solution of the system (32) involves the
following steps
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Step 1: Displacement computation

Using central differences to discretize equation (32a) in time produces
the explicit scheme

a™t! = ACMTUE® - p) o+ 26" — o™ (39)
where M and f are given by (33), and po is given by (31)

P, = — jﬁp Té dl' (40)

Here use of a cell centered scheme with lumped mass matrix is most
advantageous, as it only involves vector computations.

Step 2: Siress recovery

Here, the different forms of matrices C and G discussed in last section
can be used. Clearly, all those resulting in a diagonal C matrix or leading to
direct nodal averaging are computationally advantageous.

We have to note that other procedures can be used for recovery of nodal
stresses. In particular the technique based on local smoothing over element
patches of the Gauss point stresses obtained from the displacement values,
recently proposed by Zienkiewicz and Zhu [10,11}, provides superconvergent
nodal stresses at a relatively low cost and could be a clearer alternative to

Eq.(41).

EXAMPLE 1. AXTIALLY LOADED BAR

To illustrate the applicability and performance of finite volume methods
we shall consider first a simple example of an axially loaded elastic bar of
lenght 21 (Figure 8). The axial load g will be taken either as constant (case
(a) ¢ = ¢) or linear (case (b} ¢ = cz).

The equilibrium and constitutive equations and the boundary conditions
read now

-‘i(EAd—u)Jrq:o 0<a2<2l

dz dr - =

uw=0 in z =10 (42)
du

P=FEA— =0 in r =21
dz
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Case {a} Case {b)

q==c¢ q:C)_(,/ -~

Z2cl

o

1

°
e

4—~ 21 _,*M.._! M@« e 2L e - J

Element @ Element @

Vertex centered Cell centered
Lo e 1o @
i 2
e © @ | Lo e
1 F 3 1 ) 3
g e O L @ ! LW W
1 7 3 1 2 3

Figure 8. Elastic bar under axial load,

In above u is the axial displacement, P is the axial force and E and
A are the Young modulus and the area of the bar transverse cross section
respectively.

The probiem will be solved with both displacement and mixed finite
volume formulations using cell vertex and cell centered schemes.

Displacement FV formulation

Following the arguments of the previous seclions, a typical finite volume
equation can be written as

du du
pASt) |patt +/ gde =0 (43)
dz | dz | L,

where L and R stand for the left and right ends of a volume of lenght ;.
Next we discretize the bar in two node elements of equal size h. Inside
each element the dispiacement u is linearly interpolated as

2
U = Z N-(e)uge) ' (44)

i

—l<é<1

. (e} _ 1 .
with N, 7(1+ &&) {51 = 1, £ =1

(45)
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being the standard linear shape functions of the two node element.

Case (a) ¢ = ¢ (Cell vertex and cell centered solutions)

Figure 9 shows the convergence of the cell vertex finite volume solutions
for meshes of 1, 2, 3 and 4 elements, respectively.

It can be checked that, following the arguments of previous sections, the
cell centered and the finite element solutions for this case are identical and
also give the exact solution at nodes for a/l meshes.

Case (b), g = cz

Table 1T shows the percentage error of the cell vertez solution for the
nodal axial displacements using three meshes of 1, 2 and 3 elements. Note
the big error (50%) in the end displacement obtained with the one element
mesh. This error reduces to 5.55% if 3 elements are used.

The cell centered solution differs in this case from the nodally exact finite
element values due to the difference in the nodal load vectors as explained in
a previous section. Percentage errors in the nodal displacements for the cell
centered case are also presented in Table I and show substantial improvement
with respect to the cell vertex solutions.

Mixed FV formulation

Particularization of eqs.(31) for this simple case yields (neglecting inertial

{erms) Py — P +/; gdr =0 (46a)

f W [P EAf‘éﬁ] dz = 0 (46b)
where Pp and Py refer to axial forces values in the right and left ends of the
t-th “finite volume” considered.

