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RESUMEN

Siguiendo una técnica desarrollada por Lépez-Marcos y Sanz-Serna, probamos la
estabilidad y convergencia de tres esquemas en diferencias finitas para la solucién numérica de
sistemas de Dirac no lineales. Los esquemas se comparan por medio de experimentos numéricos.

SUMMARY

We study, following a method developed by Lépez-Marcos and Sanz-Serna, the stability and
convergence of three finite-differences schemes for the numerical integration of nonlinear Dirac
systems in {1+1) —dimensions. The three schemes are assessed in the numerical experiments.

INTRODUCCION

Las perturbaciones no lineales de ecuaciones de ondas dispersivas permiten obtener
modelos donde los efectos de la no linealidad y la dispersién se equilibren dando lugar
a la aparicién de ondas solitarias®® de gran interés en el modelado matematico de
muchos fenémenos fisicos. En este sentido, las ecuaciones de Schrédinger no lineales
han sido objeto de numerosas contribuciones (ver, por ejemplo™**??*). Menos atencién
han recibido las distintas modificaciones del sistema de Dirac, que puede considerarse
la contrapartida relativista de la ecuacién de Schrédinger. En este trabajo tratamos de
sistemas de Dirac no lineales de la forma:

uy = Aug + if (]'3,1]2 — ]uglz)Bu (1)
donde u = wu(®,t) es la incdgnita espinorial representada como un vector de dos
componentes complejas u = [ug,u3)T, ¢ es la unidad imaginaria, f es una funcién

real de variable real y A y B denotan las matrices
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Sistemas de esta forma, que pueden dar lugar a la aparicién de ondas solitarias,
han sido propuestos como modelos de formaciones andlogas a particulas (ver' y las
referencias que alli aparecen).

Alvarez y otros?, siguiendo una técnica debida a Guo Ben-Yu’, han mostrado la

convergencia de un esquema Crank-Nicolson para (1) cuando el término no lineal viene
dado por la eleccién particular

f(s) = m—2Xs,m,A, constantes reales. (2)

El anélisis de estos autores usa explicitamente la forma de la no linealidad (2) y por
tanto no puede ser extendido, en principio, al caso general que tratamos aqui.

En este articulo se estudia no sélo el esquema de tipo Crank-Nicolson sino también
otros dos de los tipos “leap-frog” y “box”. Empleamos una técnica desarrollada
en'®''? que usa una definicién de estabilidad de métodos numeéricos para problemas
no lineales basada en los llamados umbrales de estabilidad dependientes de h. Para una
mejor comprensién del resto del trabajo hemos incluido una breve seccién en la que se
exponen las definiciones y resultados principales de este formalismo. Basta comparar
nuestra prueba de convergencia del esquema Crank-Nicolson, valida para f arbitraria,
con la prueba alternativa mucho mdés compleja dada en?, valida sélo para (2), para
darse cuenta de las ventajas del formalismo de Lépez-Marcos y Sanz-Serna.

FORMALISMO DE DISCRETIZACION

En el formalismo todas las relaciones que definen un método numérico se reescriben
en forma abstracta como

$,(Un) = 0, (3)

donde los Uy, recogen todas las aproximaciones numeéricas a la solucién de un problema
dado (problema que no juega ningin papel en esta formulacién) y &5 es una aplicacién
(en general no lineal) con dominio Dy C X, que toma valores en Y. Xj e Yy son
espacios normados de la misma dimension finita y h toma valores en un conjunto
de ndmeros positivos H con inf # = 0.

Para cada A € H sea u € Dj una representacion discreta de la solucidén tedrica
(habitualmente en un método en diferencias u es la restriccién a la red de dicha
solucién tedrica). Se dice que la discretizacién (3) es convergente si para h € H, h es
suficientemente pequefio, las ecuaciones (3) poseen una solucién U con

Lim || up = Uk |lx,= 0.

La convergencia se dice que es de orden p si ademds || up — Uy ||x,= O(kRT) cuando
B — 0. La discretizacién (3) es consistente (resp. consistente de orden p) si
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| @n(un) llv,= o(1) (resp. O(R?)).

