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RESUMEN 

Siguiendo una técnica desarrollada por López-Marcos y Sanz-Serna, probamos la 
estabilidad y convergencia de tres esquenias en diferencias finitas para la solución numérica de 
sisteiiias de Dirac no lineales. Los esquemas se comparan por iiiedio de experiiiientos numéricos. 

SUMMARY 

We study, following a iiietliod developed by López-Marcos and Sanz-Serna, tlie stability and 
convergence of tliree finite-differences schenies for the numerical integration of nonlinear Dirac 
systenis in (1+1) -diiiiensions. The three scheiiies are assessed in the numerical experiments. 

INTRODUCCION 

Las perturbaciones n o  lineales de ecuaciones de ondas dispersivas permiten obtener 
modelos donde los efectos de  l a  no  linealidad y l a  dispersion se equilibren dando lugar 
a l a  aparición de ondas solitarias24 de gran  interés e n  el modelado matemát ico  de 
muchos fenómenos físicos. E n  este sentido, las ecuaciones de  Schrodinger n o  lineales 
h a n  sido objeto de numerosas contribuciones (ver, po r  e j e m p l ~ ' ~ * ~ ~ * ~ ~ ) .  Menos atención 
h a n  recibido las distintas modificaciones del sistema de Dirac, que puede considerarse 
la contrapart ida relativista de  l a  ecuación de  Schrodinger. En este t r aba jo  t ra tamos  de 
sistemas de Dirac no  lineales de l a  forma: 

donde u = u(x ,  t )  es l a  incógnita espinorial representada como u n  vector de  dos 
componentes complejas u = [ul ,  u2IT, i es la unidad imaginaria,  f es una función 
real de variable real y A y B denotan las matrices 
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Sistemas de esta forma, que pueden dar lugar a la aparición de ondas solitarias, 
han sido propuestos como modelos de formaciones análogas a partículas (ver1 y las 
referencias que allí aparecen). 

Alvarez y otros2, siguiendo una técnica debida a Guo Ben-Yu7, han mostrado la 
convergencia de un esquema Crank-Nicolson para (1) cuando el término no lineal viene 
dado por la elección particular 

f (S) = m - 2As, m, A ,  constantes reales. (2) 

El análisis de estos autores usa explícitamente la forma de la no linealidad (2) y por 
tanto no puede ser extendido, en principio, al caso general que tratamos aquí. 

En este artículo se estudia no sólo el es-quema de tipo Crank-Nicolson sino también 
otros dos de los tipos ('leap-frog" y ('box". Empleamos una técnica desarrollada 
e n ~ o , ~ ~ , ~ 2  , que usa una definición de estabilidad de métodos numéricos para problemas 

no lineales basada en los llamados umbrales de estabilidad dependientes de h. Para una 
mejor comprensión del resto del trabajo hemos incluído una breve sección en la que se 
exponen las definiciones y resultados principales de este formalismo. Basta comparar 
nuestra prueba de convergencia del esquema Crank-Nicolson, válida para f arbitraria, 
con la prueba alternativa mucho más compleja dada en2, válida sólo para (2), para 
darse cuenta de las ventajas del formalismo de López-Marcos y Sanz-Serna. 

FORMALISMO DE DISCRETIZACION 

En el formalismo todas las relaciones que definen un método numérico se reescriben 
en forma abstracta como 

donde los Uh recogen todas las aproximaciones numéricas a la solución de un problema 
dado (problema que no juega ningún papel en esta formulación) y <Ph es una aplicación 
(en general no lineal) con dominio Dh c X h  que toma valores en Yh. X h  e Yh son 
espacios normados  de la misma dimensión finita y h toma valores en un conjunto 
de números positivos H con inf H = 0. 

