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Abstract. In this work, we present a multi-fidelity machine learning surrogate model, which
predicts comfort-related flow parameters in a ventilated room with a heated floor. The model
uses coarse- and fine-grid CFD data obtained using LES turbulence models. The dataset is cre-
ated by changing the width aspect ratio of the rooms, inlet flow velocity, and temperature of the
hot floor. The surrogate model takes the values of temperature and velocity magnitude at four
different cavity locations as inputs. These probes are located such that they could be replaced
by actual sensor readings in a practical case. The model’s output is a set of comfort-related flow
parameters. We test two multi-fidelity approaches based on Gaussian process regression (GPR),
among them GPR with linear correction (LC GPR), and multi-fidelity GPR (MF GPR) or co-
kriging. The computational cost and accuracy of these approaches are compared with GPRs
based on single-fidelity data. All of the tested multi-fidelity approaches successfully reduce the
computational cost of dataset generation compared to high-fidelity GPR while maintaining the
required level of accuracy. The co-kriging approach demonstrates the best trade-off between
computational cost and accuracy.

1 INTRODUCTION

Modern heating ventilation and air conditioning (HVAC) systems are required to maintain
human thermal comfort and using minumal energy consumption in buildings. Traditionally in-
door environments are simulated using reduced-order models and computational fluid dynamics
(CFD). Reduced-order models are often unable to achieve sufficient accuracy due to the simplifi-
cations adopted. On the other hand, accurate CFD simulations are still prohibitively expensive
for most of the practical building applications [1, 2]. Moreover, the situation will not change in
the foreseeable future [3]. As a result, new fast and accurate numerical models are needed.
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A surrogate model is an engineering method used when an outcome of interest cannot be easily
measured or computed, so a model of the outcome is used instead. Surrogate models mimic the
behavior of the high-fidelity simulation model as closely as possible while being considerably
computationally cheaper to evaluate. Because of its inexpensiveness, surrogate modeling is
one of the important trends in the built environment research [4]. Using CFD simulations for
surrogate modeling usually results in high computational cost of dataset generation; thus, an
increasing number of works is trying to optimize it by using a multi-fidelity approach. It combines
a large number of computationally cheap low-fidelity (LF) simulations and a smaller number of
expensive high-fidelity (HF) simulations, in way that ensures a trade-off between simulation cost
and surrogate model accuracy. For instance, Lamberti & Gorlé [5] combined RANS and LES
simulations in order to create a machine learning model which predicts wind loads on buildings.
They showed that the proposed multi-fidelity framework has the potential to reduce the number
of expensive LES simulations while retaining a higher accuracy than standard reduced-order
models. The co-kriging technique was used by Li et al. [6] for the optimization of high-speed train
cabin ventilation system design, which led to significant savings of computational time. Zhang
et al. [7] combined HF models using a CFD evaluation with fine grid and the LF models using
the same CFD model with a coarse grid to optimize the aerodynamic shape of an airfoil, which
outperformed the single-fidelity method. However, to the best of the author’s knowledge, multi-
fidelity surrogate modeling has not yet been applied to simulations of the indoor environment.

In this work, we propose a CFD-based multi-fidelity surrogate model to predict comfort-
related flow parameters in a ventilated room with a heated floor. This particular test configu-
ration includes both natural and forced convection phenomena, making it hard for the classical
reduced-order models to achieve meaningful results and making expensive CFD simulations
indispensable. However, the surrogate models have the capacity to significantly reduce the sim-
ulation cost while maintaining an acceptable level of accuracy. The model’s inputs are values of
temperature and velocity in the locations, which in a practical case could be replaced by sensor
readings. The main novelty of this work is the adoption of a multi-fidelity approach, which
allows to substantially decrease the amount of computational resources spent on the dataset
generation and increase the prediction capacity by amplifying the set of working conditions.

2 TEST CASE DESCRIPTION

We use the incompressible Navier-Stokes equations for Newtonian fluids with constant phys-
ical properties as governing equations of the flow. We adopt the Boussinesq approximation to
account for the density variations to model the buoyancy effects. Thermal radiation is neglected.
All the results are presented in dimensionless form. The reference values of time, velocity, tem-
perature, and length are tref = H/Uref , Uref = Uin, ∆T , and H, respectively, where Uin is the
inlet bulk velocity, H is the cavity heigth, ∆T = Th − Tc is the temperature difference.