Supongamos que, para cada h € H, Rp es un valor con 0 < Rj < 400. Diremos
que (3) es estable restringida a los umbrales Ry, si existén constantes positivas hg
y S tales que para cada h € H, h < hg, la bola B(uy, Ry) de centro en u,, y radio R
esta contenida en Dy, y para cada Vi y Wy € B(up, Ry) se verifica

| V= Wi [|x,< S || 8r(Vr) — 21(Wh) |ly, - (4)

El resultado principal del formalismo es el siguiente teorema!!, basado en un
resultado topolégico debido a Stetter®!.

Teorema 1

Supongamos que: (i)(3) es estable con umbrales Ry. (ii) &, estd definida y es
continua en B(ux, Ry). (iii) (3) es consistente y

| @n(un) [lv, = o(Bz),  h—0. (5)

Entonces, para h suficientemente pequefio, la ecuacién (3) posee una dnica solucién
U, en la bola B(up, Rp) y '

lun = Unllx, = O(l @a(ur) lv), R~ —0. (6)

Notas

(1) El formalismo anterior es general y ha sido aplicado tanto para el estudio de
esquemas en diferencias como de elementos finitos y métodos espectrales'*?#,

(ii) La idea basica es que la prueba de la cota de estabilidad (4) se efectia sélo para V,
y Wy, “cerca” de la solucién tedrica uy. Esta nocidén de estabilidad es, entonces,
mas débil que otras existentes en la literatura pero suficiente para la obtencién del
teorema 1 (ver'' para una discusién més completa).

(iii) Otros autores®** han usado definiciones mds restrictivas de estabilidad utilizando
umbrales de estabilidad no dependientes del pardmetro k. La nocidn de estabilidad
empleada por nosotros no es una generalizacién arbitraria sino, como puede verse
en®?? una necesidad para el estudio de métodos numéricos para problemas de
ecuaciones en derivadas parciales no lineales.

UN ESQUEMA CRANK-NICOLSON

Descripcion del esquema

Usaremos la abreviatura g(u) = if(|us|? — |uz|?)Bu. Se considera el problema 1-
periédico para (1) dado por

uy = Aug + g(u), —o0 <z <400, 0<t<T < +oo. (7.a)
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u(z 4+ 1,t) = u(z,t), —o<z< oo, 0<t<T < +oo. (75)
u(z,0) = g(z), (7¢)

donde ¢ es una funcién 1-periédica, conocida, de variable real que forma valores en C?2.
Supondremos que el problema (7) tiene una tnica solucién clésica definida en B x [0, T}

Para cada J € W sean h = % yz; =3h, 5=0,1,..,J. Para k > 0 introduzcamos
los niveles de tiempo t, = nk, n = 0,1,...,[{—] = N. Si representamos por U7 la
aproximacién numérica a u} = u(2;,t,),0 < 7 < J, 0 < n < N, el esquema Crank-
Nicolson para (7) viene dado, tras agrupar los U 7 correspondientes a un mismo nivel

temporal en un vector U = [UPT, UpT, ..., U?T)T, por el sistema de ecuaciones.

UM -U™) = Ly [(%) (Untt 4 U”)} +G [w—nizi—Uﬁ] , =0,...,N-1,
(8a)
donde Lj es la matriz
0 A o ... 0 —-A
Ly = (?,h)_l —A 0 A L 0 0
A 0 0 ...... -A 0
v G representa la aplicacién diagonal dada por G(V) = [¢(V1)T, g(V2)7,...,g(V))TIT
A V=V ... ,VFIT € €. (8a) se suplementa con la condicién inicial.
U° = qa | (8b)
donde qp, es una aproximacién a [¢(z1)7, ¢(z2)%,. ... .. L q(z)T1T.

Para colocarnos dentro del marco general descrito anteriormente, se reescribe el
esquema (8) en la forma siguiente:
(i) Sean X =Y, = [C¥]¥+1. En C¥ usaremos las normas

IVi=1a 3 VP2

1<i<d

'V lloo= max 1<;<s Vi,

donde V = VI, VL, ... JVET ¢ C? y |.| denota la norma euclidea usual en
C?. En Xp, e Yy se definen las normas

| Villx,=max{|| V' [ 0<n < N}, Vp= [VOT,VIT,. ..,VNT]T € Xy,

[ Fnlly, =l F 4k > | B |, Fa=[FT,F7,.. FV) e v}
1<n<N
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Con esta eleccién de normas de la estabilidad en el sentido de Sanz-Serna y Lépez-
Marcos es equivalente, para problemas de valores iniciales lineales a la estabilidad
en el sentido habitual de Lax's*?,

Supondremos en lo que sigue que los incrementos en tiempo y espacio estan ligados
por una relacién k = o(h) con ¢ una funcién continua y creciente tal que o(0) = 0.
Se define la aplicacién $; de X, en Y}, por las relaciones.