Para cada h E H sea u E Dh una representación discreta de la solución teórica 
(habitualmente en un método en diferencias u es la restricción a la red de dicha 
solución teórica). Se dice que la discretización (3) es convergente si para h E H, h es 
suficientemente pequeño, las ecuaciones (3)  poseen una solución U h  con 

lim 1 1  u h  - U h  I l x h =  O. 
h+O 

I,a convergencia se dice que es de orden p si además 1 1  u h  - U h  I l x h =  O(hP) cuando 
h -+ O. La discretización (3)  es consistente (resp. consistente de orden p) si 
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1 1  @h(uh) [ /yh= o( l )  (resp. O(hP)). 
Supongamos que, para cada h E H, Rh es un valor con O < Rh 5 f OO. Diremos 

que (3) es estable  restr ingida a los umbrales  Rh, si existen constantes positivas ho 
y S tales que para cada h E H, h 5 ho, la bola B(uh,  Rh) de centro en uh y radio Rh 
está contenida en Dh y para cada V h  y Wh E B(uh ,  Rh) se verifica 

El resultado principal del formalismo es el siguiente teorema", basado en un 
resultado topológico debido a Stetter21. 

Teorema 1 

Supongamos que: (i)(3) es estable con umbrales Rh. (ii) @h está definida y es 
continua en B(uh ,  Rh). (iii) (3) es consistente y 

Entonces, para h suficientemente pequeño, la ecuación ( 3 )  posee una única solución 
Uh  en la bola B(uh ,  Rh) y 

Notas  

(i) El formalismo anterior es general y ha sido aplicado tanto para el estudio de 
esquemas en diferencias como de elementos finitos y métodos e ~ p e c t r a l e s ~ ' ~ ' ~ ~ ~ .  

(ii) La idea básica es que la prueba de la cota de estabilidad (4) se efectúa sólo para V h  
y Wh ('cerca" de la solución teórica uh. Esta noción de estabilidad es, entonces, 
más débil que otras existentes en la literatura pero suficiente para la obtención del 
teorema 1 (ver" para una discusión más completa). 

(iii) Otros a ~ t ó r e s ~ , ~ ~  han usado definiciones más restrictivas de estabilidad utilizando 
umbrales de estabilidad no dependientes del parámetro h. La noción de estabilidad 
empleada por nosotros no es una generalización arbitraria sino, como puede verse 
enh2', una necesidad para el estudio de métodos numéricos para problemas de 
ecuaciones en derivadas parciales no lineales. 

UN ESQUEMA CRANK-NICOLSON 

Descripción del esquema 

Usaremos la abreviatura g(u) = if(lui12 - 1 ~ ~ 1 ~ ) B u .  Se considera el problema 1- 
periódico para (1) dado por 

ut = Au, + g(u),  -m < z < + m ,  O < t 5 T < + m .  ( 7 . 4  
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donde q es una función 1-periódica, conocida, de variable real que forma valores en ((U2. 

Supondremos que el problema (7) tiene una única solución clásica definida en H& x [O, TI. 
Para cada J E N sean h = $ y x j  = jh ,  j = 0,1, ..., J. Para k > O introduzcamos 

los niveles de tiempo tn = nk, n = 0,1, ..., [S]  = N. Si representamos por U; la 
aproximación numérica a u; = u(xj, t,), O < j 5 J, O < n < N ,  el esquema Crank- 
Nicolson para (7) viene dado, tras agrupar los U? correspondientes a un mismo nivel 

temporal en un vector Un = ..., uyTIT, por el sistema de ecuaciones. 

( 8 4  
donde Lh es la matriz 

y G representa la aplicación diagonal dada por G ( V )  = [ g ( ~ i ) ~ ,  9 ( ~ ~ ) ~ , .  . . ,  g ( ~ J ) T ] T  
s i  V = [v:, v?, . . . . . . ,  vJIT E (E2J. (8a) se suplementa con la condición inicial. 