The constitutive equation will be treated following the procedure
previously described as option 3; i.e. choosing W = 1. Thus after integration
by parts of (46b) we have

]:. Pdz — [EAulg + [EAu) = 0 (47)

Next the bar is discretized in two node finite elements of equal size h

where a linear approximation of the axial force P and the displacements u is
chosen as

2 2
P=YNEIpE o N (48)
=1 =1

with Ni{e) given by (45).
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g=c
) B |
,’;f E
b2 - ~ Exact solution
u=-So2ix- D ;
£A 2 ;
i
|
|
—e— 1 linear element ’
—+— 2 linear elements |
—" 3 linear elements
— — 4 linear elements
0 t 21
Note: The FE and FV cell centered solutions give exact nodal results in all cases,
Figure 9. Bar under constant axial lead. Convergence of FV
cell vertex solutions for different meshes. Bisplacement
formutation.
Mesh |Node FE FV / C. Vertex FV / C. Centered
Displ. Mixed Displ. Mixed Displ. Mixed
1 el 2 0.00% 0.06% 50.0% 25.0% 12.5% 12.5%
2 0.00% 9.09% 9.09% 4.55% 2.27% 15.9%
2 el
3 0.00% 0.00% 12.5% 6.66% 3.13% 3.13%
2 0.060% 0.00% 3.85% 1.92% 0.96% 0.96%
3 el 3 0.00% 4.35% 4.35% 2.17% 1.09% 7.61%
4 0.00% 0.60% 5.55% 2.78% 1.39% 1.39%

Table 1. Bar under linearly varying axial load. Percentage errors in
nodal displacements for different meshes of linear elements
using F'E| cell vertex and cell centered FV schemes.
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Cell Vertez solution

Substitution of (48) in (46a) and (47) yields the following system of
equations for a single cell vertex domain linking nodes 7 — 1,4 and ¢ + 1

Py — Py +fi=0 (49a)
h
3 (Pi1 + 2P+ Piyr) + BA(ui1 = uit1) =0 (498)

where f; = [j. gdz

Note that the boundary conditions in the end forces values must be
imposed in eq.(49a) only, whereas the displacements are prescribed in
eq.(49b).

It can be easily checked that results obtained for the constant load case
(g = c) coincide precisely with the exact (displacement FE formulation)
solution [7}. On the other case results for the linear load (¢ = cz) are not
exact and they are shown in Table I. Note the improvement in accuracy with
respect to the displacement cell vertex approach.

Cell Centered solution

Substitution of (48) in (46a) in (47) yields now the following equations
for a single cell centered domain centered at node 1

Piy1~ Piop+2f=0 (50a)
h
7(Fic1 + 6P+ Piyy) + EA(u;y —uip1) =0 (500)

where f; = [}, g dz.

The boundary conditions are treated as mentioned for the cell vertex
case.

It can be easily checked that the results obtained for the constant load
case (g = c) are very close to those obtained using a mixed FE formulation:
solution, in both cases, is exact for the forces (linear field), but not for the
displacements (quadratic field). Errors in displacements for the mixed FVM
are slightly larger than for the mixed FEM.

Results obtained for the linear load (¢ = cz) are shown in Table I. No
improvement is achieved with respect to the corresponding displacement
formulation. This is probably due to the strong diagonally dominant
character of eq.(50b). Note the similarities with the behaviour of the mixed
FE formulation. Nevertheless, a proper rate of convergence is attained in
both cases for such coarse meshes.
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EXAMPLE 2. ANALYSIS OF TIMOSHENKO BEAMS

The equilibrium and constitutive equations for a Timoshenko beam are
the well known equations (8]

dM
3o t9=0
d

dé (51)
M—-FEI— =10

dx
Q — GA* (%’5‘1*9) =0

i

In (51) w,8, M and Q are the vertical displacement, the rotation of the
beam sections, the bending moment and the shear force, respectively; E and
G are the Young modulus and the shear modulus, [ is the inertia of the cross
section and A* = a4, where A is the beam section area and « is the shear
warping coeflicient (@ = 5/6 for rectangular sections).

It is well known that the displacement FE formulation for Timoshenko
beam elements leads to shear locking unless reduced integration techniques
are used [8]. It can be easily checked that the displacement FV approach
also exhibits locking. In the FEM this deficiency can be overcome by using
a mixed formulation [8]. This is also the case for the FVM, as shown below.