F® = VO —q,. (9a)

Frtt = gt <I - (g) Lh> AT b (I + (g) Lh> V' -G (———(Vn+l2+ Vn)) )

n =01, N-1. (95)
donde Qh(vh) =F,, Ve Xy, Fre?,. .
Obviamente, un vector Uy = [UT U .. UNT|T en X}, es una solucién de la
ecuacién
®,(Uy) = 0 (10)

si y sélo si sus componentes U™, 0 < n < N, son solucién de (8).

Como representacién de la solucién tedrica u tomaremos su restriccién a la red
T

u, = 7wl o7 con u™ = w21, tm) T u(@2, tm) T, . u(zr, t)T)T €

c*.

ANALISIS DEL ESQUEMA

Consistencia

Denotemos por Ij al vector de errores locales ®,(uy), es decir al vector de Y3 de

componentes

IO :uo — Qh,

1+t :k—l(un-{-l _ un) _ Lh[(_;_)(un+1 + un)]_

. n+1 n
-G[(—“—;—“——)],n-_—o,...,N—L

Un desarrollo de Taylor hasta el orden dos permite probar el siguiente resultado:
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Proposicién 1

Supongamos que se verifican las siguientes hipétesis:
(i) La funcién f en (1) es continuamente diferenciable.
(i1) u posee derivadas acotadas deorden3en 0 <2z < 1,0<t < T.
iii} Cuando h — 0, los vectores q; se eligen de forma que:

q g q
| u® = an [|= O(R?).
Entonces

I @n(n) lly, = [ +k 3 11" [|= O(k* + A*),h — 0.
1<n<N

Estabilidad

En el caso lineal en el que f = 0, el esquema Crank-Nicolson viene dado por

k k
(z - (§> Lh) Ut = (H <§> Lh) U, (11)
y es estable en el sentido de Lax"*"'* como se prueba en la siguiente proposicidn:

Proposicion 2

El operador (I — (%)Lh) es invertible y

RO IR PA N CTA TR

Demostracidn

Los autovalores de (I — (£)La) y (I + (£)Ln) son respectivamente de la forma
1 - (%),u y 1+ (%),u con p un autovalor de L. Como Lj es antisimétrica cada u
es imaginario puro y, en consecuencia, (I ~ (£)Ly) invertible. Por otra parte como

(I~ (%)Zn) y (Z + (£) L) son matrices normales, su norma es el correspondiente radio
espectral de donde se concluye el resultado inmediatamente.
Volviendo al caso de una no linealidad general se tiene:

Proposicién 3

Supongamos que se v.-fica la hipStesis (i) de la proposicién 1 y sea R una constante
positiva, existen constantes S y ko, que dependen sélo de R, T y M = max{|u(z,t)|:
w0 < z < 40,0 <t < T}, tales que si k < kg y Vi, Wj son vectores en Xp
satisfaciendo

H Vn—un Hoo< Ra” Wn_'un “°°< R) n = 0’1>""N’ (13)
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entonces

| Vi = Wi |, < S || 20(Vi) — (W) [ly,, - (14)

Demostraciéon

Denotemos por Fj, y Gy los residuos (V) y $,(Wy) respectivamente. Si
e"=V?r-W"yr*=F"—-G" setienepara0 <n< N -1,

(@) = (B ) emmeafo (@) (v
() )]

La condicién de umbral (13) implica la desigualdad

(15)

() ) -e () b)) s (B (i),

(16)
donde L = L(f, M, R) es una constante de Lipschitz de g en la bola de centro 0 y radio
M + R. Entonces invirtiendo el operador (I — (£)L) y usando (12) y (16) se tiene

re s (- () 0) " (e (&) p)wer =k (1 (B) 1) ey,

0<n<N-1, (17)

y mediante un consabido argumento de recurrencia se concluye la prueba.

La estabilidad en el sentido de Sanz-Serna y Lépez-Marcos se obtiene de la
proposicién observando que escogiendo los umbrales R, = Rh/2, si V), y W), verifican
la condicidén || Vi, — up llx, < Ri, || Wi — up, ||x, < Rp, entonces verifican (13) y por
tanto (14).

