GRI-94/0037

NLIMITED

.....

PIPELINE CORRIDORS THROUGH WETLANDS — IMPACTS ON PLANT COMMUNITIES: BAYOU GRAND CANE, DE SOTO PARISH, LOUISIANA

TOPICAL REPORT

(August 1991-July 1993)

Prepared by

L.M. Shem, G.D. Van Dyke,* R.E. Zimmerman, and D. Hayes

Center for Environmental Restoration Systems Energy Systems Division Argonne National Laboratory 9700 South Cass Avenue Argonne, Illinois 60439

For

GAS RESEARCH INSTITUTE

Contract No. 5088-252-1770

GRI Project Manager Ted Williams Environment and Safety Research Group

December 1994

*Van Dyke is affiliated with the Department of Biology, Trinity Christian College, Palos Heights, Illinois.

DISTNIBUTION OF THIS

LEGAL NOTICE. This report was prepared by Argonne National Laboratory as an account of work sponsored by the Gas Research Institute (GRI). Neither GRI, members of GRI, nor any person acting on behalf of either:

- a. Makes any warranty or representation, express or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any apparatus, method, or process disclosed in this report may not infringe privately owned rights; or
- b. Assumes any liability with respect to the use of, or for damages resulting from the use of, any information, apparatus, method, or process disclosed in this report.

1.14

ii

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

50272-101		1.2	CA Burley of the	Testes No.
REPORT DOCUMENTATION PAGE	1. REPORT NO. GRI-94/0037	2	3. Recipient's Acc	ession No.
4. Title and Subtitle	•		5. Report Date	
Pipeline Corridors Through Wetl	ands — Impacts on Plant Con	nmunities:	December	1994
Bayou Grand Cane, De Soto Par	ish, Louisiana		6.	
7. Author(s)			8. Performing Org	anization Rept. No.
L.M. Shem, G.D. Van Dyke, R.J	E. Zimmerman, and D.C. Ha	yes		
9. Performing Organization Name and Add	K000	·	10. Project/Task/V	Vork Unit No
Center for Environmental Restora			-	for one no.
Energy Systems Division			ACK 85872	
Argonne National Laboratory			11. Contract (c) o	r Grant (G) No.
9700 South Cass Avenue			(c) 5088-252-	1770
Argonne, Ill. 60439			(G)	
12. Sponsoring Organization Name and Ac			13. Type of Repor	t & Period Covered
Environment and Safety Research Gas Research Institute	n Group		Topical Repor	t
8600 West Bryn Mawr Avenue			August 1991	
Chicago, Ill. 60631				
6 /			14.	
15. Supplementary Notes		· · · · · · · · · · · · · · · · · · ·	L <u></u>	
16. Abstract (Limit 200 words)				
The goal of the Gas Research Ins	titute Watland Corridors Pro	gram is to docum	ent impacts of e	victing nipelines
on the wetlands they traverse.	Fo accomplish this goal 12ϵ	xisting wetland c	rossings were s	surveyed. These
sites varied in elapsed time since	pipeline construction, wetlar	d type, pipeline ir	stallation tech	iques, and right-
of-way (ROW) management practice	ctices. This report presents th	e results of a surv	ey conducted o	ver the period of
August 12-13, 1991, at the Ba	you Grand Cane crossing i	n De Soto Parisl	n, Louisiana, v	vhere a pipeline
constructed three years prior to t	he survey crosses the bayou	through mature b	ottomland hard	woods. The site
was not seeded or fertilized af	ter construction activities.	At the time of s	ampling, a der	ise herb stratum
(composed of mostly native spect of the creation of the ROW, ne	les) covered the 20-m-wide K	ow, except with t diversity increa	n drainage chai	habitat became
fragmented. The ROW must be	- maintained at an early stat	r diversity merca	o allow access	to the pipeline:
however, impacts to the wetland	were minimized by decreasing	the width of the	ROW to 20 m a	nd recreating the
drainage channels across the RC	OW. The canopy trees on the	he ROW's edge s	haded part of t	he ROW, which
helped to minimize the effects of	the ROW.			
17. Document Analysis a. Descriptors	<u> </u>			
17. Document Analysis a. Descriptors				
b. Identifiers/Open-Ended Terms				
c. COSATI Field/Group			· .	
18. Availability Statement			lass (This Report) lassified	21. No. of Pages
Release unlimited				
	· · · · · · · · · · · · · · · · · · ·		ass (This Page) lassified	22. Price
(See ANSI-Z39.18)	See Instructions on Re	verse		NAL FORM 272 94-77) (Formerly NTIS-35) artment of Commerce
			Don	

iii

Research Summary

Contractor Argonne National Laboratory L.M. Shem, G.D. Van Dyke, R.E. Zimmerman, and D. Hayes August 1991-July 1993 Objective Document the historical impacts of pipeline rights-of-way (ROWs) on wetlands. The impact of pipeline construction in wetlands is a very sensitive issue and one that is under strict regulatory control. Neither the

natural gas industry nor the regulatory community has a documented basis to define the type, value, or environmental consequences of past pipeline activities in wetlands. This is one of a series of reports documenting these impacts. This data report is the result of field studies of a three-year-old pipeline ROW through a forested wetland, a common wetland type in the southeastern United States.

Observable impacts of the ROW on hydrology and vegetation were limited to the ROW itself. Modifications to the topography of the ROW included the creation of five drainage channels across the ROW and a connecting channel along the edge of the ROW in addition to the main bayou channel. At the time of sampling, the ROW was well-drained, with flowing water in the main bayou and only occasional standing water in the other channels. The ROW supported a dense stand of herbaceous vegetation consisting of a greater number of species than was present in the adjacent forest. The species composing the ROW flora have greater fidelity to wetlands than do the species found in the adjacent forest. The dense and diverse vegetative community on the ROW developed in three years without artificial seeding or fertilization. The ROW provided habitat for plant species not found in the adjacent forest because the ROW vegetation lacked competition from shrubs and trees. Maintenance plans are designed to keep the ROW free of large woody plants. The presence of the ROW contributes to species richness in the wetland. Future studies are needed to determine the

Title

Pipeline Corridors through Wetlands — Impacts on Plant Communities: Bayou Grand Cane, De Soto Parish, Louisiana

Principal Investigators

Report Period

Technical Perspective

Results

direction of future succession of the ROW vegetation and the rate of reinvasion by other species found in the adjacent natural areas (NAs).

Technical Approach

A relatively homogeneous study site was selected within a forested wetland community occupying about 300 meters along the ROW within the floodplain of Bayou Grand Cane. General observations on hydrology and soil cores were recorded, along with plant cover from transect plots within both sides of the ROW and the NAs on either side of the ROW. Plant data were analyzed to determine similarities and differences between the two sides of the ROW and the two adjacent NAs.

Project Implications This study shows that within three years after installation of the pipeline, the ROW in this wetland community developed a dense stand of mostly native plant species without seeding, liming, or fertilization. Because this site is seasonally flooded and drainage channels have been restored across the ROW, it is unlikely that the hydrology of the site has been changed. The ROW vegetation contributes to the species richness of the wetland and creates habitat diversity; however, it also creates an interruption in the natural plant community. Future impacts will be determined by maintenance practices and the degree to which the forest canopy expands to overhang the ROW.

Ted A. Williams GRI Project Manager Environment and Safety Research Group

v

Contents

A	know	ledgn	nent	vііі
1	Intr	oduc	tion	1
	1.1 1.2	Bacl Goa	cground 1 and Objectives	1 2
2	Des	criptio	on of Study Area	4
	2.1 2.2 2.3 2.4 2.5	Soil Hyd Clin	Selection and Location rology ate ory and Management Practices	4 4 7 7
3	App	roach	and Methods	8
	3.1 3.2 3.3 3.4	Habi Sam	eral Approach itat Description pling Design for Vegetational Studies Analysis	8 8 8 10
4	Rest	ılts	· · · · · · · · · · · · · · · · · · ·	13
	4.1 4.2	Gen Plan	eral Ecology t Community	13 13
5	Disc	ussio	1	24
6	Sum	mary	and Conclusions	26
	6.1 6.2	Sum Con	mary clusions	26 26
7	Refe	rence	S	28
Aŗ	pend	ix A:	Definition of Jurisdictional Wetlands	29
Aŗ	pend	ix B:	Data Analysis — Definitions and Equations	33
Aŗ	pend	ix C:	Plant Species List, Areal Coverage Data, and Species Distribution	39

Tables

1	Number of Plant Species by Wetland Indicator Category Found	
	in the Study Plots in the NAs and the ROW	15

Tables (Cont.)

2	Number of Plant Species by Wetland Indicator Category Found in the Study Plots in the East and West Sides of the ROW	17
3	Number of Plant Species by Wetland Indicator Category Found in the Study Plots in the East and West NAs	18
4	Dominant Species by Vegetative Stratum for Each Habitat	21
5	Coefficient of Community Values: Comparison of Similarity of Species Found in Study Plots	22
6	Prevalence Index and Average Wetland Values for All Species and Dominant Species Found in the NAs and ROW	23
C .1	Plant Species List for the Bayou Grand Cane Study Site	41
C.2	Coverage Estimates by Stratum for Species in the Bayou Grand Cane Study Site	45
C.3	Areal Coverage Estimates and Frequencies by Stratum for Species in the Bayou Grand Cane Study Site	49
C.4	Species Found Outside of Sampling Plots in the Bayou Grand Cane Study Site	54

Figures

1	Location of the Bayou Grand Cane Study Site in De Soto Parish, Louisiana	5
2	Generalized Cross-Section of the Study Site Showing the ROW, Pipeline Location, and Vegetation Types	6
3	Plan View of the Study Site Showing Transect Length and Spacing	9
4	Location and Dimensions of Sampling Plots along One Transect	10
5	Number of Species in Each Wetland Indicator Category by Habitat	19
6	Percentage of Species in Each Wetland Indicator Category by Habitat	20
A.1	Schematic Diagram of the Wetland Delineation Process	32

Acknowledgment

The authors would like to thank Dr. Lowel Urbatsch, Department of Botany, Louisiana State University, Baton Rouge, for verifying the identification of the plant species found at the Bayou Grand Cane.

Pipeline Corridors through Wetlands — Impacts on Plant Communities: Bayou Grand Cane, De Soto Parish, Louisiana

by

L.M. Shem, G.D. Van Dyke, R.E. Zimmerman, and D. Hayes

1 Introduction

1.1 Background

Pipelines for the distribution of natural gas traverse all types of terrain, including wetlands. Prior to the wetlands regulatory climate of the late 1980s and the early 1990s, the construction of right-of-way (ROW) corridors through wetlands was often welcomed by landowners and local communities; ROW corridors opened up wetlands, thereby providing public access. With the promulgation of more stringent regulations related to development activities (including no-net-loss wetland policies), an assessment of the historical impacts of pipeline ROWs through wetlands is needed to evaluate construction and reclamation methods, assist in future permit application processes, and evaluate future construction costs.

The Gas Research Institute (GRI) Wetland Corridors Program was designed to evaluate impacts of gas-pipeline construction and subsequent maintenance on wetlands. The data gathered through this GRI program provide a better understanding of the type, degree, and duration of impacts of various pipeline-construction techniques. This information will enable the industry to evaluate current construction practices and provide factual input to regulatory bodies.

Careful evaluation of the impacts of pipeline installation on wetlands is necessary because specific impacts may be beneficial to some plant and/or animal species and detrimental to others. Some impacts may appear to be detrimental when, in fact, they improve conditions for certain sensitive species or provide for greater diversity of species and habitat.

The initial questions addressed by the GRI Wetland Corridors Program are as follows:

- 1. Do ROW construction and/or management practices lead to differences in ROW plant communities with respect to adjacent wetland communities?
- 2. Does the ROW alter the diversity of the adjacent wetland community? If so, how far do the impacts extend?
- 3. Does the ROW enhance species diversity of the wetland?

4. Are there ROW construction and management practices that can enhance the positive contributions of ROWs to wetlands and minimize detrimental impacts?

Answers to these broad questions will provide information related to a number of more specific questions. Data on the type of plant communities that develop on ROWs in various wetlands when specific pipeline construction and management practices are utilized and comparison of the ROW plant communities with the plant communities in areas adjacent to the ROW will provide a basis for comparing environmental impacts of previous and current construction and management practices. Valuable data for such comparisons include numbers of plant species present, species that are dominant, percentage of the species that are native to the area, and fidelity of the plants to wetlands. Other measures of the quality of species present are also valuable, but those data are not available at present.

Concern exists as to whether pipeline corridors provide avenues of access for nonnative and invasive plants. Whether such plants become established along pipeline ROWs and from there invade adjacent areas, and the extent to which such invaders modify the plant communities in adjacent areas, are important to determining potential impacts of pipelines on wetlands.

Potential positive impacts are also important to assess. The degree to which ROWs provide habitat for rare or endangered species and other desirable species that are poorly represented in the adjacent areas is important information. Assessments of impacts of pipeline corridors on wetlands should also include the contribution of corridors to both plant and animal species diversity.

Answers to the above questions will assist the industry and regulatory agencies in evaluating current installation and management practices and making modifications that are beneficial to wetland quality enhancement.

1.2 Goal and Objectives

The goal of the GRI Wetland Corridors Program is to document impacts of existing pipelines on the wetlands they transverse. To accomplish this goal, 12 existing wetland crossings were surveyed. The sites evaluated differed in years since pipeline installation (ranging from 8 months to 31 years), wetland type, installation technology used, and management practices. Each wetland survey had the following specific objectives:

- Document vegetative communities existing in the ROW and in adjacent wetland communities;
- Evaluate similarities and differences between the plant communities in the ROW and in the adjacent wetland communities;

- Document qualitative changes to the topography, soils, and hydrology attributable to ROW construction; and
- Identify impacts caused by ROW construction on rare, threatened, endangered, or sensitive species.

These individual wetland objectives were fulfilled by the collection and analysis of field data and the presentation of those data and their analysis in nine individual site reports. An upcoming summary report further synthesizes and interprets the data from all individual sites.

This report is a site report of field studies carried out on August 12 and 13, 1991, at the Bayou Grand Cane wetland crossing, approximately four miles southeast of Logansport, Louisiana.

2 Description of Study Area

2.1 Site Selection and Location

The Bayou Grand Cane study site is located in northwest Louisiana in a palustrine forested wetland (Cowardin et al. 1979). A gas pipeline ROW crosses the bayou through bottomland hardwood. The staff of a local pipeline company assisted the Argonne National Laboratory (ANL) team in selecting this site, which is classified as a "Jurisdictional Wetland" under Section 404 of the Clean Water Act (see Appendix A). The site was selected on the basis of a wetland that extended at least 200 m along the ROW and included at least 50 m of wetland on each side of the ROW center.

The study site, shown in Figure 1, is located approximately 4 mi $(6.4 \text{ km})^*$ southeast of Logansport, Louisiana, about 1 mi (1.6 km) southeast of the intersection of U.S. Route 84 and State Route 763.

2.2 Soil

Soil at the study site is classified as Guyton (Soil Conservation Service [SCS] 1991a), a silty, loamy, highly acidic, highly erodible bottomland alluvial soil that has low permeability, is frequently flooded, and is found in areas with slopes of less than 1%. It is classified as a hydric soil (SCS 1991b) and is most commonly found in woodlands.