T T donde qh es una aproximación a [q(xl)T, q(x2)T,.  . . . . . .  ~ ( x J )  ] . 
Para colocarrios dentro del marco general descrito anteriormente, se reescribe el 

esquema (8) en la forma siguiente: 

(i) Sean Xh  = Y;, = [ c ~ ~ ] ~ + ' .  En (E2J usaremos las normas 

donde V = [v:, v?, . . . . . .  , vTlT E ( ( u ~ ~  y 1 . 1  denota la norma euclídea usual en 
C 2 .  En Xh e Irh se definen las normas 
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Consistencia 

Denotemos por Ih al vector de errores locales ah(uh) ,  es decir al vector de Yh de 
componentes 

Un desarrollo de Taylor hasta el orden dos permite probar el siguiente resultado: 

Con esta elección de normas de la estabilidad en el sentido de Sanz-Serna y López- 
Marcos es equivalente, para problemas de valores iniciales lineales a la estabilidad 
en el sentido habitual de Lax15>17. 

(ii) Supondremos en lo que sigue que los incrementos en tiempo y espacio están ligados 
por una relación k = u(h) con u una función continua y creciente tal que u(0) = 0. 

(iii) Se define la aplicación ah de Xh en Yh por las relaciones. 

o F = v O - ~  h. ( 9 4  

FnS1 = E-' 1 - - Lh vn+' - k-l I f - Lh V n  - ( (9 1 ( (i) ) G ((vn+l;vn)), 

n = 0,1, ..., N - l .  (9b) 

donde ah(Vh)  = F h , V h  E X h ,  Fh E Yh. 
Obviamente, un vector Uh  = [uoT, u ' ~ ,  . . . , uNTIT en Xh es una solución de la 
ecuación 

+h(Uh) = 0 (10) 

si y sólo si sus componentes Un, O 5 n 5 N ,  son solución de (8). 
(iv) Como representación de la solución teórica u tomaremos su restricción a la red 

uh = [uoT, u lT , .  . . , uNTIT con um = [u(xl, tm)T, 4 x 2 ,  tm)T,.  . . , u(xJ, tm)TIT E 
c 2 J .  

ANALISIS DEL E S Q U E M A  
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Proposición 1 

Supongamos que se verifican las siguientes hipótesis: 
(i) La' función f en (1) es continuamente diferenciable. 

(ii) u posee derivadas acotadas de orden 3 en O < x < 1 , O  < t 5 T. 
(iii) Cuando lz -t O ,  los vectores qh se eligen de forma que: 

Entonces 

:Estabilidad 

En el caso lineal en el que f _= O,  el esquema Crank-Nicolson viene dado por 

y es estable en el sentido de Lax13~'' como se prueba en la siguiente proposición: 

]Proposición 2 

El operador (1 - ( 5 ) ~ ~ )  es invertible y 

Los autovalores de (1 - ( 5 ) ~ ~ )  y (1 + ( 2 ) ~ ~ )  son respectivamente de la forma 
k l. - (T),u y 1 + ($),u con ,u un autovalor de Lh. Como Lh es antisimétrica cada p 

es imaginario puro y, en consecuencia, (1 - ( 5 ) ~ ~ )  invertible. Por otra parte como 
(I- ( 5 ) ~ h )  y (1 t ( 5 ) ~ h )  son matrices normales, su norma es el correspondiente radio 
espectral de donde se concluye el resultado inmediatamente. 

Volviendo al caso de una no linealidad general se tiene: 

Proposición 3 

Supongamos que se 1.:-.:fica la hipótesis (i) de la proposición 1 y sea R una constante 
positiva, existen constantes S y ko, que dependen sólo de R, T y M = max{lu(x,t)l : 
cm < x < +w,O 5 t < T), tales que si k < ko y Vh,  Wh son vectores en Xh 
satisfaciendo 
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entonces 

Demostración 

Denotemos por F h  y Gh los residuos gh (Vh)  y iPh(Wh) respectivamente. Si 
en = V n  - W n  y rn = F n  - Gn,  se tiene para O 5 n < N - 1, 

(1 - ( S )  Lh) en+' = ( I  + ( S )  Lh) en + krn + k [G ((i) (v"" + v")) 

-G ((f) (wn+l + wn))] . 