Convergencia

El teorema 1 lleva de forma inmediata al siguiente resultado de convergencia.
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Teorema 2

Supongamos que se verifican las hipdtesis de la proposicién 1y que k y h estan
sujetos a una relacién k = rh* con r y s constantes, r > 0y s > ;11-. Sea R > 0 fijo.
Entonces

(i) Para h (y por tanto k) pequefios (10) posee una solucién Up que es tdnica en
B(up, R).

(ii) Existe una constante C, positiva, independiente de A (y k) tal que para k (y k)
suficientemente pequefio

| Un— wh x, = max ognen || U™ - u™ [|< O(K + B2). (18)

UN ESQUEMA LEAP-FROG

Emplearemos las notaciones de la seccién 3. A lo largo de esta seccién supondremos
que

k = rh, r constante, 0<r<1. (19)

El esquema “Leap-Frog” para el problema (7) viene dado por la recurrencia de dos
pasos (tres niveles):

k)N U™ — U™ = LU+ G(UY), n = 1,2,...,N -1, (20a)
suplementada con condiciones iniciales.

U° = q,, U = ps. (200)

Para efectuar el andlisis descrito en la seccidén 2, es conveniente reescribir
previamente (20) como un esquema de un solo paso (dos niveles) en la forma

(2&)—1{3;1} = Mh[g:] + {G(gn)}, n=12...,N (21a)

. 21b
{Ui an (218)
Aqui M), denota el operador lineal en C*/ x €%/

M = (28) {%‘IJ;z I}

I g

En €27 x C¥ emplearemos la norma de la energia
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T
HVEVIT B = IV IE + VLI = 2kRe(LiV., V), (22)

donde (.,.) denota el producto escalar en €%/ asociado a la norma L2-discreta -1,
introducida en la seccién anterior. Aplicando el teorema de Gershgorin a la matriz Ly
se obtiene || L, ||[< #, cota que, junto a la desigualdad de Cauchy-Schwarz, da

A= IV 2+ Vel < OV s @ [IVIE + 1va ). (23)

De esta forma se prueba que (22) es, efectivamente, una norma, que es
uniformemente equivalente (r es constante) a la norma euclidea habitual. Tras ciertas
manipulaciones* se obtiene entonces que el operador 2k M}, es una isometria en la norma
de la energia con lo que, en el caso lineal, el esquema (21) es estable en el sentido de
Lax.

El esquema se escribe dentro del marco abstracto descrito en la seccién 2, tomando
Xy =Y, = [€C% x C¥)V dotados de las normas.

T
| Vi llx, = max 1<men || [V"‘T,VTT] e (24a)
17T 1T T mT mT T
IEn v, = || PR s + 6 Y || [F™TF07] |l (240)
2<m<N

donde [V™T VxmT)T y [F™T Fx™T]T son las componentes de V, y Fp
respectivamente. La aplicacién &5, viene dada ahora por ®,(Vy) = Fp con

n+1 n+1 n n
I:gnﬁ-l} = (2k)—1|:§n+1:|_Mh l:xn] - [G(: )], 1<n<N, (25a)

BIEMIENY (25)

La técnica usada en la prueba de la proposicién 3 proporciona el resultado de
estabilidad siguiente.

Proposicién 4

Supongamos que la funcién f en (1) es diferenciable con continuidad y R > 0 fijo.
Existe una constante positiva §, que depende de r, R, f, Ty M = max{|u(z,t)| -0 <
z < 400, 0<t<T}, tal que si Vi y Wy son vectores en X3 con

max 1<n<y || VP —u" | o< R, max 1<n<y || W* — 1" || o< R, (26)

se verifica
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| Vi = Wi lx, < 5 [| 2a(Vi) = Ea(Vi) |y, - (27)

Por tanto la discretizacién es estable en el sentido de Sanz-Serna y Lépez-Marcos con
umbrales R, = Rh!/2.

Se prueba facilmente que el esquema (21) es consistente de orden 2 si u es
suficientemente regular y los vectores de arranque P, y qp en (215) se toman verificando
| [u!T,u®T)T — [pf,q}f )T ||[g= O(h?) cuando h — 0. El teorema 1 prueba, entonces, la
convergencia de orden 2 del esquema en la norma de la energia y por tanto, aplicando
(23), en la norma L2-discreta habitual.