Mixed w — § — M - @ FV formulation for Timoshenko beams

The weighted residual form of eqs.(51) can be written as

dM
f:Wl (—EJFQ) dz =0

40 B
fIWZ(E- )d;cmo
( df

B ) guid —
f[W3 M Edz)dm 0

£W4[Q—GA* (%_9)] dz = 0

After adequate integration by parts of the derivative terms in (52) and
choosing Wy = Wy = W3 = Wy = 1, the following sysiem of equations for
the ¢-th volume is obtained
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MR—ML+./IIQd:c:G
QR“QL+_/;_bd$ =0

' (53)
EI(&L—HRH—/; Mdz =0

GA*(wy —wRHf[_ GA*Bd:ch/I_Qda: =0

where again L and R denote the left and right ends of the i-th volume.
Eqs.(53) are valid for both cell vertex and cell centered approaches. For the
sake of conciseness we will consider the cell vertex solution only using linear
beam elements.

Thus we will consider next a discretization of the beam of lenght [ in n
two node elements of equal lenght A (i.e. nh =1) with a linear interpolation
for all displacement and stress variables. This gives the following system of

discretized equations for a generic i-th volume formed by elements ¢ — 1 and
t (see Figure 4)

A

Mg — My + E(Qi—l +2Qi+ Qiy1) =0 (54a)

Qisr = Qiy + fl bdz =0 (54b)
h

E1(0:i1 = bip1) + S(Micy + 2M; + Mig1) = 0 (54c)

GA*h h
GA (Wi —wigy) + 5 (0i1+28; 4+ 0;41) + “Z‘(Qi—l +2Q:i 4+ Qiy1) = 0 (54d)

Note that the boundary conditions for M,Q,# and w must be imposed
i equations (54a), (54b), (54c) and (54d), respectively.
Eqs.(54) will be now applied to the analysis of a clamped—free beam

under a point load acting at the free end (see Figure 10). It can be shown
that the solution using one beam element gives

Pl

Lo
_ _ 55
2= —gpp (exact)  wa= P [GA* * 4EI] (55)

Solution for the end deflection coincides with that obtained with the
finite element displacement approach using one point reduced integration
for the shear stiffness terms [8] and differs slightly from the exact value

wy = — P E[F"*“ % . Table II shows the convergence of the end

deflection values obtained with meshes of 1,2 and 3 linear beam elements.
Note that the end deflection obtained is exact for all the meshes.
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3 3
EXACT w= =P |ghe + o] 6=—Pyl
1 element w= —FP [al—w + —IE—J end rotation eract
3
2 elements w = —pP [‘GJA": + %‘;EI} end rotation ezact
3
3 elements w= -P [Gi{‘ + IU;I*EI} end rotation ezact

Table II. End deflection values for clamped-free beam under point
load acting at the free end. Mixed w — § — M — Q cell
vertex formulation.

Mixed w — 8 — Q FV formulation
Substituting (51¢) in (51a) yields the following system of equations

d dd
if qg=20 (56)
Q- GA* (d—W—ﬁé) =0

dz

Following the arguments of previous sections the following system of
equations for the i-th volume can be obtained
dé

a8
EI(d )REI( ) ant:c—o
Qr -~ Q1 — [ bdz =0

GA*(ws, — wg) +f[_ GA*é?da:+j;‘Qd:c =0

I

(57)

%)R and (ffr%)L can be done following

Computation of the derivatives (

the averaging procedure of eq.(20).
Application of (57) for the beam problem of Figure 10 with one linear
beam clements gives
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— Pl l &
b= o w2=F [a:r * zm] (58)

Note that neither 8; nor wq are now exact. However the solutions does
not lock. Convergence of the end deflection and rotation values for this case
with meshes of 1,2 and 3 elements is shown in Table III.

[ 1 2
EXACT N ) 6= —Pgloy
: [ 1 2] 12
1 element w=—FP cic t oET g == "PET
. [ 1 & 12
2 elements w = P | gt “B"E}‘] § = —Pspr (exact)
L 3
3 clements w = —FP @L— + 413 ] § = —P L
GAT T BRI 2EI

Table [II. End deflection values for clamped-free beam under point
load acting at the free end. Mixed w — 0 {J cell vertex
formulation.