2.3 Hydrology

The Bayou Grand Cane site is in the floodplain of the backwaters of the Sabine River Authority's Toledo Bend Reservoir. The floodplain of Bayou Grand Cane is several hundred meters wide at the pipeline crossing. As a result of the flood control reservoir, these bottomlands are flooded in late winter and early spring each year. During drier seasons, the site is well drained.

The site varies in elevation by less than 3 m (10 ft), except for the depressions at five channels that cross the site. One of the conditions for construction of the pipeline was reconstruction of the five channel crossings (two deeper and three shallower) in addition to the main channel. The locations of all channels are shown in Figure 2.

^{*} Measurements are given in metric units except where they were actually measured in English units; in these cases, metric equivalents are given in parentheses.

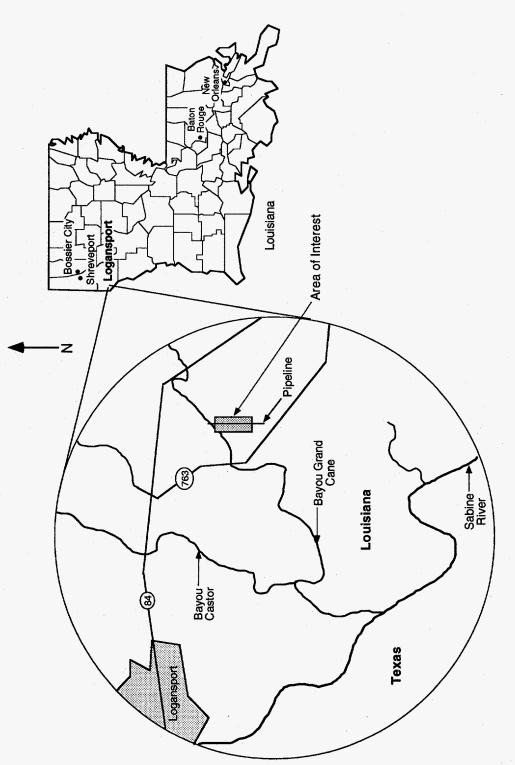


FIGURE 1 Location of the Bayou Grand Cane Study Site in De Soto Parish, Louisiana

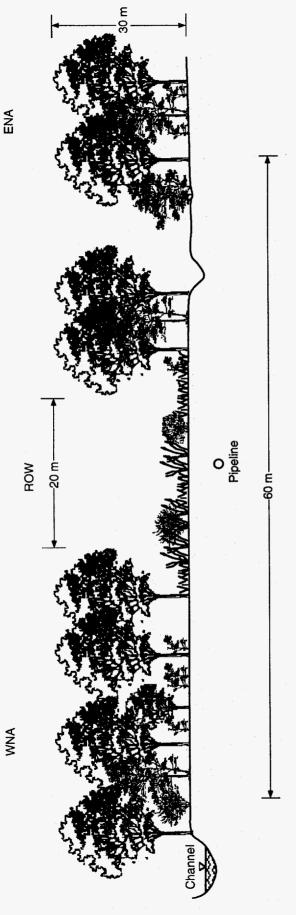


FIGURE 2 Generalized Cross-Section of the Study Site Showing the ROW, Pipeline Location, and Vegetation Types

6

2.4 Climate

The Logansport area has long, hot, humid summers and short, mild winters. Annual precipitation averages 49 in. (124.5 cm), and average temperatures range from 47°F (8°C) in the winter to 79°F (26°C) in the summer. The lowest recorded temperature is 5°F (-15°C); the highest is 108°F (42°C). Precipitation is even throughout most of the year, and prolonged droughts are rare. From April to September, rainfall averages 25 in. (63.5 cm).

١

2.5 History and Management Practices

Area History. The area surrounding the study site contains numerous natural-gas wells. The study site is part of the reservoir capacity for the Sabine River Authority and is periodically flooded. A total of 8,000 ft (2,438 m) of pipeline traverses the wetland at the study site. The vegetation consists primarily of bottomland hardwood trees, although bald cypress and loblolly pines are also present.

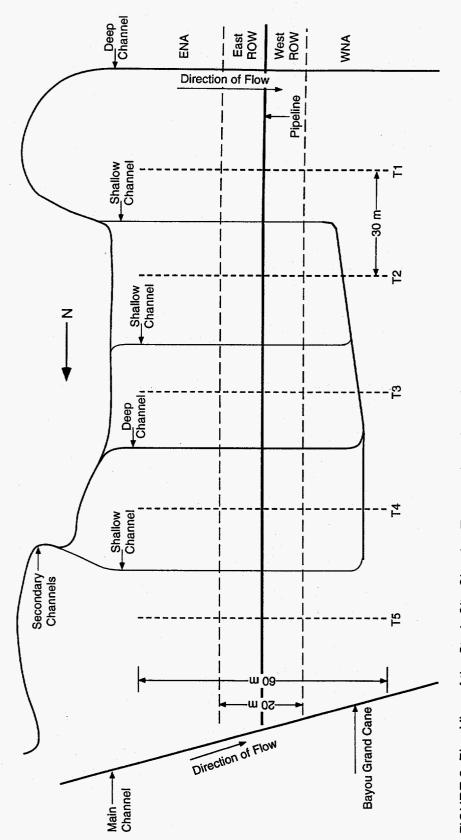
Pipeline Construction. Construction of the pipeline through the study site was completed in April 1989. Conventional trench and backfill techniques were used for pipeline construction. The 4-in. (10.2 m)-diameter pipeline is a collection line that transports natural gas approximately 8,000 ft (2,438 m) from a wellhead to a nearby condensate removal/compressing station.

Postconstruction and Maintenance. No seed or fertilizer was applied to the portion of the ROW within the wetland crossing; the surrounding natural and disturbed areas provided the seeds for revegetation of the study site. However, the portion of the ROW immediately to the south of the study site (in the upland area just beyond the wetland) was seeded by a hunting club to provide food for wildlife. Information about the species used for seeding was not available. Management practices consist of routine maintenance performed on the ROW to maintain access to the pipeline. Maintenance of the ROW at this site consists of "brush whacking" by hand and machine during late summer on a three-year cycle.

3 Approach and Methods

3.1 General Approach

The primary objectives listed in the Introduction (Section 1.2) provided the general guidelines for this study. To allow comparison of results across sites, methodologies for site reconnaissance, vegetation data collection, and data analysis used at this site were similar to those used at the other sites. However, sampling methodology at this site was adapted to include large plots designed to provide data on the forest canopy.


3.2 Habitat Description

The pipeline and ROW extend in a south-to-north direction through the study area, as shown in Figure 1. The natural vegetation off the ROW consists of a dense canopy of nearly mature native bottomland hardwoods, bald cypress and loblolly pine trees, an intermittent understory, and a relatively sparse herb stratum. Vegetation on the 20-m-wide ROW consists of a dense stand of herbaceous species with scattered woody seedlings. Sampling was performed in both habitats: the ROW and the NAs adjacent to the ROW that were undisturbed by pipeline activity. These two habitats were subdivided, based on their relationship to the center of the ROW, into east ROW, west ROW, east natural area (ENA), and west natural area (WNA) (Figure 2).

3.3 Sampling Design for Vegetational Studies

Transects. Five transects were established perpendicular to and crossing the ROW at 30-m intervals (see Figure 3). Each transect extended 30 m east and 30 m west from the center of the ROW. Herbaceous vegetation on the ROW was sampled in two $2\text{-m} \times 5\text{-m}$ plots along each transect. The two plots consisted of rectangles 2 m wide along each transect. The plots extended 5 m in either direction from the center of the ROW. Similar $2\text{-m} \times 5\text{-m}$ plots were used to sample the herb stratum within the bottomland hardwoods. Each plot began 20 m from the center of the ROW and extended to 25 m from the center of the ROW. Shrubs, saplings, and trees were sampled in the NAs by using $10\text{-m} \times 15\text{-m}$ plots that began 15 m from the center of the ROW and extended to 30 m from the center of the ROW. The transects extended through the middle of the plots. Figure 4 shows plot locations along one transect.

Sampling Procedures. ANL collected data on vegetation from each of the measured plots. Specimens of each plant species found in or near the plots were collected as voucher specimens. Visual estimates of areal coverage were recorded for each species by stratum in each plot, and the individual diameters at breast height (dbh) of trees were measured and recorded by species. These measurements were later converted to basal areas.

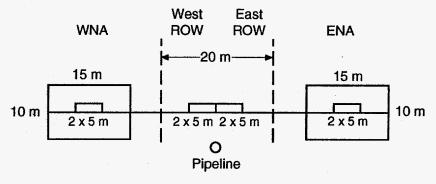


FIGURE 4 Location and Dimensions of Sampling Plots along One Transect

The definitions of the vegetative strata (herbs, shrubs, saplings, and trees) used in this report were taken from the *Federal Manual for Identifying and Delineating Jurisdictional Wetlands* (better known as the 1989 Federal Manual) (Federal Interagency Committee for Wetland Delineation [FICWD] 1989). The herbs were defined as herbaceous plants, including graminoids, forbs, ferns, herbaceous vines, and woody species under 3 ft (0.91 m) in height. Shrubs included multistemmed, bushy shrubs and small trees and saplings between 3 and 20 ft (0.91 and 6.1 m) high. Saplings were defined as having a dbh of 0.4 to 4.9 in. (1.0 to 12.4 cm) and a height exceeding 20 ft (6.1 m). Trees were defined as having a dbh of greater than or equal to 5.0 in. (12.7 cm) and a height exceeding 20 ft (6.1 m). One plant species could occur in any or all strata. Coverage estimates were also made for surface water and bryophytes in each plot.

3.4 Data Analysis

Analyses of vegetative data collected from sampling plots for all 17 sites studied as part of the GRI Wetland Corridors Program were consistent. Analyses focused on comparing the plant communities on the ROW with those in the NAs and determining hydrophytic characteristics of the plant communities in each area. Particular attention was given to dominant species because they are used in several wetland delineation methods. Although the number of species dominant, species richness, and the variety of plant life-forms present are all aspects of community diversity, no diversity indices were calculated. Diversity indices that use coverage values as measures of species importance were considered, but they were judged inappropriate because of differences in the number of strata in the ROW and NAs for the sites included in the Wetland Corridors Program and because coverage values are not additive across strata.

Species Richness, Wetland Indicator Categories, and Species Characteristics. The total number of species present (species richness) was determined for each side of the ROW, for the total ROW, for each NA, and for the NAs combined. Wetland indicator categories (Reed 1988) were identified for each species in the study plots. These categories are defined in Appendix B, Section B.1. The number of species in each category was determined for each area by stratum and for all strata combined. Because one plant species could occur in any or all strata,

when data from different strata were combined, each species was considered only once, independent of the number of strata in which it occurred. Species characteristics, including life-forms and origins, were also determined from Reed (1988). Symbols for life-forms and species origins are given in Appendix B, Section B.2.

Dominant Species. The definition of and methodology for the determination of dominant species in this study were taken from the 1989 Federal Manual (FICWD 1989). In the manual, dominance refers "strictly to the spatial extent of a species that is directly discernible or measurable in the field," as opposed to number of individuals present. Using this definition, dominant species were identified by plant stratum, rather than by total community. For each area, the dominant species were determined for each stratum by ranking each species in a plant stratum in descending order relative to total areal coverage of all plants in that stratum. The highest ranking species, which make up 50% of the total areal coverage or half of the total relative percent coverage (RPC), are the dominant species for that stratum. Any remaining species with 20% or more RPC are also considered dominant.

Community Similarity Indices. Sørensen's coefficient of community index (CC_s) was used to measure similarity between vegetative communities (Brower, Zar, and von Ende 1990). This index uses the following formula:

$$CC_s = 2c/(a+b) \tag{1}$$

where

a = the number of species in community A,

b = the number of species in community B, and

c = the number of species in common between communities A and B.

A CC_s value of 1.00 indicates 100% similarity in species composition between communities A and B. A value of 0.00 represents no species in common. Community similarity indices that use coverage values as measures of species importance were considered, but they were judged inappropriate because of differences in the strata present in the plant communities on the ROW compared to those in the NAs and because of the nonadditive characteristic of coverage data.

Comparisons were made between the combined ROWs and combined NAs, the two portions of the ROW, each portion of the ROW and its adjacent NA, and the two NAs.

Prevalence Index Values. Prevalence index values (PIVs) were calculated according to methods outlined in the Federal Manual (FICWD 1989), substituting RPC data from quadrat coverage estimates for relative frequencies from intercept data. This substitution is logical because

both relative frequency and RPC are estimates of relative coverage (Bonham 1989). The PIV is an average wetland indicator value ranging from 1.0 to 5.0 and weighted by the RPC. Because areal coverage was determined by stratum, the PIVs were calculated for each area by stratum only. The average RPCs for each species in the five plots in each area were used in calculating the PIV for the area. The equation for calculating a PIV is presented in Appendix B, Section B.3.

Average Wetland Values. Average wetland values (AWVs) (Zimmerman et al. 1991) were calculated for the species in each of the five areas. This index is an average of the wetland indicator values for all plants present. It differs from the PIV in that it is not weighted by RPC; rather, all plants present are represented equally, regardless of their frequency of occurrence. Because areal coverage is not considered, the calculation of an index value is not restricted to one vegetative stratum. An overall site AWV was determined, as well as values for each stratum. See Appendix B, Section B.4, for the equation.

4 Results

4.1 General Ecology

Topography throughout the wetland area is generally level. The site is located in a flat basin that varies in width along both sides of the Bayou Grand Cane. The area is periodically flooded during high water levels in the reservoir operated by the Sabine River Authority. Where the ROW crosses the wetland, the basin extends southward from the bayou approximately 300 m. In addition to the main channel, the five smaller channels of varying depths (5-10 ft [1.5-3 m] deep) that crossed the ROW were restored after pipeline construction. Several of the channels had steeply sloping, almost vertical sides. At the time of sampling, only pockets of standing water were present in the channels. No signs of flow direction within the channels or erosion along the steep banks were apparent. Flow directions in the area are dependent on rising and falling water levels in the reservoir. Soil samples collected from the sample plots using a hand auger were consistent with the description for Guyton silty loam described by SCS (1991b). The ROW vegetation consisted of a dense herb stratum, except in the channels, where little or no vegetation was observed.

4.2 Plant Community

Names of plant species, individual plot coverage estimates (by species), and a summary of coverages for each species in each area are provided in Appendix C, Tables C.1, C.2, and C.3. Figure 4 shows a generalized cross-section of the vegetation types in the study site. The WNA within the study site was slightly lower in elevation than the ROW and was dominated by bottomland hardwoods with scattered loblolly pine. Sums of the estimated areal coverages of all species in the shrub and sapling understory strata were only 39% and 18%, respectively. The herb stratum was also incomplete; the sum of the areal coverage of all species was only 37%. The ENA contained a greater diversity of habitat, including several drainage channels and a small knoll in the third transect. Sums of the areal coverages of all species were 33% for the shrub stratum, 10% for the sapling stratum, and 48% for the herb stratum. Vegetation was also more diverse and included bald cypress trees near the channels. The sum of the areal coverages of all species on the ROW was 192%, indicating a dense stand, with plants of different species overlapping.