The physical setup used in this work is a three-dimensional ventilated cavity with a heated
floor [8]. This flow configuration presents a mixed convection phenomenon, challenging due to
the interaction of both natural and forced convection. It resembles an airflow in a middle section
of a room with mixing ventilation and thermal exhausts. The geometry of the studied cavity is
shown in Figure 1 (left). Cold air at Tc = −0.5 enters the cavity through the long thin inlet at
the top of the left wall. The inlet velocity profile in the vertical (y) direction corresponds to a

2



N. Morozova, F.X. Trias, V. Vanovskiy, C. Oliet and E. Burnaev

parabolic Poiseuille flow. The inlet slot has an aspect ratio Ain = hin/H = 0.018/1.04. The air
is discharged through the outlet slot with the aspect ratio Aout = hout/H = 0.024/1.04 at the
bottom of the right wall of the cavity. The bottom wall is maintained at a hot temperature of
Th = 0.5, while the three other sidewalls are kept at the cold temperature of Tc.

Figure 1: Left: geometry of the studied test case. Right: locations of the input data probes at the
mid-depth cavity plane (z = D/2).

The cavity is filled with air (Pr = ν/α = 0.71, where ν is the kinematic viscosity and α the
thermal diffusivity). The depth aspect ratio of the cavity is Ad = D/H = 0.3/1.04, where D is
the depth of the cavity. At the outlet, convective boundary conditions (∂ϕ/∂t+Uin∂ϕ/∂x = 0)
are imposed for the velocity and temperature. No-slip boundary conditions are applied on
the walls. The initial velocity field is set to zero and the initial temperature is set equal to
the temperature at the cold wall. Periodic boundary conditions are used in the spanwise (z)
direction.

3 DATASET GENERATION

3.1 Description of the dataset

We build the input-output dataset by changing the width aspect ratio of the cavity (Aw =
W/H), the Rayleigh number based on the cavity height RaH = gβ∆TH3/(να), and the Froude
number based on the ratio between the bulk inlet and buoyant velocity (Fr = Uin/Ubuo =
ReH/

√
RaH , ReH = UinH/ν is the Reynolds number based on the cavity height), where g is the

gravitational acceleration and β is the thermal expansion coefficient. Test case configurations
used in the generation of the dataset are shown in Table 1.

Chosen combinations of Aw − Ra − Fr are realistic and relevant for indoor environmental
applications. For example, assuming that the cavity height is 2.5 meters, the highest Rayleigh
number (9.6×109) corresponds to a temperature difference of approximately 6◦C. On the other
hand, the maximum Reynolds number based on the cavity height used in this work is 9.79×105.
Considering the same height of 2.5 meters, it corresponds to an inlet velocity of ≈ 1m/s.
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Aw {0.25, 0.50, 1.00, 2.00, 4.00}
RaH {1.5× 108, 6.0× 108, 2.4× 109, 9.6× 109}
Fr {0.15, 0.20, 0.25, ..., 0.55, 0.60, 0.70, ..., 1.50, 1.60}
Total number of low-fidelity (LF) simulations - 360

Total number of high-fidelity (HF) simulations - 240

Total number of simulations - 600

Table 1: Combinations of the test case configurations for generating the CFD dataset.

3.2 Input and output parameters

As input parameters of our surrogate model, we consider cavity width aspect ratio (Aw),
temperature (T ) and velocity magnitude (V ) probes at four different locations on the mid-
depth cavity plane (z = D/2). In a practical situation, apart from the cavity width aspect ratio,
the values of the Froude and Rayleigh numbers are not available; hence, they are discarded from
the current study. In total, we use 9 (Aw + 4T + 4V ) input parameters. The positions of the
probes are shown in the figure 1 (right). The positions of the probes are chosen according to
the results of our previous work [9]. The probes are located near the walls of the cavity in order
to mimic the positions of real temperature and velocity sensors.

As the outputs of the model, we choose two global flow parameters: average Nusselt number
on the hot wall - <Nu> and average enstrophy - <Ω>. They represent basic airflow properties
and are relevant for thermal comfort [10]. The average Nusselt number is a measure of heat
transfer. It is computed using the temperature gradient at the bottom wall surface:

<Nu>= − 1

WD

∫ W

x=0

∫ D

z=0

∂ < T >

∂y
dxdz at y = 0, (1)

where, the standard bracket “<>” notation is used for time-averaged values. Enstrophy is a
measure of turbulence intensity. Enstrophy is directly related to draught and local discomfort.
It is averaged over time and cavity volume and calculated as follows:

<Ω>=
1

WHD

∫ W

x=0

∫ H

y=0

∫ D

z=0
< ω2 > dxdydz, (2)

where u = (u, v, w) is the velocity vector in Cartesian coordinates x = (x, y, z) and ω = ∇× u
is the vorticity.