UN ESQUEMA BOX

Hasta aqui sélo se ha considerado el problema periédico. Para posibilitar
el tratamiento numérico conviene a veces introducir otras condiciones frontera.
Analizamos a continuacién, un esquema “box”®® aplicado al problema:

uy = Augz +g(u), 0<2<1,0<t<T <400, (28a)

pTu(0,t) = bT(1,¢) = 0, 0<t< T, (28b)

u(z,0) = q(z), (28¢)

donde by == [1,1]7,b; = [1,-1]T y el dato inicial ¢ satisface las condiciones frontera

(28b). Supondremos, como antes, en todo lo que sigue que (28) posee una tinica solucién
clasica regular w.

Las cantidades J, h, k, N, z; y t, se introducen como en la seccién 3 y, ahora,
tanto los vectores de aproximaciones numéricos , U™, como los de restriccién a la red de
la solucién (28) u” contienen J +1 componentes en C?, Uryuf =u(z),t,),0< 5 < J.
Denotaremos por Z, para cada J € N, h == %, al subespacio de €2/*1) de dimensién
2J formado por los vectores V = [VE, VT ... [ VI]T que verifican las condiciones
frontera b Vi == TV = 0. El esquema box para (28a) puede escribirse en la forma

11, {(U"“k--- U")] A, [(U"“ + U")} e (Hh [_(U"'*"l + U”)D ’

2 2

n=01,..N-1, (29a)

donde I, y Ap son operadores que aplican C2U+Y) en €% y estan dados por las
matrices :
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I I 0 .. 0 0
N B SR S 0 0
M=(;){0 0 I ... 0 0
0 0 0 ... I I
A A 0 ... 0 0
L0 -4 4 0 0
Av=()[ 0 0 -4 L 0 0
0 0 0 ... A A

y G denota la  aplicacién  diagonal definida en €%  dada,
si F = [Fly, Fapse oy Fi_y p)T, por G(F) = [g(F1y2)T, 9(Fapa)Ts .o, 9(Froap2) 1T
Las condiciones frontera se imponen pidiendo que

Ut€ 2y, n=1,2,...,N, (295)

y la condicién inicial es

Ul = q);, (29¢)

con qp en Zp.

"En el formalismo de la seccién 2, X, e Y}, son, en este caso, Xp, = Zo X Zp X ... X Zp,
eV, =Z,xC¥x...xC¥ respectivamente (en X} el factor Zj, se repite N + 1 veces
y €% lo hace N veces en Y3). La aplicacién &j viene dada por las igualdades,

Fn+1 — k—-l <Hh _ (g) Ah> Vn+1 _ k—l (Hh + (g_) Ah) vho

I, (V2 £ v
—G( h 2+ )), 0<n<N-1, (30a)
F° = V°_ q, (300)

si 84(Vh) = Fp, Vi € Xp,, Fp € Y. Los vectores U™, 0 < n < N, son solucién de (29)
siysélosi Up = [UT, U, .. UNT)T ¢ Xj, 1o es de

Qh(Uh) =0 (31)

En X} e Y, usaremos las normas

| Vi llx,= max ocmen || V7 ||2,,

| Frllv=l E°liz, +& > | F™ ],
ISnS_N'
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donde la norma || . || en €%’ es la norma L?- discreta habitual y la norma en Zj es

|Viz, =TIV . (32)

Esta expresion define una norma en Z* que, cuando J — 40c0 no es uniformemente
equivalente a la norma L? habitual || V ||z= [YC<;<s 2Vi[2]*/2 (la doble tilde significa
que los sumandos primero y ltimo estén divididos por dos).

La siguiente proposicién prueba que en el caso lineal, G = 0, (29a) junto con Ias
condiciones frontera (29b) es un esquema estable en el sentido de Lax.

Proposicién 5

El operador {IIj, — (%)Ah] es invertible cuando se considera restringido al dominio
7. Ademds

1 (5) 4] s (53

| [Hh - (%) Ah]—l [Hh + (%) Ah] < 1. (34)

Las normas en (33) y (34) son las normas de operador de Zp, en €% y de C?/ en €’
respectivamente.