Plant Species, Life-Forms, and Species Origins. One hundred thirty-two taxa of vascular plants were collected from the study site (Appendix C, Table C.1). Of these, 123 were identified to species; regional wetland indicators (Reed 1988) were determined for 122 of the 123 species. One plant, winged sumac (*Rhus copullinum*) was identified to species, but has not yet been assigned a regional indicator (Reed 1988). Four taxa were identified to genus only, and five grasses/sedges could not be identified to the genus level. On the basis of vegetative differences, all of the unknowns were assumed to be separate species. Wetland indicators could not be assigned to plants identified only to genus or classified as unknowns. Of the 132 species, 15 were found outside the sampling plots and excluded from further data analysis. Percent areal coverage, species

diversity, species dominance, and wetland indicator values for the different transects and habitats were determined on the basis of the 117 taxa that occurred within the sampling plots.

Of the 107 identifiable vascular plant species occurring in the sampling plots, four are listed as introduced species (Reed 1988). Chinese privet (*Ligustrum sinense*), a shrub, was a minor component in one plot of the ENA. Upright yellow woodsorrell (*Oxalis europaea*) occurred in one plot on the east side of the ROW, and bahia grass (*Paspalum notatum*) occurred in one plot on the west side of the ROW. Shrubby camphor-weed (*Pluchea odorata*), which occurred in only one plot in each NA (east and west), was the primary dominant species in both the east and west sides of the ROW, with over 26% relative coverage.

Species Richness and Wetland Indicator Categories. Table 1 shows the number of plant species found in the NAs and in the ROW by wetland indicator categories and vegetative strata. Because a plant species can occur in one or more strata, when data from all four strata were combined, each species was considered only once, regardless of the number of strata in which it occurred.

Table 1 gives the total numbers of species found in the NAs and in the ROW (columns 3 and 4), the number of species common to both habitats (column 5), and the number of species unique to each habitat (columns 6 and 7). The herb stratum contained a total of 101 species. The ROW had higher diversity, with a total of 75 species versus 45 in the NAs. Of the total species, 19% were common to both habitats, 56% were unique to the ROW, and 26% were unique to the NAs. Of the plant species in the ROW, 59% were either obligate wetland (OBL) (27%) or facultative wetland (FACW) (32%), 17% were facultative (FAC), and 13% were either facultative upland (FACU) (12%) or upland (UPL) (1%). The remaining 11% of the plants in the ROW were not identified to species and were therefore not classified. In the NAs, 44% of the plants were either OBL (11%) or FACW (33%), 33% were FAC, and 15% were either FACU (13%) or UPL (2%); the remaining 7% of plants in the NAs were not identified to species.

Shrubs, saplings, and trees occurred only in the NAs. Twenty-five species of shrubs were found on the study site: 28% were either OBL (8%) or FACW (20%), 48% were FAC, and 20% were either FACU (16%) or UPL (4%). One species (4%) was an introduced, uncategorized species. Eleven species occurred in the sapling stratum: 27% were FACW, 64% were FAC, and a single species (9%) was UPL. The tree stratum included eleven species: 36% were OBL (18%) or FACW (18%), 45% were FAC, and one species (9%) was an upland species. Only four of the tree species were also found in the sapling stratum.

Greater diversity was observed in the herb stratum of the ROW (75 species) than in all of the strata in the NAs combined (63 species). Of the species in the herb stratum, 18% were found in both the ROW and NAs, 46% were unique to the ROW, and 36% were unique to the NAs. Of the 107 taxa identified to species from all strata combined, 56% were either OBL (21%) or FACW (35%), 28% were FAC, and 16% were either FACU (13%) or UPL (3%).

				Number of S	pecies		
Stratum	Wetland Indicator Category ^a	Occurring in NAs	Occurring in ROW	Common to Both Areas	Unique to NAs	Unique to ROW	Total
Herb	OBL FACW FAC FACU UPL Unid ^b Total	5 15 15 6 1 3 45	20 24 13 9 1 8 75	5 4 4 0 2 19	0 11 11 2 1 1 26	15 20 9 5 1 6 56	20 35 24 11 2 9 101
Shrub	OBL FACW FAC FACU UPL Unid Total	2 5 12 4 1 1 25	0 0 0 0 0 0 0	0 0 0 0 0 0	2 5 12 4 1 25	0 0 0 0 0 0 0	2 5 12 4 1 25
Sapling	OBL FACW FAC FACU UPL Unid Total	0 3 7 0 1 0 11	0 0 0 0 0 0	0 0 0 0 0 0 0	0 3 7 0 1 0 11	0 0 0 0 0 0 0	0 3 7 0 1 0 11
Tree	OBL FACW FAC FACU UPL Unid Total	2 5 1 1 0 11	0 0 0 0 0 0 0	0 0 0 0 0 0	2 2 5 1 0 11	0 0 0 0 0 0 0	2 2 5 1 1 0 11
Combined	OBL FACW FAC FACU UPL Unid Total	8 17 22 10 2 4 63	20 24 13 9 1 8 75	5 4 5 0 2 21	3 13 17 5 2 2 42	15 20 8 4 1 6 54	23 37 30 14 3 10 117

 TABLE 1
 Number of Plant Species by Wetland Indicator Category Found in the Study

 Plots in the NAs and the ROW (by individual stratum and combined strata)

^a OBL = obligate wetland species; FACW = facultative wetland species; FAC = facultative species; FACU = facultative upland species; UPL = obligate upland species. See Appendix B for more detailed information on wetland indicators.

^b Includes plants not identified to species and species not assigned a wetland indicator value.

Table 2, presented in the same format as Table 1, compares the sample plots from the two sides of the ROW. Because no shrubs, saplings, or trees were present in the ROW, the combined-strata data are the same as the herb stratum data and therefore are not listed separately. The total number of species, including unidentified species, for the east and west sides of the ROW were similar: 64 and 61, respectively. Of the 75 species in the ROW, 67% were common to both sides of the ROW, while 19% were unique to the east side, and 15% were unique to the west side. However, the number of unique species in each of the wetland indicator categories was very similar in each side of the ROW.

Table 3 uses the same format as Tables 1 and 2 to compare species from the ENA with those from the WNA. A total of 63 species was found in the NAs, many in more than one stratum. Forty-five species were found in the herb stratum: 35 in the ENA and 27 in the WNA. Thirty-eight percent of the species in the herb stratum were found in both areas, 40% were unique to the ENA, and 22% were unique to the WNA. The shrub stratum included 25 species: 18 in the ENA and 12 in the WNA. For the shrub stratum, 20% of the species were found in both NAs, 52% were unique to the ENA, and 28% were unique to the WNA. Eleven species were present in the sapling stratum: 36% were unique to the ENA, 45% were unique to the WNA, and only 18% of the species were common to both areas. Eleven species were also present in the tree stratum: 45% of the species were common to both areas, 27% were unique to the ENA, and 27% were unique to the WNA.

Figure 5 shows the total number of species in all strata combined in each wetland indicator category for all of the study plots in the NAs and the ROW. Figure 5 shows that the greater total number of species in the ROW is accounted for by a greater number of OBL and FACW species in the ROW than in the NAs, a phenomenon that more than compensates for the greater number of FAC species in the NAs. These relationships, which are based on percentage of species in each wetland category, are also illustrated in Figure 6.

Dominance. The dominant species in each habitat were determined for individual vegetative strata by using a modification of the method outlined in the 1989 Federal Manual (FICWD 1989), as described in Section 3.4. For the NAs at this site, four strata were observed: (1) herb, (2) shrub, (3) sapling, and (4) tree. Section 3.3 provides definitions for each stratum. Table 4 lists the dominant species averaged, by stratum, over the study plots for each habitat. In the ROW, only an herb stratum was present.

In the herb stratum, four species were dominant in the 10 plots in the NAs, and four different species were dominant in the 10 plots in the ROW. The NAs were dominated by one OBL species, one FACW species, and two taxa that were identified only to genus and thus not categorized. The ROW dominants included one OBL, two FACW, and one FACU species. When the NAs were considered separately, five dominants occurred; the additional species was a FAC species. When the two sides of the ROW were considered separately, five dominants also occurred, and the additional species was classified as a FACW species.

TABLE 2 Number of Plant Species by Wetland Indicator Category Found in the Study Plots in the East and West Sides of the ROW (by individual stratum and combined strata)

			· · · · ·	Number of	Species		
Stratum	Wetland Indicator Category	Occurring in East Side of ROW	Occurring in West Side of ROW	Common to Both Sides of ROW	Unique to East Side of ROW	Unique to West Side of ROW	Total
		• 					
Herb	OBL	17	17	14	3	3	20
and	FACW	21	19	16	5	3	24
Combined ^a	FAC	11	10	8	3	2	13
	FACU	7	9	7	Ö	2	9
	UPL	1	0	0	1	0	1
	Unid ^b	7	6	5	2	1	8
	Total	64	61	50	14	11	75

^a No shrubs, saplings, or trees occurred in the ROW; therefore, the herb stratum and the combined strata were the same.

^b Plants not identified to species and species not assigned a wetland indicator value.

Shrub and sapling strata were present only in the NAs and were dominated in all areas by a single species, American hornbeam (*Carpinus caroliniana*), a native tree classified as a FACW species.

Three dominant tree species were present in the combined NAs: one OBL and two FAC species. The ENA contained three dominants (one OBL, one FAC, and one UPL), with a combined relative basal area of 60%. The WNA contained two dominants (both FAC), with a combined relative basal area of 53%. One species in each separate NA did not qualify as a dominant species when the areas were combined.

Community Similarity Index. To provide a summary comparison of species found in each of the areas of the study site on the basis of plot data, we calculated a CC_s index (the coefficient is defined in Section 3.4). These values are listed in Table 5. When data from all strata were combined, each species was considered only once, regardless of the number of strata in which it occurred.

When the species occurring in the 10 plots of the ROW were compared with the species occurring in the 10 plots of the NAs, the CC_s was 0.32 when only the herb stratum was considered. The CC_s was only 0.30 when the herb stratum on the ROW was compared with the

		Number of Species					
Stratum	Wetland Indicator Category	Occurring in ENA	Occurring in WNA	Common to Both NAs	Unique to ENA	Unique to WNA	Total
Herb	OBL	5	1	1	4	0	5
	FACW	14	7	6	8	1	15
	FAC	9	12	6	3	6	15
	FACU	4	4	2	2	2	6
	UPL	-1	0	0	1	0	1
	Unid ^a	2	3	2	. 0	1	3
	Total	35	27	17	18	10	45
Shrub	OBL	2	0	0	2	0	2
	FACW	3	3	1	2	2	5
	FAC	9	6	2	6	3	12
	FACU	2	3	-1	1	2	4
	UPL	1	0	0	1	0	1
	Unid	1	0	0	1	0	1
	Total	18	12	5	13	7	25
Sapling	OBL	0	0	0	0	0	0
	FACW	1	2	0	1	2	3
	FAC	5	4	2	3	2	7
	FACU	0	0	0	0	0	0
	UPL	0	1	0	0	1	1
	Unid	0	0	0	0	0	0
	Total	6	7	2	4	5	11
Tree	OBL	2	0	0	2	0	2
	FACW	1	2	1	0	1	2
	FAC	4	5	4	0	· 1	5
	FACU	0	1	0	0.0	1	1
	UPL	1	0	0	1	0	1
	Unid	0	0	0	0	0	0
	Total	8	8	5	3	3	11
Combined	OBL	8	1	1	6	0	8
	FACW	15	9	7	8	2	17
	FAC	17	17	12	5	5	22
	FACU	6	7	3	3	4	10
	UPL	2	1	1	.1	0	2
	Unid	3	3	2	1	1	4
	Total	51	39	27	24	12	63

TABLE 3 Number of Plant Species by Wetland Indicator Category Found in the Study Plots in the East and West NAs (by individual stratum and combined strata)

^a Includes plants not identified to species and species not assigned a wetland indicator value.

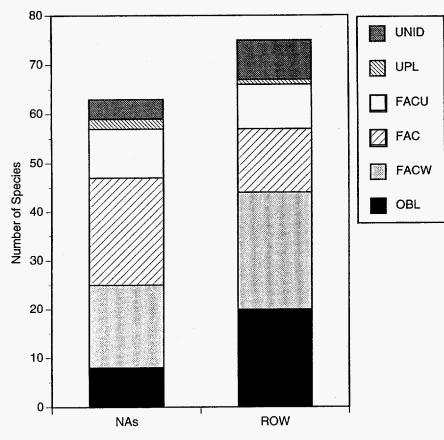


FIGURE 5 Number of Species in Each Wetland Indicator Category by Habitat

combined strata for the NAs. Comparison of the shrub, sapling, and tree strata of the NAs with the ROW is inappropriate because these strata were not present on the ROW. Comparison of the plots from the east and west sides of the ROW yields a high CC_s (0.80). Comparison of the plots from the ENA and WNA resulted in values ranging from 0.31 for the sapling stratum to 0.63 for the tree stratum. The value for the combined strata was 0.60.

Prevalence Index Values and Average Wetland Values. Table 6 presents the PIVs and AWVs for the NAs and the ROW. For both indices, a value of less than 3.00 indicates wetland vegetation. Generally, the values presented in Table 6 are below 3.00, which confirms the delineation of the area as a wetland. In two strata (shrub and sapling in the NAs), one species, *Carpinus caroliniana* (a FAC species), was dominant. As a result, both the PIV and the AWV for dominant species in these strata is 3.00; however, the value for all species combined is slightly below 3.00.

PIVs could not be calculated for the herb stratum of the NAs because this value is weighted by the dominant species; in this case, the two most dominant taxa could not be identified to species. Therefore, no wetland indicator category could be assigned. Similarly, the AWV could not be calculated for the dominant species of this stratum of the NAs because these two unidentified species made up half the number of dominant species.

19

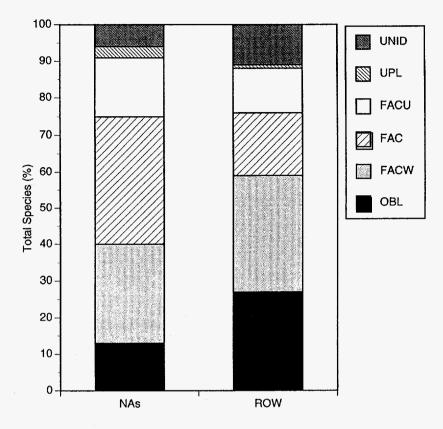


FIGURE 6 Percentage of Species in Each Wetland Indicator Category by Habitat

PIVs could not be calculated for combined strata because coverage data were used in the calculations, and coverage values for strata are not additive. AWVs were calculated for both individual and combined strata. A comparison of the PIVs and AWVs for each area and each stratum (whether all species were considered or just the dominant species) shows that the two values are similar. There are two schools of thought as to which wetland indicator, the PIV (weighted by species coverage) or the AWV (an unweighted value), better represents the condition of the wetland. In this case, the two methods yielded similar results. In giving equal weight to all species present, the AWV is influenced more by rare or occasional species. If dominant species have broad ecological ranges, they may indicate less about the habitat than do the species with narrow ecological ranges that may be present in lesser amounts. When all species of this site are considered equally (in the AWV), the wetland value is generally lower than when the value is weighted by dominance (PIV). This phenomenon can be explained by the fact that some of the subordinant species are more specific to wetlands than are dominant species as a whole.