La condición de umbral (13) implica la desigualdad 

(16) 
donde L = L ( f ,  M ,  R )  es una constante de Lipschitz de g en la bola de centro O y radio 
M + R. Entonces invirtiendo el operador (1 - ( 5 )  L ~ )  y usando (12) y (16) se tiene 

y mediante un consabido argumento de recurrencia se concluye la prueba. 
La estabilidad en el sentido de Sanz-Serna y López-Marcos se obtiene de la 

proposición observando que escogiendo los umbrales Rh = ~ h ' / ~ ,  si V h  y W h  verifican 
la condición ( 1  V h  - uh ( I X h <  Rh, ( 1  W h  - u h  J J X h  < Rh, entonces verifican (13 )  y por 
tanto (14). 

Convergencia 

El teorema 1 lleva de forma inmediata al siguiente resultado de convergencia. 
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Teorema 2 

Supongamos que se verifican las hipótesis de la proposición 1 y que k y h están 
sujetos a una relación k = rhs con r y s constantes, r > O y s > 4. Sea R > O fijo. 
Entonces 

(i) Para h (y por tanto k) pequeños (10) posee una solución Uh  que es única en 
q u h ,  Rh). 

(ii) Existe una constante C, positiva, independiente de h (y k) tal que para h (y k) 
suficientemente pequeño 

UN ESQUEMA LEAP-FROG 

Emplearemos las notaciones de la sección 3. A lo largo de esta sección supondremos 

k = rh,  T constante, O < r < l .  (19) 

El esquema "Leap-Frog" para el problema (7) viene dado por la recurrencia de dos 
pasos (tres niveles): 

suplementada con condiciones iniciales. 

Para efectuar el análisis descrito en la sección 2, es conveniente reescribir 
previamente (20) como un esquema de un solo paso (dos niveles) en la forma 

Aquí Mh denota el operador lineal en C2J x C2J 

En C.!2J x C2J  emplearemos la norma de la energía 
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I I  [vT, V T ] ~  IIk = I i  v / i 2  t i i  V. 1 1 2  - 2 k ~ e ( ~ h ~ . ,  v), (22) 

donde (.,.) denota el producto escalar en ( I U ~ ~  asociado a la norma L2-discreta 1 1  . 1 1 ,  
introducida en la sección anterior. Aplicando el teorema de Gershgorin a la matriz Lh 
se obtiene 1 1  Lh 1 1  5 i ,  cota que, junto a la desigualdad de Cauchy-Schwarz, da 

(1 - [ I  v l 2  + 1 1  V. 1 1 2 ]  511 [vT.v:lT / /E< (1 t [II v I I ~  t 1 1  V. 1 1 2 ]  . (23) 

De esta forma se prueba que (22) es, efectivamente, una norma, que es 
uniformemente equivalente ( r  es constante) a la norma euclídea habitual. Tras ciertas 
manipulaciones4 se obtiene entonces que el operador 2kMh es una isometría en la norma 
de la energía con lo que, en el caso lineal, el esquema (21) es estable en el sentido de 
Lax. 

El esquema se escribe dentro del marco abstracto descrito en la sección 2, tomando 
Xh = Yh = x caJIN dotados de las normas. 

T 
I I  Vh IIxh = max I < ~ ( N  I I  [vmT,vrT] / / E  ( 2 4 4  

T 
1 1  F h  lll', = 1 [ F ~ ~ , F ' ~ ] ~  I I E  t k 1 1  [ F ~ ~ ) F T ~ ]  I I E  

2 j m < N  
(24b) 

donde [vmT, v * ~ ~ ] ~  y [FmT, F * ~ ~ ] ~  son las componentes de Vh y Fh 
respectivamente. La aplicación ah viene dada ahora por a h ( V h )  = Fh con 

Fn+l vn+l 
G(Vn)  

[F:+l] = (2k)-1[V:+l]-Mh[;;] - [ O 1 )  l < n < N ,  (25a) 

[F;] = [ - [g:] (25b) 

La técnica usada en la prueba de la proposición 3 proporciona el resultado de 
estabilidad siguiente. 