EXAMPLE 3. TRANSIENT 2D ELASTICITY

To illustrate the applicability and performance of FV methods in the
context of transient 2D elasticity we shall consider a simple example of
an elastic bar of dimensions 10x1x1 under plane stress conditions (Figure
10). The material properties selected are: Young modulus E = 1.021072,
Poisson’s ratio v = 0.1, and density p = 1.0. Two load cases will be
considered: (a) body forces by constant acting in the direction of the bar,
and (b) body forces by contant acting in the direction normal to the bar.
Case (a) would be really a one—dimensional stress wave propagation problem
£ Poisson’s effect was neglected. Case (b) is a free oscillation problem under
lateral load.

The problem will be solved with both displacement and mixed finite
volume formulations using cell centered schemes, which provides naturally a
lumped mass matrix.
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T
FINE MESH —
COARSE MESH -—--r
UNSTR, MESH -

TIME 5]

Figure 12 Example 3(b). Deflection at the end of the bar with the
displacement formulation. FV and FE results coincide,

where the term involving prescribed tractions has been omitted again for
simplicity. Note that the constitutive equation {61b) has been treated
following the procedure described as option 3, i.e. choosing W = 1. As
remarked in a previous section, this option, combined with a cell centerd
scheme with lumped C matrix, is equivalent to a weighted nodal averaging
of stresses from the adjacent elements.

We discretize the bar in three node elements. Inside each element the
displacements u and the stresses o are linearly interpolated as

3 3
u=>3% Nfuy , o= No; (62)
=1

i=1

being N! and NY the standard linear shape functions of the three node
element.

Case {a): body forces in the direction of the bar

The results obtained for the end deflection using mesh (1) with both
FV and FE (with lumped mass) methods overlap with those plotted in
Figure 11. It can be proved that also for the mixed formulation FV and FE
results are approximately the same for constant body loads, and in fact they
coincide exactly if an additional approximation is admitted when performing
the appropriate boundary integrals in the FVM (see eq.(A.8) in Appendix).
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Case (b): body forces normal to the bar

Figure 13 shows the end deflection of the bar using meshes (1), (2) and
(3), and the FV method, with linear interpolation for both displacements and
stresses. It has to be pointed out again that these results are equal to those
provided by the mixed FEM, as the load is constant, and the approximation
described in the Appendix has been used. Remembering that the thin beam
theory exact solution has a peak deflection of 3.0, it is remarkable to see that
the mixed method provides a convergent solution with larger displacements
than the exact solution. The results show again how the unstructured mesh
achieves almost the same accuracy as the fine regular mesh with one third

of the CPU cost.

IS T T r T T
1 H

,,,,,,

FINE MESH —
COARSE MESH ----
UNSTR. MESH -----

BNG.

A
] oot

4
TIME [s]

Figure 13. Example 3(b). Deflection at the end of the bar with the
FVM mixed formulation. FV and FE results coincide.

FORMULATION TOTAL INT. FORCES EVAL. | STRESS EVAL.
CPU time (s) CPU time (s) CPU time (s)
Displ.-FEM 474.39 242.87 133.57
Displ.-FVM 508.75 277.12 134.13
Mixed-FEM 763.91 294.88 370.39
Mixed-FVM 880.19 412.42 363.70

Table IV, CPU time comparison between the different formulations
for case (b). Fine mesh
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Finally, Table IV shows the comparison between the CPU times spent for
the solution of problem 3b using the different formulations, for the fine mesh.
The problem has been run in a CONVEX C-120 machine ( one vectorial
processor ). It can be seen that the displacement formulations are far less
costly than the mixed ones, due to the fact that they only require solution
of one set of equations. CPU time comparison between FEM and FVM is
favorable to the first, but only slightly for the irreductible case.

CONCLUSIONS

The Finite Volume Method (FVM) is presented in a format applicable
to structural mechanics. It is shown that the FVM can be considered as a
particular case of Finite Elements with a non—Qalerkin weighting, equivalent
to the use of a constant virtual displacement field. The resulting equations
are identical to those provided by the well known unit displacement method.