Stratum	Habitat	Scientific Name	Common Name	Wetland Indicator Category	Relative Percent Coverage ^a	Total Relative Percent Coverage
Herb	NAs	<i>Rubus</i> sp.			19.5	
		<i>Carex</i> sp.			18.5	
		Boehmeria cylindirca	Small-spike false nettle	FACW	6.5	
		Triadenum tubulosum	Large marsh St. John's wort	OBL	6.0	50.5
	ROW	Pluchea odorata	Shrubby camphor-weed	FACW	26.1	
		Dichanthelium aciculare	Needle-leaf witchgrass	FACU	15	
		Carex tribuloides	Blunt broom sedge	FACW	6.1	
		Mikania scandens	Climbing hempweed	OBL	5.7	52.9
Shrub	NAs	Carpinus caroliniana	American hornbeam	FAC	67.2	67.2
Sapling	NAs	Carpinus caroliniana	American hornbeam	FAC	63.1	63.1
Tree	NAs	Liquidambar stryaciflua	Sweet gum	FAC	19.7	
		Taxodium disticum	Bald cypress	OBL	16.1	
		Pinus taeda	Loblolly pine	FAC	14.2	50.0

TABLE 4 Dominant Species by Vegetative Stratum for Each Habitat

^a Basal areas, rather than an estimate of areal coverage, were used for trees.

		Comparison	
Stratum	NAs to ROW	East Side of ROW to West Side of ROW	ENA to WNA
Herb	0.32	0.80	0.56
Shrub	0.00	0.00	0.32
Sapling	0.00	0.00	0.31
Tree	0.00	0.00	0.63
Combined	0.30	0.80	0.60

TABLE 5 Coefficient of Community Values: Comparison ofSimilarity of Species Found in Study Plots

Stratum	Habitat	Species	Prevalence Index Value	Average Wetland Value
Herb	NAs	All Dominant ank	NC ^a NC	2.60 NC
		Dominant only	NC	NC
	ROW	All	2.27	2.21
		Dominant only	2.57	2.50
Shrub	NAs	Ali	2.98	2.84
		Dominant only	3.00	3.00
	ROW ^b		None	None
Sapling	NAs	All	2.94	2.91
		Dominant only	3.00	3.00
	ROW		None	None
Tree	NAs	All	2.70	2.73
		Dominant only	2.36	2.33
	ROW		None	None
Combined	NAs	All	NL°	2.68
	ROW	All	NL	2.21

TABLE 6 Prevalence Index and Average Wetland Values for All Species and Dominant Species Found in the NAs and ROW (by individual stratum and combined strata)

^a NC = not calculated; dominant species were not identified to species.

^b No shrubs, saplings, or trees were present on the ROW.

^c NL = values could not be calculated for combined strata because areal coverage (which is not additive) is used in the calculation.

5 Discussion

In the area of the study site the ROW was dissected by several prominent and shallow drainage channels. During much of the year, the area is sufficiently drained so that the soil surfaces become relatively dry. Evidence of periodic flooding and high water tables included bald cypress knees, water lines on trees, and sediment deposits adjacent to channels at various locations. All vegetative strata are composed predominantly of wetland species; both the herb and tree strata are dominated by wetland species.

Only drainage within the boundaries of the ROW was modified by ROW construction; drainage in NAs off the ROW was not altered. Because drainage channels were restored across the ROW after pipeline construction, overall drainage and periodic reservoir flooding should not be affected by the presence of the ROW.

The NAs on either side of the ROW consist of relatively mature forests with dense canopies and less dense sapling and shrub strata. The herb stratum in the forest is poorly developed, at least partially because of intense shading by a dense canopy; sustained periods of flooding may, to some extent, inhibit the growth of the herb stratum. These conclusions are supported by several findings. For example, the sum of individual species coverages for the herb stratum in the ENA was 48% compared with 37% in the WNA. The ENA was dissected by more channels and therefore had a less dense canopy. The ENA also contained a small knoll in one transect. Moreover, the species in the herb strata of the ENA and the WNA had a CC_s that indicated only about a 50% similarity. No rare or endangered species were found in the NAs or in the ROW.

Vegetation on the ROW was very different from that in the NAs. Only an herb stratum was present on the ROW, and only 21 of the 75 species found on the ROW were also present in the NAs. Four of the species found in both the NAs and the ROW were seedlings of woody species: American hornbean, poison ivy, bald cypress, and water oak. Thus, 54 of the 71 herbaceous species found on the ROW were unique to the ROW. Three of the dominant species on the ROW (shrubby camphor-weed, climbing hempweed [*Mikania scandens*], and needle-leaf witchgrass [*Dichanthelium aciculare*]) also occurred in the NAs but each with less than 1% coverage (Table C.2, Appendix C). The other ROW dominant, blunt broom sedge (*Carex tribuloides*), did not occur in the NAs.

The shrubby camphor-weed, with an average areal coverage of 51% on the ROW, is an opportunistic perennial with a wide geographical distribution and broad ecological tolerances (Godfrey and Wooten 1981). This plant variety is an introduced species in the site area. The other dominant species, climbing hempweed (a perennial vine with an areal coverage of 11%), has similar traits. Needle-leaf witchgrass, a perennial native grass with an areal coverage of 27%, is also a rather aggressive invader.

Three of the four introduced species identified in study plots occurred on the ROW. Two were exclusively found on the ROW but were rare. One of these, shrubby camphor-weed (as mentioned above), was the most dominant species on the ROW. This finding further suggests the opportunity the ROW creates for such a species to take hold. However, this species was found very rarely in the NA, which suggests it is not a threat to the wetland community.

The dense vegetation and the fact that 60 of the 67 taxa identified to species on the ROW are perennials demonstrates a considerable stabilization within the three years since pipeline installation. Some shifts in composition are likely in the future, but if scheduled maintenance is completed, the species will be limited to herbs and smaller shrubby plants. Although the relatively narrow (20-m-wide) ROW is shaded by adjacent forest trees early and late in the day, there is apparently sufficient sunlight to support sun-adapted species. We cannot predict the extent to which the canopy will close in over the ROW and alter its vegetation over time; however, some changes are likely to occur. It is also impossible to predict the extent to which ROW species will invade the adjacent forest. As long as the forest remains intact, extensive invasion seems unlikely because of the area's dense canopy.

6 Summary and Conclusions

6.1 Summary

As stated in Section 1, the primary goal of the GRI Wetland Corridors Program is to identify and evaluate the impacts of pipeline construction and ROW maintenance on the wetlands they traverse. To accomplish this goal, pipelines crossing various wetlands throughout the eastern United States were surveyed. The objectives for each study site were to document the vegetative communities on the ROW and on adjacent NAs that were not disturbed by pipeline construction; evaluate the similarities and differences between the plant communities on the ROW and those in the adjacent NAs; document changes to the topography, soils, and hydrology attributable to ROW construction; and identify the impacts caused by ROW construction on rare, threatened, endangered, or sensitive species.

This study involved collecting and analyzing data at the Bayou Grand Cane Wetland Crossing in De Soto Parish, Louisiana. No rare, threatened, endangered, or sensitive species were found during the survey of this site. After the pipeline was constructed, an attempt was made to restore the topography and hydrology of the site to its preconstruction state by creating five channels (in addition to the main bayou) across the ROW. These efforts appeared to have been successful based on observations at the time of sampling; no erosion had occurred, except on channel banks, and pockets of standing water were observed in the deeper channels. Additional observations made during times of flooding could better verify the adequacy of drainage.

The ROW at this site supports a much different flora than that in adjacent NAs; however, 59% of the species are wetland species, and the ROW has become stabilized with predominantly perennial vegetation within three years of pipeline installation. The sum of the average percent areal coverage for all plants on the ROW was 192%, which represents a dense stand of vegetation averaging 3 ft in height. This stand regenerated in three years without supplemental fertilization or seeding. At present, there is little evidence of any impacts on the vegetation in the adjacent NAs. Forest canopies and understories are intact, except within the ROW.

6.2 Conclusions

The two major impacts to the wetland as a whole by the pipeline ROW construction and maintenance are (1) creation of a new habitat, increasing the diversity of plants and, potentially, of wildlife, and (2) fragmentation of the present forest. These impacts could be viewed as both detrimental and beneficial, depending on which portion or what size of ecosystem is studied. In one way, the ROW is disrupting the continuity of the forested wetland, possibly creating barriers or competition to the native species of plants or animals. However, the ROW is relatively narrow (20 m), and the canopy overhang further narrows the ROW, thereby reducing its effects as a barrier to most species. The ROW is also creating a habitat for early successional and opportunistic plants to take hold in what is now a relatively mature forest. The increased diversity

of the vegetation also provides an opportunity for an increase in wildlife diversity and considerable forage for grazing species.

7 References

Bonham, C.P., 1989, Measurements for Terrestrial Vegetation, John Wiley and Sons, New York.

Brower, J., J. Zar, and C. von Ende, 1990, Field and Laboratory Methods for General Ecology, Third Edition, Wm. C. Brown Publishers, Dubuque, Iowa.

Cowardin, L.M., et al., 1979, *Classification of Wetlands and Deep Water Habitats of the United States*, U.S. Fish and Wildlife Service, U.S. Geological Survey, and U.S. National Oceanic and Atmospheric Administration, Washington, D.C.

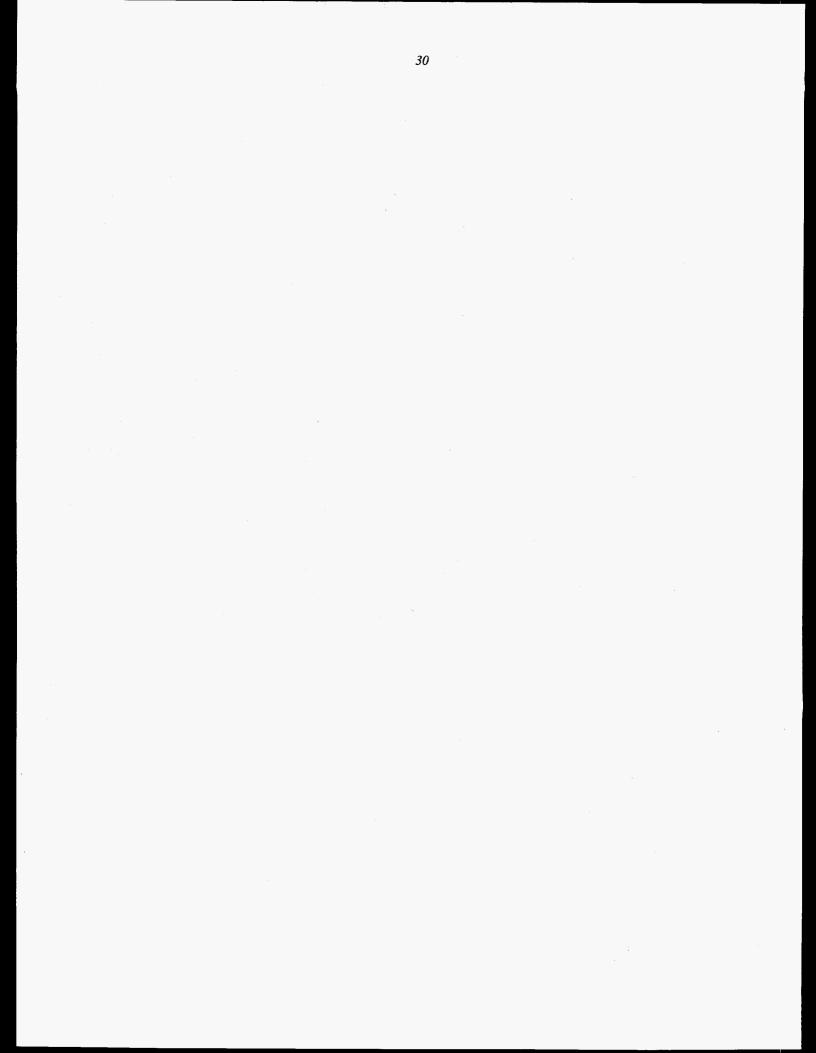
Federal Interagency Committee for Wetland Delineation, 1989, *Federal Manual for Identifying and Delineating Jurisdictional Wetlands*, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S. Department of Agriculture, Washington, D.C., Cooperative Technical Publication.

FICWD: see Federal Interagency Committee for Wetland Delineation

Godfrey, R.K., and J.W. Wooten, 1981, Aquatic and Wetland Plants of Southeastern United States, Dicotyledons, University of Georgia Press.

Reed, P.B., Jr., 1988, National List of Plant Species that Occur in Wetlands: Southeast (Region 2), U.S. Department of Interior, Fish and Wildlife Service.

SCS: see Soil Conservation Service


Soil Conservation Service, 1991a, *Soil Survey of De Soto Parish, Louisiana*, United States Department of Agriculture, in cooperation with the Louisiana Agricultural Experiment Station.

Soil Conservation Service, 1991b, Hydric Soils of the United States, U.S. Department of Agriculture, in cooperation with the National Technical Committee for Hydric Soils.

Zimmerman, R.E., et al., 1991, Pipeline Corridors through Wetlands — Impacts on Plant and Avian Diversity: Boreal Wetlands, Oconto County, Wisconsin, GRI-91/0046, prepared by Argonne National Laboratory, Argonne, Ill., for the Gas Research Institute, Chicago, Ill.

Appendix A:

Definition of Jurisdictional Wetlands

Appendix A: Definition of Jurisdictional Wetlands

Wetland identification and delineation necessary to implement Section 404 of the Clean Water Act and the "Swampbuster" (Subtitle B) provision of the Food Security Act of 1985 involves four agencies: the U.S. Army Corps of Engineers (COE), the U.S. Environmental Protection Agency (EPA), the U.S. Fish and Wildlife Service (FWS), and the Soil Conservation Service (SCS). On January 10, 1989, these agencies, which had operated with slightly different definitions of wetland, adopted a uniform definition based on hydrology, vegetation, and soils.

The joint agreement stipulates that to be classified as a Jurisdictional Wetland, an area must have hydrotrophytic vegetation, hydric soils, and a wetland hydrology. All three criteria are mandatory; without any one criterion, the area is not a Jurisdictional Wetland. A schematic diagram of this delineation process is shown in Figure A.1. See the *Federal Manual for Identifying and Delineating Jurisdictional Wetlands* for a more detailed discussion of the various terms and criteria (FICWD 1989).

Problems uncovered during field trials of the 1989 Federal Manual and disagreement among the four agencies on revisions in 1991 resulted in the EPA and the COE reverting to use of the 1987 *COE Wetlands Delineation Manual*, which also defines wetlands on the basis of vegetation, hydric soils, and hydrology, but with slightly different definitions of these parameters. In January 1994, the four agencies entered into a joint Memorandum of Agreement, "Concerning the Delineation of Wetlands for Purposes of Section 404 of the Clean Water Act and Subtitle B of the Food Security Act," which, in broad terms, stipulates that the EPA and the COE will accept SCS procedures for delineating wetlands (SCS 1988) on agricultural lands and that SCS will use the 1987 *COE Wetlands Delineation Manual* (COE 1987) for areas that are not agricultural lands.