4 NUMERICAL METHODS

4.1 CFD simulations

To generate input and output data for the model, we use large-eddy simulations (LES) on
staggered grids with second-order symmetry-preserving spatial discretization [11] and a one-
parameter fully explicit second-order temporal discretization scheme [12]. To perform the simu-
lations, we use an in-house STG CFD code [13] with the LES-S3PQ turbulence model [14]. The
choice of the turbulence model, type of spatial and temporal discretizations, and CFD software
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is based on the findings of our previous work [3], where we performed an extensive validation and
mesh sensitivity analysis of the same test case (RaH = 2.4× 109, ReH = 39520, and Aw = 1).

Choosing optimal grid discretization for the CFD simulations is a complex procedure, espe-
cially if one plans to perform many simulations simultaneously. On the one hand, the nature
of LES turbulence modeling requires sufficient spatial discretization in order to obtain accurate
simulation results. Also, the high computational cost of the simulations requires optimizing
the grid size by tuning it to the physics and geometry of each test case. As a solution, we
have developed an algorithm for the automatic mesh generation based on the variable physi-
cal parameters of the experiment (Fr,RaH , Aw), previously conducted validations [15, 16], and
desired level of mesh refinement. The detailed description of this algorithm could be found in
our previous work [9]. For the HF grids, we used grids which are 3 times coarser than direct
numerical simulation (DNS) grid in each direction, and for the LF, we used grids 6 times coarser
than DNS in each direction.

4.2 Surrogate models

Our work is based on the Gaussian process regression (GPR) approach, which is capable of
constructing nonlinear regression models [17] with some guaranteed theoretical properties [18].
A significant advantage of GPR over other machine learning frameworks is the ability to treat
variable fidelity data [19], which allows to reduce the computational cost of dataset generation.
We investigate the following approaches: GPR for single-fidelity data [20], GPR with linear
correction (LC GPR), and multi-fidelity GPR (MF GPR) or co-kriging [21]. All of the models
use the open-source machine learning library scikit-learn [22].

GPR [20] is a kernel-based machine learning technique for non-linear regression problems. A
Gaussian Process (GP) is a set of random variables, such that any finite subset of these variables
have a joint Gaussian distribution. As a distribution, a GP is characterized by its mean and
covariance function. In this work we use Matérn covariance function, which is a generalization of
commonly used squared exponential covariance function. We test three different single-fidelity
GPR: HF-GPR - a model trained only with HF data, LF-GPR - a model trained only with LF
data, and HFLF-GPR - a model trained on a mix of LF and HF data without distinguishing
the data fidelity.

LC GPR approach is a modification of single-fidelity GPR. The developed surrogate model
consists of three steps. In the first step we train a single-fidelity GPR model on LFdata and test
it on HF data. In the second step we estimate an error between the test results and the actual
HF data and train a linear regression model to predict this error. In the third step we correct
the predictions of LF surrogate model for the the step one using the error correction model from
the step two. LC GPR approach allows to compensate simulation-induced errors and reduce the
amount of HF data used in the model training process.

MF GPR or co-kriging [21] estimates for a poorly sampled variable yl(x) with the help of a
well-sampled variable yh(x). MF GPR attempts to predict the HF process using information
(autocorrelation and cross-correlation) in the covariate to make a better prediction:

yl(x) = fl(x) + ϵl (3)

yh(x) = cyl(x) + yd(x), (4)
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where yd(x) = fd(x) + ϵd is a new process representing the difference between the HF process
and LF process, which will correct the LF data and c is the regression coefficient.

4.3 Data preprocessing and metrics

In our work, we normalize all the input and output data to fit the range of [−1, 1]. To improve
the prediction results and avoid model overfitting we use cross-validation. In this study, we adopt
a leave-one-out (LOO) cross-validation method. This cross-validation procedure maximises the
amount of data used for training since only one sample is removed from the training set. All of
the HF data not involved in the training process is used for testing. The size of the test dataset
varies depending on the analysis performed (see Section 5 for details).

In order to quantify the accuracy of the model, we use mean relative prediction error (MRE),
which is designed as follows:

MRE(ϕ) =
1

N

N∑
i=1

|ϕCFD − ϕSM |
|ϕCFD|

, (5)

where N is the number of samples in the test dataset, ϕCFD represents any one of the two
comfort-related parameters calculated from the CFD simulations, and ϕSM represents a predic-
tion from one of the surrogate models. We assume that less than 10% MRE is acceptable for
this model.