Proposición 4 

Supongamos que la función f en (1) es diferenciable con continuidad y R > O fijo. 
Existe una constante positiva S, que depende de r ,  R, f ,  T y M = max{lu(x, t )  1 - oó < 
x < +m, O < t < T), tal que si Vh  y Wh son vectores en Xh  con 

InaX l<nLN ( 1  V n  - un [ [ m <  R1 max l < n < N  1 1  W n  - un llm< E ,  P6) 
se verifica 
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Por tanto la discretización es estable en el sentido de Sanz-Serna y López-Marcos con 
umbrales Rh = ~ h ' / ~ .  

Se prueba fácilmente que el esquema (21) es consistente de orden 2 si u es 
suficientemente regular y los vectores de arranque Ph y q h  en (21b) se toman verificando 
1 1  [ulT, uoTIT - [ph, qh]T l l E =  O(h2) cuando h -t O. El teorema 1 prueba, entonces, la 
convergencia de orden 2 del esquema en la norma de la energía y por tanto, aplicando 
(23), en la norma L2-discreta habitual. 

UN ESQUEMA BOX 

Hasta aquí sólo se ha considerado el problema periódico. Para posibilitar 
e1 tratamiento numérico conviene a veces introducir otras condiciones frontera. 
lnalizainos a continuación, un esquema 11b~~"899  aplicado al problema: 

donde bo = [l, 1IT, bl = [l, -1IT y el dato inicial q satisface las condiciones frontera 
(28b). Supondrenios, como antes, en todo lo que sigue que (28) posee una única solución 
clásica regular u. 

Las cantidades J, h, b ,  N, x j  y t, se introducen como en la sección 3 y, ahora, 
tanto los vectores de aproximaciones numéricos , Un,  corno los de restricción a la red de 
la solución (28) un  contienen J + 1 coinponentes en c2, U; y u? = u(xj, t,), O < j < J .  

Ilenotaremos por Zh, para cada J E N, h = 5 ,  al subespacio de de dimensión 
2 J formado por los vectores V = [v:, v?, . . . , V:lT que verifican las condiciones 
fsontera bOv0 = b:vJ = O .  El esquema box para (28a) puede escribirse en la forma 

(U"S1 + U") (U"+l + U") 
n h [ ( u n + l i u n ) ]  = a h [  ] G ( n h [  ] ) ,  

donde IIh y Ah so;, operadores que aplican ( ( ~ ~ ( ~ ~ ' 1  en c~~ y están dados por las 
r-r~atrices 
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y G denota la aplicación diagonal definida en cZJ dada, 

si F = [FT12, F;,, . F;,/~I~, por G(F) = [ ~ ( ~ 1 / 2 ) ~ ,  ~ ( ~ 3 / 2 ) ~ ,  . . , g(F~-1/2)T]T. 
Las condiciones frontera se imponen pidiendo que 

y la condición inicial es 

con q h  en Zh. 
En el formalismo de la sección 2, Xh e Yh son, en este caso, Xh  = Zh x Zh x . . .  x Zh 

e Y; = Zh x cZJ x . . .  x cZJ respectivamente (en Xh el factor Zh se repite N + 1 veces 
y cZJ 10 hace N veces en Yh). La aplicación ah viene dada por las igualdades, 

F"" = h-' (nh - (S) dh) vnC1 - k-l ( nh + ( S ) d h ) V n -  

si ah (Vh)  = F h , V h  E Xh, F h  E Yh. LOS vectores Un,  O 5 n 5 N ,  son solución de (29) 
si y sólo si Uh  = [uoT,  uiT ,..., uNTIT E Xh lo es de 

En Xh e Yh usaremos las normas 
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donde la norma 1 )  . 1 1  en eZJ es la norma L2- discreta habitual y la norma en Zh es 

Esta expresión define una norma en Zh4 que, cuando J -+ +m no es uniformemente 
equivalente a la norma L2 habitual 1 1  V [ 1 2 =  [Cá(cicJ h l ~ < [ ~ ] ' / ~  (la doble tilde significa 
que los sumandos primero y último están divididos por dos). 