The individual reports on the pipeline crossings through wetlands that are part of the GRI Wetland Corridors Program use the definition and criteria of the 1989 Federal Manual that were in effect during 1990 and 1991, the first two years of these studies. The use of the rigorous criteria of the 1989 manual should provide sufficient information for application to other procedures in the evolving field regulatory procedures for delineation and preservation of jurisdictional wetlands.

References

COE: see U.S. Army Corps of Engineers.

Federal Interagency Committee for Wetland Delineation, 1989, *Federal Manual for Identifying and Delineating Jurisdictional Wetlands*, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S. Department of Agriculture, Cooperative Technical Publication, Washington, D.C.

FICWD: see Federal Interagency Committee for Wetland Delineation.

SCS: see Soil Conservation Service.

Soil Conservation Service, 1988, National Food Security Act Manual, U.S. Department of Agriculture, Washington, D.C.

U.S. Army Corps of Engineers, 1987, Corps of Engineers Wetlands Delineation Manual, Technical Report Y-87-1, Waterways Experiment Station, Vicksburg, Miss.

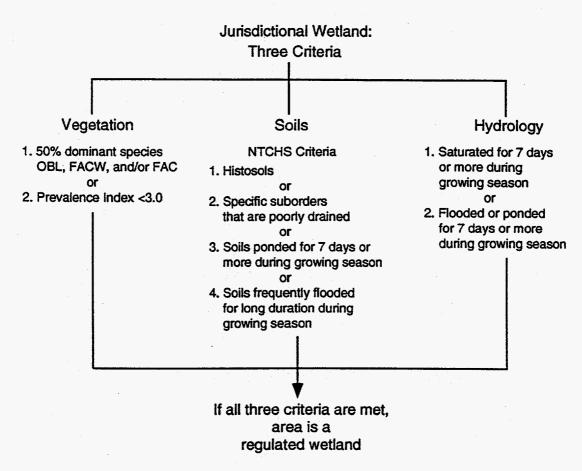
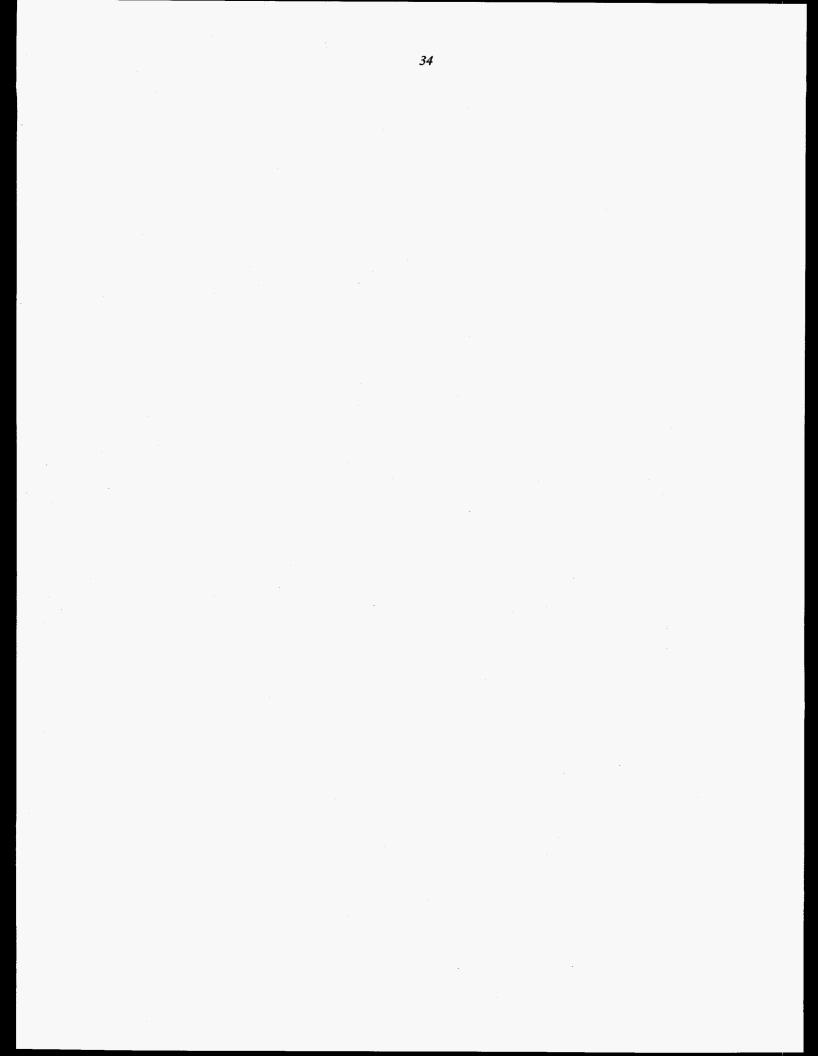



FIGURE A.1 Schematic Diagram of the Wetland Delineation Process (Source: FICWD 1989)

Appendix B:

Data Analysis — Definitions and Equations

Appendix B: Data Analysis — Definitions and Equations

B.1 Wetland Indicator Categories

Wetland indicator categories used in this report to classify the types of plant species were taken from Reed (1988). The five basic categories, commonly called the "wetland indicator status," are based on frequency of occurrence in wetlands. They are defined as follows:

Category	Value	Definition
Obligate wetland (OBL)	1.0	Plants that almost always occur in wetlands under natural conditions (estimated probability >99%)
Facultative wetland (FACW)	2.0	Plants that usually occur in wetlands (estimated probability 67-99%) but occasionally are found in nonwetlands
Facultative (FAC)	3.0	Plants that are equally likely to occur in wetlands or nonwetlands (estimated probability 34-66%)
Facultative upland (FACU)	4.0	Plants that usually occur in nonwetlands (estimated probability 67-99%) but occasionally are found in wetlands (estimated probability 1-33%)
Obligate upland (UPL)	5.0	Plants that almost always occur in nonwetlands under natural conditions (estimated probability >99%)

B.2 Life-Form and Origin

Symbol	Lite-Form or Origin
A	Annual
В	Biennial
E	Emergent
1	Forb
F3	Fem
G	Grass
GL	Grasslike
H2	Horsetail
	Introduced
N	Native
P	Perennial
S	Shrub
Т	Tree
V	Herbaceous vine
WV	Woody vine

The life-form and origin symbols are used for describing plant characteristics. The following symbols are used:

Symbols are combined to describe the life-form and origin; for example, ANG means annual native grass and PIEF means perennial introduced emergent forb. For further description refer to the report by Reed (1988).

B.3 Prevalence Index Value

The prevalence index value (PIV) was determined by using the method outlined in the 1989 Federal Manual (FICWD 1989). The PIV, modified for this report to use relative percent areal coverage instead of relative frequencies as described in the 1989 Federal Manual, is defined as

$$PIV = \frac{RPC_{o} + 2RPC_{fw} + 3RPC_{f} + 4RPC_{fu} + 5RPC_{u}}{100}$$
(B.1)

where

 RPC_{o} = Relative percent coverage (RPC) of obligate wetland species,

 $RPC_{fw} = RPC$ of facultative wetland species,

 $RPC_f = RPC$ of facultative species,

 $RPC_{fu} = RPC$ of facultative upland species, and

 $RPC_u = RPC$ of upland species.

B.4 Average Wetland Value

The average wetland value (AWV), defined in Zimmerman et al. (1991), differs from the PIV in that it is not coverage data or frequency of occurrence that is used in determining the AWV, but rather the total number of species present. Thus, all species present are represented equally in the AWV. The AWV is defined as

$$AWV = \frac{N_0 + 2N_{fw} + 3N_f + 4N_{fu} + 5N_u}{N_0 + N_{fw} + N_f + N_{fu} + N_u}$$
(B.2)

where

 N_0 = number of obligate wetland species,

 N_{fw} = number of facultative wetland species,

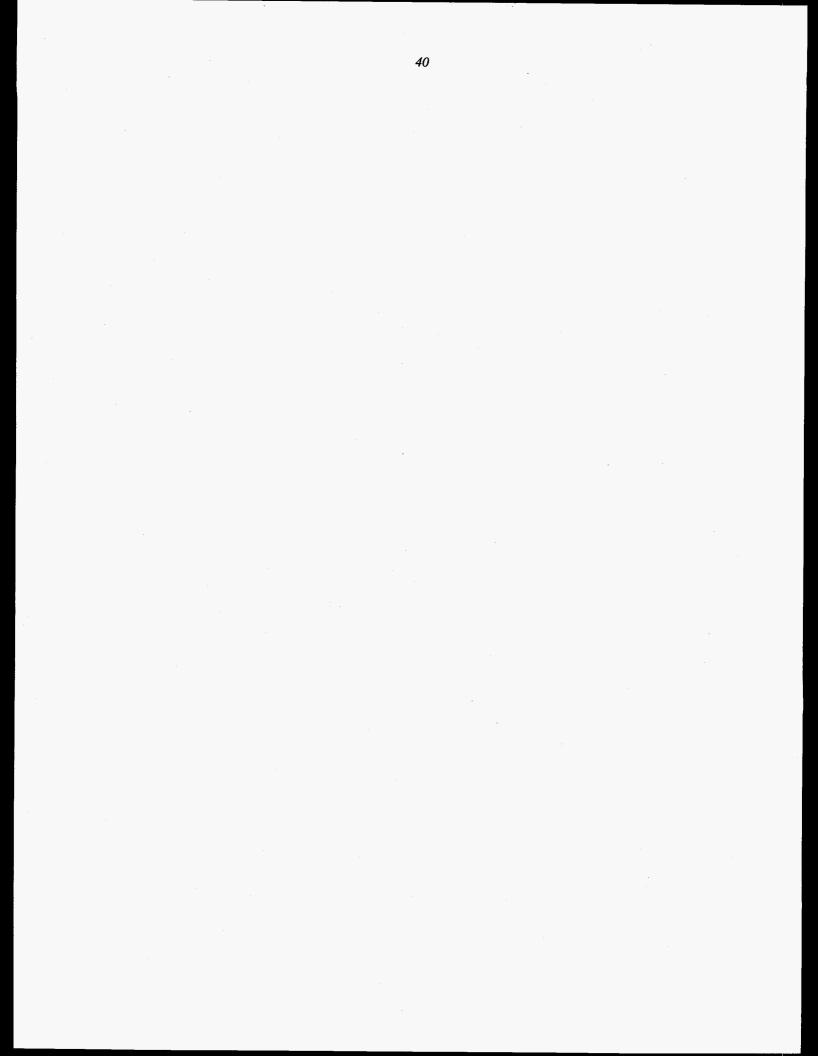
 N_f = number of facultative species,

 N_{fu} = number of facultative upland species, and

 N_u = number of upland species.

B.5 References

Federal Interagency Committee for Wetland Delineation, 1989, *Federal Manual for Identifying and Delineating Jurisdictional Wetlands*, U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and U.S. Department of Agriculture, Cooperative Technical Publication, Washington, D.C.


FICWD: see Federal Interagency Committee for Wetland Delineation.

Reed, P.B., Jr., 1988, National List of Plant Species that Occur in Wetlands, Region 1, U.S. Department of the Interior, Biology Report 88 (26.1).

Zimmerman, R.E., et al., 1991, Pipeline Corridors through Wetlands — Impacts on Plant and Avian Diversity: Boreal Wetlands, Oconto County, Wisconsin, GRI-91/0046, prepared by Argonne National Laboratory, Argonne, Ill., for the Gas Research Institute, Chicago, Ill.

Appendix C:

Plant Species List, Areal Coverage Data, and Species Distribution

Appendix C:

Plant Species List, Areal Coverage Data, and Species Distribution

Field No.	Scientific Name and Authority	Common Names	Region 2 Wetland Indicator Category ^a	Life- Form/ Origin ^b
32	Acalypha virginica L.	Three-seeded mercury	FACU-	ANF
109	Acer rubrum L.	Red maple	FAC	NT
61	Aesculus pavia L.	Red buckeye	FAC	NST
103	Ampelopsis arborea (L.) Koehne	Pepper-vine	FAC+	NWV
141	Aristolochia sepentaria L.	Virginia snakeroot	FACU	PNF
65	Arundinacea gigantea Walter ex Muhl.	Giant cane	FACW	PNG
90	Ascyrum hypericoides L.	St. Andrew's cross	FAC	NS
150	Asimina triloba (L.) Dunal	Common pawpaw	FAC	NT
28	Aster dumosus L.	Bush aster	FAC	PNF
71	Aster lateriflorus (L.) Britton	Calico aster	FAC	PNF
91	Baccharus halimifolia L.	Eastern false-willow	FAC	NS
46	Berchemia scandens K. Koch	Alabama supple-jack	FACW	NWV
54	Bidens frondosa L.	Devil's beggar-ticks	FACW	ANF
53	Bignonia capreolata L.	Crossvine	FAC	NWV
81	Boehmeria cylindirca (L.) Swartz	Small-spike false nettle	FACW+	PNF
144	<i>Botrychium biternatum</i> (Savigny) Under.	Sparse-lobe grapefern	FÁC	PNF3
4	Brunnichia cirrhosa Gaertn.	Redvine	FACW	PNF
125 51	<i>Carex glaucescens</i> Ell. <i>Carex</i> sp.	Southern waxy sedge	OBL	PNEGL
7	Carex tribuloides Wahl.	Blunt broom sedge	FACW+	PNGL
116	Carpinus caroliniana Walter	American hornbeam	FAC	NT
72	Carya cordiformis K. Koch	Bitter-nut hickory	FAC	NT
44	Carya tomentosa Nutt.	Mockernut	UPL	NT
147	Celtis laevigata Willd.	Sugar-berry	FACW	NT
21	Cephalanthus occidentalis L.	Common buttonbush	OBL	NT
10	Chasmanthium latifolium Michx.	Indian sea-oats	FAC-	PNG
66	Chasmanthium laxum (L.) H. Yates	Slender spikegrass	FACW-	PNG
124	Cocculus carolinus (L.) Dc.	Carolina coral-beads	FAC	NWV
15	Conoclinium coelestinum (L.) Dc.	Mistflower	FAC	PNF
85	Conyza canadensis (L.) Cronq.	Canada horseweed	FACU	ANF
70	Crataegus viridis L.	Green hawthorn	FACW	NT
16	Cyperus pseudovegetus Steud.	Marsh flatsedge	FACW	PNEGL
6	Cyperus virens Michx.	Green flatsedge	FACW	PNEGL
11	Dichanthelium aciculare Gould & Clark	Needle-leaf witchgrass	FACU	PNG
13	Dichanthelium sphaerocarpon Gould	Round-seed panic grass	FACU	PNG
2	Diodia virginiana L.	Virginia button-weed	FACW	APNEF
131	Diospyros virginiana L.	Common persimmon	FAC	NT

TABLE C.1 Plant Species List for the Bayou Grand Cane Study Site

TABLE C.1 (Cont.)