5 RESULTS

5.1 Single-fidelity models

Here we present a comparison between two single-fidelity models, namely HF-GPR and LF-
GPR. Both models are tested on HF data. Nusselt number on the hot wall <Nu> (Figure 2,
left) shows steady improvement of accuracy on both HF and LF surrogate models with the
increase of the number of samples in the training dataset. Average enstrophy <Ω> (Figure 2,
right) shows very high MREs on a low number of samples for both HF and LF models while
significantly improving the results with the increasing number of samples. However, even with
the highest available number of samples LF GPR does not reach the accuracy of HF GPR, which
is caused by the model-induced errors.

The performance of these two single-fidelity models establishes the baseline for further com-
parison between the different multi-fidelity approaches. The HF dataset is reduced to 130 data
samples since all of the studied flow parameters converge to a steady prediction error at this
dataset size. On the other hand, the LF dataset is used entirely since the computational cost
of it is lower, and <Ω> did not reach required accuracy. The extensive comparison between
different multi-fidelity approaches is made only for the enstrophy <Ω> since this flow param-
eter is the most illustrative example due to the highest LF and HF prediction differences. The
results for Nusselt number are summarized in Table 2.
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Figure 2: MRE of the studied flow parameters for different number of samples in the training dataset
and different single-fidelity models. Left: Nusselt number on the hot wall, < Nu >. Right: average
enstrophy, <Ω>.

5.2 Multi-fidelity models

The main purpose of using the multi-fidelity approach is to reduce the computational cost
without substantial loss of accuracy. The average computational cost of one HF simulation is
approximately 2700 core-hours, while the average cost of one LF simulation is 160 core-hours.
These numbers are approximated using the whole datasets; however, the computational cost of
each individual simulation depends on the physical and geometrical parameters of the test case
and is highly variable. Nonetheless, the total computational cost of HF GPR model training is
351 kilo-core-hours (Kh), which is considered the maximum reference computational cost.
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Figure 3: HFLF GPR model. Left: MRE of the average enstrophy <Ω> for a different total number of
training samples and different percentage of HF samples. Right: Computational cost of dataset generation
for accurate predictions (< 0.1) using different percentages of HF samples.

Figure 3 (left) shows the MRE of the average enstrophy < Ω> predicted using the HFLF
GPR model. The horizontal axis is the total number of samples in the training dataset, and
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the vertical axis is MRE(<Ω>). Each plot line is obtained by changing the percentage of HF
samples in the training dataset. The blue line (0% HF) is the single-fidelity model, trained only
on LF data, while the red line (100% HF) is the HF model. The dotted black line marks the
MRE(<Ω>) = 0.1 - the required accuracy. Even the small number of HF samples introduced in
the dataset successfully improves the model’s accuracy to an acceptable level. Figure 3 (right)
shows the computational cost, [Kh] of CFD simulations, which were required to achieve the
desired accuracy (MRE < 0, 1) for each of the studied dataset configurations. Only the HFLF
GPR model with 75% of HF samples could reduce the computational cost by 6% compared to
the baseline HF model. The reason is that there is no distinction between the samples’ fidelity;
thus, the model’s accuracy mostly depends on the amount of HF data samples.
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Figure 4: The same caption as Figure 3, but for LC GPR model.

The accuracy of the LC GPR model is shown in Figure 4 (left). LC GPR model has relatively
low accuracy for the small number of samples, but when more than 200 samples are used,
it is improved substantially. Moreover, the percentage of HF samples in the correction step
does not significantly influence the accuracy, which allows to reduce the computational cost.
Figure 4 (right) shows the computational cost of different configurations of LC GPR models in
comparison with single-fidelity models. LC GPR model has substantial advantages over both
HF GPR and HFLF GPR, resulting in 28% lower computational cost since it has achieved the
required prediction error using only 25% of HF samples.

Figure 5 (left) shows the MRE of the average enstrophy by MF GPR model for different
configurations of the training dataset. The model is performing similarly to the HFLF GPR
and LC GPR; however, it needs smaller datasets in order to reach the desired prediction accuracy.
This makes the model computationally cheaper than the others (Figure 5, right) since it requires
25 HF samples with a total of less than 300 samples to reach an MRE lower than 0.01 (32%
reduction in computational cost). This makes the MF GPR model the most efficient among the
studied multi-fidelity models.