La siguiente proposición prueba que en el caso lineal, G = 0, (29a) junto con Ias 
condiciones frontera (29b) es un esquema estable en el sentido de Lax. 

Proposición 5 

El operador [IIh - ($)Ah] es invertible cuando se considera restringido al dominio 
Zh. Además 

1 1  [ n h  - (S) h h ] - l  112 1, 

11 [ n h  - (t) ~ h 1 - l  [ n h  + (S) ~ h ]  / / <  1 

Las normas en (33) y (34) son las normas de operador de Zh en y de cZJ en 
respectivamente. 

:Demostración 

Sea V € Zh y F = [ I lh  - ($)A~]v .  Entonces podemos escribir 

Fi+1/2 = (S) (1- (:) A) K+I + (S) ( I +  (:) A) V. 
k 

= ( S ) ( K + ~ + K ) - ( S ) ( ~ ) A ( V . + ~ - K ) ,  j = o , l ,  ..., J - l .  

Tomando normas y teniendo en cuenta la simetría de la matriz A, es 

+ 2Re ((i) ($) AV,, (i) K) , 

clonde (.,.) denota el producto interno habitual en C2, sumando en j 

1 1  1 1 2 > 1 1  llih - 2Re ((S) (F) AVJ, (S) vJ) 

+ 22. ((S) (k) AV,, (i) vo) 
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Por la definición de A y las condiciones frontera se tiene (AVj,Vj) = -IVJI2 y 
(AV0,Vo) = IV0I2 y por tanto 1 1  F 1 1 2 > 1 1  V ll$,, lo que prueba que (Uh - (!)Ah) es 

biyectivo de Zh en c Z J .  Para probar (34),se toma W = [IIh - ( $ ) ~ ~ ] - ' [ n ~  + ($)A,]v 
y se actúa como antes. 

Procediendo como en secciones anteriores se obtiene el siguiente resultado de 
estabilidad. 

Proposición G 

Supongamos que la función f en (1) es diferenciable con continuidad y sea R una 
constante positiva. Existen constantes S y ko, positivas, que dependen de R, T, f ,  y 
M = max{lu(z,t)l :O I. x 5 1, O 5 t 5 T), tales que si k < k o p a r a c a d a V h  y Wh 
en Xh verificando, 

se tiene 

En consecuencia la discretización (31) es estable restringida a los umbrales Rh = 

." 
Después de comprobar que (31) es consistente de orden 2 bajo las siguientes 

hipótesis: (i) u posee derivadas de orden tres acotadas, (ii) f es derivable con 
continuidad y (iii) 1 1  u0 - qh l l z h =  O(h2) cuando h -t O. El teorema 1 de la sección 
2 permite probar un resultado de convergencia similar al teorema 2. Notemos que se 
prueba la convergencia en la norma de Zh, es decir, la convergencia de las medias de 
los valores nodales de la solución computada, IIhUn, a las medias correspondientes 
de la restricción de la red de la solución teórica IIhun, en la norma L2-discreta. La 
convergencia es, por el teorema 1, de orden 2. 

IMPLEMENTACION Y EXPERIMENTOS NUMERICOS 

Los esquemas en diferencias (8), (20) y (29) se han implementado en un VAX 111780 
en lenguaje FORTRAN usando aritmética compleja con precisión simple (compilador 
VAX-11 FORTRAN). 

Como solución teórica se ha empleado la onda estaci~narial*~ 

rA (x , t)  = [M (x), i~ (x)lT e-iAt, 

sh((1 - A2)'I2x) 
N (z )  = 2'12(1 - A2)'I2(1 - A)'I2 

1 + Ach(2(1- A2)lI2x) 
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con frecuencia A = 0.75. Las funciones son soluciones del problema puro de 
valores iniciales para ( 1 )  que decrecen exponencialmente a cero cuando x + f oo 
por lo que pueden usarse, sin introducir sustancialmente ningún error, como solución 
teórica de ( 1 )  con condiciones frontera periódicas o del tipo (28b)  en un intervalo 
[xL, XR], X L  < O < X R ,  con XL y XR suficientemente alejados del origen. En nuestros 
experimentos hemos tomado XL = -16 y XR = 16. Los errores globales se miden en 
tiempo T = 8 en todos los casos. 