Field	•		Region 2 Wetland Indicator	Life- Form/
No.	Scientific Name and Authority	Common Names	Category ^a	Origin ^b
151	Elephantopus carolinianus Raeusch	Carolina elephant-foot	FAC	PNF
152	Elephantopus tomentosus L.	Hairy elephant-foot		PNF
92	Eryngium prostatum Nutt. Ex Dc.	Creeping coyote-thistle	FACW	PNF
88	Eupatorium capillifolium (Lam.) Small	Small dog-fennel thorough- wort	FACU	PNF
12	Eupatorium serotinum Michx.	Late-flowering thorough- wort	FAC	PNF
107	Fagus grandifolia Ehrh.	American beech	FACU	NT
130	Forestiera acuminata (Michx.) Poir.	Swamp privet	OBL	NST
60	Fraxinus pennsylvanica Marshall	Green ash	FACW	NT
78	Gratiola virginiana L.	Round-fruit hedgehyssop	OBL	ABNEF
79	Hydrocotyle verticillata Thunb.	Worled penny-wort	OBL	PNF
9	Hydrolea uniflora Raf.	One-flower false-fiddle-leaf	OBL	PNF
20	Hypericum mutilum L.	Slender St. John's-wort	FACW	PNF
68	llex decidua Walter	Deciduous holly	FACW-	NT
48	llex opaca Soland. In Ait.	American holly	FAC-	NTS
55	llex vomitoria Soland. In Ait.	Yaupon	FAC	NST
43	Ipomea trichocarpha Elliot	Small-flower pink morning glory	FACU	PNVF
75	Juncus diffusissimus Buckley	Slim-pod rush	FACW	PNGL
110	Juncus effusus L.	Soft rush	FACW+	PNEGL
87	Juncus validus Coville	Round-head rush	FACW+	PNGL
126	Justica americana (L.) Vahl	Common water-willow	OBL	PNF
42	Leersia virginica Willd.	Whitegrass	FACW	PNG
93	Ligustrum sinense Loureiro	Chinese privet	FAC	IS
27	Lindernia anagallidea (Michx.) Pennell	False-pimpernel	FACW+	ANF
94	Liquidambar stryaciflua L.	Sweet gum	FAC+	NT
111	Lobelia cardinalis L.	Cardinal flower	FACW+	PNF
17	Ludwigia alternifolia L.	Bushy seedbox	OBL	PNEF
136	Ludwigia decurrens Walter	Primrose willow	OBL	NEF
14	Ludwigia grandulosa Walter	Cylindric-fruit seedbox	OBL	PNEF
19	Ludwigia palustris (L.) Elliot	Marsh seedbox	OBL	PNEF
26	Ludwigia peploides (H.B.K.) Raven	Floating seedbox	OBL OBL	PNE/F PNEF
120	Lycopus rubellus Moench	Taper-leaf bugleweed	OBL	PNF
36 123	Lysimachia radicans Hook. Melothria pendula L.	Trailing loosestrife Creeping cucumber	FACW-	PNV
4	Melouma pendula L. Mikania scandens (L.) Willd.	Climbing hempweed	FACW-	PNV
4 8	Mimulus alatus Ait.	Sharp-wing monkey-flower	OBL	PNF
。 52	Minuus alatus Alt. Mitchella repens L.	Partridge-berry	FACU+	PNF
129	Morus rubra L.	Red mulberry	FACU+	NT
59	Nyssa sylvatica Marshall	Swamp tupelo	OBL	NT
108	Ostrya virginiana (Mill.) K. Koch	Eastern hop-hornbeam	FACU-	NT
33	Oxalis eurpaea Jordan	Upright yellow woodsorrel	UPL	PIF
154	Panicum anceps Michx.	Beaked panic grass	FAC-	PNG
112	Panicum dichotomiflorum Michx.	Fall panic grass	FACW	ANG

TABLE C.1 (Cont.)

Field No.	Scientific Name and Authority	Common Names	Region 2 Wetland Indicator Category ^a	Life- Form/ Origin ^b
				·
5	Panicum regidulum Bosc Ex Nees	Red-top panic grass	FACW	PNG
145	Parthenocissus quinquefolia (L.) Planch.	Virginia creeper	FAC	NWV
89	Paspalum notatum Fluegge	Bahia grass	FACU+	PIG
86	Penstemon Jaxiflorus Pennell	Muskogee beardtongue	FAC-	PNF
18	Penthorum sedoides L.	Ditch-stonecrop	OBL	PNF
133	Phanopyrum gymnocarpon (Elliot) Nash	Savannah panic grass	OBL	PNG
3	Phyla lanceolata (Michx.) Greene	Lance-leaf frog-fruit	FACW+	PNF
139	Phyllanthus caroliniensis Walter	Carolina leaf-flower	FAC+	ANF
40	Physalis pubescens L.	Low hairy ground-cherry	UPL	ANF
146	Pinus taeda L.	Loblolly pine	FAC	NT
1	Pluchea odorata (L.) Cass.	Shrubby camphor-weed	FACW	PIS
23	Polygonum hydropiperoides Michx.	Swamp smartweed	OBL	PNEF
155	Polygonum virginianum L.	Virginia knotweed	FAC	APNF
29	Polypremum procumbens L.	Juniper-leaf	FACU-	APNF
106	Quercus falcata (pagoda) Michx.	Cherry-bark oak	FAC+	NT
148	Quercus lyrata Walter	Overcup oak	OBL	NT
104	Quercus nigra L.	Water oak	FAC	NT
56	Quercus phellos L.	Willow oak	FACW-	NT
156	Rhamnus caroliniana Walt.	Carolina buckthorn	FACU	NST
25	Rhexia mariana L.	Maryland meadow-beauty	FACW+	PNF
63	Rhus copallinum L.	Winged sumac	N	NST
121	Rhynchospora inexpansa (Michx.) Vahl	Nodding beakrush	FACW	PNGL
77	Rhyncospora sp.			
22	Rotala ramosior (L.) Koehne	Toothcup	OBL	ANF
69	Rubus sp.			
82	<i>Salix nigra</i> Marshall	Black willow	OBL	NT
134	Sambucus canadensis L.	American elder	FACW-	NS
157	Scirpus cyperinus (L.) Kunth	Wool-grass	OBL	PNEGL
49	<i>Smilax glauca</i> Walter	Cat greenbrier	FAC	NSWV
67	Smilax rotundifolia L.	Common greenbrier	FAC	NWV
83	Solidago canadensis L.	Canada golden-rod	FACU	PNF
158	Solidago salicina Elliott	Willow golden-rod	OBL	PNF
24	Stachys tenuifolia Willd.	Smooth hedgenettle	FACW-	PNF
30	<i>Styrax americana</i> Lam.	American snowbell	FACW	NST
62	<i>Styrax grandifolia</i> Ait.	Big-leaf snowbell	FACU-	NT
64	Symplocos tinctoria (L.) L'Her.	Horse-sugar	FAC	NTS
127	Taxodium disticum (L.) L. Rich	Bald cypress	OBL	NET
47	Toxicodendron radicans (L.) Kuntze	Poison ivy	FAC	NWVS
80	Triadenum tubulosum (Walter) Gleason	Large marsh St. John's wort	OBL	PNEF
58	Ulmus alata Michx.	Winged elm	FACU+	NT
142	Ulmus americana L.	American elm	FACW	NT
37	Unidentifiable grass No. 1			
114	Unidentifiable grass No. 2			
122	Unidentifiable grass No. 3			

TABLE C.1 (Cont.)

Field No.	Scientific Name and Authority	Common Names	Region 2 Wetland Indicator Category ^a	Life- Form/ Origin ^b
			·	- <u></u>
34	Unidentified Cyperus or Rhincosporum	· ·		
160	Vaccinium elliottii Chapm.	Elliott blueberry	FAC+	NS
159	Veronia missurica Raf.	Missouri ironweed	FAC+	PNF
35	Viola sp.			
115	Vitis riparia Michx.	River-bank grape	FACW	NWV
50	Vitis rotundifolia Michx.	Muscadine grape	FAC	NWV
39	Wisteria macrostachya (Torr. & Gray)	Kentucky wisteria	FACW	NWV
38	Xanthium strumarium L.	Rough cockle-bur	FAC	ANF

^a Wetland indicator categories are assigned to plants in the United States on a regional basis. Louisiana is located in Region 2. A "+" following an indicator reveals a frequency toward the high end of the category (more frequently found in wetlands), while a "-" indicates a frequency toward the low end (less frequently found in wetlands).

^b Plant characteristics and life-forms assigned to each species are indicated in this column. Appendix B, Section B.2 provides definitions of the life-forms and origins, with the exception of /, which signifies a floating species.

TABLE C.2 Coverage Estimates by Stratum for Species in the Bayou Grand Cane Study Site

										A	real Cov	/erage (°	%) ^a								
				ENA				E	East RC	W	<u>,</u>		٧	Vest RC	w	. <u></u>			WNA		
Field No.	Scientific Name	T1	T2	тз	Τ4	T 5	T1	T2	ТЗ	T4	T5	T1	T2	ТЗ	T4	Т5	T1	T2	тз	T4	T5
aroun	d Stratum										-							· · · ·			
	Bryophytes	_		1	2		7	10	5	2	2	8	10	10	1	1	25	5	15	0.5	-
Herb	Stratum																				
32	Acalypha virginica	0.5	•		•	-	1	-	-	•	-	-	1	1	•	-	•	-	-	-	-
103	Ampelopsis arborea	-		20	1	-	-	-	-	1	-	•	-	1	-	•	-	-	-	-	-
141	Aristolochia sepentaria	-	-	•	-	-		-	•	-	•	-	-	-	-	•	•	•	-	0.5	•
65	Arundinacea gigantea	-	3	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
90	Ascyrum hypericoides	•	-	-	-	. •	-	-	-	-	2	-	1	1	-	-	-	-	-	-	-
28	Aster dumosus	•	•	4	-	-	2	5	10	4	5	-	3	2	5	1	• .	-	-	-	•
71	Aster lateriflorus	•	0.5	-	•	• *	•	-	•	•	-	-	-	•	-	-	-	3	• .	•	•
91	Baccharus halimifolia	· •	-	-	-	•	-	-	1	-	-	. -	1	1	-	-	•	•	-	•	-
46	Berchemia scandens	-	0.5	•	2	-	-	-	•	•	• .	-	-	-	•	-	0.5	• .	-	-	0.5
54	Bidens frondosa	•	• .	-	•	-	-	•	•	•	•	-	•	-	-	-	0.5	•	•	•	-
53	Bignonia capreolata	-	-	-	· •	•	-	•	• .	-	-	-	-	-	-	-	0.5	0.5	0.5	0.5	2
81	Boehmeria cylindirca	-	-	1	25	0.5	-	1	2	1	2	-	-	-	1	3	•	•	-	-	- 1
144	Botrychium biternatum	•	-	-	- 11	-		•.	•	•	•	•	-	•	-	-	-	•	-	-	0.5
45	Brunnichia cirrhosa	0.5	-	-	-	•	•	-	•	•	-	-	-	-	-	-	•	-	-	-	-
125	Carex glaucescens		-	-	-	•	-	-	•	-	-	-	-	-	1	-	-	-	-	-	•
51	Carex sp.	-	0.5	3	0.5	-	-	•	•	•	-	•	-	-	-	-	50	15	3	-	5
7	Carex tribuloides	-	-	-	-	-	3	5	25	30	20	3	1	6	20	5	•	•	-	-	-
116	Carpinus caroliniana	0.5	0.5	•	-	0.5	•	• .	1	- 1	1	•	⁻	10	-	-	-	10	0.5	-	-
21	Cephalanthus occidentalis	0.5	-	-	-	•	2	-	1	•	-	1	1	-	-	-	-		-	•	•
10	Chasmanthium latifolium	-	- '	-	•	-	-	•	-	•	1	•	•	-	-	-	-	•	-	-	•
66	Chasmanthium laxum	•	1	•	•	-	. •	-	•	•	-	•	-	-	•	-	•	• 1	-	•	-
124	Cocculus carolinus	•	-	0.5	-	•	-		•	•	-	-	-	•	-	•	•	•	•	-	• •
15	Conoclinium coelestinum	•	-	-	-	-	10	-	-	•	•	•	3	•	1	1	•	- 1	-	-	-
70	Crataegus viridis	-	0.5	-	-	-	•	•	-	•	• 2	•	-	-	-	-	•	•	•	•	•
16	Cyperus pseudovegetus	•	- '	-	•	•	2	2	. 10	-	3.	15	15	2	-	-	-	-	-	-	•
6	Cyperus virens	-	•	-	-	-	7	1		-	1	3 -	1	1	1	1	-	-	•	•	•
11	Dichanthelium aciculare	-	2	0.5	-	-	50	30	20	10	15	50	50	50	10	5	2	0.5	•	•	•
13	Dichanthelium sphaerocarpon	• ·	0.5	-	-	· •,	40	1	3	1	2	2	10	10		•	0.5	0.5	•.	-	•
2	Diodia virginiana	-	-	-	•	•	2	7	1	2.	1	20	-	1	3	1	• `	-	-	•	•
92	Eryngium prostatum	•	•	•	-	• .	-	-	-	-	-	-	1	•	•.	-	•	•	-	•	•
.88	Eupatorium capillifolium	•	٠	. •	-	• .	-	- 1	1	-	-	. •	1.	1	•	-	-	-	•	-	-
12		•.	-	•	-	-	.10	-	2	1	2	2	1	1	1	3	•	•	-	-	•
78	Gratiola virginiana	-	•	•	• .	•	-	1	2	-	1	-	1	. 1	-	•	•	-	-	-	-
79	Hydrocotyle verticillata	-	-	-		-	•	1	•.	-	•	•	•	•	•	1	-	-	-	-	•
9	Hydrolea uniflora	-	-	-	-	•	2	. •	3	-	1	1	1	-	1	-	-	• .		-	-
20	Hypericum mutilum	•	-	-	-	-	1	1	•	-	•	1	3	1	-	-	-	•	-	•	•
68	llex decidua	-	8	-	-	•	•	•.	-	-	-	-	• '	-	•	• .		•	-	•	2
48	llex opaca	-	-	• .	-	•	•	•	-	•	•	-	-	•	-	-	0.5	0.5	-	•	-
43	Ipomea trichocarpha	0.5	0.5	-	•	• .	•	1	-		•	-	1	-	-	•	-	•	-	•	-

£5

TABLE C.2 (Cont.)