The computational cost mostly depends on the amount of HF data; thus, it is interesting to
see more closely how it influences the accuracy. In Figure 6 (left), we plot the MRE(<Ω>)
for the studied models using a different number of HF samples. The number of LF samples is
constant and is equal to 350. The big blue point on the left corresponds to the MRE(<Ω>),
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Figure 6: Left: MRE of the average enstrophy <Ω> for different number of HF training samples using
different surrogate models. Right: Computational cost of dataset generation for accurate predictions
(< 0.1) using different number HF samples with different surrogate models.

obtained using the LF GPR model, while the red point on the right corresponds to the HF GPR
model, respectively. All of the approaches show a similar tendency and steadily improve the
prediction with the increase in the HF data. However, the MF GPR model requires the least
amount of HF samples to reach the required prediction accuracy, while the HFLF model needs
considerably more samples. Figure 6 (right) shows the minimal computational cost at which the
required accuracy was reached for the tests on the left. Both MF GPR and LC GPR models
successfully reduce the computational cost by 55% and 23% respectively), since they are aware
of the fidelity of each sample and learn from the existing dataset more efficiently. On the other
hand, the HFLF GPR model results in is very close to the HF GPR model (7% reduction) since
it simply mixes the data, which results in a higher computational cost.

Table 2 summarises the configurations of training datasets which showed the best trade-off
between computational cost and accuracy for each of the studied surrogate modeling approaches.
These configurations are based on the analysis of Figures 3-6, where the mean relative prediction
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Model
Samples MRE Comp cost, Reduction,

HF LF total <Nu> <Ω> [Kh] [%]

HF GPR 130 - 130 0.046± 0.02 0.046± 0.03 351 -

LF GPR - 350 350 0.193± 0.03 0.246± 0.07 100 -

HFLF GPR 100 350 450 0.042± 0.06 0.093± 0.05 335 7%

LC GPR 75 225 240 0.112± 0.06 0.100± 0.05 254 28%

MF GPR 40 350 380 0.092± 0.04 0.093± 0.05 164 55%

Table 2: MRE of the studied flow parameters, computational cost and number of low- and high-fidelity
dataset samples of the studied models with the best trade-off between computational cost and accuracy.

error of the enstrophy was plotted. The multi-fidelity models have higher accuracy than the
single-fidelity model trained only on HF data and reduced the computational cost compared to
the baseline HF model. The prediction errors are very similar for all of the multi-fidelity models.
However, the MF GPR has the lowest dataset generation cost.

6 DISCUSSION AND CONCLUSIONS

In this work, we presented a multi-fidelity machine learning surrogate model, combining a
large number of computationally efficient coarse grid LES simulations with a smaller number of
fine grid HF LES. The model predicts the comfort-related flow parameters in a three-dimensional
ventilated cavity with a heated floor. The developed surrogate model provides almost instant
accurate predictions using an ordinary office computer and requires less training computational
resources than a similar single-fidelity model. The model’s input parameters are the temperature
and velocity magnitude values at different probe locations within the cavity domain. The output
parameters are the average Nusselt number and the average enstrophy. The input data of the
developed model is structured to take the values of temperature and velocity in the locations,
which could be replaced by sensor readings. The main computational burden of the surrogate
model is the cost of its development because, at this step, a comprehensive set of HF data
is required. The training data was generated using the MareNostrum 4 supercomputer at the
Barcelona Supercomputing Center. We limited ourselves to 750Kh core-hours computational re-
sources; we spent 650Kh on 240 HF CFD simulations and 100Kh on 350 LF simulations. In order
to create the dataset, we were changing three physical parameters of the cases - Froude number,
Rayleigh number, and the cavity width aspect ratio. The range in which these parameters were
varying was chosen to represent the realistic indoor environments.

Three different multi-fidelity approaches, namely HFLF GPR, LC GPR, and MF GPR, were
compared against two single-fidelity models - HF GPR and LF GPR. All of the models are
based on Gaussian process regression with Matérn kernel function. All models were validated
on HF data, and the validation results were averaged over 15 runs. The use of multi-fidelity
models reduced the computational cost considerably. Even a simple HFLF GPR model is less
computationally expensive than the baseline HF GPR model. More sophisticated multi-fidelity
models like LC GPR and MF GRP required 55% less computational resources than the HF GPR
model. LC GPR does not perform as well as the MF GPR since it is a simpler linear model. It
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corrects the estimated error between HF and LF data, which does not always improve the result-
ing accuracy because the errors are not necessarily proportional to the model input parameters.
The MF GRP has shown the best trade-off between computational cost and accuracy among
studied multi-fidelity models. It has the potential to significantly reduce the number of costly
CFD simulations needed for training while providing notably higher accuracy than standard
reduced-order models. Nonetheless, a broad study is required on a proper choice of HF data to
further reduce the computational cost and increase the range of operation conditions.
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