Las ecuaciones, no lineales, del esquema Crank-Nicolson se escriben en la forma: 

( 3 8 )  
este sistema se resuelve, en cada paso, mediante una iteración de punto fijo obteniéndose 
primero la "predicción" 

para aplicar, después, las etapas correctoras 

( I  - ( S )  L h )  
= I + - Lh un + kG 

(un + 

, T = o ,  1 , .  . .. ( ( 2 )  ) ( 2 

(40b)  
De esta manera sólo es necesario factorizar la matriz (1 - ( 5 ) ~ ~ )  una vez al principio 
(le los cálculos. Por otra parte (40b)  se implementa en la forma mas eficientelg 

( I  - ( S )  L h )  U** = un+( ;>G(  (un + u [ T 1 )  1 , (41a)  

eliminando la necesidad de computar el término (1+ ( $ ) L ~ ) u " .  
Las 2 J ecuaciones con 2 J + 2 incógnitas ( 29a )  del esquema "box" junto con las 

condiciones frontera (29b)  dan lugar al sistema 

donde 
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y G,(" , . (u7L+1+~'~)  2 ) = [O,G( ( 2 )IT,0lT. 
nh untl+un 

Este sistema de ecuaciones se resuelve, como en el caso anterior, mediante una 
iteración de punto fijo en la forma 

El sistema lineal (43b) se resuelve factorizando la matriz casidiagonal por bloques Ah 
al principio de los cálculos usando el paquete de software SOLVEBLOK3. 

Las tablas 1 y 11 corresponden a los esquemas Crank-Nicolson y box 
respectivamente. En ambos casos la iteración interna es detenida cuando la diferencia 
entre dos interantes consecutivos es menor que (diferencia medida en la norma L2 
en el caso del esquema Crank-Nicolson y en la norma de Zh en el caso del box). En 
las tablas el número entre paréntesis es el tiempo de C.P.U. empleado en centésimas 
de segundo y el subrayado el número de iteraciones internas necesarias para detener la 
iteración en cada paso. El error es el número sin subrayar que aparece sin paréntesis 
en las tablas. En ambos casos se observa que al dividir h y k simultáneamente por 
dos el error se divide aproximadamente por cuatro, de acuerdo con el estudio efectuado 
en las secciones 3 y 5. El tiempo de C.P.U. empleado por el esquema box es mayor 
que el requerido por el método Crank-Nicolson debido al mayor número de iteraciones 
necesarias para alcanzar la tolerancia, uniho a la mayor dificultad que presenta la 
resolución de los sistemas (43b) frente a los (40b). De hecho, en cada paso el esquema 
box emplea casi tres veces más tiempo que el esquema Crank-Nicolson para obtener la 
misma precisión. 

En la tabla 111 se presentan los resultados obtenidos con el método Leap-Frog. 
En este caso los parámetros k y h se hacen variar sujetos a la relación O < k < h 
para que el esquema sea estable. Al igual que en las tablas 1 y 11, el error global de 
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Tabla 1. 

este esquema presenta claramente un comportamiento 0 ( k 2  + h2) cuando se refina la 
red con = constante. Comparando con la tabla 1 se observa que el esquema Leap- 
F'rog es más eficiente que el esquema Crank-Nicolson, debido a que los mayores pasos 
de tiempo que puede tomar el método implícito no compensan el trabajo requerido 
para resolver las ecuaciones no lineales. Sin embargo cuando el método explícito se 
ha empleado en cálculos con T grande se han presentado fenómenos de inestabilidad 
no lineal típicos de los esquemas L e a p - F r ~ g ' ~ - ' ~ ' ~ ~ ' ~ ~  . Esto hace que para problemas en 
los que sea necesario la integración de intervalos de tiempo grandes (por ejemplo en el 
estudio de interacciones entre ondas) el esquema Crank-Nicolson sea más ventajoso. 
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