										A	real Cov	/erage (*	%) ^a						******		
				ENA			. <u></u>	E	ast RC	w			٧	Vest R	W			A	WNA		
Field No.	Scientific Name	T1	T2	T3	T4	Т5	T 1	T2	T 3	T 4	T 5	T1	T2	ТЗ	T4	Т5	. T1 .	T2	ТЗ	T4	T5
lerb	Stratum (Cont.)		-hausauce																		
75	Juncus diffusissimus	-	-		-		-	1		-	-	•		-		-	-	-	-		-
110	Juncus effusus	-	-	-	-			-	1	1	-		-	1	1	•	-	-	-		-
87	Juncus validus	-	-	-	-	-		-	3		1	•	1	1	•	-	· •	-	-	-	-
42	Leersia virginica	2	•	•	-	0.5	-	-	-	•	2	-		•	-	50	-	-	0.5		-
27	Lindernia anagallidea		•	-	-		1	-	1	-	-	1	-	-	-	-			-	-	
94	Liquidambar stryaciflua		-	· _	-	-		-	i	-	•		1	1				-			
111	Lobelia cardinalis		-	-	-	-	_	-			-					1	-	-	-		-
17	Ludwigia alternifolia	_	-		-		3	-	_	-	-	-	_				-	-	-	-	
136	Ludwigla decurrens		-	-	-	-	-	-	-	_	_ ·	-	-	-	-	-	-	-	-		-
14	Ludwigia grandulosa	0.5			-	-	10	15	40	10	4	- 1	5	2	-	1		-	-	-	•
19	Ludwigia palustris	0.5	•	-	-	-	10	10	1	1	_	i	1	٤			-	-	•	-	-
2	Ludwigia peploides	•	-	-	•	-			•	•	-	1		-	-	-	•	•	•	•	-
		-	-	-	•	•	1	•	-	12	2	•	-	1	1	- 1	•	-	-	-	•
120	Lycopus rubellus	- - -	-	-	-	-	-	-	-	•		-	•	1	•	•	-	-	•	•	-
36	Lysimachia radicans	0.5	1	0.5	•	-	1	_ 1		20	1	•	•		30	2	0.5	10	-	•	•
123	Melothria pendula	-	-	4	-	•		•		•	-	· -	-	-	-	-	-	•	-	-	•
4	Mikania scandens	•	•	0.5	-	-	10	3	10	3	10	15	10	10	30	10	-	1	•	-	•
8	Mimulus alatus	-	•	-	-	-	5	8	8	10	15	1	2	1	15	25	-	-	-	•	-
52	Mitchella repens	-	-	-	· -	-	-	-	-	-	-	-	-	-	•	•	3	-	-	-	-
33	Oxalis eurpaea	-	-	-	-	-	1	-	-	-	-	-	-	-	-	•	•	-	-	-	
112		-	-	-	-	•	•	-	2	3	9	-	•	1	1	•	-	-	•	-	•
5	Panicum regidulum	-	-	-	•	-	20	5	1	•	5	15	25	2	-	- 1	• .	-	-	•	•
145	Parthenocissus quinquefolia	-	-	•	-	1	-	-	-	-	•	-	-	-	•	-	-	•	-	-	-
89	Paspalum notatum	-	-	-	-	•	-	-	-	-	-	-	1	-	-	-	-	-	•	-	-
18	Penthorum sedoides	-	•	-	-	-	1	4	2	2	5	2	1	•	10	5	-	-	-	-	-
133	Phanopyrum gymnocarpon	-	-	-	-	-	-	-	•	1	•	-	-	•	•	•	· -	-	-	-	•
3	Phyla lanceolata	-	-	-	-	-	10	2	1	1	1	8	-	-	10	1	-	-	-	-	-
139	Phyllanthus caroliniensis	-	-	-	-	-	-	-	-	-	-	-	-	-	1	•	-	-	-	-	-
40	Physalis pubescens	0.5		-	-	-	-	-	-	-	-	-	-	-		•	-		-	-	-
1	Pluchea odorata	-	-	0.5	-	-	40	50	25	60	80	10	60	50	50	80	•	7	-	-	-
23	Polygonum hydropiperoides	-	-	-	-	-	2	-	10	2	5	3	•	1	5	3	-	-	-	-	-
29	Polypremum procumbens	-	-	-	-	-	1	1	2	-	-		-	1	-	-		-	-	-	-
106	Quercus falcata	-	-	-	-	-		-	-	•	•		-	÷	-	-	-	-		-	0.5
104	Quercus nigra	-	-	-	-			-	-	1		-		-	-	-	-	1	•		-
56	Quercus phellos			0.5				-	-			-		-	-		0.5		0.5	- 0.5	- 0.5
25	Rhexia mariana	-				-	- 1	-		-		-	2	-	-		0.0		-	0.0	0.0
121	Rhynchospora inexpansa	-										_	-	4			-	-			
77	Rhynchospora sp.	-	_	-	-	-		4		-	-		_		-			-	· .		
22	Rotala ramosior		-		•	-				-	-		•	-	-	•	-	-		-	•
69	Rubus sp.	-	-	-	•	-	1	-	•	-	-		-	. 1		-	-		-	-	•
82		-	-	80	-	-	-	-	-	4	•	•	- 1	1		- 1	-	0.5	•	-	•
	Salix nigra	-	•	-	•	•	•	3	4	1	2	•	1	1	1	1	-	-	•	-	•
134	Sambucus canadensis	-	-	-	-	-	•	-	•	1	-	-	-	-	•	•	-	•	-	-	-
49	Smilax glauca	•	•	10	-	-	-	-	-	-	-	•	•	-		•	1	0.5	2	•	

46

TABLE C.2 (Cont.)

										Ar	eal Cov	erage (%	6) ^a								
				ENA				E	ast RO	w			W	lest RC	w				WNA		
Field No.	Scientific Name	Ti	T2	ТЗ	T4	T5	T1	T2	T3	T4	Τ5	. T1	T2	T3	T4	T5	T1	T2	T3	T4	T5
Herb	Stratum (Cont.)																				
67	Smilax rotundifolia		0.5	-	-	-	•	-	•	-		-	-	•	-	•	-	0.5	0.5	0.5	0.5
83	Solidago canadensis	-	-	-	-	-	-	1	1	•	1	•	2	15	-	-	• .	•	-	-	•
24	Stachys tenuifolia	-	-	-	-	-	10	-	-	•	. 1	-	-	•	•	•	-	-	-	-	-
30	Styrax americana	•	-	-	-	• .	1	-	•	-	-	-	•	-	-	-	•	•	-	•	•
64	Symplocos tinctoria	-	-	-	•	-	. •		-	-	•	•	•	•	-	•	•	-	15	-	•
127	Taxodium disticum	0.5	-	20	-	-	-	· •	-	1	1 .	•	-	•	-	1.	•	-	•		•
47	Toxicodendron radicans	•	5	0.5	-	•	- .	•	-		1	•	-	-	-	-	10	0.5	5	-	1
80	Triadenum tubulosum	-	•	•	25	-	•	•	-	- '	•	-	•	-	•	1	-	•	-	-	-
58	Ulmus alata	-	•	-	-	-	•	-	-	-	•	•	1	-	•	-	-		-	-	-
142	Ulmus americana	-	0.5	-	•	-	-	-	-	•	-	•	-	•	•	· _	-	•	•	-	-
37	Unidentifiable grass No. 1	•	-	-	-	-	-	5	-	•	•	1	1	-	•	•	-	-	•	. •	-
114	Unidentifiable grass No. 2	•	-	-	-	-		-	2	-	•	-	•	-	•	-	-	•	• .	-	•
122	Unidentifiable grass No. 3	-	•	•	-	•	•	-		-	•	•	•	2	•	-	•	-	-	•	-
113	Unidentifiable grass No. 4	-	-	-	-	-	-	-	3	•	•	-	-	-	2	•	-	-	- .	-	-
34	Unidentified Cyperus or Rhincosporum	-		•	-	-	1	-	-	•	-	1	-	1	-	•	-	-	-	•	-
35	Viola sp.	-	-	-	-	-	1	•	1	-	1	-	1	-	1	1	0.5	0.5	0.5	0.5	-
115	Vitis riparia	-	•	. •		-	• [-	2	•	•	•	-	1	-	· •	-	-	•	- 1	-
50	Vitis rotundifolia	-	-	0.5	-	-	-	-	-	-	•	-	-	-	•		0.5	-	-	-	•
39	Wisteria macrostachya	10	-	-	· -	•	•	-	• .	-	-	-	-	-	-	•	•	•	•	• 1	•
38	Xanthium strumarium	-	-	•	-	-	-	-	•	•	-	1 °.	•	-	-	-	-	-	-	-	•
Shrub	Stratum																				
61	Aesculus pavia	_	0.5	_		-		_	-	_	_	_	_	_	_	_	_	_	_	_	-
46	Berchemia scandens			-	-	-	-	-	-	-		_	-	-	-	-	10	-	6	Å	1
116	Carpinus caroliniana	20	35	50	10	4		-	-	-	-	-	-	-		-	30	40	5	10	40
44	Carya tomentosa	-	1			-	-	-	-	_		-	_	-	-	-	-	70	5	10	40
131	Diospyros virginiana	-		-	0.5		-	-	_	-	-		-	-	-	-	-	-		-	-
107	Fagus grandifolia	-		-		· ·	_	-		<u>-</u>	-	-	-		-	-	-	-	2	-	
130	Forestiera acuminata	-	-		0.5	-	-	-	-	-		-	-		-	-	-	-	~	-	
60	Fraxinus pennsylvanica	-	3	-	0.0	-	_	-	-	-	-	-	-	-			_	-		-	-
68	llex decidua	-			2		-		-	-	-	· -			-		-	-	7		5
48	liex opaca	2		-	6				-	-	_						-	-		_	3
40 55	llex vomitoria	-	-	-	-	-	1		-		-	-	-		-		-	2	-		
93	Ligustrum sinense	-	- 0.5		-	-		-	-	-	-		-	-	-		-	~	-	-	
93 94	Ligusirum smense Liquidambar stryaciflua	1	0.5	_	-	-		-	-	-			-	-	-	-	-	-	-	-	
94 129	Liquidambar stryacilua Morus rubra					_	•			-		•					4.		-		•
59	Morus rubra Nyssa sylvatica		1			-		-	-	-		-	-	-	-		_	•	•	•	•
108	Nyssa sylvalica Ostrya virginiana			-	· •	-		-		-			-	-	-	-	_		- 3	-	•
104	Ostrya virginiana Quercus nigra		•			-		-		-			-	-	-			2	3	•	•
56	Quercus nigra Quercus phellos	•	- 0.5	•	-	•	•	-	-	-	•	•		-	-	•	•	2	•	-	

TABLE C.2 (Cont.)

											Ar	eal Cov	erage (%	6) ^a						· · · · · ·		
		-			ENA				E	ast RO	w			w	est RC	w				WNA		
Field No.	Scientific Name		T1	T2	тз	T4	T5	T1	T2	ТЗ	T4	Т5	Т1	T2	тз	T4	T5	T1	T2	ТЗ	T4	Т5
Shrub	Stratum (Cont.)	· · · · · · · · · · · · · · · · · · ·									<u></u>								·····			
				<u> </u>																		
63	Rhus copallinum		-	0.5	•	-	•	-	•	•	•	-	•	•	•	•	•	•	-	•	•	•
62	Styrax grandifolia		-	2	•	•	•	•	•	. •	-	-	-	•	•	-	•	-	-	-	•	•
64	Symplocos tinctoria		•	0.5	•	•	•	• .	•	-	-	-	•	•	-	•	•	-	-	•	•	•
47	Toxicodendron radicans	<u>.</u>	-	2	-	•	•	•	-	-	-	-	•	•	•	•	•	. •	5	2	6	1
58	Ulmus alata		-	25	•	•	-	-	•	•	-	-	-	-	-	-	•	-	•	•	-	1
142	Ulmus americana		-	-	•	-		-	-	-	-	-	•	-	-	-	-	-	-	-	•	0.5
5	Vitis rotundifolia		-	-	-	-	3	-	•	-	-	•	•	•	-	-	-	-	8	-	•	3
Saplin	g Stratum																					
61	Aesculus pavia		-	-				-	-	-	. •	-	-	-		-	-	3	-	-	-	
46	Berchemia scandens		-	-	-	-		· .	-	· · ·	-	-	-		-	-	-	10	-			
116	Carpinus caroliniana		20	4	10	3	2		-	· _	-	-		-	-	-		25	3	4	10	
44	Carya tomentosa		20	-			-	_	-		-	-	_	-	_	-	-	4		-		
	llex opaca		2	-	-	•	-	•	•	-			-	•	•	•	•		•	-	-	
48				•	•	•	•	•	•	-	•	•	•	•	-	-	-	•	•	•	•	
94	Liquidambar stryaciflua		2	-	-		-	-	•	-	-	•	•	•	-	-	-	•	•	-	•	
29	Morus rubra		•	•	•	3	-	-	-	-	-	•		-	-	-	-	•	•	. •	•	
04	Quercus nigra		2	-	•	•	•,	-	-	-	-	-	-	•	•	-	•	-	6	•	•	
56	Quercus phellos		-	-	-	. •	-	-	•	•	-	•.	•	. •	•	•	-	-	-	-	1	
64	Symplocos tinctoria		-	•	•	-	•	-	-	-	-		-	-	•	•	-	•	-	15	•	
42	Ulmus americana		4	-	-	-	-	•	•	-	-	•	•	•	-	-	•	-	•	•	-	
ree (Stratum																					
116	Carpinus caroliniana		340	108	173	-	1314	-	-	-	-	-	-	-	-	-		676	582	-	-	31
44	Carya tomentosa		973	2165	-	-	-	· ·	•	-	-	-	-	-	-	-	•	-	-	-	-	
47	Celtis laevigata		-	-	-	-	•	•	-	-	-	-	· •	-	•	•	•	-	•	· •	•	15
94	Liquidambar stryacifiua		-	106	1789	-	-		-	-	-			-		-		-	-	826	2944	69
46	Pinus taeda		2463		•	-	-	•	-	-		-	-	-	-	-	-	-	-	2124	•	
06	Quercus falcata (pagoda)			-	-	-	-		-	-	-			-	-	-	-	-	-	2781	-	21
48	Quercus lyrata		-	1650	-	-	-	-	-	-	-			-		-		-				
04	Quercus nigra				80	_			_	_	-		_	_	_	-		1075	-	387		
27	Taxodium disticum					3660	-			-	-	-	_	-	-		-	1075	-	007	720	
58	Ulmus alata		-		•	3000	1004	•	-	-	•	-	•		•	-	•	211	•	-	•	
142	Ulmus americana				•	•	1676			-	-	•	•	•	•	•	•		434			21
44	Cillius allielicana		-	-	-	-	1010	•	-	-	-	•	•	•	-	•	•	•	434	•	156	2

^a Each value represents the value given to a species in a single plot of Transect 1 (T1) through Transect 5 (T5). Values are percent areal coverages for the herb, shrub, and sapling strata. Values are total basal area for all trees of that species in the plot.