Demostracion

SeaVeZp,yF=[l - (%)Ah]v. Entonces podemos escribir

1 k 1 k
(3) (1= (&) 4) s (5) (14 (5) ) w
1 1\ /k .
3 (Vigr + V3) - ;) \% AVipa=Vy), 7 =0,1,...,J-1.
Tomando normas y teniendo en cuenta la simetria de la matriz 4, es
1 1 k
Bl =1(5) G+ VP +1(5) (5) A0 -0
1\ /k /1
— 2Re (<§> <7z-> AV, (5) Vi+1)
1 k 1
2 I ey Hls Vi),
ke ((2> (h) 4V (2) V)
* donde (.,.) denota el producto interno habitual en €2, sumando en j
, , 1\ [k 1
1120V 15, - 2ze ((3) () 40 (5) v
1\ [k 1
oo (5 () . ()0

1l

Fiia/2

fl
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Por la definicién de A y las condiciones frontera se tiene (AV;,Vy) = —|V;|* y
(AVo, Vo) = |Vo|? y por tanto || F ||2>|| V 17, lo que prueba que (Il — (2)An) es
biyectivo de Zj, en €%, Para probar (34).se toma W = [IIj, — (5)AR) IO, + (%)Ah]v
y se actia como antes.

Procediendo como en secciones anteriores se obtiene el siguiente resultado de

estabilidad.

Proposicién 6

Supongamos que la funcién f en (1) es diferenciable con continuidad y sea R una
constante positiva. Existen constantes S y ko, positivas, que dependen de R, T, f, y
M = max {|u(z,t)|: 0 <z <1, 0<t<T} tales que si k < ko para cada Vi, y Wy,
en X}, verificando, .

max o<ngh || Ma(V™ = u”) [leo< R, max ocngn || TA(W™ —u™) o< B, (35)

se tiene

| Vi—= Wh |[x,< S || a(VR) = Ba(Wh) [y, - (36)

En consecuencia la discretizacién (31) es estable restringida a los umbrales Ry =

R1/2
R )

Después de comprobar que (31) es consistente de orden 2 bajo las siguientes
hipétesis: (i) u posee derivadas de orden tres acotadas, (ii) f es derivable con
continuidad y (iii) || u® — qx ||z,= O(h?) cuando h — 0. El teorema 1 de la seccién
2 permite probar un resultado de convergencia similar al teorema 2. Notemos que se
prueba la convergencia en la norma de Z, es decir, la convergencia de las medias de
los valores nodales de la solucién computada, II,U"™, a las medias correspondientes
de la restriccién de la red de la solucién tedrica I u™, en la norma L2-discreta. La
convergencia es, por el teorema 1, de orden 2.

IMPLEMENTACION Y EXPERIMENTOS NUMERICOS

Los esquemas en diferencias (8), (20) y (29) se han implementado en un VAX 11/780
en lenguaje FORTRAN usando aritmética compleja con precision simple (compilador
VAX-11 FORTRAN).

Como solucién tedrica se ha empleado la onda estacionaria'?
Ta(z,t) = [M(z),iN(z)]" e,
ch((1 — A?)Y/?z)
1+ Ach(2(1 — A?)1/2¢) (37)

sh{(1 — A2)1/2z)
1+ Ach(2(1 — A2)Y/2g)

M((B) — 21/2(1_A2)1/2(1+A)1/2

N(z) — 21/2(1 __A2)1/2(1 _A)1/2
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con frecuencia A = 0.75. Las funciones I'y son soluciones del problema puro de
valores iniciales para (1) que decrecen exponencialmente a cero cuando ¢ — oo
por lo que pueden usarse, sin introducir sustancialmente ningun error, como solucién
tedrica de (1) con condiciones frontera periddicas o del tipo (28b) en un intervalo
[zr,zR],21, < 0 < zg, con zf y zp suficientemente alejados del origen. En nuestros
experimentos hemos tomado 27 = —16 y zr = 16. Los errores globales se miden en
tiempo T = 8 en todos los casos.
Las ecuaciones, no lineales, del esquema Crank-Nicolson se escriben en la forma:

k k untt 4 Un
<I— (5> Lh> Uttt = <I+ <§> Lh> U™+ kG (%) , 0<n<N-1.
(38)
este sistema se resuelve, en cada paso, mediante una iteracién de punto fijo obteniéndose
primero la “prediccién”

k
U - (z + 5%) U™ 4 kG (UM, (39)
para aplicar, después, las etapas correctoras

Upg = U” (40a)

k k Un+U,.
(1_ (-2-> Lh> Upyy = <I+<§> Lh) U™ 4 kG (w) r=0,1,....