The displacement FVM is discussed and both cell vertex and cell centered
schemes have been examined. Cell centered schemes are preferable because
they provide naturally diagonal mass matrices, and the internal force terms
as the FEM. Thus, for constant body forces the FE and FV solutions are
identical.

The mixed FVM has been also discussed, with different options for
the weighting of the constitutive equation. Again, cell centered schemes
are preferable because they provide naturally diagonal matrices for both
equations, It is shown that weighted nodal averaging of stresses is a simple
and valid alternative. Explicit transient analysis is presented in this context,
both by its intrinsic interest, and as an iterative procedure to solve static
problems.

Example 1 proves that the cell centered scheme is more accurate than
the cell vertex scheme for the simple problem presented, Also, the benefits
of a mixed formulation are underlined,

Example 2 shows the possibilities of mixed FVM for bending problems, as
the two schemes proposed are convergent and present no locking, as expected.

Example 3 shows the possibilities of displacement and mixed FVM in
plane elasticity. It is demostrated that under constant loads, FV and FE
approximations produce ezactly the same systems of equations, and thus,
the same results, for the irreductible formulation. This is also the case
for the mixed formulation if an additional approximation is admitted when
performing the appropiate boundary integrals.

1t seems that the merits of the FVM could lay in the possibility of
computing element matrices and vectors using boundary integrals along the
control volume sides, involving information provided by adjacent elements.
This feature is currently under investigation by the authors.
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APPENDIX

It was stated in Example 3 that both FV (cell centered scheme) and FE
approximations produce the same internal force terms for the displacement
and mixed formulations, when 3 noded linear elements are used. That is to
say that the vectors

pFE :[g (LN o df) (A.la)

i

prV = —jfr T o dl (A.1b)
are identical component by component.
Let us consider first the displacement formulation. The k-th component

of the ¢-th node of the internal force vector for FE is, from (A.la), and using
tensor notation for the stresses,

ﬂ:E . gN _j'k an =
el AN
-3 f oo d0 = (4.2)

for a patch of n,; elements concurrent at node ¢ (Figure A.1).
On the other hand, the k-th component of the i-th node of the internal
force vector for FV is from (A.1b)

Pf;cvﬂ_f Jde_

:egl /anja?kdfz (A.3)
Tl
;J;k (ﬁfrfnjdf‘)

But, for the e-th element, with sides of lenght [1, {3, {3 and external unit
normals ny, ny, and nj, respectively (see Figure A.1), we can write
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AN
dfl = NEdD =
fg Az /an;.f math

1 1
=ny;-l t gl =

2 . 2 (4.4)
- *?133'5!3 =

— - dIl
/I“‘:’nj

1

where JQf is the complete boundary of element e, while I'f is the part of the
boundary of the cell {1; interior to element e.
With the result from (A.4) the identity pJiF = pfY is demonstrated.

Figure A.1 A patch of elements concurrent at node i-th

Let us consider now the mized formulation with linear interpolations for
both displacements and stresses: )
The k-th component of the i-th node of the internal force vector for FE

is from (A.1b)

3N;
FE— | —o.0.dQ =
plk Q; 823] GJL
<L s OGN
— i€ _
= 2 Jog Ty ed0 = (4.5)
=l ONE [
_ 1 e_r
B ;ff B:EJ (r%l rajk) @

Being the shape functions Ny linear, this integral can be evaluated using
the values of o at the centroid of the triangle, that is
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1 3
5«% = 3 Z agk (A.6)
r=]1
and then
& 8N;
p{",cE — Zl 5§k e Bm; af (A7)
e= t

On the other hand, the k-th component of the i-th node of the internal
force vector for FV is from (A.1b)

FV
Pk z—}g.”jo'jk dl’ =
el

[
= waenja-kdrz
e=] s ’

el 3 (A.B)
- Z_fenj(z :a;?k) dr

e=1 i r=l

nel
~ Y 5% (mfenj dI‘)

r=1 i

Note that the last step in (A.8) is an approximation, as the stresses cr;k are
linear inside the element.

Comparing (A.5) with (A.8), and using the result from (A.4), the
expression pﬂE ~ pﬂ}v is demonstrated.
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