		Average Percent Coverage/ Absolute Frequency ^a								
Field No.	Scientific Name and Authority	ENA	East ROW	West ROW	WNA					
Crown	d Stratum									
Ground	Bryophytes	0.6/ 2	5.2/5	5.8/5	9.1/4					
Herb S	Stratum									
	Plants found in both NAs and both portions of ROW									
116	Carpinus caroliniana Walter	0.3/3	0.2/2	2/1	2.1/2					
11	Dichanthelium aciculare	0.5/2	25/5	33/5	0.5/ 2					
13	Dichanthelium sphaerocarpon	0.1/1	9.3/5	4.4/3	0.2/2					
42	Leersia virginica	0.5/2	0.4/1	10/1	0.1/1					
36	Lysimachia radicans	0.4/3	4.4/4	6.4/2	2.1/2					
4	Mikania scandens	0.1/1	7.2/5	15/5	0.2/ 1					
1	Pluchea odorata	0.1/1	51/5	50/5	1.4/ 1					
69	Rubus sp.	16/ 1	0.8/1	0.1/1	0.1/ 1					
	Plant found in both NAs and east portion of ROW only	,								
47	Toxicodendron radicans	1.1/ 2	0.1/1	0/0	3.3/4					
	Plants found in both NAs only									
7.1	Aster lateriflorus	0.1/1	0/0	0/0	0.6/1					
46	Berchemia scandens	0.5/ 2	0/0	0/0	0.2/2					
51	Carex sp.	0.8/3	0/0	0/0	14.6/4					
68	llex decidua	1.6/1	0/0	0/0	0.4/1					
56	Quercus phellos	0.1/1	0/0	0/0	0.4/4					
49	Smilax glauca	2/1	0/0	0/0	0.7/ 3					
67	Smilax rotundifolia	0.1/1	0/0	0/0	0.4/4					
50	Vitis rotundifolia	0.1/1	0/0	0/0	0.1/ 1					
	Plants found in ENA and both portions of ROW									
32	Acalypha virginica	0.1/1	0.1/1	0.2/2	0/0					
103	Ampelopsis arboream	4.2/2	0.1/1	0.1/1	0/ 0					
81	Boehmeria cylindirca	5.3/3	1/4	0.8/2	0/0					
21	Cephalanthus occidentalis	0.1/ 1	0.5/2	0.2/2	0/0					
43	Ipomea trichocarpha	0.2/2	0.1/1	0.1/1	0/0					
14	Ludwigia grandulosa	0.1/1	15.1/5	1.9/5	0/ 0					
127	Taxodium disticum	4.1/2	0.4/ 2	0.1/1	0/0					
	Plants found in ENA and west portion of ROW									
80	Triadenum tubulosum	5/1	0/0	0.1/1	0/0					

TABLE C.3 Areal Coverage Estimates and Frequencies by Stratum for Species in the Bayou Grand Cane Study Site

TABLE C.3 (Cont.)

		Ave	nt Covera requency ^a	•		
Field No.	Scientific Name and Authority	ENA	East ROW	West ROW	WNA	
	Plants found in ENA only					
65	Arundinacea gigantea	0.6/1	0/0	0/0	0/0	
45	Brunnichia cirrhosa	0.1/1	0/0	0/0	0/0	
66	Chasmanthium Iaxum	0.2/1	0/0	0/0	0/0	
124	Cocculus carolinus	0.1/1	0/0	0/0	0/0	
70	Crataegus viridis	0.1/1	0/0	0/0	0/0	
123	Melothria pendula	0.8/1	0/0	0/0	0/0	
145	Parthenocissus quinquefolia	0.2/1	0/0	0/0	0/0	
40	Physalis pubescens	0.1/1	0/0	0/0	0/0	
142	Ulmus americana	0.1/1	0/0	0/0	0/0	
39	Wisteria macrostachya	2/1	0/0	0/0	0/0	
	Plant found in WNA and both portions of ROW					
35	Viola sp.	0/0	0.3/3	0.3/3	0.4/4	
	Plant found in WNA and aget partian of POW					
104	Plant found in WNA and east portion of ROW Quercus nigra	0/0	0.1/1	0/0	0.2/1	
104		070	0.17	07 0	0.27 1	
	Plants found in WNA only					
141	Aristolochia sepentaria	0/0	0/0	0/0	0.1/1	
54	Bidens frondosa	0/0	0/0	0/0	0.1/1	
53	Bignonia capreolata	0/0	0/0	0/0	0.8/5	
144	Botrychium biternatum	0/0	0/0	0/0	0.1/1	
48	llex opaca	0/0	0/0	0/0	0.2/2	
52	Mitchella repens	0/0	0/0	0/0	0.6/1	
106	Quercus falcata	0/0	0/0	0/0	0.1/ 1	
64	Symplocos tinctoria	0/0	0/0	0/0	3/1	
	Plants found in both portions of ROW					
90	Ascyrum hypericoides	0/0	0.4/1	0.2/2	0/0	
28	Aster dumosus	0/0	5.2/5	2.1/4	0/0	
91	Baccharus halimifolia	0/0	0.1/1	0.3/ 2	0/0	
7	Carex tribuloides	0/0	16.6/5	7/5	0/0	
15	Conoclinium coelestinum	0/0	2/1	0.8/3	0/0	
16	Cyperus pseudovegetus	0/0	3.4/4	6.4/3	0/0	
6	Cyperus virens	0/0	1.8/4	1/5	0/0	
2	Diodia virginiana	0/0	2.6/5	4.8/4	0/0	
88	Eupatorium capillifolium	0/0	0.1/1	0.2/2	0/0	
12	Eupatorium serotinum	0/0	3/4	1.5/5	0/0	
78	Gratiola virginiana	0/0	0.7/3	0.2/2	0/0	
79	Hydrocotyle verticillata	0/0	0.1/1	0.2/1	0/0	
9	Hydrolea uniflora	0/0	1.1/3	0.4/3	0/0	

TABLE C.3 (Cont.)

		Average Percent Coverage/ Absolute Frequency ^a			
Field No.	Scientific Name and Authority	ENA	East ROW	West ROW	WNA
20	Hypericum mutilum	0/0	0.3/ 2	0.8/3	0/0
110	Juncus effusus	0/0	0.3/2	0.4/2	0/0
87	Juncus validus	0/0	0.8/2	0.4/2	0/0
27	Lindernia anagallidea	0/0	0.2/2	0.1/1	0/0
94	Liquidambar stryaciflua	0/0	0.1/1	0.3/2	0/0
19	Ludwigia palustris	0/0	2.3/4	0.3/2	0/0
120	Lycopus rubellus	0/0	2.8/2	0.4/3	0/0
8	Mimulus alatus	0/0	9.2/5	8.7/5	0/0
112	Panicum dichotomiflorum	0/0	2.8/3	0.4/2	0/0
5	Panicum regidulum	0/0	6.2/4	8.6/4	0/0
18	Penthorum sedoides	0/0	2.7/5	3.5/4	0/0
3	Phyla Lanceolata	0/0	2.7/5	3.7/3	0/0
23	Polygonum hydropiperoides	0/0	3.8/4	2.4/4	0/0
29	Polypremum procumbens	0/0	0.7/3	0.2/1	0/0
22	Rotala ramosior	0/0	0.1/1	0.2/2	0/0
82	Salix nigra	0/0	1.9/4	0.5/4	0/0
83	Solidago canadensis	0/0	0.4/3	3.4/2	0/0
115	Vitis riparia	0/0	0.4/1	0.2/1	0/0
34	Unidentified Cyperus or Rhincosporum	0/0	0.1/1	0.3/2	0/0
37	Unidentifiable grass No. 1	0/0	1/1	0.2/2	0/0
113	Unidentifiable grass No. 4	0/0	0.6/1	0.4/1	0/0
	Plants found only on east portion of ROW				
10	Chasmanthium latifolium Michx.	0/0	0.1/1	0/0	0/0
75	Juncus diffusissimus	0/0	0.1/1	0/0	0/0
17	Ludwigia alternifolia	0/0	0.6/ 1	0/0	0/0
26	Ludwigia peploides	0/0	0.1/1	0/0	0/0
33	Oxalis europaea	0/0	0.1/1	0/0	0/0
133	Phanopyrum gymnocarpon	0/0	0.2/1	0/0	0/0
25	Rhexia mariana	0/0	0.1/1	0/0	0/0
77	Rhynchospora sp.	0/0	0.1/1	0/0	0/0
134	Sambucus canadensis	0/0	0.1/1	0/0	0/0
24	Stachys tenuifolia	0/0	2.2/2	0/0	0/0
30	Styrax americana	0/0	0.1/1	0/0	0/0
114	Unidentifiable grass No. 2	0/0	0.4/1	0/0	0/0
	Plants found only on west portion of ROW				
125	Carex glaucescens	0/0	0/0	0.1/1	0/0
92	Eryngium prostatum	0/0	0/0	0.1/1	0/0
111	Lobelia cardinalis	0/0	0/0	0.1/1	0/0
136	Ludwigia decurrens	0/0	0/0	0.1/1	0/0
89	Paspalum notatum	0/0	0/0	0.2/1	0/0
139	Phyllanthus caroliniensis	0/0	0/0	0.1/1	0/0
121	Rhynchospora inexpansa	0/0	0/0	0.2/1	0/0

.

TABLE C.3 (Cont.)

			Average Percent Coverage/ Absolute Frequency ^a			
Field No.	Scientific Name and Authority	ENA	East ROW	West ROW	WNA	
58	Ulmus alata	0/0	0/0	0.1/1	0/0	
38	Xanthium strumarium	0/0	0/0	0.1/1	0/0	
122	Unidentifiable grass No. 3	0/0	0/0	0.4/1	0/0	
Shrub	Stratum (five 10×15 -m plots)					
	Shrubs found in both NAs			. ¥		
116	Carpinus caroliniana	23.8/ 5	0/0	0/0	25/5	
68	Ilex decidua	0.4/1	0/0	0/0	2.4/2	
47	Toxicodendron radicans	0.4/1	0/0	0/0	2.8/4	
58	Ulmus alata	5/1	0/0	0/0	0.2/1	
50	Vitis rotundifolia	0.6/0	0/0	0/0	2.2/2	
	Shrubs found in ENA only					
61	Aesculus pavia	0.1/1	0/0	0/0	0/0	
44	Carya tomentosa	0.2/1	0/0	0/0	0/0	
131	Diospyros virginiana	0.1/1	0/0	0/0	0/0	
130	Forestiera acuminata	0.1/1	0/0	0/0	0/0	
60	Fraxinus pennsylvanica	0.6/1	0/0	0/0	0/0	
48	llex opaca	0.4/1	0/0	0/0	0/0	
93	Ligustrum sinense	0.1/1	0/0	0/0	0/ 0	
94	Liquidambar stryaciflua	0.2/1	0/0	0/0	0/0	
59	Nyssa sylvatica	0.2/1	0/0	0/0	0/0	
56	Quercus phellos	0.1/1	0/0	0/0	0/0	
63	Rhus copallinum	0.1/1	0/0	0/0	0/0	
62	Styrax grandifolia	0.4/1	0/0	0/0	0/0	
64	Symplocos tinctoria	0.1/1	0/0	0/0	0/0	
	Shrubs found in WNA only					
46	Berchemia scandens	0/0	0/0	0/0	4.2/4	
107	Fagus grandifolia	0/0	0/0	0/0	0.4/ 1	
55	llex vomitoria	0/0	0/0	0/0	0.4/ 1	
129	Morus rubra	0/0	0/0	0/0	0.2/ 1	
108	Ostrya virginiana	0/0	0/0	0/0	0.6/ 1	
104	Quercus nigra	0/0	0/0	0/0	0.4/ 1	
142	Ulmus americana	0/0	0/0	0/0	0.1/ 1	
Sapling	g Stratum (five 10×15 -m plots)					
	Saplings found in both NAs					
116	Carpinus caroliniana	7.8/5	0/0	0/0	10/5	
104	Quercus nigra	0.4/1	0/0	0/0	1.2/ 1	

• · · · ·

TABLE C.3 (Cont.)

Field No.	Scientific Name and Authority	Average Percent Coverage/ Absolute Frequency ^a			
		ENA	East ROW	West ROW	WNA
	Saplings found in ENA only				
48	llex opaca	0.4/1	0/0	0/0	0/0
.94	Liquidambar stryaciflua	0.4/1	0/0	0/0	0/0
129	Morus rubra	0.6/1	0/0	0/0	0/0
142	Ulmus americana	0.8/ 1	0/0	0/0	0/0
	Saplings found in WNA only				
61	Aesculus pavia	0/0	0/0	0/0	0.6/1
46	Berchemia scandens	0/0	0/0	0/0	2/1
44	Carya tomentosa	0/0	0/0	0/0	0.8/ 1
56	Quercus phellos	0/0	0/0	0/0	0.2/1
64	Symplocos tinctoria	0/0	0/0	0/0	3/1
	Over 12.7 cm in Diameter (average basal areas in bsolute frequency for 10×15 -m plots)				
	Trees found in both NAs				
116	Carpinus caroliniana	387/4	0/0	0/0	314/3
94	Liquidambar stryaciflua	379/2	0/0	0/0	893/3
146	Pinus taeda	493/1	0/.0	0/0	425/1
			0/0	0/0	077/0
104	Quercus nigra	16/1			377/ 3
104 142	Quercus nigra Ulmus americana	16/ 1 335/ 1	0/0	0/0	
	Ulmus americana Trees found in ENA only		0/0	0/0	161/3
	Ulmus americana <u>Trees found in ENA only</u> Carya tomentosa	335/ 1 628/ 2	0/0	0/0	161/3
142	Ulmus americana <u>Trees found in ENA only</u> Carya tomentosa Quercus Iyrata	335/ 1 628/ 2 330/ 1	0/ 0 0/ 0 0/ 0	0/0 0/0 0/0	161/3 0/0 0/0
142 44	Ulmus americana <u>Trees found in ENA only</u> Carya tomentosa	335/ 1 628/ 2	0/0	0/0	161/3
142 44 148 127	Ulmus americana <u>Trees found in ENA only</u> Carya tomentosa Quercus Iyrata Taxodium disticum <u>Trees found in WNA only</u>	335/ 1 628/ 2 330/ 1 1039/ 0	0/ 0 0/ 0 0/ 0 0/ 0	0/0 0/0 0/0 0/0	161/3 0/0 0/0 0/0
142 44 148	Ulmus americana <u>Trees found in ENA only</u> Carya tomentosa Quercus Iyrata Taxodium disticum <u>Trees found in WNA only</u> Celtis laevigata	335/ 1 628/ 2 330/ 1 1039/ 0 0/ 0	0/0 0/0 0/0 0/0	0/0 0/0 0/0 0/0	161/3 0/0 0/0 0/0 31.6/1
142 44 148 127	Ulmus americana <u>Trees found in ENA only</u> Carya tomentosa Quercus Iyrata Taxodium disticum <u>Trees found in WNA only</u>	335/ 1 628/ 2 330/ 1 1039/ 0	0/ 0 0/ 0 0/ 0 0/ 0	0/0 0/0 0/0 0/0	161/3 0/0 0/0 0/0

^a Frequencies based on five plots.

Field No.	Plant Species	Location
109	Acer rubrum	Seedlings in ENA
150	Asimina triloba	Shrub found in ENA
72	Carya cordiformis	Seedlings in ENA
85	Conyza canadensis	Herb found on ROW
151	Elephantopus carolinianus	Herb found on ROW
152	Elephantopus tomentosus	Herb found on ROW
126	Justica americana	Herb in ENA
154	Panicum anceps	Grass found on ROW
86	Penstemon laxiflorus	Herb found on ROW
155	Polygonum virginianum	Herb found on ROW
156	Rhamnus caroliniana	Shrub found in ENA
157	Scirpus cyperinus	Sedge found on ROW
158	Solidago salicina	Herb found on ROW
160	Vaccinium elliottii	Seedlings in ENA
159	Veronia missurica	Herb found on ROW

TABLE C.4 Species Found Outside of Sampling Plots in the Bayou Grand Cane Study Site