(400)
De esta manera sélo es necesario factorizar la matriz (I — (%)Lh) una vez al principio
de los calculos. Por otra parte (40b) se implementa en la forma maés eficiente®

(- @mye - oe (e (52) e

Up) = 20" - U™, (41b)

eliminando la necesidad de computar el término (I + (£)L,)U™
Las 2J ecuaciones con 2J + 2 incdgnitas (29a) del esquema “box” junto con las
condiciones frontera (29b) dan lugar al sistema

I, (U™ + U™)
2

A UMY = BLU™ + 2kG’ < ) , 0<n<N-1,  (42)

donde
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"1 1 0 0 T
I+ (§)A f—(ﬁ)A .
A, = I+(f)A I-(3)A
I+(HA I-(bA
I o 0 1 -1
"0 0 0 0 7
I-(4 I+(p)4 )
B, = I-(pA I+(pA

MUl yun) 0, (U4 U™)\r 7
yG ( 2 ) = [0’ G( 2 ) ’0] .
Este sistema de ecuaciones se resuelve, como en el caso anterior, mediante una

iteracion de punto fijo en la forma

U = U (43a)

ro=0,1,....  (43b)

El sistema lineal (43b) se resuelve factorizando la matriz casidiagonal por bloques A4
al principio de los calculos usando el paquete de software SOLVEBLOK?.

Las tablas I y II corresponden a los esquemas Crank-Nicolson y box
respectivamente. En ambos casos la iteracién interna es detenida cuando la diferencia
entre dos interantes consecutivos es menor que 10~° (diferencia medida en la norma L2
en el caso del esquema Crank-Nicolson y en la norma de Zp, en el caso del box). En
las tablas el numero entre paréntesis es el tiempo de C.P.U. empleado en centésimas
de segundo y el subrayado el nimero de iteraciones internas necesarias para detener la
iteracién en cada paso. El error es el niunero sin subrayar que aparece sin paréntesis
en las tablas. En ambos casos se observa que al dividir A y k simultineamente por
dos el error se divide aproximadamente por cuatro, de acuerdo con el estudio efectuado
en las secciones 3 y 5. El tiempo de C.P.U. empleado por el esquema box es mayor
que el requerido por el método Crank-Nicolson debido al mayor nimero de iteraciones
necesarias para alcanzar la tolerancia, unido a la mayor dificultad que presenta la
resolucién de los sistemas (43b) frente a los (40b). De hecho, en cada paso el esquema
box emplea casl tres veces mas tiempo que el esquema Crank-Nicolson para obtener la
misma precisién. .

En la tabla III se presentan los resultados obtenidos con el método Leap-Frog.
En este caso los pardmetros k y h se hacen variar sujetos a la relacién 0 < k < h
para que el esquema sea estable. Al igual que en las tablas I y II, el error global de
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h
0.2 0.1 0.05

k :
0.7199E-02 ) 0.1819E-01 0.2166E-01
0.4 (1327) (2560) (5146)
6 6 6
0.1493E-01 0.1829E-02 0.4686E-02
0.2 (1766) (3629) (7052)
4 4 4
0.1910E-01 0.3691E-02 0.4809E-03
0.1 (2813) (5496) (10990)
3 3 3
0.2021E-01 0.4673E-02 0.9737E-03
0.05 (5501) (10925) (21947)
3 3 3
0.2049E-01 0.4980E-02 0.1099E-02
0.025 (7962) (15598) (31053)
2 2 2

Tabla 1.

este esquema presenta claramente un comportamiento O(k? 4+ A?) cuando se refina la
red con % = constante. Comparando con la tabla I se observa que el esquema Leap-
Frog es mas eficiente que el esquema Crank-Nicolson, debido a que los mayores pasos
de tiempo que puede tomar el método implicito no compensan el trabajo requerido
para resolver las ecuaciones no lineales. Sin embargo cuando el método explicito se
ha empleado en célculos con T grande se han presentado fenémenos de inestabilidad
no lineal tipicos de los esquemas Leap-Frog!'®!%2°2?  Esto hace que para problemas en
los que sea necesario la integracién de intervalos de tiempo grandes (por ejemplo en el
estudio de interacciones entre ondas) el esquema Crank-Nicolson sea més ventajoso.
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